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consensus_cluster Consensus Clustering and Proportion of Ambiguously Clustered Pairs

Description

Calculate consensus clustering and proportion of ambiguously clustered pairs (PAC) with hierar-
chical clustering.

Usage

consensus_cluster(
x,
k_min = 3,
k_max = 100,
n_reps = 100,
p_sample = 0.8,
p_feature = 1,
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p_minkowski = 2,
dist_method = "euclidean",
linkage = "complete",
lower_lim = 0.1,
upper_lim = 0.9,
verbose = TRUE

)

Arguments

x A samples x features normalized data matrix.

k_min The minimum number of clusters calculated.

k_max The maximum number of clusters calculated.

n_reps The total number of subsamplings and reclusterings of the data; this value needs
to be high enough to ensure PAC converges; convergence can be assessed with
pac_convergence.

p_sample The proportion of samples included in each subsample.

p_feature The proportion of features included in each subsample.

p_minkowski The power of the Minkowski distance.

dist_method The distance measure for the distance matrix used in hclust; must be one of
"euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski".

linkage The linkage method used in hclust; must be one of "ward.D", "ward.D2", "sin-
gle", "complete", "average", "mcquitty", "median" or "centroid"

lower_lim The lower limit for determining whether a pair is clustered ambiguously; the
lower this value, the higher the PAC.

upper_lim The upper limit for determining whether a pair is clustered ambiguously; the
higher this value, the higher the PAC.

verbose Logical value used for choosing to display a progress bar or not.

Value

A data.frame with PAC values across iterations, as well as parameter values used when calling the
method.

References

Monti, S., Tamayo, P., Mesirov, J., & Golub, T. (2003). Consensus clustering: a resampling-based
method for class discovery and visualization of gene expression microarray data. Machine learning,
52(1), 91-118. https://doi.org/10.1023/A:1023949509487

Senbabaoglu, Y., Michailidis, G., & Li, J. Z. (2014). Critical limitations of consensus clustering in
class discovery. Scientific reports, 4(1), 1-13. https://doi.org/10.1038/srep06207

Examples

pac.res = consensus_cluster(iris[,1:4], k_max=20)
pac_convergence(pac.res, k_plot=c(3,5,7,9))
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element_agreement Element-Wise Average Agreement Between a Set of Clusterings

Description

Inspect how consistently of a set of clusterings agree with a reference clustering by calculating their
element-wise average agreement.

Usage

element_agreement(
reference_clustering,
clustering_list,
alpha = 0.9,
r = 1,
rescale_path_type = "max",
ppr_implementation = "prpack",
dist_rescaled = FALSE,
row_normalize = TRUE,
ncores = 1

)

Arguments

reference_clustering

The reference clustering, that each clustering in clustering_list is compared to.
It can be either:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

clustering_list

The list of clustering results, each of which is either:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r A numeric hierarchical scaling parameter.
rescale_path_type

A string; rescale the hierarchical height by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.
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ppr_implementation

Choose a implementation for personalized page-rank calculation:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled A logical: if TRUE, the linkage distances are linearly rescaled to be in-between
0 and 1.

row_normalize Whether to normalize all rows in clustering_result so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

ncores the number of parallel R instances that will run the code. If the value is set to 1,
the code will be run sequentially.

Value

A vector containing the element-wise average agreement.

References

Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering compar-
ison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-
019-44892-y

Examples

reference.clustering = iris$Species
clustering.list = list()
for (i in 1:20){

clustering.list[[i]] = kmeans(iris[,1:4], 3)$cluster
}
element_agreement(reference.clustering, clustering.list)

element_consistency Element-Wise Consistency Between a Set of Clusterings

Description

Inspect the consistency of a set of clusterings by calculating their element-wise clustering consis-
tency (also known as element-wise frustration).

Usage

element_consistency(
clustering_list,
alpha = 0.9,
r = 1,
rescale_path_type = "max",
ppr_implementation = "prpack",
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dist_rescaled = FALSE,
row_normalize = TRUE,
ncores = 1

)

Arguments

clustering_list

The list of clustering results, each of which is either:

• A numeric/character/factor vector of cluster labels for each element.

• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.

• An hclust object.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r A numeric hierarchical scaling parameter.

rescale_path_type

A string; rescale the hierarchical height by:

• "max" : the maximum path from the root.

• "min" : the minimum path form the root.

• "linkage" : use the linkage distances in the clustering.

ppr_implementation

Choose a implementation for personalized page-rank calculation:

• "prpack": use PPR algorithms in igraph.

• "power_iteration": use power_iteration method.

dist_rescaled A logical: if TRUE, the linkage distances are linearly rescaled to be in-between
0 and 1.

row_normalize Whether to normalize all rows in clustering_result so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

ncores the number of parallel R instances that will run the code. If the value is set to 1,
the code will be run sequentially.

