AnthropMMD
was primarily designed as an R-Shiny application (Santos 2018), that can be launched with the following instruction:
start_mmd()
Starting with the version 3.0.0, it can also be used from the command line, to make it convenient in a context of reproducible research.
AnthropMMD
from the command lineThe MMD is a dissimilarity measure among groups of individuals described by binary (presence-absence) traits (Sjøvold 1973, 1977; Harris and Sjøvold 2004). The MMD formula only requires to know the sample sizes and relative trait frequencies within each group: providing the raw individual data is not mandatory.
Usually, the user will have recorded the data in one of the the two following formats.
Most of the time, the data will be formatted as a classical dataframe with \(n\) rows (one per individual) and \(p+1\) columns (the first column must be a group indicator; the \(p\) other columns correspond to the \(p\) binary traits observed). Each trait has two possible values: \(1\) if present, \(0\) if absent (missing values are allowed). Rownames are optional but colnames (i.e., header
s) are mandatory.
An artificial dataset, toyMMD
, is available in the package to give an example of such a format:
data(toyMMD)
head(toyMMD)
#> Group Trait1 Trait2 Trait3 Trait4 Trait5 Trait6 Trait7 Trait8 Trait9
#> A_1 GroupA 1 NA 1 1 NA 0 NA 1 0
#> A_2 GroupA NA NA 1 NA NA NA NA NA 1
#> A_3 GroupA NA 1 1 0 0 1 0 1 NA
#> A_4 GroupA 1 1 0 0 0 NA 1 1 0
#> A_5 GroupA 1 1 1 1 NA 0 1 NA 1
#> A_6 GroupA NA 1 0 0 NA 1 0 NA 1
It is not necessary for the Trait
s to be manually converted as factors prior to the analysis. toyMMD
includes nine traits with many missing values, and the individuals belong to five groups:
str(toyMMD)
#> 'data.frame': 200 obs. of 10 variables:
#> $ Group : Factor w/ 5 levels "GroupA","GroupB",..: 1 1 1 1 1 1 1 1 1 1 ...
#> $ Trait1: int 1 NA NA 1 1 NA 1 NA NA NA ...
#> $ Trait2: int NA NA 1 1 1 1 NA 1 NA 1 ...
#> $ Trait3: int 1 1 1 0 1 0 1 0 1 NA ...
#> $ Trait4: int 1 NA 0 0 1 0 1 1 1 0 ...
#> $ Trait5: int NA NA 0 0 NA NA NA 0 0 NA ...
#> $ Trait6: int 0 NA 1 NA 0 1 NA NA 1 NA ...
#> $ Trait7: int NA NA 0 1 1 0 NA NA NA 0 ...
#> $ Trait8: int 1 NA 1 1 NA NA NA NA 1 NA ...
#> $ Trait9: int 0 1 NA 0 1 1 NA 0 NA NA ...
If the data were recorded as a raw binary dataset, they must be converted into a table of relative frequencies prior to the MMD analysis. The R function binary_to_table
with the argument relative = TRUE
can perform this operation:
binary_to_table(toyMMD, relative = TRUE)
tab <-
tab#> Trait1 Trait2 Trait3 Trait4 Trait5 Trait6 Trait7 Trait8 Trait9
#> N_GroupA 10.000 22.000 36.000 39.000 20.000 23.000 19.000 10.000 19.000
#> N_GroupB 8.000 21.000 21.000 20.000 19.000 17.000 17.000 13.000 20.000
#> N_GroupC 27.000 18.000 27.000 25.000 19.000 26.000 31.000 17.000 36.000
#> N_GroupD 15.000 35.000 30.000 39.000 29.000 30.000 35.000 14.000 19.000
#> N_GroupE 15.000 21.000 21.000 24.000 22.000 20.000 22.000 11.000 38.000
#> Freq_GroupA 0.800 0.727 0.806 0.615 0.000 0.652 0.316 0.800 0.526
#> Freq_GroupB 0.875 0.571 0.952 0.600 0.000 0.882 1.000 0.692 0.500
#> Freq_GroupC 0.630 0.611 0.593 0.560 0.000 0.538 0.645 0.588 0.750
#> Freq_GroupD 0.333 0.886 0.633 0.359 0.069 0.400 0.857 0.429 0.579
#> Freq_GroupE 0.467 0.571 0.714 0.625 0.000 0.800 0.500 0.364 0.447
Sometimes, in particular if the data were extracted from research articles rather than true exprimentation, the user will only know the sample sizes and absolute trait frequencies in each group. As previously stated, those data are perfectly sufficient to compute MMD values. Here is an example of such a table:
