We apply Bradley-Terry Model to estimate teams' ability in paired comparison data. Exponential Decayed Log-likelihood function is applied for dynamic approximation of current rankings and Lasso penalty is applied for variance reduction and grouping. The main algorithm applies the Augmented Lagrangian Method described by Masarotto and Varin (2012) <doi:10.1214/12-AOAS581>.
Version: | 0.1.0 |
Imports: | optimr, ggplot2, stats |
Published: | 2018-06-27 |
Author: | Yunpeng Zhou [aut, cre], Jinfeng Xu [aut] |
Maintainer: | Yunpeng Zhou <michael.zhou.hku at gmail.com> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
Materials: | README NEWS |
In views: | SportsAnalytics |
CRAN checks: | BTdecayLasso results |
Reference manual: | BTdecayLasso.pdf |
Package source: | BTdecayLasso_0.1.0.tar.gz |
Windows binaries: | r-devel: BTdecayLasso_0.1.0.zip, r-release: BTdecayLasso_0.1.0.zip, r-oldrel: BTdecayLasso_0.1.0.zip |
macOS binaries: | r-release (arm64): BTdecayLasso_0.1.0.tgz, r-oldrel (arm64): BTdecayLasso_0.1.0.tgz, r-release (x86_64): BTdecayLasso_0.1.0.tgz, r-oldrel (x86_64): BTdecayLasso_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=BTdecayLasso to link to this page.