Package 'DrDimont'

May 17, 2022

Type Package

Title Drug Response Prediction from Differential Multi-Omics Networks

Version 0.1.3

Description While it has been well established that drugs affect and help patients differently, personalized drug response predictions remain challenging. Solutions based on single omics measurements have been proposed, and networks provide means to incorporate molecular interactions into reasoning. However, how to integrate the wealth of information contained in multiple omics layers still poses a complex problem.

We present a novel network analysis pipeline, DrDimont, Drug response prediction from Differential analysis of multi-omics networks. It allows for comparative conclusions between two conditions and translates them into differential drug response predictions. DrDimont focuses on molecular interactions. It establishes condition-specific networks from correlation within an omics layer that are then reduced and combined into heterogeneous, multi-omics molecular networks. A novel semi-local, path-based integration step ensures integrative conclusions. Differential predictions are derived from comparing the condition-specific integrated networks. DrDimont's predictions are explainable, i.e., molecular differences that are the source of high differential drug scores can be retrieved. Our proposed pipeline leverages multi-omics data for differential predictions, e.g. on drug response, and includes prior information on interactions. The case study presented in the vignette uses data published by Krug (2020) <doi:10.1016/j.cell.2020.10.036>. The package license applies only to the software and explicitly not to the included data.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.1.2

VignetteBuilder knitr

Imports igraph, dplyr, stringr, WGCNA, Rfast, readr, tibble, tidyr, magrittr, rlang, utils, stats

Suggests rmarkdown, knitr

Depends R (>= 3.5.0)

NeedsCompilation no

Author Katharina Baum [cre] (<https://orcid.org/0000-0001-7256-0566>), Pauline Hiort [aut] (<https://orcid.org/0000-0002-3530-7358>), Julian Hugo [aut] (<https://orcid.org/0000-0003-3355-1071>), Spoorthi Kashyap [aut], Nataniel Müller [aut] (<https://orcid.org/0000-0002-0275-3992>), Justus Zeinert [aut] (<https://orcid.org/0000-0003-3918-0507>)

Maintainer Katharina Baum <katharina.baum@hpi.de>

Repository CRAN

Date/Publication 2022-05-17 10:20:02 UTC

R topics documented:

calculate_interaction_score
check_connection
check_drug_target
check_drug_targets_in_layers
check_input
check_layer
check_sensible_connections
chunk
chunk_2gether
combined_graphs_example
combine_graphs
compute_correlation_matrices
compute_drug_response_scores
corPvalueStudentParallel
correlation_matrices_example 14
create_unique_layer_node_ids
determine_drug_targets
differential_graph_example
drdimont_settings
drug_gene_interactions
drug_response_scores_example 22
$drug_target_edges_example $
find_targets
generate_combined_graphs
generate_differential_score_graph
generate_individual_graphs
generate_interaction_score_graphs
generate_reduced_graph
get_layer
get_layer_setting
graph_metrics
individual_graphs_example

install_python_dependencies	4
interaction_score_graphs_example	5
inter_layer_edgelist_by_id	5
inter_layer_edgelist_by_table	6
layers_example	7
load_interaction_score_output	8
make_connection	8
make_drug_target	9
make_layer	0
metabolite_data	1
metabolite_protein_interactions	2
mrna_data	.3
network_reduction_by_pickHardThreshold	.3
network_reduction_by_p_value	
phosphosite_data	6
protein_data	~
return_errors	.7
run_pipeline	~
sample_size	
set_cluster	0
shutdown_cluster	_
target_edge_list	
write_interaction_score_input	2
5	2
	Э.

Index

calculate_interaction_score

[INTERNAL] Calls a python script to calculate interaction score for combined graphs

Description

[INTERNAL] The interaction score is computed and saved in an additional 'interaction_weight' edge attribute. This function expects the combined graphs for both groups along with their corresponding drug target and node lists to be saved at 'saving_path'. Graphs and drug targets should be weighted edge lists in 'gml' and 'tsv' format, respectively. Node files should contain one node id per line. The script for calculating the interaction score is called with 'python_executable'. An alternate script can be specified with 'script_path'. The score for an edge is computed as the sum of the average product of weights along all simple paths of length 1 (over all path lengths up to 'max_path_length') between the source and target node of the edge.

Usage

```
calculate_interaction_score(
  max_path_length,
  total_edges,
  saving_path,
```

```
conda = FALSE,
python_executable = "python",
script_path = NULL,
int_score_mode = "auto",
cluster_address = "auto",
graphB_null = FALSE
)
```

Arguments

<pre>max_path_length</pre>	1	
	[int] Integer of maximum length of simple paths to include in the generate_interaction_score_graphs computation. (default: 3)	
total_edges	Vector with total edges in each group	
saving_path	[string] Path to save intermediate output of DrDimont's functions. Default is current working directory. Directory to use for writing intermediate data when passing input and output between Python and R.	
conda	[bool] Specifying if python is installed in a conda environment. Set TRUE if python is installed with conda. Use python_executable="-n name-of-your-environment python" (change name-of-your-environment to your environment) or python_executable="python" if installed in base environment. (default: FALSE)	
python_executable		
	[string] Path to Python executable used for generating the interaction score graphs. (default: "python")	
script_path	[string] Path to the interaction score Python script. Set NULL to use package internal script (default).	
<pre>int_score_mode</pre>	["auto" "sequential" "ray"] Whether to compute interaction score in parallel us- ing the Ray python library or sequentially. When 'auto' it depends on the graph sizes. (default: "auto")	
cluster_address		
	[string] Local node IP-address of Ray if executed on a cluster. On a cluster: Start ray with ray startheadnum-cpus 32 on the console before DrDimont execution. It should work with "auto", if it does not specify IP-address given by the ray start command. (default: "auto")	
graphB_null	[bool] Specifying if graphB of 'groupB' is given (FALSE) or not (TRUE). (default: FALSE)	

Value

Does not return anything, instead calls Python script which outputs 'gml' files

check_connection [INTERNAL] Check connection

Description

[INTERNAL] Checks if the data given to create an inter-layer connection is valid and has the right input format

Usage

```
check_connection(connection)
```

Arguments

connection [list] Connection to check. Created by make_connection

Value

Character string vector containing error messages.

Examples

check_drug_target [INTERNAL] Check drug target interaction data

Description

[INTERNAL] Checks if the data used to define interaction between drugs and targets is valid and formatted correctly.

Usage

check_drug_target(drug_target_interactions)

Arguments

drug_target_interactions [list] A named list of the drug interaction data. Created by make_drug_target

Value

Character string vector containing error messages.

Examples

check_drug_targets_in_layers [INTERNAL] Check drug target and layer data

Description

[INTERNAL] Checks if the parameters supplied in 'drug_target_interactions' makes sense in the context of the defined layers.

Usage

check_drug_targets_in_layers(drug_target_interactions, layers)

Arguments

drug_target_ir	nteractions
	[list] A named list of the drug interaction data. Created by make_drug_target
layers	[list] List of layers to check. Individual layers are created by make_layer and need to be wrapped in a list.

Value

Character string vector containing error messages.

Examples

check_input

Description

Checks if input data is valid and formatted correctly. This function is a wrapper for other check functions to be executed as first step of the DrDimont pipeline.

Usage

```
check_input(layers, inter_layer_connections, drug_target_interactions)
```

Arguments

layers	[list] List of layers to check. Individual layers were created by make_layer and
	need to be wrapped in a list.
inter_layer_co	nnections
	[list] A list containing connections between layers. Each connection was created
	by make_connection and wrapped in a list.
drug_target_interactions	
	[list] A named list of the drug interaction data. Created by make_drug_target

Value

Character string vector containing error messages.

check_layer

[INTERNAL] Check layer input

Description

[INTERNAL] Checks if the data used to create a network layer is valid and has the right format

Usage

```
check_layer(layer)
```

Arguments

layer [list] Named list of layer to check. Created by make_layer

Value

Character string vector containing error messages.

Examples

check_sensible_connections
[INTERNAL] Check connection and layer data

Description

[INTERNAL] Checks if the connection defined in 'connection' makes sense in context of the defined layers.

Usage

check_sensible_connections(connection, layers)

Arguments

connection	[list] Connection to check. Created by make_connection
layers	[list] List of layers to check. Individual layers are created by make_layer and need to be wrapped in a list.