Value

a vector containing the element-wise consistency.

References

Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering compar-
ison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-
019-44892-y
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Examples

clustering.list = list()
for (i in 1:20){

clustering.list[[i]] = kmeans(mtcars, 3)$cluster
}
element_consistency(clustering.list)

element_sim The Element-Centric Clustering Similarity

Description

Calculates the average element-centric similarity between two clustering results

Usage

element_sim(
clustering1,
clustering2,
alpha = 0.9,
r_cl1 = 1,
rescale_path_type_cl1 = "max",
ppr_implementation_cl1 = "prpack",
dist_rescaled_cl1 = FALSE,
row_normalize_cl1 = TRUE,
r_cl2 = 1,
rescale_path_type_cl2 = "max",
ppr_implementation_cl2 = "prpack",
dist_rescaled_cl2 = FALSE,
row_normalize_cl2 = TRUE

)

Arguments

clustering1 The first clustering result, which can be one of:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

clustering2 The second clustering result, which can be one of:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r_cl1 A numeric hierarchical scaling parameter for the first clustering.
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rescale_path_type_cl1

A string; rescale the hierarchical height of the first clustering by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

ppr_implementation_cl1

Choose a implementation for personalized page-rank calculation for the first
clustering:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled_cl1

A logical: if TRUE, the linkage distances of the first clustering are linearly
rescaled to be in-between 0 and 1.

row_normalize_cl1

Whether to normalize all rows in the first clustering so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

r_cl2 A numeric hierarchical scaling parameter for the second clustering.
rescale_path_type_cl2

A string; rescale the hierarchical height of the second clustering by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

ppr_implementation_cl2

Choose a implementation for personalized page-rank calculation for the second
clustering:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled_cl2

A logical: if TRUE, the linkage distances of the second clustering are linearly
rescaled to be in-between 0 and 1.

row_normalize_cl2

Whether to normalize all rows in the second clustering so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

Value

The average element-wise similarity between the two Clusterings.

Examples

km.res = kmeans(mtcars, 3)$cluster
hc.res = hclust(dist(mtcars))
element_sim(km.res, hc.res)
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element_sim_elscore The Element-Centric Clustering Similarity for each Element

Description

Calculates the element-wise element-centric similarity between two clustering results.

Usage

element_sim_elscore(
clustering1,
clustering2,
alpha = 0.9,
r_cl1 = 1,
rescale_path_type_cl1 = "max",
ppr_implementation_cl1 = "prpack",
dist_rescaled_cl1 = FALSE,
row_normalize_cl1 = TRUE,
r_cl2 = 1,
rescale_path_type_cl2 = "max",
ppr_implementation_cl2 = "prpack",
dist_rescaled_cl2 = FALSE,
row_normalize_cl2 = TRUE

)

Arguments

clustering1 The first clustering result, which can be one of:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

clustering2 The second clustering result, which can be one of:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r_cl1 A numeric hierarchical scaling parameter for the first clustering.
rescale_path_type_cl1

A string; rescale the hierarchical height of the first clustering by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.
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ppr_implementation_cl1

Choose a implementation for personalized page-rank calculation for the first
clustering:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled_cl1

A logical: if TRUE, the linkage distances of the first clustering are linearly
rescaled to be in-between 0 and 1.

row_normalize_cl1

Whether to normalize all rows in the first clustering so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

r_cl2 A numeric hierarchical scaling parameter for the second clustering.
rescale_path_type_cl2

A string; rescale the hierarchical height of the second clustering by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

ppr_implementation_cl2

Choose a implementation for personalized page-rank calculation for the second
clustering:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled_cl2

A logical: if TRUE, the linkage distances of the second clustering are linearly
rescaled to be in-between 0 and 1.

row_normalize_cl2

Whether to normalize all rows in the second clustering so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

Value

Vector of element-centric similarity between the two clusterings for each element.

References

Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering compar-
ison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-
019-44892-y

Examples

km.res = kmeans(iris[,1:4], centers=8)$cluster
hc.res = hclust(dist(iris[,1:4]))
element_sim_elscore(km.res, hc.res)
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element_sim_matrix Pairwise Comparison of Clusterings

Description

Compare a set of clusterings by calculating their pairwise average element-centric clustering simi-
larities.

Usage

element_sim_matrix(
clustering_list,
output_type = "matrix",
alpha = 0.9,
r = 1,
rescale_path_type = "max",
ppr_implementation = "prpack",
dist_rescaled = FALSE,
row_normalize = TRUE,
ncores = 1

)

Arguments

clustering_list

The list of clustering results, each of which is either:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

output_type A string specifying whether the output should be a matrix or a data.frame.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r A numeric hierarchical scaling parameter.
rescale_path_type

A string; rescale the hierarchical height by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

ppr_implementation

Choose a implementation for personalized page-rank calculation:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled A logical: if TRUE, the linkage distances are linearly rescaled to be in-between
0 and 1.
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row_normalize Whether to normalize all rows in clustering_result so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

ncores the number of parallel R instances that will run the code. If the value is set to 1,
the code will be run sequentially.