data(absolute_freqs)
print(absolute_freqs)
#> Trait1 Trait2 Trait3 Trait4 Trait5 Trait6 Trait7 Trait8 Trait9
#> N_GroupA 10 22 36 39 20 23 19 10 19
#> N_GroupB 8 21 21 20 19 17 17 13 20
#> N_GroupC 27 18 27 25 19 26 31 17 36
#> N_GroupD 15 35 30 39 29 30 35 14 19
#> N_GroupE 15 21 21 24 22 20 22 11 38
#> Freq_GroupA 8 16 29 24 0 15 6 8 10
#> Freq_GroupB 7 12 20 12 0 15 17 9 10
#> Freq_GroupC 17 11 16 14 0 14 20 10 27
#> Freq_GroupD 5 31 19 14 2 12 30 6 11
#> Freq_GroupE 7 12 15 15 0 16 11 4 17
If there are \(k\) groups in the data, the first \(k\) rows (whose names must start with an N_
prefix, followed by the group labels) indicates the sample sizes of each trait in each group, and the last \(k\) rows indicates the absolute trait frequencies. Such a table can be directly imported by the user, but must be converted to relative trait frequencies prior to the analysis, for instance by using the function table_relfreq
:
table_relfreq(absolute_freqs)
tab <-print(tab)
#> Trait1 Trait2 Trait3 Trait4 Trait5 Trait6 Trait7 Trait8 Trait9
#> N_GroupA 10.000 22.000 36.000 39.000 20.000 23.000 19.000 10.000 19.000
#> N_GroupB 8.000 21.000 21.000 20.000 19.000 17.000 17.000 13.000 20.000
#> N_GroupC 27.000 18.000 27.000 25.000 19.000 26.000 31.000 17.000 36.000
#> N_GroupD 15.000 35.000 30.000 39.000 29.000 30.000 35.000 14.000 19.000
#> N_GroupE 15.000 21.000 21.000 24.000 22.000 20.000 22.000 11.000 38.000
#> Freq_GroupA 0.800 0.727 0.806 0.615 0.000 0.652 0.316 0.800 0.526
#> Freq_GroupB 0.875 0.571 0.952 0.600 0.000 0.882 1.000 0.692 0.500
#> Freq_GroupC 0.630 0.611 0.593 0.560 0.000 0.538 0.645 0.588 0.750
#> Freq_GroupD 0.333 0.886 0.633 0.359 0.069 0.400 0.857 0.429 0.579
#> Freq_GroupE 0.467 0.571 0.714 0.625 0.000 0.800 0.500 0.364 0.447
Due to rounding issues, it is clearly not advised for the user to submit directly a table of relative frequencies. If the absolute frequencies do not perfectly sum up to 1 for each trait, an error will be triggered.
A table of relative frequencies is the starting point of all subsequent analyses, but it should be computed from the data loaded in R; it should not be loaded itself.
A quick summary:
binary_to_table(relative = TRUE)
as shown above;table_relfreq
.AnthropMMD
proposes a built-in feature for trait selection, in order to discard the traits that could be observed on too few individuals, or that do not show enough variability among groups. The function select_traits
allows such a selection according to several strategies (Harris and Sjøvold 2004; Santos 2018).
For instance, with the following instruction, we can discard the traits that could be observed on at least 10 individuals per group, and that exhibit no significant variability in frequencies among groups according to Fisher’s exact tests:
select_traits(tab, k = 10, strategy = "keepFisher")
tab_selected <-$filtered
tab_selected#> Trait2 Trait3 Trait4 Trait6 Trait7 Trait9
#> N_GroupA 22.000 36.000 39.000 23.000 19.000 19.000
#> N_GroupB 21.000 21.000 20.000 17.000 17.000 20.000
#> N_GroupC 18.000 27.000 25.000 26.000 31.000 36.000
#> N_GroupD 35.000 30.000 39.000 30.000 35.000 19.000
#> N_GroupE 21.000 21.000 24.000 20.000 22.000 38.000
#> Freq_GroupA 0.727 0.806 0.615 0.652 0.316 0.526
#> Freq_GroupB 0.571 0.952 0.600 0.882 1.000 0.500
#> Freq_GroupC 0.611 0.593 0.560 0.538 0.645 0.750
#> Freq_GroupD 0.886 0.633 0.359 0.400 0.857 0.579
#> Freq_GroupE 0.571 0.714 0.625 0.800 0.500 0.447
Trait1
(which could be observed on only 8 individuals in Group B), Trait5
and Trait8
(whose variation in frequencies was not significant among groups) were removed from the data.