Value

Character string vector containing error messages.

Examples

chunk

protein_layer)))

chunk

[INTERNAL] Create chunks from a vector for parallel computing

Description

[INTERNAL] Create chunks from a vector for parallel computing

Usage

chunk(x, chunk_size)

Arguments

х	Vector
chunk_size	[int] Length of chunks

Value

A list of chunks of length chunk_size

Source

https://stackoverflow.com/questions/3318333/split-a-vector-into-chunks

chunk_2gether

Description

[INTERNAL] Create chunks from two vectors for parallel computing

Usage

```
chunk_2gether(x, y, chunk_size)
```

Arguments

х, у	Vectors
chunk_size	[int] Length of chunks

Value

A list of lists. Each second level list contains a list of chunks of length chunk_size of each input vector.

Source

modified from: https://stackoverflow.com/questions/3318333/split-a-vector-into-chunks

```
combined_graphs_example
```

Combined graphs

Description

Exemplary intermediate pipeline output: Combined graphs example data built by generate_combined_graphs. Combined graphs were built using the individual_graphs_example and:

Usage

```
combined_graphs_example
```

Format

A named list with 2 items.

graphs A named list with two groups.

groupA Graph associated with 'groupA'

groupB Graph associated with 'groupB'

annotations A data frame of mappings of assigned node IDs to the user-provided component identifiers for all nodes in 'groupA' and 'groupB' together and all layers

both Data frame

combine_graphs

Details

```
inter_layer_connections = list( make_connection(from='mrna', to='protein', connect_on='gene_name',
weight=1), make_connection(from='protein', to='phosphosite', connect_on='gene_name',
weight=1), make_connection(from='protein', to='metabolite', connect_on=metabolite_protein_interaction
weight='combined_score'))
```

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices, individual graphs and combined graphs. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

combine_graphs

[INTERNAL] Combine graphs by adding inter-layer edges

Description

[INTERNAL] Creates the union of all graphs and adds the inter-layer edges.

Usage

combine_graphs(graphs, inter_layer_edgelists)

Arguments

graphs [list] List of iGraph objects

inter_layer_edgelists [list] List of data frames containing inter-layer edges

Value

iGraph object which is the union of the input graphs with isolated nodes removed.

```
compute_correlation_matrices
```

Computes correlation matrices for specified network layers

Description

Constructs and returns a correlation/adjacency matrices for each network layer and each group. The adjacency matrix of correlations is computed using cor. The handling of missing data can be specified. Optionally, the adjacency matrices of the correlations can be saved. Each node is mapped to the biological identifiers given in the layers and the mapping table is returned as 'annotations'.

Usage

```
compute_correlation_matrices(layers, settings)
```

Arguments

layers	[list] Named list with different network layers containing data and identifiers for both groups (generated from make_layer)
settings	[list] A named list containing pipeline settings. The settings list has to be initialized by drdimont_settings. Items in the named list can be adjusted as desired.

Value

A nested named list with first-level elements 'correlation_matrices' and 'annotations'. The second level elements are 'groupA' and 'groupB' (and 'both' at 'annotations'). These contain a named list of matrix objects ('correlation_matrices') and data frames ('annotations') mapping the graph node IDs to biological identifiers. The third level elements are the layer names given by the user.

Examples

```
data(layers_example)
```

compute_drug_response_scores

Calculate drug response score

Description

This function takes the differential graph (generated in generate_differential_score_graph), the a drug targets object (containing target node names and drugs and their targets; generated in determine_drug_targets) and the supplied drug-target interaction table (formatted in make_drug_target) to calculate the differential drug response score. The score is the mean or median of all differential scores of the edges adjacent to all drug target nodes of a particular drug.

Usage

```
compute_drug_response_scores(differential_graph, drug_targets, settings)
```

Arguments

differential_graph	
	iGraph graph object containing differential scores for all edges. (output of generate_differential_score_graph)
drug_targets	[list] Named list containing two elements ('target_nodes' and 'drugs_to_target_nodes'). 'targets' from output of determine_drug_targets. 'target_nodes' is a vector containing network node names of the nodes that are targeted by the available drugs. 'drugs_to_target_nodes' is a dictionary-like list that maps drugs to the nodes that they target.
settings	[list] A named list containing pipeline settings. The settings list has to be ini- tialized by drdimont_settings. Items in the named list can be adjusted as desired.

Value

Data frame containing drug name and associated differential (integrated) drug response score

Examples

corPvalueStudentParallel

[INTERNAL] Compute p-values for upper triangle of correlation matrix in parallel

Description

[INTERNAL] Compute p-values for upper triangle of correlation matrix in parallel

Usage

```
corPvalueStudentParallel(adjacency_matrix, number_of_samples, chunk_size)
```

Arguments

adjacency_matrix		
	[matrix] Adjacency matrix of correlations computed using cor in compute_correlation_matrices	
number_of_samples		
	[matrix] Matrix of number of samples used in computation of each correlation value. Computed applying sample_size	
chunk_size	[int] Smallest unit of work in parallel computation (number of p-values to com- pute)	

Value

Vector of p-values for upper triangle

correlation_matrices_example Correlation matrices

Description

Exemplary intermediate pipeline output: Correlation matrices example data built by compute_correlation_matrices using layers_example data and settings:

Usage

correlation_matrices_example

Format

A named list with 2 items.

correlation_matrices A named list with two groups.

groupA Correlation matrices associated with 'groupA'

mrna Correlation matrix **protein** Correlation matrix

Protein contention mann

phosphosite Correlation matrix

metabolite Correlation matrix **groupB** same structure as 'groupA'

annotations A named list containing data frames of mappings of assigned node IDs to the userprovided component identifiers for nodes in 'groupA' or 'groupB' and all nodes

groupA Annotations associated with 'groupA'
mrna Data frame
protein Data frame
phosphosite Data frame
metabolite Data frame
groupB same structure as 'groupA'
both same structure as 'groupA'

Details

settings <- drdimont_settings(handling_missing_data=list(default="pairwise.complete.obs", mrna="all.obs"))

A subset of the original data from Krug et al. (2020) and randomly sampled metabolite data in layers_example was used to generate the correlation matrices. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER-patients.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

create_unique_layer_node_ids [INTERNAL] Assign node IDs to the biological identifiers across a graph layer

Description

[INTERNAL] This function takes two data frames of (biological) identifiers of nodes. Each data frame corresponds to the identifiers of the components contained in the single-layer network of a sample group. This function outputs the same data frames, with an added column ('node_id') that contains node IDs which can later be used as 'name' parameter for an iGraph graph. Node IDs begin with the defined 'prefix' and an underscore. If a molecule is present in both groups, the node ID will be the same across the whole layer, allowing to easily combine the graphs of both groups in generate_differential_score_graph to calculate differential scores of identical nodes in both sample groups. The function is used by the high-level wrapper generate_individual_graphs to create annotations, which uniquely define nodes across the network layer.

Usage

```
create_unique_layer_node_ids(identifiersA, identifiersB, layer_name)
```

Arguments

identifiersA, i	dentifiersB
	[data.frame] Containing the biological identifiers of each group of the same net- work layer.
layer_name	[string] Name of layer that the node ids are created for

Value

Returns an named list. Elements 'groupA' and 'groupB' contain the input data frames with an additional column 'node_id'. 'both' contains all unique node IDs assigned across the network layer.

determine_drug_targets

Determine drug target nodes in network

Description

Finds node IDs of network nodes in 'graphs' that are targeted by a drug in 'drug_target_interactions'. Returns list of node ids and list of adjacent edges.

Usage

determine_drug_targets(graphs, annotations, drug_target_interactions, settings)

Arguments

graphs	[list] A named list with elements 'groupA' and 'groupB' containing the com- bined graphs of each group as iGraph object ('graphs' from output of generate_combined_graphs)
annotations	[list] List of data frames that map node IDs to identifiers. Contains 'both' with unique identifiers across the whole data (output of generate_combined_graphs)
drug_target_interactions	
	[list] Named list specifying drug target interactions for drug response score com- putation
settings	[list] A named list containing pipeline settings. The settings list has to be ini- tialized by drdimont_settings. Items in the named list can be adjusted as desired.