Value

A matrix or data.frame containing the pairwise ECS values.

References

Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering compar-
ison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-
019-44892-y

Examples

clustering.list = list()
for (i in 1:20) {

clustering.list[[i]] = kmeans(mtcars, 3)$cluster
}
element_sim_matrix(clustering.list, output_type="matrix")

get_clustering_difference

Graph Clustering Method Stability

Description

Evaluates the stability of different graph clustering methods in the clustering pipeline. The method
will iterate through different values of the resolution parameter and compare, using the EC Consis-
tency score, the partitions obtained at different seeds.

Usage

get_clustering_difference(
graph_adjacency_matrix,
resolution,
n_repetitions = 100,
seed_sequence = NULL,
ecs_thresh = 1,
ncores = 1,
algorithm = 1:4,
verbose = TRUE

)
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Arguments

graph_adjacency_matrix

A square adjacency matrix based on which an igraph object will be built.

resolution A sequence of resolution values.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user.

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.

ecs_thresh The ECS threshold used for merging similar clusterings.

ncores The number of parallel R instances that will run the code. If the value is set to
1, the code will be run sequentially.

algorithm An index or a list of indexes indicating which community detection algorithm
will be used: Louvain (1), Louvain refined (2), SLM (3) or Leiden (4). More
details can be found in the Seurat’s FindClusters function.

verbose Boolean value used for displaying the progress bar.

Value

A list having two fields:

• all - a list that contains, for each clustering method and each resolution value, the EC consis-
tency between the partitions obtained by changing the seed

• filtered - similar to all, but for each configuration, we determine the number of clusters that
appears the most and use only the partitions with this size

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(runif(100*10), nrow = 100)
rownames(expr_matrix) = as.character(1:100)

adj_matrix = Seurat::FindNeighbors(expr_matrix,
k.param = 10,
nn.method = "rann",
verbose = FALSE,
compute.SNN = FALSE)$nn

clust_diff_obj = get_clustering_difference(graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
algorithm = 1:2,
verbose = FALSE)

plot_clustering_difference_boxplot(clust_diff_obj)



14 get_feature_stability

get_feature_stability Evaluate Feature Set Stability

Description

Evaluate the stability of clusterings obtained based on incremental subsets of a given feature set.

Usage

get_feature_stability(
data_matrix,
feature_set,
steps,
feature_type,
n_repetitions = 100,
seed_sequence = NULL,
graph_reduction_type = "PCA",
npcs = 30,
ecs_thresh = 1,
ncores = 1,
algorithm = 4,
...

)

Arguments

data_matrix A data matrix having the features on the rows and the observations on the
columns.

feature_set A set of feature names that can be found on the rownames of the data matrix.

steps Vector containing the sizes of the subsets; negative values will be interpreted as
using all features.

feature_type A name associated to the feature_set.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user.

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.

graph_reduction_type

The graph reduction type, denoting if the graph should be built on either the
PCA or the UMAP embedding.

npcs The number of principal components.

ecs_thresh The ECS threshold used for merging similar clusterings.

ncores The number of parallel R instances that will run the code. If the value is set to
1, the code will be run sequentially.
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algorithm An index indicating which community detection algorithm will be used: Lou-
vain (1), Louvain refined (2), SLM (3) or Leiden (4). More details can be found
in the Seurat’s FindClusters function.

... additional arguments passed to the umap method.

Value

A list having one field associated with a step value. Each step contains a list with three fields:

• ecc - the EC-Consistency of the partitions obtained on all repetitions

• embedding - one UMAP embedding generated on the feature subset

• most_frequent_partition - the most common partition obtained across repetitions

Note

The algorithm assumes that the feature_set is already sorted when performing the subsetting. For
example, if the user wants to analyze highly variable feature set, they should provide them sorted
by their variability.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(100*10), runif(100*10, min = 3, max = 4)), nrow = 200, byrow = TRUE)
rownames(expr_matrix) = as.character(1:200)
colnames(expr_matrix) = paste("feature", 1:10)

feature_stability_result = get_feature_stability(data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
feature_type = "feature_name",
steps = 5,
npcs = 2,
n_repetitions = 10,
algorithm = 1,
# the following parameters are used by the umap function and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3)

plot_feature_stability_boxplot(feature_stability_result)

get_nn_conn_comps Relationship Between Nearest Neighbors and Connected Components
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Description

One of the steps in the clustering pipeline is building a k-nearest neighbor graph on a reduced-space
embedding. This method assesses the relationship between different number of nearest neighbors
and the connectivity of the graph. In the context of graph clustering, the number of connected
components can be used as a lower bound for the number of clusters. The calculations are performed
multiple times by changing the seed at each repetition.

