CondCopulas: Estimation and Inference for Conditional Copula Models
Provides functions for the estimation of conditional copulas models,
various estimators of conditional Kendall's tau
(proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>,
<doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>),
and test procedures for the simplifying assumption
(proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011>
and Derumigny, Fermanian and Min (2020) <arXiv:2008.09498>).
Version: |
0.1.2 |
Imports: |
VineCopula, pbapply, glmnet, ordinalNet, tree, nnet, data.tree, statmod, wdm |
Suggests: |
MASS, knitr, rmarkdown, ggplot2, mvtnorm |
Published: |
2022-04-25 |
Author: |
Alexis Derumigny
[aut, cre],
Jean-David Fermanian
[ctb, ths],
Aleksey Min [ctb],
Rutger van der Spek [ctb] |
Maintainer: |
Alexis Derumigny <a.f.f.derumigny at tudelft.nl> |
BugReports: |
https://github.com/AlexisDerumigny/CondCopulas/issues |
License: |
GPL-3 |
URL: |
https://github.com/AlexisDerumigny/CondCopulas |
NeedsCompilation: |
no |
Materials: |
README NEWS |
CRAN checks: |
CondCopulas results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=CondCopulas
to link to this page.