Value

A named list with elements 'targets' and 'edgelists'. 'targets' is a named list with elements 'target_nodes' and 'drugs_to_target_nodes'. 'target_nodes' is a data frame with column 'node_id' (unique node IDs in the iGraph object targeted by drugs) and columns 'groupA' and 'groupB' (bool values specifying whether the node is contained in the combined graph of the group). Element 'drugs_to_target_nodes' contains a named list mapping drug names to a vector of their target node IDs. 'edgelists' contains elements 'groupA' and 'groupB' containing each a list of edges adjacent to drug target nodes.

Examples

differential_graph_example Differential graph

Description

Exemplary intermediate pipeline output: Differential score graph example data built by generate_differential_score_gr using the interaction_score_graphs_example. Consists of one graph containing edge attributes: the differential correlation values as 'differential_score' and the differential interaction score as 'differential_interaction_score'.

Usage

differential_graph_example

Format

An iGraph graph object.

Details

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices, individual graphs and combined graphs. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

drdimont_settings Create global settings variable for DrDimont pipeline

Description

Function that allows creating a global 'settings' variable used in the run_pipeline function and the step-wise DrDimont execution. Default parameters can be changed within the function call.

Usage

```
drdimont_settings(
   saving_path = "tempdir()",
   save_data = FALSE,
   correlation_method = "spearman",
   handling_missing_data = "all.obs",
   reduction_method = "pickHardThreshold",
   r_squared_cutoff = 0.85,
   cut_vector = seq(0.2, 0.8, by = 0.01),
   mean_number_edges = NULL,
   edge_density = NULL,
   p_value_adjustment_method = "BH",
```

drdimont_settings

```
reduction_alpha = 0.05,
n_threads = 1,
parallel_chunk_size = 10^6,
print_graph_info = TRUE,
python_executable = "python",
conda = FALSE,
max_path_length = 3,
int_score_mode = "auto",
cluster_address = "None",
median_drug_response = FALSE,
absolute_difference = FALSE,
...
```

Arguments

saving_path	[string] Path to save intermediate output of DrDimont's functions. Default is current working directory.
save_data	[bool] Specifying if intermediate data such as correlation_matrices, individ- ual_graphs, etc. should be saved during run_pipeline. (default: TRUE)
correlation_me	thod
	["pearson" "spearman" "kendall"] Correlation method used for graph genera- tion. Argument is passed to cor. (default: spearman)
handling_missi	ng_data
	["all.obs" "pairwise.complete.obs"] Specifying the handling of missing data dur- ing correlation matrix computation. Argument is passed to cor. Can be a single character string if the same for all layers, else a named list mapping layer names to methods, e.g, handling_missing_data=list(mrna="all.obs", protein="pairwise.complete.ol Layers may be omitted if a method is mapped to 'default', e.g, handling_missing_data=list(default="pairw (default: all.obs)
reduction_meth	od
	["pickHardThreshold" "p_value"] Reduction method for reducing networks. 'p_value' for hard thresholding based on the statistical significance of the computed cor- relation. 'pickHardThreshold' for a cutoff based on the scale-freeness criterion (calls pickHardThreshold). Can be a single character string if the same for all layers, else a named list mapping layer names to methods (see handling_missing_data setting). Layers may be omitted if a method is mapped to 'default'. (default: pickHardThreshold)
r_squared_cuto	ff
	pickHardThreshold setting: [floatInamed list] A number indicating the desired minimum scale free topology fitting index R^2 for reduction using pickHardThreshold. Can be a single float number if the same for all layers, else a named list map- ping layer names to a cutoff (see handling_missing_data setting) or a named list in a named list mapping groupA or groupB and layer names to a cutoff, e.g., r_squared_cutoff=list(groupA=list(mrna=0.85, protein=0.8), groupB=list(mrna=0.9, protein=0.85)). Layers/groups may be omitted if a cutoff is mapped to 'de- fault'. (default: 0.85)

cut_vector	pickHardThreshold setting: [sequence of floatInamed list] A vector of hard thresh- old cuts for which the scale free topology fit indices are to be calculated during reduction with pickHardThreshold. Can be a single regular sequence if the same for all layers, else a named list mapping layer names to a cut vector or a named list in a named list mapping groupA or groupB and layer names to a cut vector (see r_squared_cutoff setting). Layers/groups may be omitted if a vector is mapped to 'default'. (default: seq(0.2, 0.8, by = 0.01))
mean_number_ed	
	pickHardThreshold setting: [intlnamed list] Find a suitable edge weight cutoff employing pickHardThreshold to reduce the network to at most the specified mean number of edges. Can be a single int number if the same for all lay- ers, else a named list mapping layer names to a mean number of edges or a named list in a named list mapping groupA or groupB and layer names to a cut- off (see r_squared_cutoff setting). Attention: This parameter overwrites the 'r_squared_cutoff' and 'edge_density' parameters if not set to NULL. (default: NULL)
edge_density	pickHardThreshold setting: [floatInamed list] Find a suitable edge weight cut- off employing pickHardThreshold to reduce the network to at most the spec- ified edge density. Can be a single float number if the same for all layers, else a named list mapping layer names to a mean number of edges or a named list in a named list mapping groupA or groupB and layer names to a cutoff (see r_squared_cutoff setting). Attention: This parameter overwrites the 'r_squared_cutoff' parameter if not set to NULL. (default: NULL)
p_value_adjust	tment_method
	p_value setting: ["holm" "hochberg" "hommel" "bonferroni" "BH" "BY" "fdr" "none"] String of the correction method applied to p-values. Passed to p.adjust. (default: "BH")
reduction_alp	
	p_value setting: [float] A number indicating the significance value for corre- lation p-values during reduction. Not-significant edges are dropped. (default: 0.05)
n_threads	p_value setting: [int] Number of threads for parallel computation of p-values during p-value reduction. (default: 1)
parallel_chunk	<_size
	p_value setting: [int] Number of p-values in smallest work unit when computing in parallel during network reduction with method 'p_value'. (default: 10^6)
print_graph_ir	
	[bool] Specifying if a summary of the reduced graph should be printed to the console after network generation. (default: TRUE)
python_executa	
	[string] Path to Python executable used for generating the interaction score graphs. (default: "python")
conda	[bool] Specifying if python is installed in a conda environment. Set TRUE if python is installed with conda. Use python_executable="-n name-of-your-environment python" (change name-of-your-environment to your environment) or python_executable="python"

python" (change name-of-your-environment to you if installed in base environment. (default: FALSE)

max_path_length	
	[int] Integer of maximum length of simple paths to include in the generate_interaction_score_graphs computation. (default: 3)
<pre>int_score_mode</pre>	["auto" "sequential" "ray"] Whether to compute interaction score in parallel us- ing the Ray python library or sequentially. When 'auto' it depends on the graph sizes. (default: "auto")
cluster_address	
	[string] Local node IP-address of Ray if executed on a cluster. On a cluster: Start ray with ray startheadnum-cpus 32 on the console before DrDimont execution. It should work with "auto", if it does not specify IP-address given by the ray start command. (default: "auto")
median_drug_res	ponse
	[bool] Specifying if the median instead of the mean of a drug's targets differen- tial scores should be computed (default: FALSE)
absolute_differ	ence
	[bool] Specifying if the absoulte differential scores instead of the actual differ- ential scores should be used for drug response computation (default: FALSE)
	Supply additional settings.

Value

Named list of settings

Examples

drug_gene_interactions

Drug-gene interactions

Description

Data frame providing interactions of drugs with genes. The data was downloaded from The Drug Gene Interaction Database.

Usage

drug_gene_interactions

Format

A data frame with 4 columns.

gene_name Gene names of targeted protein-coding genes.drug_name Drug-names with known interactions.drug_chembl_id ChEMBL ID of drugs.