Usage

get_nn_conn_comps(
object,
n_neigh_sequence,
config_name = "",
n_repetitions = 100,
seed_sequence = NULL,
graph_reduction_type = "UMAP",
transpose = (graph_reduction_type == "PCA"),
ncores = 1,
...

)

Arguments

object A data matrix. If the graph reduction type is PCA, the object should be an ex-
pression matrix, with features on rows and observations on columns; in the case
of UMAP, the user could also provide a matrix associated to a PCA embedding.
See also the transpose argument.

n_neigh_sequence

A sequence of the number of nearest neighbors.

config_name User specified string that uniquely describes the embedding characteristics.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user.

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.

graph_reduction_type

The graph reduction type, denoting if the graph should be built on either the
PCA or the UMAP embedding.

transpose Logical: whether the input object will be transposed or not. Set to FALSE if
the input is an observations X features matrix, and set to TRUE if the input is a
features X observations matrix.

ncores The number of parallel R instances that will run the code. If the value is set to
1, the code will be run sequentially.

... Additional arguments passed to the ‘irlba::irlba‘ or the ‘uwot::umap‘ method,
depending on the value of graph_reduction_type.
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Value

A list having one field associated with a number of nearest neighbors. Each value contains an array
of the number of connected components obtained on the specified number of repetitions.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(50*10), runif(50*10, min = 1, max = 2)), nrow = 100, byrow = TRUE)
rownames(expr_matrix) = as.character(1:100)

# the graph reduction type is PCA, so we can provide the expression matrix as argument
nn_conn_comps_obj = get_nn_conn_comps(object = expr_matrix,

n_neigh_sequence = c(2,3,5),
config_name = "example_config",
n_repetitions = 10,
graph_reduction_type = "PCA",
transpose = FALSE,
# the following parameter is used by the irlba function and is not mandatory
nv = 3)

plot_connected_comps_evolution(nn_conn_comps_obj)

get_nn_importance Assess Graph Building Parameters

Description

Evaluates clustering stability when changing the values of different parameters involved in the graph
building step, namely the base embedding, the graph type and the number of neighbours.

Usage

get_nn_importance(
object,
n_neigh_sequence,
n_repetitions = 100,
seed_sequence = NULL,
graph_reduction_type = "PCA",
ecs_thresh = 1,
ncores = 1,
transpose = (graph_reduction_type == "PCA"),
graph_type = 2,
algorithm = 4,
...

)
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Arguments

object The data matrix. If the graph reduction type is PCA, the object should be an ex-
pression matrix, with features on rows and observations on columns; in the case
of UMAP, the user could also provide a matrix associated to a PCA embedding.
See also the transpose argument.

n_neigh_sequence

A sequence of the number of nearest neighbours.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user.

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.

graph_reduction_type

The graph reduction type, denoting if the graph should be built on either the
PCA or the UMAP embedding.

ecs_thresh The ECS threshold used for merging similar clusterings.

ncores The number of parallel R instances that will run the code. If the value is set to
1, the code will be run sequentially.

transpose Logical: whether the input object will be transposed or not. Set to FALSE if
the input is an observations X features matrix, and set to TRUE if the input is a
features X observations matrix.

graph_type Argument indicating whether the graph should be unweighted (0), weighted (1)
or both (2).

algorithm An index indicating which community detection algorithm will be used: Lou-
vain (1), Louvain refined (2), SLM (3) or Leiden (4). More details can be found
in the Seurat’s FindClusters function.

... Additional arguments passed to the irlba::irlba or the uwot::umap method,
depending on the value of graph_reduction_type.

Value

A list having three fields:

• n_neigh_k_corresp - list containing the number of the clusters obtained by running the pipeline
multiple times with different seed, number of neighbors and graph type (weighted vs un-
weigted)

• n_neigh_ec_consistency - list containing the EC consistency of the partitions obtained at mul-
tiple runs when changing the number of neighbors or the graph type

• n_different_partitions - the number of different partitions obtained by each number of neigh-
bors

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(100*10), runif(100*10, min=5, max=6)), nrow = 200)
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rownames(expr_matrix) = as.character(1:200)

nn_importance_obj = get_nn_importance(object = expr_matrix,
n_neigh_sequence = c(10,15,20),
n_repetitions = 10,
graph_reduction_type = "PCA",
algorithm = 1,

transpose = FALSE, # the matrix is already observations x features, so we won't transpose it
# the following parameter is used by the irlba function and is not mandatory
nv = 2)

plot_n_neigh_ecs(nn_importance_obj)

get_resolution_importance

Evaluate Stability Across Resolution, Number of Neighbors, and
Graph Type

Description

Perform a grid search over the resolution, number of neighbors and graph type.

