CRAN Package Check Results for Package GeoModels

Last updated on 2022-09-11 12:56:18 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.2 67.78 264.72 332.50 OK
r-devel-linux-x86_64-debian-gcc 1.0.2 53.02 190.14 243.16 OK
r-devel-linux-x86_64-fedora-clang 1.0.2 412.51 OK
r-devel-linux-x86_64-fedora-gcc 1.0.2 406.33 OK
r-devel-windows-x86_64 1.0.2 93.00 289.00 382.00 OK
r-patched-linux-x86_64 1.0.2 58.43 246.41 304.84 NOTE
r-release-linux-x86_64 1.0.2 42.06 248.37 290.43 NOTE
r-release-macos-arm64 1.0.1 172.00 OK
r-release-macos-x86_64 1.0.2 129.00 OK
r-release-windows-x86_64 1.0.2 98.00 289.00 387.00 OK
r-oldrel-macos-arm64 1.0.1 176.00 OK
r-oldrel-macos-x86_64 1.0.2 132.00 OK
r-oldrel-windows-ix86+x86_64 1.0.2 144.00 324.00 468.00 ERROR

Check Details

Version: 1.0.2
Check: DESCRIPTION meta-information
Result: NOTE
    Dependence on R version ‘4.0.5’ not with patchlevel 0
Flavors: r-patched-linux-x86_64, r-release-linux-x86_64

Version: 1.0.2
Check: running examples for arch ‘x64’
Result: ERROR
    Running examples in 'GeoModels-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: GeoFit
    > ### Title: Max-Likelihood-Based Fitting of Gaussian and non Gaussian RFs.
    > ### Aliases: GeoFit print.GeoFit
    > ### Keywords: Composite
    >
    > ### ** Examples
    >
    > library(GeoModels)
    >
    > ###############################################################
    > ############ Examples of spatial Gaussian RFs ################
    > ###############################################################
    >
    >
    > # Define the spatial-coordinates of the points:
    > set.seed(3)
    > N=300 # number of location sites
    > x <- runif(N, 0, 1)
    > set.seed(6)
    > y <- runif(N, 0, 1)
    > coords <- cbind(x,y)
    >
    > # Define spatial matrix covariates and regression parameters
    > X=cbind(rep(1,N),runif(N))
    > mean <- 0.2
    > mean1 <- -0.5
    >
    > # Set the covariance model's parameters:
    > corrmodel <- "Matern"
    > sill <- 1
    > nugget <- 0
    > scale <- 0.2/3
    > smooth=0.5
    >
    >
    > param<-list(mean=mean,mean1=mean1,sill=sill,nugget=nugget,scale=scale,smooth=smooth)
    >
    > # Simulation of the spatial Gaussian RF:
    > data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param,X=X)$data
    >
    >
    > # setting fixed and parameters to be estimated
    > fixed<-list(nugget=nugget,smooth=smooth)
    > start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill)
    >
    >
    > ################################################################
    > ###
    > ### Example 0. Maximum independence composite likelihood fitting of
    > ### a Gaussian RF
    > ###
    > ###############################################################
    > fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel,
    + neighb=3,likelihood="Marginal",
    + type="Independence", start=start,fixed=fixed,X=X)
    > print(fit1)
    
    ##################################################################
    Maximum Composite-Likelihood Fitting of Gaussian Random Fields
    
    Setting: Marginal Composite-Likelihood
    
    Model: Gaussian
    
    Type of the likelihood objects: Independence
    
    Covariance model: Matern
    
    Optimizer: Nelder-Mead
    
    Number of spatial coordinates: 300
    Number of dependent temporal realisations: 1
    Type of the random field: univariate
    Number of estimated parameters: 3
    
    Type of convergence: Successful
    Maximum log-Composite-Likelihood value: -393.74
    