Source

The Drug Gene Interaction Database: https://www.dgidb.org/ ChEMBL IDs: https://www.ebi.ac.uk/chembl

drug_response_scores_example

Drug response score

Description

Exemplary final pipeline output: Drug response score data frame. This contains drugs and the calculated differential drug response score. The score was calculated by compute_drug_response_scores using differential_graph_example, drug_target_edges_example and

Usage

drug_response_scores_example

Format

Data frame with two columns

drug_name Names of drugs drug_response_scores Associated differential drug response scores

Details

drug_target_interaction <- make_drug_target(target_molecules='protein', interaction_table=drug_gene_i
match_on='gene_name')</pre>

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices, individual graphs and combined graphs, interaction score graphs and differential score graph. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER-patients. Drug-gene interactions were used from The Drug Gene Interaction Database.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036 The Drug Gene Interaction Database: https://www.dgidb.org/

drug_target_edges_example

Drug target nodes in combined network

Description

Exemplary intermediate pipeline output: Drug targets detected in the combined graphs. A named list with elements 'targets' and 'edgelists'. This was created with determine_drug_targets using the combined_graphs_example and:

Usage

drug_target_edges_example

Format

A named list with 2 items.

targets A named list

- **target_nodes** data frame with column 'node_id' (unique node IDs in the graph targeted by drugs) and columns 'groupA' and 'groupB' (bool values specifying whether the node is contained in the combined graph of the group)
- **drugs_to_target_nodes** Element 'drugs_to_target_nodes' contains a named list mapping drug names to a vector of their target node IDs.
- edgelists Contains elements 'groupA' and 'groupB' containing each a data frame of edges adjacent to drug target nodes each. Each edgelist data frame contains columns 'from', 'to' and 'weight'.

Details

drug_target_interactions <- make_drug_target(target_molecules='protein', interaction_table=drug_gene_ match_on='gene_name')

Drug-gene interactions to calculate this output were used from The Drug Gene Interaction Database.

Source

The Drug Gene Interaction Database: https://www.dgidb.org/

```
find_targets
```

Description

[INTERNAL] Based on the supplied target molecules, interaction table, graph and annotation this function returns a data frame containing nodes in the network targeted by a drug and a list containing the drug names as names and a vector of node IDs as keys.

Usage

```
find_targets(graphs, target_molecules, interaction_table, annotation, on)
```

Arguments

graphs	[list] List of two iGraph graph objects (one for each group)
target_molecule	25
	[string] Identifies the type of the target molecules (e.g., 'protein'). The string must be contained in the 'type' column of the annotation data frame.
interaction_tab	ble
	[data.frame] Specifying the interaction of drugs and target molecules. Must contain a column 'drug_name' containing drug names/identifiers and a column named like the character string given in the 'on' argument, which must be an identifier for the targeted molecule.
annotation	[data.frame] Contains the annotation for all the nodes contained in the combined network. Must contain a column 'node_id' (vertex IDs in iGraph graph object) and a column named like the character string given in the 'on' argument, which must be an identifier for the targeted molecule.
on	[string] Defines the ID that is used to match drugs to their targets. Both supplied data frames ('annotation' and 'interaction_table') must contain a column named like this character string.

Value

A named list. Element 'target_nodes' is a data frame with column 'node_id' (unique node IDs in the iGraph graph object that are targeted by drugs) and columns 'groupA' and 'groupB' (bool values specifying whether the node is contained in the combined graph of the group). Element 'drugs_to_target_nodes' contains a named list: elements are 'drug_names' and contain a vector of node IDs that are their specific targets.

generate_combined_graphs

Combines individual layers to a single graph

Description

Individual graphs created by generate_individual_graphs are combined to a single graph per group according to 'inter_layer_connections'. Returns a list of combined graphs along with their annotations.

Usage

```
generate_combined_graphs(
  graphs,
  annotations,
  inter_layer_connections,
  settings
)
```

Arguments

graphs	[list] A named list (elements 'groupA' and 'groupB'). Each element contains a list of iGraph objects ('graphs' from output of generate_individual_graphs).
annotations	[list] A named list (elements 'groupA', 'groupB' and 'both'). Each element contains a list of data frames mapping each node IDs to identifiers. 'both' contains unique identifiers across the whole data. ('annotations' from output of generate_individual_graphs)
inter_layer_co	nnections
	[list] Named list with specified inter-layer connections. Names are layer names and elements are connections (make_connection).
settings	[list] A named list containing pipeline settings. The settings list has to be initialized by drdimont_settings. Items in the named list can be adjusted as desired.

Value

A named list (elements 'graphs' and sub-elements '\$groupA' and '\$groupB', and 'annotations' and sub-element 'both'). Contains the igraph objects of the combined network and their annotations for both groups.

Examples

data(individual_graphs_example)
data(metabolite_protein_interactions)

generate_differential_score_graph Compute difference of interaction score of two groups

Description

Computes the absolute difference of interaction scores between the two groups. Returns a single graph with the differential score and the differential interaction score as edge attributes. The interaction score is computed by generate_interaction_score_graphs.

Usage

```
generate_differential_score_graph(interaction_score_graphs, settings)
```

Arguments

interaction_	_score_graphs
	[list] Named list with elements 'groupA' and 'groupB' containing iGraph ob- jects with weight and interaction_weight as edge attributes (output of generate_interaction_score_gr
settings	[list] A named list containing pipeline settings. The settings list has to be ini- tialized by drdimont_settings. Items in the named list can be adjusted as desired.

Value

iGraph object with 'differential_score' and 'differential_interaction_score' as edge attributes

Examples

```
data(interaction_score_graphs_example)
```

generate_individual_graphs Builds graphs from specified network layers

Description

Constructs and returns two graphs for each network layer, where nodes correspond to the rows in the measurement data. Graphs are initially complete and edges are weighted by correlation values of the measurements across columns. The number of edges is then reduced by either a threshold on the p-value of the correlation or a minimum scale-free fit index.

Usage

```
generate_individual_graphs(correlation_matrices, layers, settings)
```

Arguments

correlation_matrices		
	[list] List of correlation matrices generated with codecompute_correlation_matrices	
layers	[list] Named list with different network layers containing data and identifiers for both groups (generated from make_layer)	
settings	[list] A named list containing pipeline settings. The settings list has to be ini- tialized by drdimont_settings. Items in the named list can be adjusted as desired.	

Value

A nested named list with first-level elements 'graphs' and 'annotations'. The second level elements are 'groupA' and 'groupB' (and 'both' at 'annotations'). These contain a list of iGraph objects ('graphs') and data frames ('annotations') mapping the graph node IDs to biological identifiers. The third level elements are layer names given by the user.

Examples

```
data(layers_example)
data(correlation_matrices_example)
example_settings <- drdimont_settings(</pre>
                       handling_missing_data=list(
                               default="pairwise.complete.obs",
                               mrna="all.obs"),
                       reduction_method="pickHardThreshold",
                       r_squared=list(default=0.65, metabolite=0.1),
                       cut_vector=list(default=seq(0.2, 0.5, 0.01)),
                       save_data=FALSE,
                       python_executable="python")
individual_graphs <- generate_individual_graphs(</pre>
                              correlation_matrices=correlation_matrices_example,
                              layers=layers_example,
                              settings=example_settings)
graph_metrics(individual_graphs$graphs$groupA$mrna)
graph_metrics(individual_graphs$graphs$groupB$mrna)
```

generate_interaction_score_graphs

Computes interaction score for combined graphs

Description

Writes the input data (combined graphs for both groups in 'gml' format and lists of edges adjacent to drug targets for both groups) to files and calls a python script for calculating the score. Output files written by the python script are two graphs in 'gml' format containing the interaction score as additional interaction_weight edge attribute. These are loaded and returned in a named list. AT-TENTION: Data exchange via files is mandatory and takes a long time for large data. Interaction score computation is expensive and slow because it involves finding all simple paths up to a certain length between source and target node of the drug target edges. Don't set 'max_path_length' in settings to a large value and only consider this step if your graphs have up to approximately 2 million edges. Computation is initiated by calculate_interaction_score. The python script is parallelized using Ray. Use the setting 'int_score_mode' to force sequential or parallel computation. Refer to the Ray documentation if you encounter problems with running the python script in parallel. DISCLAIMER: Depending on the operating system Python comes pre-installed or has to be installed manually. Please pay attention to the version and the executable used (python/python3 or homebrew python). You can use the 'python_executable' setting to specify the command or path.