Usage

get_resolution_importance(
embedding,
resolution,
n_neigh,
n_repetitions = 100,
seed_sequence = NULL,
clustering_method = 4,
graph_type = 0,
object_name = NULL,
ecs_thresh = 1,
ncores = 1

)

Arguments

embedding The base embedding for the graph construction.

resolution A sequence of resolution values.

n_neigh A value or a sequence of number of neighbors used for graph construction.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user.

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.
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clustering_method

An index or a list of indexes indicating which community detection algorithm
will be used: Louvain (1), Louvain refined (2), SLM (3) or Leiden (4). More
details can be found in the Seurat’s FindClusters function.

graph_type Argument indicating whether the graph should be unweighted (0), weighted (1)
or both (2).

object_name User specified string that uniquely describes the embedding characteristics.

ecs_thresh The ECS threshold used for merging similar clusterings.

ncores The number of parallel R instances that will run the code. If the value is set to
1, the code will be run sequentially.

Value

A list having two fields:

• split_by_resolution: A five-level list. The hierarchy is as follows:

– the configuration name: concatenation between the object name provided by the user, the
number of neighbors, the graph type and the clustering method

– the resolution value γ

– the number of clusters k that can be obtained using the specified resolution
– the partitions obtained with resolution γ and have k clusters
– the structure of a partitions, which consists in having a mb field with the flat membership

vector, freq denoting its frequency and seed, that is the seed used to obtain this partition
in this configuration.

• split_by_k: has a similar structure, but the resolution level is removed. The partitions obtained
in a configuration with the same number of clusters will be merged into the same list.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(runif(500*10), nrow = 500)

# get the PCA embedding of the data
pca_embedding = irlba::irlba(expr_matrix, nv = 2)
pca_embedding = pca_embedding$u %*% diag(pca_embedding$d)
rownames(pca_embedding) = as.character(1:500)

# run the function on the pca embedding
resolution_result = get_resolution_importance(embedding = pca_embedding,

resolution = c(0.8, 1),
n_neigh = c(5, 7),
n_repetitions = 5,
clustering_method = 1,
graph_type = 2,
object_name = "name_example")

plot_k_resolution_corresp(resolution_result)
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marker_overlap Cell-Wise Marker Gene Overlap

Description

Calculates the per-cell overlap of previously calculated marker genes.

Usage

marker_overlap(
markers1,
markers2,
clustering1,
clustering2,
n = 25,
overlap_type = "jsi",
rank_by = "-p_val",
use_sign = TRUE

)

Arguments

markers1 The first data frame of marker genes, must contain columns called ’gene’ and
’cluster’.

markers2 The second data frame of marker genes, must contain columns called ’gene’ and
’cluster’.

clustering1 The first vector of cluster assignments.

clustering2 The second vector of cluster assignments.

n The number of top n markers (ranked by rank_by) to use when calculating the
overlap.

overlap_type The type of overlap to calculated: must be one of ’jsi’ for Jaccard similarity
index and ’intersect’ for intersect size.

rank_by A character string giving the name of the column to rank marker genes by. Note
the sign here: to rank by lowest p-value, preface the column name with a minus
sign; to rank by highest value, where higher value indicates more discriminative
genes (for example power in the ROC test), no sign is needed.

use_sign A logical: should the sign of markers match for overlap calculations? So a gene
must be a positive or a negative marker in both clusters being compared. If
TRUE, markers1 and markers2 must have a ’avg_logFC’ column, from which
the sign of the DE will be extracted.

Value

A vector of the marker gene overlap per cell.
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Examples

suppressWarnings({
set.seed(1234)
library(Seurat)

# cluster with Louvain algorithm
pbmc_small = FindClusters(pbmc_small, resolution=0.8, verbose=FALSE)

# cluster with k-means
pbmc.pca = Embeddings(pbmc_small, 'pca')
pbmc_small@meta.data$kmeans_clusters = kmeans(pbmc.pca, centers=3)$cluster

# compare the markers
Idents(pbmc_small) = pbmc_small@meta.data$seurat_clusters
louvain.markers = FindAllMarkers(pbmc_small,

logfc.threshold=1,
test.use='t',
verbose=FALSE)

Idents(pbmc_small) = pbmc_small@meta.data$kmeans_clusters
kmeans.markers = FindAllMarkers(pbmc_small,

logfc.threshold=1,
test.use='t',
verbose=FALSE)

pbmc_small@meta.data$jsi = marker_overlap(louvain.markers, kmeans.markers,
pbmc_small@meta.data$seurat_clusters, pbmc_small@meta.data$kmeans_clusters)

# which cells have the same markers, regardless of clustering?
FeaturePlot(pbmc_small, 'jsi')
})

merge_partitions Merge Partitions

Description

Merge flat disjoint clusterings whose pairwise ECS score is above a given threshold. The merging
is done using a complete linkage approach.