    Estimated parameters:
     mean mean1 sill
     0.04444 -0.44121 0.80821
    
    ##################################################################
    >
    >
    > ################################################################
    > ###
    > ### Example 1. Maximum conditional pairwise likelihood fitting of
    > ### a Gaussian RF using BFGS
    > ###
    > ###############################################################
    > fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel,
    + neighb=3,likelihood="Conditional",optimizer="BFGS",
    + type="Pairwise", start=start,fixed=fixed,X=X)
    > print(fit1)
    
    ##################################################################
    Maximum Composite-Likelihood Fitting of Gaussian Random Fields
    
    Setting: Conditional Composite-Likelihood
    
    Model: Gaussian
    
    Type of the likelihood objects: Pairwise
    
    Covariance model: Matern
    
    Optimizer: BFGS
    
    Number of spatial coordinates: 300
    Number of dependent temporal realisations: 1
    Type of the random field: univariate
    Number of estimated parameters: 4
    
    Type of convergence: Successful
    Maximum log-Composite-Likelihood value: -1017.24
    
    Estimated parameters:
     mean mean1 scale sill
     0.001235 -0.391624 0.051202 0.777630
    
    ##################################################################
    >
    > ################################################################
    > ###
    > ### Example 2. Standard Maximum likelihood fitting of
    > ### a Gaussian RF using nlminb
    > ###
    > ###############################################################
    > # Define the spatial-coordinates of the points:
    > set.seed(3)
    > N=100 # number of location sites
    > x <- runif(N, 0, 1)
    > set.seed(6)
    > y <- runif(N, 0, 1)
    > coords <- cbind(x,y)
    >
    > param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth)
    >
    > data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param)$data
    >
    > # setting fixed and parameters to be estimated
    > fixed<-list(nugget=nugget,smooth=smooth)
    > start<-list(mean=mean,scale=scale,sill=sill)
    >
    > I=Inf
    > lower<-list(mean=-I,scale=0,sill=0)
    > upper<-list(mean=I,scale=I,sill=I)
    > fit2 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel,
    + optimizer="nlminb",upper=upper,lower=lower,
    + likelihood="Full",type="Standard",
    + start=start,fixed=fixed)
    > print(fit2)
    
    ##################################################################
    Maximum Likelihood Fitting of Gaussian Random Fields
    
    Setting: Full Likelihood
    
    Model: Gaussian
    
    Type of the likelihood objects: Standard
    
    Covariance model: Matern
    
    Optimizer: nlminb
    
    Number of spatial coordinates: 100
    Number of dependent temporal realisations: 1
    Type of the random field: univariate
    Number of estimated parameters: 3
    
    Type of convergence: Successful
    Maximum log-Likelihood value: -122.29
    AIC : 250.6
    BIC : 258.4
    
    Estimated parameters:
     mean scale sill
    -0.01060 0.07271 0.93470
    
    ##################################################################
    >
    >
    > ###############################################################
    > ############ Examples of spatial non-Gaussian RFs #############
    > ###############################################################
    >
    >
    > ################################################################
    > ###
    > ### Example 3. Maximum pairwise likelihood fitting of a Weibull RF
    > ### with Generalized Wendland correlation with Nelder-Mead
    > ###
    > ###############################################################
    > set.seed(524)
    > # Define the spatial-coordinates of the points:
    > N=300
    > x <- runif(N, 0, 1)
    > y <- runif(N, 0, 1)
    > coords <- cbind(x,y)
    > X=cbind(rep(1,N),runif(N))
    > mean=1; mean1=2 # regression parameters
    > nugget=0
    > shape=2
    > scale=0.2
    > smooth=0
    >
    > model="Weibull"
    > corrmodel="GenWend"
    > param=list(mean=mean,mean1=mean1,sill=1,scale=scale,
    + shape=shape,nugget=nugget,power2=4,smooth=smooth)
    > # Simulation of a non stationary weibull RF:
    > data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model,X=X,
    + param=param)$data
    >
    > fixed<-list(nugget=nugget,power2=4,sill=1,smooth=smooth)
    > start<-list(mean=mean,mean1=mean1,scale=scale,shape=shape)
    >
    > # Maximum conditional composite-likelihood fitting of the RF:
    > fit <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
    + neighb=3,likelihood="Conditional",type="Pairwise",X=X,
    + optimizer="Nelder-Mead",
    + start=start,fixed=fixed)
    > print(fit$param)
    $mean
    [1] 0.9991446
    