Usage

generate_interaction_score_graphs(graphs, drug_target_edgelists, settings)

Arguments

graphs	[list] A named list with elements 'groupA' and 'groupB' containing the com- bined graphs of each group as iGraph object ('graphs' from output of generate_combined_graphs)
drug_target_edg	gelists
	[list] A named list (elements 'groupA' and 'groupB'). Each element contains the list of edges adjacent to drug targets as a dataframe (columns 'from', 'to' and 'weight'). 'edgelists' from output of determine_drug_targets
settings	[list] A named list containing pipeline settings. The settings list has to be ini- tialized by drdimont_settings. Items in the named list can be adjusted as desired.

Value

A named list (elements 'groupA' and 'groupB'). Each element contains an iGraph object containing the interaction scores as interaction_weight attributes.

Examples

```
data(combined_graphs_example)
data(drug_target_edges_example)
```

```
example_settings <- drdimont_settings(
save_data=FALSE,
python_executable="python")
```

generate_reduced_graph

[INERNAL] Generate a reduced iGraph from adjacency matrices

Description

[INTERNAL] A wrapper functions that calls the functions to generate a network from correlation data and reduce the network by a given method. Correlation/adjacency matrices are computed in compute_correlation_matrices. Graph generation uses graph.adjacency internally. Methods implemented are network_reduction_by_p_value (reduction by statistical significance of correlation) and network_reduction_by_pickHardThreshold (using WGCNA function pickHardThreshold.fromSimilarity that finds a suitable cutoff value to get a scale-free network). If no method is given, no reduction will be performed. When using the reduction method 'p_value' the user can specify an alpha significance value and a method for p-value adjustment. When using the reduction by 'pickHardThreshold' a R^2 cutoff and a cut vector can be specified.

Usage

```
generate_reduced_graph(
  adjacency_matrix,
 measurement_data,
  identifiers,
  handling_missing_data = "all.obs",
  reduction_method = "pickHardTreshold",
  r_squared_cutoff = 0.85,
  cut_vector = seq(0.2, 0.8, by = 0.01),
 mean_number_edges = NULL,
  edge_density = NULL,
  p_value_adjustment_method = "BH",
  reduction_alpha = 0.05,
  n_{threads} = 1,
  parallel_chunk_size = 10^6,
 print_graph_info = TRUE
)
```

Arguments

adjacency_matrix	
	[matrix] Adjacency matrix of correlations computed using cor in compute_correlation_matrices
<pre>measurement_dat</pre>	a
	[data.frame] Data frame containing the respective raw data (e.g. mRNA expres- sion data, protein abundance, etc.) to the adjacency matrix. Analyzed compo- nents (e.g. genes) in rows, samples (e.g. patients) in columns.
identifiers	[data.frame] Data frame containing biological identifiers and the corresponding node ID created in compute_correlation_matrices via create_unique_layer_node_ids. The column containing node IDs has to be named 'node_id'.
handling_missir	ng_data
	["all.obs" "pairwise.complete.obs"] Specifying the handling of missing data dur- ing correlation matrix computation. (default: all.obs)
reduction_metho	od land land land land land land land lan
	["pickHardThreshold" "p_value"] A character string specifying the method to be used for network reduction. 'p_value' for hard thresholding based on the statistical significance of the computed correlation. 'pickHardThreshold' for a cutoff based on the scale-freeness criterion (calls pickHardThreshold). (de- fault: pickHardThreshold)
r_squared_cutof	f
	[float] A number indicating the desired minimum scale free topology fitting in- dex R ² for reduction using pickHardThreshold. (default: 0.85)
cut_vector	[sequence of float] A vector of hard threshold cuts for which the scale free topol- ogy fit indices are to be calculated during reduction with pickHardThreshold. (default: seq(0.2, 0.8, by = 0.01))
mean_number_edg	ges
	[int] Find a suitable edge weight cutoff employing pickHardThreshold to re- duce the network to at most the specified mean number of edges. Attention:

	This parameter overwrites the 'r_squared_cutoff' and 'edge_density' parameters if not set to NULL. (default: NULL)
edge_density	[float] Find a suitable edge weight cutoff employing pickHardThreshold to re- duce the network to at most the specified edge density. Attention: This param- eter overwrites the 'r_squared_cutoff' parameter if not set to NULL. (default: NULL)
p_value_adjustr	ment_method
	["holm" "hochberg" "hommel" "bonferroni" "BH" "BY" "fdr" "none"] String of the correction method applied to p-values. Passed to p.adjust. (default: "BH")
reduction_alpha	a
	[float] A number indicating the significance value for correlation p-values during reduction. Not-significant edges are dropped. (default: 0.05)
n_threads	[int] Number of threads for parallel computation of p-values during p-value re- duction. (default: 1)
parallel_chunk	_size
	[int] Number of p-values in smallest work unit when computing in parallel dur- ing network reduction with method 'p_value'. (default: 10^6)
print_graph_in	fo
	[bool] Specifying if a summary of the reduced graph should be printed to the console after network generation. (default: TRUE)

Value

iGraph graph object of the reduced network.

get_layer [INT]	RNAL] Fetch layer by name from layer object
-----------------	---

Description

[INTERNAL] Get a layer by its name from a layer object created with make_layer, e.g., layers_example.

Usage

```
get_layer(name, layers)
```

Arguments

name	The layer to fetch
layers	A layers object layers_example

Value

Returns the layer along with layer names

get_layer_setting [INTERNAL] Get layer (and group) settings

Description

Returns specified setting for a specific network layer (and group).

Usage

get_layer_setting(layer, group, settings, setting_name)

Arguments

layer	[list] A network layer created by make_layer
group	[string] A network group
settings	[list] Named list of settings created by drdimont_settings
<pre>setting_name</pre>	[string] String indicating the setting to return.

Value

Setting value(s) for this layer (and group)

graph_metrics	Analysis of metrics of an iGraph object	
---------------	---	--

Description

This helper function prints or returns multiple metrics of arbitrary iGraph graph object.

Usage

```
graph_metrics(graph, verbose = TRUE, return = FALSE)
```

Arguments

graph	[igraph] iGraph object to analyze.
verbose	[bool] If TRUE graph information is printed.
return	[bool] If TRUE graph information is returned from function.

Value

Named list of metrics including vertex count, edge count, number of components, size of largest component and the relative frequency of zero degree vertices.

individual_graphs_example

Examples

```
adj_mat <- matrix(rnorm(36), nrow=6)
graph <- igraph::graph_from_adjacency_matrix(adj_mat)
DrDimont::graph_metrics(graph, verbose=TRUE, return=FALSE)</pre>
```

individual_graphs_example

Individual graphs

Description

Exemplary intermediate pipeline output: Individual graphs example data built by generate_individual_graphs. Graphs were created from correlation_matrices_example and reduced by the 'pickHardThreshold' reduction method. Used settings were:

Usage

individual_graphs_example

Format

A named list with 2 items.

graphs A named list with two groups.

groupA Graphs associated with 'groupA'

mrna Graph

protein Graph

phosphosite Graph

metabolite Graph

groupB same structure as 'groupA'

annotations A named list containing data frames of mappings of assigned node IDs to the userprovided component identifiers for nodes in 'groupA' or 'groupB' and all nodes

groupA Annotations associated with 'groupA'
mrna Data frame
protein Data frame
phosphosite Data frame
metabolite Data frame

groupB same structure as 'groupA'

both same structure as 'groupA'

Details

```
settings <- drdimont_settings( reduction_method=list(default="pickHardThreshold"),
r_squared=list( default=0.8, groupA=list(metabolite=0.45), groupB=list(metabolite=0.15)),
cut_vector=list( default=seq(0.3, 0.7, 0.01), metabolite=seq(0.1, 0.65, 0.01)))
```

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices and individual graphs. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

install_python_dependencies

Installs python dependencies needed for interaction score computation

Description

Uses specified pip or conda executable (default: pip3) to install all required python modules. When using conda, the currently active environment is used. Commands run are 'pip install -r requirements' or 'conda install –file requirements'. Installs the following requirements: numpy, tqdm, python-igraph and ray

Usage

```
install_python_dependencies(package_manager = "pip3")
```

Arguments

package_manager

[string] The package manager command or path to use (default: pip3)

Value

No return value, called to install python dependencies

Description

Exemplary intermediate pipeline output: Interaction score graphs example data built by generate_interaction_score_grausing combined_graphs_example and drug_target_edges_example. A named list (elements 'groupA' and 'groupB'). Each element contains an iGraph object containing edge attributes: the correlation values as 'weight' and the interaction score as 'interactionweight'.