Usage

merge_partitions(partition_list, ecs_thresh = 1, ncores = 1, order = TRUE)

Arguments

partition_list A list of flat disjoint membership vectors.

ecs_thresh A numeric: the ecs threshold.
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ncores The number of parallel R instances that will run the code. If the value is set to
1, the code will be run sequentially.

order A logical: if TRUE, order the partitions based on their frequencies.

Value

a list of the merged partitions

Examples

initial_list = list(c(1,1,2), c(2,2,2), c('B','B','A'))
merge_partitions(initial_list, 0.99)

pac_convergence PAC Convergence Plot

Description

Plot PAC across iterations for a set of k to assess convergence.

Usage

pac_convergence(pac_res, k_plot)

Arguments

pac_res The data.frame output by consensus_cluster.

k_plot A vector with values of k to plot.

Value

A ggplot2 object with the convergence plot. Convergence has been reached when the lines flatten
out across k_plot values. out across

Examples

pac.res = consensus_cluster(iris[,1:4], k_max=20)
pac_convergence(pac.res, k_plot=c(3,5,7,9))
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pac_landscape PAC Landscape Plot

Description

Plot final PAC values across range of k to find optimal number of clusters.

Usage

pac_landscape(pac_res, n_shade = max(pac_res$iteration)/5)

Arguments

pac_res The data.frame output by consensus_cluster.

n_shade The PAC values across the last n_shade iterations will be shaded to illustrate the
how stable the PAC score is.

Value

A ggplot2 object with the final PAC vs k plot. A local minimum in the landscape indicates an
especially stable value of k.

Examples

pac.res = consensus_cluster(iris[,1:4], k_max=20)
pac_landscape(pac.res)

plot_clustering_difference_boxplot

Clustering Method Stability Boxplot

Description

Display EC consistency across clustering method and resolution values. The ‘filtered‘ field of the
object returned by the ‘get_clustering_difference_object‘ method is used. Above each boxplot, the
number of clusters is displayed.

Usage

plot_clustering_difference_boxplot(clustering_difference_object, text_size = 3)

Arguments

clustering_difference_object

An object returned by the ‘get_clustering_difference_object‘ method.

text_size The size of the labels above boxplots.
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Value

A ggplot2 object with the EC consistency distributions. Higher consistency indicates a more stable
clustering.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(runif(500*10), nrow = 500)
rownames(expr_matrix) = as.character(1:500)

adj_matrix = Seurat::FindNeighbors(expr_matrix,
k.param = 10,
nn.method = "rann",
verbose = FALSE,
compute.SNN = FALSE)$nn

clust_diff_obj = get_clustering_difference(graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
algorithm = 1:2,
verbose = FALSE)

plot_clustering_difference_boxplot(clust_diff_obj)

plot_clustering_difference_facet

Clustering Method Stability Facet Plot

Description

Display the distribution of the EC consistency for each clustering method and each resolution value
on a given embedding The ‘all‘ field of the object returned by the ‘get_clustering_difference_object‘
method is used.

Usage

plot_clustering_difference_facet(
clustering_difference_object,
embedding,
low_limit = 0,
high_limit = 1,
grid = TRUE

)

Arguments

clustering_difference_object

An object returned by the ‘get_clustering_difference_object‘ method.

embedding An embedding (only the first two dimensions will be used for visualisation).
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low_limit The lowest value of ECC that will be displayed on the embedding.

high_limit The highest value of ECC that will be displayed on the embedding.

grid Boolean value indicating whether the facet should be a grid (where each row is
associated with a resolution value and each column with a clustering method) or
a wrap.

Value

A ggplot2 object.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(250*10), runif(250*10, min = 5, max = 7)), nrow = 500)
rownames(expr_matrix) = as.character(1:500)

pca_embedding = irlba::irlba(expr_matrix, nv = 2)
pca_embedding = pca_embedding$u %*% diag(pca_embedding$d)
rownames(pca_embedding) = as.character(1:500)

adj_matrix = Seurat::FindNeighbors(pca_embedding,
k.param = 10,
nn.method = "rann",
verbose = FALSE,
compute.SNN = FALSE)$nn

clust_diff_obj = get_clustering_difference(graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
algorithm = 1:2,
verbose = FALSE)

plot_clustering_difference_facet(clust_diff_obj,pca_embedding)

plot_connected_comps_evolution

Relationship Between Number of Nearest Neighbors and Graph Con-
nectivity

Description

Display the distribution of the number connected components obtained for each number of neigh-
bors across random seeds.

Usage

plot_connected_comps_evolution(nn_conn_comps_object)
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Arguments

nn_conn_comps_object

An object or a concatenation of objects returned by the ‘get_nn_conn_comps‘
method.

Value

A ggplot2 object with boxplots for the connected component distributions.