    $mean1
    [1] 1.958527
    
    $scale
    [1] 0.1591767
    
    $shape
    [1] 2.082499
    
    >
    >
    >
    > ################################################################
    > ###
    > ### Example 4. Maximum pairwise likelihood fitting of
    > ### a SinhAsinh-Gaussian spatial RF with Wendland correlation
    > ###
    > ###############################################################
    > set.seed(261)
    > model="SinhAsinh"
    > # Define the spatial-coordinates of the points:
    > x <- runif(500, 0, 1)
    > y <- runif(500, 0, 1)
    > coords <- cbind(x,y)
    >
    > corrmodel="Wend0"
    > mean=0;nugget=0
    > sill=1
    > skew=-0.5
    > tail=1.5
    > power2=4
    > c_supp=0.2
    >
    > # model parameters
    > param=list(power2=power2,skew=skew,tail=tail,
    + mean=mean,sill=sill,scale=c_supp,nugget=nugget)
    > data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data
    >
    > plot(density(data))
    > fixed=list(power2=power2,nugget=nugget)
    > start=list(scale=c_supp,skew=skew,tail=tail,mean=mean,sill=sill)
    > # Maximum marginal pairwise likelihood:
    > fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
    + neighb=3,likelihood="Marginal",type="Pairwise",
    + start=start,fixed=fixed)
    > print(fit1$param)
    $mean
    [1] 0.09558448
    
    $scale
    [1] 0.1878042
    
    $sill
    [1] 1.369462
    
    $skew
    [1] -0.6800365
    
    $tail
    [1] 1.774269
    
    >
    >
    > ################################################################
    > ###
    > ### Example 5. Maximum pairwise likelihood fitting of
    > ### a Binomial RF with exponential correlation
    > ###
    > ###############################################################
    >
    > set.seed(422)
    > N=250
    > x <- runif(N, 0, 1)
    > y <- runif(N, 0, 1)
    > coords <- cbind(x,y)
    > mean=0.1; mean1=0.8; mean2=-0.5 # regression parameters
    > X=cbind(rep(1,N),runif(N),runif(N)) # marix covariates
    > corrmodel <- "Wend0"
    > param=list(mean=mean,mean1=mean1,mean2=mean2,sill=1,nugget=0,scale=0.2,power2=4)
    > # Simulation of the spatial Binomial-Gaussian RF:
    > data <- GeoSim(coordx=coords, corrmodel=corrmodel, model="Binomial", n=10,X=X,
    + param=param)$data
    >
    >
    > ## estimating the marginal parameters using independence cl
    > fixed <- list(nugget=nugget,power2=4,sill=1)
    > start <- list(mean=mean,mean1=mean1,mean2=mean2,scale=0.2)
    >
    > # Maximum conditional pairwise likelihood:
    > fit1 <- GeoFit(data=data, coordx=coords, corrmodel=corrmodel,n=10, X=X,
    + likelihood="Conditional",type="Pairwise", neighb=3
    + ,model="Binomial", start=start, fixed=fixed, optimizer="BFGS")
    >
    > print(fit1)
    
    ##################################################################
    Maximum Composite-Likelihood Fitting of Binomial Random Fields
    
    Setting: Conditional Composite-Likelihood
    
    Model: Binomial
    
    Type of the likelihood objects: Pairwise
    
    Covariance model: Wend0
    
    Optimizer: BFGS
    
    Number of spatial coordinates: 250
    Number of dependent temporal realisations: 1
    Type of the random field: univariate
    Number of estimated parameters: 4
    
    Type of convergence: Successful
    Maximum log-Composite-Likelihood value: -1368.44
    
    Estimated parameters:
     mean mean1 mean2 scale
     0.07026 0.80214 -0.46729 0.20140
    
