R interface to Kusto, also known as Azure Data Explorer, a fast and highly scalable data exploration service.
AzureKusto is available on CRAN. If you are using Microsoft R, the latest version of the package may not be in your default MRAN snapshot. You can set the repository to CRAN before installing.
options(repos="https://cloud.r-project.org")
install.packages("AzureKusto")
You can install the development version from GitHub. The primary repo is https://github.com/Azure/AzureKusto; please submit issues and pull requests there. AzureKusto is also mirrored at the Cloudyr organisation, at https://github.com/cloudyr/AzureKusto.
::install_github("Azure/AzureKusto") devtools
Connect to a Kusto cluster by instantiating a
kusto_database_endpoint
object with the cluster URI and
database name.
library(AzureKusto)
<- kusto_database_endpoint(server="https://help.kusto.windows.net", database="Samples")
Samples
# To sign in, use a web browser to open the page https://microsoft.com/devicelogin and enter the code [your device code here] to authenticate.
# Waiting for device code in browser...
# Press Esc/Ctrl + C to abort
# Authentication complete.
Now you can issue queries to the Kusto database with
run_query
and get the results back as a data.frame.
<- run_query(Samples, "StormEvents | summarize EventCount = count() by State | order by State asc")
res
head(res)
## State EventCount
## 1 ALABAMA 1315
## 2 ALASKA 257
## 3 AMERICAN SAMOA 16
## 4 ARIZONA 340
## 5 ARKANSAS 1028
## 6 ATLANTIC NORTH 188
run_query()
also supports query parameters. Simply pass
your parameters as additional keyword arguments and they will be escaped
and interpolated into the query string.
<- run_query(Samples, "MyFunction(lim)", lim=10L) res
Command statements work much the same way, except that they do not accept parameters.
<- run_query(Samples, ".show tables") res
The package also implements a dplyr-style interface for
building a query upon a tbl_kusto
object and then running
it on the remote Kusto database and returning the result as a regular
tibble object with collect()
.
library(dplyr)
<- tbl_kusto(Samples, "StormEvents")
StormEvents
<- StormEvents %>%
q group_by(State) %>%
summarize(EventCount=n()) %>%
arrange(State)
show_query(q)
## <KQL> database('Samples').['StormEvents']
## | summarize ['EventCount'] = count() by ['State']
## | order by ['State'] asc
collect(q)
## # A tibble: 67 x 2
## State EventCount
## <chr> <dbl>
## 1 ALABAMA 1315
## 2 ALASKA 257
## 3 AMERICAN SAMOA 16
## 4 ARIZONA 340
## 5 ARKANSAS 1028
## 6 ATLANTIC NORTH 188
## 7 ATLANTIC SOUTH 193
## 8 CALIFORNIA 898
## 9 COLORADO 1654
## 10 CONNECTICUT 148
## # ... with 57 more rows
tbl_kusto
also accepts query parameters, in case the
Kusto source table is a parameterized function:
<- tbl_kusto(Samples, "MyFunctionDate(dt)", dt=as.Date("2019-01-01"))
MyFunctionDate
%>%
MyFunctionDate select(StartTime, EndTime, EpisodeId, EventId, State) %>%
head() %>%
collect()
## # A tibble: 6 x 5
## StartTime EndTime EpisodeId EventId State
## <dttm> <dttm> <int> <int> <chr>
## 1 2007-09-29 08:11:00 2007-09-29 08:11:00 11091 61032 ATLANTIC SOUTH
## 2 2007-09-18 20:00:00 2007-09-19 18:00:00 11074 60904 FLORIDA
## 3 2007-09-20 21:57:00 2007-09-20 22:05:00 11078 60913 FLORIDA
## 4 2007-12-30 16:00:00 2007-12-30 16:05:00 11749 64588 GEORGIA
## 5 2007-12-20 07:50:00 2007-12-20 07:53:00 12554 68796 MISSISSIPPI
## 6 2007-12-20 10:32:00 2007-12-20 10:36:00 12554 68814 MISSISSIPPI
AzureKusto implements a subset of the DBI specification for interacting with databases. It should be noted that Kusto is quite different to the SQL databases that DBI targets, which affects the behaviour of certain DBI methods and renders other moot.
library(DBI)
# connect to the server: basically a wrapper for kusto_database_endpoint()
<- dbConnect(AzureKusto(),
Samples server="https://help.kusto.windows.net",
database="Samples")
dbListTables(Samples)
## [1] "StormEvents" "demo_make_series1" "demo_series2"
## [4] "demo_series3" "demo_many_series1"
dbExistsTable(Samples, "StormEvents")
##[1] TRUE
dbGetQuery(Samples, "StormEvents | summarize ct = count()")
## ct
## 1 59066
On the admin side, AzureKusto extends the framework supplied by the AzureRMR to support Kusto. Methods are provided to create and delete clusters and databases, and manage database principals.
# create a new Kusto cluster
<- AzureRMR::get_azure_login()
az <- az$
ku get_subscription("sub_id")$
get_resource_group("rgname")$
create_kusto_cluster("mykustocluster")
# create a new database
<- ku$create_database("database1")
db1
# add a user
$add_principals("myusername", role="User", fqn="aaduser=username@mydomain") db1