Note

The number of connected components is displayed on a logarithmic scale.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(50*10), runif(50*10, min = 1, max = 2)), nrow = 100, byrow = TRUE)
rownames(expr_matrix) = as.character(1:100)

# the graph reduction type is PCA, so we can provide the expression matrix as argument
nn_conn_comps_obj = get_nn_conn_comps(object = expr_matrix,

n_neigh_sequence = c(2,3,5),
config_name = "example_config",
n_repetitions = 10,
graph_reduction_type = "PCA",
transpose = FALSE,
# the following parameter is used by the irlba function and is not mandatory
nv = 3)

plot_connected_comps_evolution(nn_conn_comps_obj)

plot_feature_stability_boxplot

Feature Stability Boxplot

Description

Display EC consistency for each feature set and for each step. Above each boxplot there is a number
representing the step (or the size of the subset)

Usage

plot_feature_stability_boxplot(feature_object_list, text_size = 4)

Arguments

feature_object_list

An object or a concatenation of objects returned by the ‘get_feature_stability‘
method

text_size The size of the labels above boxplots.
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Value

A ggplot2 object.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(100*10), runif(100*10, min = 3, max = 4)), nrow = 200, byrow = TRUE)
rownames(expr_matrix) = as.character(1:200)
colnames(expr_matrix) = paste("feature", 1:10)

feature_stability_result = get_feature_stability(data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
feature_type = "feature_name",
steps = 5,
npcs = 2,
n_repetitions = 10,
algorithm = 1,
# the following parameters are used by the umap function and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3)

plot_feature_stability_boxplot(feature_stability_result)

plot_feature_stability_ecs_facet

Feature Stability - EC Consistency Facet Plot

Description

Display a facet of plots where each subpanel is associated with a feature set and illustrates the
distribution of the EC consistency score over the UMAP embedding.

Usage

plot_feature_stability_ecs_facet(
feature_object_list,
n_facet_cols = 3,
point_size = 0.3

)

Arguments

feature_object_list

An object or a concatenation of objects returned by the ‘get_feature_stability‘
method

n_facet_cols The number of facet’s columns.
point_size The size of the points displayed on the plot.
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Value

A ggplot2 object

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(100*10), runif(50*10, min = 5, max = 7)), nrow = 150, byrow = TRUE)
rownames(expr_matrix) = as.character(1:150)
colnames(expr_matrix) = paste("feature", 1:10)

feature_stability_result = get_feature_stability(data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
feature_type = "feature_name",
steps = c(5,10),
npcs = 2,
n_repetitions = 3,
algorithm = 1,
# the following parameters are used by the umap function and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3)

plot_feature_stability_ecs_facet(feature_stability_result)

plot_feature_stability_ecs_incremental

Feature Stability Incremental Boxplot

Description

Perform an incremental ECS between two consecutive feature steps.

Usage

plot_feature_stability_ecs_incremental(
feature_object_list,
dodge_width = 0.7,
text_size = 4

)

Arguments

feature_object_list

An object or a concatenation of objects returned by the ‘get_feature_stability‘
method.

dodge_width Used for adjusting the horizontal position of the boxplot; the value will be
passed in the ‘width‘ argument of the ‘ggplot2::position_dodge‘ method.

text_size The size of the labels above boxplots.
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Value

A ggplot2 object with ECS distribution will be displayed as a boxplot. Above each boxplot there
will be a pair of numbers representing the two steps that are compared.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(25*10), runif(75*10, min = 5, max = 7)), nrow = 100, byrow = TRUE)
rownames(expr_matrix) = as.character(1:100)
colnames(expr_matrix) = paste("feature", 1:10)

feature_stability_result = get_feature_stability(data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
feature_type = "feature_name",
steps = c(5,10),
npcs = 2,
n_repetitions = 3,
algorithm = 1,
# the following parameters are used by the umap function and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3)

plot_feature_stability_ecs_incremental(feature_stability_result)

plot_feature_stability_mb_facet

Feature Stability - Cluster Membership Facet Plot

Description

Display a facet of plots where each subpanel is associated with a feature set and illustrates the
distribution of the most frequent partition over the UMAP embedding.

Usage

plot_feature_stability_mb_facet(
feature_object_list,
text_size = 5,
n_facet_cols = 3,
point_size = 0.3

)
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Arguments

feature_object_list

An object or a concatenation of objects returned by the ‘get_feature_stability‘
method

text_size The size of the cluster label

n_facet_cols The number of facet’s columns.

point_size The size of the points displayed on the plot.

Value

A ggplot2 object.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(100*10), runif(50*10, min = 5, max = 7)), nrow = 150, byrow = TRUE)
rownames(expr_matrix) = as.character(1:150)
colnames(expr_matrix) = paste("feature", 1:10)

feature_stability_result = get_feature_stability(data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
feature_type = "feature_name",
steps = c(5,10),
npcs = 2,
n_repetitions = 3,
algorithm = 1,
# the following parameters are used by the umap function and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3)

plot_feature_stability_mb_facet(feature_stability_result)

plot_k_n_partitions Relationship Between the Number of Clusters and the Number of
Unique Partitions

Description

For each configuration provided in partition_obj_list, display how many different partitions with
the same number of clusters can be obtained by changing the seed.