Once the trait selection has been performed, the MMD can be computed with the mmd
function. With the following instruction, the MMD is computed using Anscombe’s angular transformation of trait frequencies:
mmd(tab_selected$filtered, angular = "Anscombe")
mmd.result <-
mmd.result#> $MMDMatrix
#> GroupA GroupB GroupC GroupD GroupE
#> GroupA 0.0000 0.4502 0.0831 0.2784 0.0000
#> GroupB 0.0532 0.0000 0.3434 0.3650 0.2563
#> GroupC 0.0456 0.0513 0.0000 0.0984 0.0596
#> GroupD 0.0434 0.0487 0.0411 0.0000 0.2821
#> GroupE 0.0481 0.0540 0.0469 0.0435 0.0000
#>
#> $MMDSym
#> GroupA GroupB GroupC GroupD GroupE
#> GroupA 0.0000 0.450 0.0831 0.2784 0.0000
#> GroupB 0.4502 0.000 0.3434 0.3650 0.2563
#> GroupC 0.0831 0.343 0.0000 0.0984 0.0596
#> GroupD 0.2784 0.365 0.0984 0.0000 0.2821
#> GroupE 0.0000 0.256 0.0596 0.2821 0.0000
#>
#> $MMDSignif
#> GroupA GroupB GroupC GroupD GroupE
#> GroupA NA "0.45" "0.083" "0.278" "0"
#> GroupB "*" NA "0.343" "0.365" "0.256"
#> GroupC "NS" "*" NA "0.098" "0.06"
#> GroupD "*" "*" "*" NA "0.282"
#> GroupE "NS" "*" "NS" "*" NA
#>
#> $MMDpval
#> GroupA GroupB GroupC GroupD GroupE
#> GroupA NA 0.4502 0.0831 0.2784 0.0000
#> GroupB 0.0000 NA 0.3434 0.3650 0.2563
#> GroupC 0.0513 0.0000 NA 0.0984 0.0596
#> GroupD 0.0001 0.0000 0.0277 NA 0.2821
#> GroupE 0.6073 0.0018 0.0506 0.0001 NA
#>
#> attr(,"class")
#> [1] "anthropmmd_result"
$MMDMatrix
, follows the presentation adopted in most research articles (Donlon 2000): the true MMD values are indicated above the diagonal, and their standard deviations are indicated below the diagonal.*
in the component $MMDSignif
.$MMDSym
is a symmetrical matrix of MMD values, with a null diagonal. This matrix of dissimilarities can be used to perform a multidimensional scaling or a hierarchical clustering to visualize the distances among the groups.$MMDpval
. Theoretical details for this test of significance can be found in de Souza and Houghton (1977).Although mmd.result$MMDSym
can perfectly be passed to your favourite function to produce a MDS plot, AnthropMMD
also proposes a built-in generic function for such a graphical representation: plot
.
The MDS can be computed using the classical stats::cmdscale
function (and the produces a metric MDS), or several variants of MDS algorithms implemented in the R package smacof
.
For instance, we plot here the MDS coordinates computed with one variant of SMACOF algorithms:
par(cex = 0.8)
plot(x = mmd.result, method = "interval",
gof = TRUE, axes = TRUE, xlim = c(-1.2, 0.75))
The argument gof = TRUE
displays goodness of fits statistics for the MDS configurations directly on the plot.
AnthropMMD
does not propose a built-in function for hierarchical clustering, but such a plot can easily be obtained with the usual R functions.
library(cluster)
par(cex = 0.8)
plot(agnes(mmd.result$MMDSym), which.plots = 2, main = "Dendrogram of MMD dissimilarities")
de Souza, Peter, and Philip Houghton. 1977. “The Mean Measure of Divergence and the Use of Non-Metric Data in the Estimation of Biological Distances.” Journal of Archaeological Science 4 (2): 163–69. https://doi.org/10.1016/0305-4403(77)90063-2.
Donlon, D. A. 2000. “The Value of Infracranial Nonmetric Variation in Studies of Modern Homo Sapiens: An Australian Focus.” American Journal of Physical Anthropology 113 (3): 349–68. https://doi.org/10.1002/1096-8644(200011)113:3<349::AID-AJPA6>3.0.CO;2-2.
Harris, E. F., and T. Sjøvold. 2004. “Calculations of Smith’s Mean Measure of Divergence for Intergroup Comparisons Using Nonmetric Data.” Dental Anthropology 17: 83–93.
Santos, Frédéric. 2018. “AnthropMMD: An R package with a graphical user interface for the mean measure of divergence.” American Journal of Physical Anthropology 165 (1): 200–205. https://doi.org/10.1002/ajpa.23336.
Sjøvold, T. 1973. “Occurrence of Minor Non-Metrical Variants in the Skeleton and Their Quantitative Treatment for Population Comparisons.” Homo 24: 204–33.
———. 1977. “Non-metrical divergence between skeletal populations: the theoretical foundation and biological importance of C.A.B. Smith’s mean measure of divergence.” Ossa 1: 1–133.