Usage

interaction_score_graphs_example

Format

A named list with 2 items.

groupA iGraph graph object containing the interaction score as weight for groupA.

groupB

Details

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices, individual graphs and combined graphs. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients. Drug-gene interactions were used from The Drug Gene Interaction Database.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

The Drug Gene Interaction Database: https://www.dgidb.org/

inter_layer_edgelist_by_id

[INTERNAL] Inter layer connections by identifiers

Description

[INTERNAL] Returns an edge list defining the connections between two layers of the network.

Usage

```
inter_layer_edgelist_by_id(annotation_A, annotation_B, connection, weight = 1)
```

Arguments

annotation_A, a	annotation_B
	[data.frame] Annotation tables specifying the identifiers of the nodes of a net- work
connection	[string] String of identifier to connect on
weight	[intlvector] Integer or vector specifying the weight of the inter-layer connections.

Value

Data frame with columns from, to and weight

Description

[INTERNAL] Returns an edge list defining the connections between two layers of the network based on an interaction table supplied by the user.

Usage

```
inter_layer_edgelist_by_table(
    annotation_A,
    annotation_B,
    interaction_table,
    weight_column
)
```

Arguments

Value

Data frame with columns from, to and weight

layers_example Formatted layers object

Description

Exemplary intermediate pipeline output containing a correctly formatted layers list.

Usage

layers_example

Format

A list with 4 items. Each layer list contains 2 groups and a 'name' element. Each group contains 'data' and 'identifiers'. The structure for one individual layer:

groupA Data associated with 'groupA'

data Raw data. Components (e.g. genes or proteins) in columns, samples in rows **identifiers** Data frame containing one column per ID

groupB Data associated with 'groupB'

data see above

identifiers see above

name Name of the layer

Details

List containing four layer items created by make_layer. Each layer contains 'data' and 'identifiers' stratified by group and a 'name' element giving the layer name. The data contained in this example refers to mRNA, protein, phosphosite and metabolite layers. The mRNA, protein and phosphosite data was adapted and reduced from Krug et al. (2020) containing data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). The metabolite data was sampled randomly to generate distributions similar to those reported, e.g., in Terunuma et al. (2014). The 'data' elements contain the raw data with samples as columns and molecular entities as rows. The 'identifiers' elements contain layer specific identifiers for the molecular entities, e.g, gene_name.

Source

Terunuma, Atsushi et al. "MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis." The Journal of clinical investigation vol. 124,1 (2014): 398-412. doi:10.1172/JCI71180

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

load_interaction_score_output

[INTERNAL] Loads output of python script for interaction score calculation

Description

[INTERNAL] Loads data generated by calculate_interaction_score. Python output files are graphs in 'gml' format for each of both groups.

Usage

load_interaction_score_output(saving_path, graphB_null)

Arguments

saving_path	[string] Path to save intermediate output of DrDimont's functions. Default is current working directory. Directory to use for writing intermediate data when
	passing input and output between Python and R. Directory to load python output from
graphB_null	[bool] Specifying if graphB of 'groupB' is given (FALSE) or not (TRUE). (default: FALSE)

Value

A named list (elements 'groupA' and 'groupB'). Each element contains an iGraph object containing the interaction score as edge attribute.

make_connection Specify connection between two individual layers

Description

Helper function to transform input data to the required pipeline input format. This helper function creates a list that specifies the connection between two layers. The connection can be based on IDs present in the identifiers of both layer or an interaction table containing a mapping of the connections and edge weights. Additionally, the supplied input is checked. Allows easy conversion of raw data into the structure accepted by run_pipeline.

__IMPORTANT:__ If a connection is established based on id this ID has to be present in the identifiers of both layers, they have to be named identically and the IDs have to be formatted identically as these are matched by an inner join operation (refer to make_layer).

Usage

```
make_connection(from, to, connect_on, weight = 1, group = "both")
```

Arguments

from	[string] Character string referring to the name of the layer **from** which the connection should be established
to	[string] Character string referring to the name of the layer **to** which the connection should be established
connect_on	[stringltable] Specifies how the two layers should be connected. This can be based on a mutual ID or a table specifying interactions. Mutual ID: Character string specifying the name of an identifier that is present in both layers (e.g., 'NCBI ID' to connect proteins and mRNA). Interaction table: A table mapping two identifiers of two layers. The columns have exactly the same names as the identifiers of the layers. The table has to contain an additional column specifying the weight between two components/nodes (see 'weight' argument)
weight	[intlstring] Specifies the edge weight between the layers. This can be supplied as a number applied to every connection or a column of the interaction table. Fixed weight: A umber specifying the weight of every connection between the layers. Based on interaction table: Character string specifying the name of a column in the table passed as the 'by' parameter which is used as edge weight. (default: 1)
group	["A" "B" "both"] Group for which to apply the connection. One of 'both', 'A' or 'B'. (default: "both")

Value

A named list (i.e., an inter-layer connection), that can be supplied to run_pipeline.

Examples

make_drug_target Reformat drug-target-interaction data

Description

Function to transform input data to required input format for run_pipeline. Here the data that is needed to define drug-target interactions is formatted. When the reformatted output is passed to run_pipeline as drug_target_interactions argument, the differential integrated drug response score can be calculated for all the supplied drugs in interaction_table.

Usage

```
make_drug_target(target_molecules, interaction_table, match_on)
```

Arguments

target_molecules

[string] Name of layer containing the drug targets. This name has to match the corresponding named item in the list of layers supplied to run_pipeline.

interaction_table

[data.frame] Has to contain two columns. A column called 'drug_name' containing names or identifiers of drugs. And a column with a name that matches an identifier in the layer supplied in 'target_molecules'. Additional columns will be ignored in the pipeline. For example, if drugs target proteins and an identifier called 'ncbi_id' was supplied in layer creation of the protein layer (see make_layer), this column should be called 'ncbi_id' and contain the corresponding IDs of protein-drug targets. Any other ID present in the constructed layer could also be used.

match_on [string] Column name of the data frame supplied in 'interaction_table' that is used for matching drugs and target nodes in the graph (e.g. 'ncbi_id').

Value

Named list of the input parameters in input format of run_pipeline.

Examples

make_layer

Creates individual molecular layers from raw data and unique identifiers

Description

Helper function to transform input data to required pipeline input format. Additionally, the supplied input is checked. Allows easy conversion of raw data into the structure accepted by run_pipeline.

Usage

```
make_layer(
    name,
    data_groupA,
    data_groupB,
```

```
identifiers_groupA,
identifiers_groupB
)
```

Arguments

```
name [string] Name of the layer.
data_groupA, data_groupB
        [data.frame] Data frame containing raw molecular data of each group (each stra-
tum). Analyzed components (e.g. genes) in columns, samples (e.g. patients) in
        rows.
identifiers_groupA, identifiers_groupB
        [data.frame] Data frame containing component identifiers (columns) of each
        component (rows) in the same order as the molecular data frame of each group.
        These identifiers are used to (a) interconnect graphs and (b) match drugs to drug
        targets. Must contain a column 'type' which identifies the nature of the compo-
        nent (e.g., "protein")
```

Value

Named list containing the supplied data for each group (i.e., the data set for one layer), that can be supplied to run_pipeline and 'name' giving the name of the layer. Each sub-list contains the 'data' and the 'identifiers'.

Examples

metabolite_data Metabolomics data

Description

Metabolomics analysis of breast cancer patients data sampled randomly to generate distributions similar to those reported (e.g., in Terunuma et al. (2014)). The data is stratified by estrogen receptor (ER) expression status ('groupA' = ER+, 'groupB' = ER-). The data was reduced to 50 metabolites. For each group a data frame is given containing the raw data with the metabolites as rows and the samples as columns. The first three columns contain the metabolite identifiers (biochemical_name, metabolon_id and pubchem_id).