Usage

plot_k_n_partitions(partition_obj_list, object_names = NULL)
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Arguments

partition_obj_list

An object or a concatenation of objects returned by the ‘merge_resolutions‘
method.

object_names Custom names that the user could assing to each configuration; if not specified,
the plot will use the generated configuration names.

Value

A ggplot2 object. The color gradient suggests the frequency of the most common partition relative
to the total number of appearances of that specific number of clusters.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(runif(500*10), nrow = 500)

# get the PCA embedding of the data
pca_embedding = irlba::irlba(expr_matrix, nv = 2)
pca_embedding = pca_embedding$u %*% diag(pca_embedding$d)
rownames(pca_embedding) = as.character(1:500)

# run the function on the pca embedding
resolution_result = get_resolution_importance(embedding = pca_embedding,

resolution = c(0.8, 1),
n_neigh = c(5, 7),
n_repetitions = 5,
clustering_method = 1,
graph_type = 2,
object_name = "name_example")

plot_k_n_partitions(resolution_result)

plot_k_resolution_corresp

Correspondence Between Resolution and the Number of Clusters

Description

For each configuration provided in the res_object_list, display what number of clusters appear for
different values of the resolution parameters.

Usage

plot_k_resolution_corresp(
res_object_list,
res_object_names = NULL,
given_height = 0.7

)
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Arguments

res_object_list

An object returned by the ‘get_resolution_importance‘ method.
res_object_names

Custom names that the user could assing to each configuration; if not specified,
the plot will use the generated configuration names.

given_height Used for adjusting the vertical position of the boxplot; the value will be passed
in the ‘width‘ argument of the ‘ggplot::position_dodge‘ method.

Value

A ggplot2 object. Different shapes of points indicate different parameter configuration, while the
color illustrates the frequency of the most common partition. The frequency is calculated as the
fraction between the number of total appearances and the number of runs.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(runif(500*10), nrow = 500)

# get the PCA embedding of the data
pca_embedding = irlba::irlba(expr_matrix, nv = 2)
pca_embedding = pca_embedding$u %*% diag(pca_embedding$d)
rownames(pca_embedding) = as.character(1:500)

# run the function on the pca embedding
resolution_result = get_resolution_importance(embedding = pca_embedding,

resolution = c(0.8, 1),
n_neigh = c(5, 7),
n_repetitions = 5,
clustering_method = 1,
graph_type = 2,
object_name = "name_example")

plot_k_resolution_corresp(resolution_result)

plot_n_neigh_ecs Graph construction parameters - ECC facet

Description

Display, for all configurations consisting in different number of neighbors, graph types and base
embeddings, the EC Consistency of the partitions obtained over multiple runs on an UMAP embed-
ding.

Usage

plot_n_neigh_ecs(nn_ecs_object)
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Arguments

nn_ecs_object An object or a concatenation of objects returned by the ‘get_nn_importance‘
method.

Value

A ggplot2 object.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(100*10), runif(100*10, min=5, max=6)), nrow = 200)
rownames(expr_matrix) = as.character(1:200)

nn_importance_obj = get_nn_importance(object = expr_matrix,
n_neigh_sequence = c(10,15,20),
n_repetitions = 10,
graph_reduction_type = "PCA",
algorithm = 1,

transpose = FALSE, # the matrix is already observations x features, so we won't transpose it
# the following parameter is used by the irlba function and is not mandatory
nv = 2)

plot_n_neigh_ecs(nn_importance_obj)

plot_n_neigh_k_correspondence

Relationship Between Number of Nearest Neighbors and Number of
Clusters

Description

Display the distribution of the number of clusters obtained for each number of neighbors across
random seeds.

Usage

plot_n_neigh_k_correspondence(nn_object_n_clusters)

Arguments

nn_object_n_clusters

An object or a concatenation of objects returned by the ‘get_nn_importance‘
method.

Value

A ggplot2 object with the distributions displayed as boxplots.
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Note

The number of clusters is displayed on a logarithmic scale.

Examples

set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(runif(100*10), nrow = 100)
rownames(expr_matrix) = as.character(1:100)

nn_importance_obj = get_nn_importance(object = expr_matrix,
n_neigh_sequence = c(2,5),
n_repetitions = 5,
graph_reduction_type = "PCA",
algorithm = 1,

transpose = FALSE, # the matrix is already observations x features, so we won't transpose it
# the following parameter is used by the irlba function and is not mandatory
nv = 2)

plot_n_neigh_k_correspondence(nn_importance_obj)
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