    ##################################################################
    >
    >
    > ###############################################################
    > ######### Examples of spatio-temporal RFs ###########
    > ###############################################################
    > set.seed(52)
    > # Define the temporal sequence:
    > time <- seq(1, 9, 1)
    >
    > # Define the spatial-coordinates of the points:
    > x <- runif(20, 0, 1)
    > set.seed(42)
    > y <- runif(20, 0, 1)
    > coords=cbind(x,y)
    >
    > # Set the covariance model's parameters:
    > corrmodel="Exp_Exp"
    > scale_s=0.2/3
    > scale_t=1
    > sill=1
    > nugget=0
    > mean=0
    >
    > param<-list(mean=0,scale_s=scale_s,scale_t=scale_t,
    + sill=sill,nugget=nugget)
    >
    > # Simulation of the spatial-temporal Gaussian RF:
    > data <- GeoSim(coordx=coords,coordt=time,corrmodel=corrmodel,
    + param=param)$data
    >
    > ################################################################
    > ###
    > ### Example 6. Maximum pairwise likelihood fitting of a
    > ### space time Gaussian RF with double-exponential correlation
    > ###
    > ###############################################################
    > # Fixed parameters
    > fixed<-list(nugget=nugget)
    > # Starting value for the estimated parameters
    > start<-list(mean=mean,scale_s=scale_s,scale_t=scale_t,sill=sill)
    >
    > # Maximum composite-likelihood fitting of the RF:
    > fit <- GeoFit(data=data,coordx=coords,coordt=time,
    + corrmodel="Exp_Exp",maxtime=1,neighb=3,
    + likelihood="Marginal",type="Pairwise",
    + start=start,fixed=fixed)
    > print(fit)
    
    ##################################################################
    Maximum Composite-Likelihood Fitting of Gaussian Random Fields
    
    Setting: Marginal Composite-Likelihood
    
    Model: Gaussian
    
    Type of the likelihood objects: Pairwise
    
    Covariance model: Exp_Exp
    
    Optimizer: Nelder-Mead
    
    Number of spatial coordinates: 20
    Number of dependent temporal realisations: 9
    Type of the random field: univariate
    Number of estimated parameters: 4
    
    Type of convergence: Successful
    Maximum log-Composite-Likelihood value: -4108.54
    
    Estimated parameters:
     mean scale_s scale_t sill
    -0.12419 0.07261 1.16794 0.94882
    
    ##################################################################
    >
    >
    > ###############################################################
    > ######### Examples of spatial bivariate RFs ###########
    > ###############################################################
    >
    >
    > ################################################################
    > ###
    > ### Example 7. Maximum pairwise likelihood fitting of a
    > ### bivariate Gaussian RF with separable Bivariate matern
    > ### (cross) correlation model
    > ###
    > ###############################################################
    >
    > # Define the spatial-coordinates of the points:
    > set.seed(8)
    > x <- runif(200, 0, 1)
    > y <- runif(200, 0, 1)
    > coords=cbind(x,y)
    > # parameters
    > param=list(mean_1=0,mean_2=0,scale=0.1,smooth=0.5,sill_1=1,sill_2=1,
    + nugget_1=0,nugget_2=0,pcol=0.2)
    >
    > # Simulation of a spatial bivariate Gaussian RF:
    > data <- GeoSim(coordx=coords, corrmodel="Bi_Matern_sep",
    + param=param)$data
    >
    > # selecting fixed and estimated parameters
    > fixed=list(nugget_1=0,nugget_2=0,smooth=0.5)
    > start=list(mean_1=0,mean_2=0,sill_1=var(data[1,]),sill_2=var(data[2,]),
    + scale=0.1,pcol=cor(data[1,],data[2,]))
    >
    >
    > # Maximum marginal pairwise likelihood
    > fitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern_sep",
    + likelihood="Marginal",type="Pairwise",
    + optimizer="BFGS" , start=start,fixed=fixed,
    + neighb=c(3,3,3))
Flavor: r-oldrel-windows-ix86+x86_64