Usage

metabolite_data

Format

- **groupA** ER+ data; data.frame: first three columns contain metabolite identifiers biochemical_name, metabolon_id and pubchem_id; other columns are samples containing the quantified metabolite data per metabolite
- **groupB** ER- data; data.frame: first three columns contain metabolite identifiers biochemical_name, metabolon_id and pubchem_id; other columns are samples containing the quantified metabolite data per metabolite

Source

Terunuma, Atsushi et al. "MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis." The Journal of clinical investigation vol. 124,1 (2014): 398-412. doi:10.1172/JCI71180

https://www.metabolon.com

Pubchem IDs: https://pubchem.ncbi.nlm.nih.gov

MetaboAnalyst: https://www.metaboanalyst.ca/faces/upload/ConvertView.xhtml

metabolite_protein_interactions

Metabolite protein interaction data

Description

Data frame providing interactions of metabolites and proteins. The data was taken from the STITCH Database.

Usage

metabolite_protein_interactions

Format

A data frame with 3 columns.

pubchem_id Pubchem IDs defining interacting metabolites

gene_name gene names defining interacting proteins

combined_score Score describing the strength of metabolite-protein interaction

Source

STITCH DB: http://stitch.embl.de/
Pubchem IDs: https://pubchem.ncbi.nlm.nih.gov
STRING DB: https://string-db.org/

mrna_data

Description

mRNA analysis of breast cancer patients data from Krug et al. (2020) (data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)). The data is stratified by estrogen receptor (ER) expression status ('groupA' = ER+, 'groupB' = ER-). The data was reduced to 50 genes. For each group a data frame is given containing the raw data with the mRNA/gene as rows and the samples as columns. The first column contains the gene identifiers (gene_name).

Usage

mrna_data

Format

- **groupA** ER+ data; data.frame: first column contains mRNA/gene identifier gene_name; other columns are samples containing the quantified mRNA data per gene
- **groupB** ER- data; data.frame: first column contains mRNA/gene identifier gene_name; other columns are samples containing the quantified mRNA data per gene

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

<pre>network_reduction_by_pickHa</pre>	ardThreshold	k			
[INT	ERNAL]	Reduces	network	based	on
WGCNA::pickHardThreshold function					

Description

[INTERNAL] This function uses pickHardThreshold.fromSimilarity to analyze scale free topology for multiple hard thresholds. A cutoff is estimated, if no cutoff is found the function terminates with an error message. All values below the cutoff will be set to NA and the reduced adjacency is returned.

Usage

```
network_reduction_by_pickHardThreshold(
    adjacency_matrix,
    r_squared_cutoff = 0.85,
    cut_vector = seq(0.2, 0.8, by = 0.01),
    mean_number_edges = NULL,
    edge_density = NULL
)
```

Arguments

adjacency_matrix				
	[matrix] Adjacency matrix of correlations computed using cor in compute_correlation_matrices			
r_squared_cutoff				
	[float] A number indicating the desired minimum scale free topology fitting in- dex R^2 for reduction using pickHardThreshold. (default: 0.85)			
cut_vector	[sequence of float] A vector of hard threshold cuts for which the scale free topol- ogy fit indices are to be calculated during reduction with pickHardThreshold. (default: seq($0.2, 0.8, by = 0.01$))			
mean_number_edges				
	[int] Find a suitable edge weight cutoff employing pickHardThreshold to re- duce the network to at most the specified mean number of edges. Attention: This parameter overwrites the 'r_squared_cutoff' and 'edge_density' parame- ters if not set to NULL. (default: NULL)			
	[float] Find a suitable edge weight cutoff employing pickHardThreshold to re- duce the network to at most the specified edge density. Attention: This param- eter overwrites the 'r_squared_cutoff' parameter if not set to NULL. (default: NULL)			

Value

A reduced adjacency matrix of correlations with NA's inserted at positions below estimated cutoff.

Source

 $The original implementation of pickHardThreshold is used from \verb"pickHardThreshold.fromSimilarity" and the set of the se$

network_reduction_by_p_value

[INTERNAL] Reduce the the entries in an adjacency matrix by thresholding on p-values

44

Description

[INTERNAL] This function reduces an adjacency matrix of correlations based on p-values. If computations are done non-parallel corPvalueStudent is used. If computations are done in parallel, our own parallel implementation (corPvalueStudentParallel) of this function to calculate Student asymptotic p-values taking the number of samples into account is used. P-values are adjusted using p.adjust function. The upper triangle without diagonal entries of the adjacency matrix is passed for faster computation. P-values can be adjusted using one of several methods. A significance threshold 'alpha' can be set. All value entries below this threshold within the initial adjacency matrix will be set to NA. If a default cluster is registered with the 'parallel' package the computation will happen in parallel automatically.

Usage

```
network_reduction_by_p_value(
   adjacency_matrix,
   number_of_samples,
   p_value_adjustment_method = "BH",
   reduction_alpha = 0.05,
   parallel_chunk_size = 10^6
)
```

Arguments

```
adjacency_matrix
```

[matrix] Adjacency matrix of correlations computed using cor in compute_correlation_matrices

number_of_samples

[intlmatrix] The number of samples used to calculate the correlation matrix. Computed applying sample_size

p_value_adjustment_method

["holm"|"hochberg"|"hommel"|"bonferroni"|"BH"|"BY"|"fdr"|"none"] String of the correction method applied to p-values. Passed to p.adjust. (default: "BH")

reduction_alpha

[float] A number indicating the significance value for correlation p-values during reduction. Not-significant edges are dropped. (default: 0.05)

parallel_chunk_size

[int] Number of p-values in smallest work unit when computing in parallel during network reduction with method 'p_value'. (default: 10^6)

Value

A reduced adjacency matrix with NA's at martix entries with p-values below threshold.

Source

corPvalueStudent

phosphosite_data Phosphosite data

Description

Phosphosite analysis of breast cancer patients data from Krug et al. (2020) (data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)). The data is stratified by estrogen receptor (ER) expression status ('groupA' = ER+, 'groupB' = ER-). The data was reduced to 50 genes. For each group a data frame is given containing the raw data with the phosphosites as rows and the samples as columns. The first three columns contain the phosphosite and protein identifiers (site_id, ref_seq and gene_name).

Usage

phosphosite_data

Format

- **groupA** ER+ data; data.frame: first three columns contain phosphosite and protein identifiers site_id, ref_seq and gene_name; other columns are samples containing the quantified phosphosite data per phosphosite
- **groupB** ER- data; data.frame: first three columns contain phosphosite and protein identifiers site_id, ref_seq and gene_name; other columns are samples containing the quantified phosphosite data per phosphosite

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

protein_data Protein data

Description

Protein analysis of breast cancer patients data from Krug et al. (2020) (data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)). The data is stratified by estrogen receptor (ER) expression status ('groupA' = ER+, 'groupB' = ER-). The data was reduced to 50 genes. For each group a data frame is given containing the raw data with the proteins as rows and the samples as columns. The first two columns contain the protein identifiers (ref_seq and gene_name).

Usage

protein_data

return_errors

Format

- **groupA** ER+ data; data.frame: first two columns contain protein identifiers ref_seq and gene_name; other columns are samples containing the quantified proteomics data per protein
- **groupB** ER- data; data.frame: first two columns contain protein identifiers ref_seq and gene_name; other columns are samples containing the quantified proteomics data per protein

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

return_errors Return detected errors

Description

Throws an error in case errors have been passed to the function. Messages describing the detected errors are printed.

Usage

```
return_errors(errors)
```

Arguments

errors [string] Character string vector containing error messages.

Value

No return value, writes error messages to console

Examples

```
layer <- DrDimont::layers_example[[2]]
return_errors(check_layer(layer))</pre>
```

```
run_pipeline
```

Description

This wrapper function executes all necessary steps to generate differential integrated drug response scores from the formatted input data. The following input data is required (and detailed below): * Layers of stratified molecular data. * Additional connections between the layers. * Interactions between drugs and nodes in the network. * Settings for pipeline execution.

As this function runs through all steps of the DrDimont pipeline it can take a long time to complete, especially if the supplied molecular data is rather large. Several prompts will be printed to supply information on how the pipeline is proceeding. Calculation of the interaction score by generate_interaction_score_graphs requires saving large-scale graphs to file and calling a python script. This handover may take time.

Eventually a data frame is returned containing the supplied drug name and its associated differential drug response score computed by DrDimont.

Usage

```
run_pipeline(
    layers,
    inter_layer_connections,
    drug_target_interactions,
    settings
)
```

Arguments

```
layers [list] Named list with different network layers containing data and identifiers for both groups. The required input format is a list with names corresponding to the content of the respective layer (e.g., "protein"). Each named element has to contain the molecular data and corresponding identifiers formatted by make_layer.
```

inter_layer_connections
 [list] A list with specified inter-layer connections. This list contains one or more
 elements defining individual inter-layer connections created by make_connection.
drug_target_interactions
 [list] A list specifying drug-target interactions for drug response score compu-

[list] A list specifying drug-target interactions for drug response score computation. The required input format of this list is created by make_drug_target. The drug response score is calculated for all drugs contained in this object.

settings [list] A named list containing pipeline settings. The settings list has to be initialized by drdimont_settings. Items in the named list can be adjusted as desired.

sample_size

Value

Data frame containing drug name and associated differential integrated drug response score. If Python is not installed or the interaction score computation fails for some other reason, NULL is returned instead.

Examples

```
data(drug_gene_interactions)
data(metabolite_protein_interactions)
data(layers_example)
example_inter_layer_connections = list(make_connection(from='mrna', to='protein',
                                                connect_on='gene_name', weight=1),
                               make_connection(from='protein', to='phosphosite',
                                                connect_on='gene_name', weight=1),
                               make_connection(from='protein', to='metabolite',
                                              connect_on=metabolite_protein_interactions,
                                                weight='combined_score'))
example_drug_target_interactions <- make_drug_target(target_molecules='protein',</pre>
                                 interaction_table=drug_gene_interactions,
                                 match_on='gene_name')
example_settings <- drdimont_settings(</pre>
                       handling_missing_data=list(
                              default="pairwise.complete.obs",
                              mrna="all.obs"),
                       reduction_method="pickHardThreshold",
                       r_squared=list(default=0.65, metabolite=0.1),
                       cut_vector=list(default=seq(0.2, 0.65, 0.01)),
                       save_data=FALSE,
                       python_executable="python")
run_pipeline(
     layers=layers_example,
     inter_layer_connections=example_inter_layer_connections,
     drug_target_interactions=example_drug_target_interactions,
     settings=example_settings)
```

```
sample_size
```

[INTERNAL] Sample size for correlation computation

Description

[INTERNAL] Depending on how missing data is handled in correlation matrix computation, the number of samples used is returned. If 'all.obs' is specified the number of rows (i.e. samples)

of the original data is returned. If 'pairwise.complete.obs' is specified the crossproduct of a matrix indicating the non-NA values is returned as matrix. This implementation was adopted from corAndPvalue.

Usage

```
sample_size(measurement_data, handling_missing_data)
```

Arguments

```
measurement_data
```

[data.frame] Data frame containing the respective raw data (e.g. mRNA expression data, protein abundance, etc.) to the adjacency matrix. Analyzed components (e.g. genes) in rows, samples (e.g. patients) in columns.

handling_missing_data

["all.obs"|"pairwise.complete.obs"] Specifying the handling of missing data during correlation matrix computation. (default: all.obs)

Value

For 'all.obs' returns an integer indicating the number of samples in the supplied matrix (i.e. number of rows). For 'pairwise.complete.obs' returns a matrix in the same size of the correlation matrix indicating the number of samples for each correlation calculation.

Source

Method to calculate samples in 'pairwise.complete.obs' adopted and improved from corAndPvalue

set_cluster [INTERNAL] Create and register cluster

Description

[INTERNAL] Helper function to create and register a cluster for parallel computation of p-value reduction

Usage

```
set_cluster(n_threads)
```

Arguments

n_threads [int] Number of nodes in the cluster

Value

No return value, called internally to create cluster

shutdown_cluster

Description

[INTERNAL] Run this if the pipeline fails during parallel computation to clean the state. If a cluster is registered, this functions stops it and removes corresponding connections. Ignores errors. Has no effect if no cluster is registered.

Usage

shutdown_cluster()

Value

No return value, called internally to shutdown cluster

target_edge_list [INTERNAL] Get edges adjacent to target nodes

Description

[INTERNAL] Based on the supplied graph and target nodes this function returns a list of edges that are directly adjacent to target nodes. These edges can be used for further computation to compute the integrated interaction scores and differential scores in the networks.

Usage

target_edge_list(graph, target_nodes, group)

Arguments

graph	[igraph] Combined graph (iGraph graph object) for a specific group
target_nodes	[data.frame] Has column 'node_id' (unique node IDs in the iGraph graph object that are targeted by drugs) and columns 'groupA' and 'groupB' (bool values specifying whether the node is contained in the combined graph of the group)
group	[string] Indicates which group 'groupA' or 'groupB' is analyzed

Value

An edge list as a data frame.

write_interaction_score_input

[INTERNAL] Write edge lists and combined graphs to files

Description

[INTERNAL] Writes the combined graphs and the drug target edge lists to files for passing them to the python interaction score script. Graphs are saved as 'gml' file. Edge lists are saved as 'tsv' file.

Usage

```
write_interaction_score_input(
   combined_graphs,
   drug_target_edgelists,
   saving_path
)
```

Arguments

combined_graphs

[list] A named list (elements 'groupA' and 'groupB'). Each element contains the entire combined network (layers + inter-layer connections) as iGraph graph object.

drug_target_edgelists

[list] A named list (elements 'groupA' and 'groupB'). Each element contains the list of edges to be considered in the interaction score calculation as data frame (columns 'from', 'to' and 'weight')

saving_path [string] Path to save intermediate output of DrDimont's functions. Default is current working directory.

Value

No return value, used internally

Index

* datasets combined_graphs_example, 10 correlation_matrices_example, 14 differential_graph_example, 17 drug_gene_interactions, 21 drug_response_scores_example, 22 drug_target_edges_example, 23 individual_graphs_example, 33 interaction_score_graphs_example, 35 layers_example, 37 metabolite_data, 41 metabolite_protein_interactions, 42 mrna_data, 43 phosphosite_data, 46 protein_data, 46 calculate_interaction_score, 3, 28, 38 check_connection, 5 check_drug_target, 5 check_drug_targets_in_layers, 6 check_input, 7 check_layer, 7 check_sensible_connections, 8 chunk, 9 chunk_2gether, 10 combine_graphs, 11 combined_graphs_example, 10, 23, 35 compute_correlation_matrices, 12, 14, 27, 29, 30, 44, 45 compute_drug_response_scores, 13, 22 cor, 12, 14, 19, 30, 44, 45 corAndPvalue, 50 corPvalueStudent. 45 corPvalueStudentParallel, 14, 45 correlation_matrices_example, 14, 33 create_unique_layer_node_ids, 15, 30

determine_drug_targets, 13, 16, 23, 29

differential_graph_example, 17, 22 drdimont_settings, 12, 13, 17, 18, 25-27, 29, 32, 48 drug_gene_interactions, 21 drug_response_scores_example, 22 drug_target_edges_example, 22, 23, 35 find_targets, 24 generate_combined_graphs, 10, 17, 25, 29 generate_differential_score_graph, 13, 16, 18, 26 generate_individual_graphs, 16, 25, 27, 33 generate_interaction_score_graphs, 4, 21, 26, 28, 35, 48 generate_reduced_graph, 29 get_layer, 31 get_layer_setting, 32 graph.adjacency, 29 graph_metrics, 32 individual_graphs_example, 10, 33 install_python_dependencies, 34 inter_layer_edgelist_by_id, 35 inter_layer_edgelist_by_table, 36 interaction_score_graphs_example, 18, 35 layers_example, 11, 14, 15, 18, 22, 31, 34, 35.37 load_interaction_score_output, 38 make_connection, 5, 7, 8, 25, 38, 48 make_drug_target, 5-7, 13, 39, 48

```
\label{eq:linear} \begin{array}{l} \texttt{network\_reduction\_by\_p\_value, $29, 44$} \\ \texttt{network\_reduction\_by\_pickHardThreshold,} \\ $29, 43$ \end{array}
```

return_errors, 47 run_pipeline, *18*, *19*, *38*–*41*, 48

sample_size, 14, 45, 49
set_cluster, 50
shutdown_cluster, 51

target_edge_list, 51

write_interaction_score_input, 52