Package 'FRESA.CAD'

May 19, 2022

Type Package

Title Feature Selection Algorithms for Computer Aided Diagnosis

Version 3.4.2

Date 2022-05-19

Author Jose Gerardo Tamez-Pena, Antonio Martinez-Torteya, Israel Alanis and Jorge Orozco

Maintainer Jose Gerardo Tamez-Pena < jose.tamezpena@tec.mx>

Description Contains a set of utilities for building and testing statistical models (linear, logistic,ordinal or COX) for Computer Aided Diagnosis/Prognosis applications. Utilities include data adjustment, univariate analysis, model building, model-validation, longitudinal analysis, reporting and visualization.

License LGPL (>= 2)

Depends Rcpp (>= 0.10.0), stringr, miscTools, Hmisc, pROC

LinkingTo Rcpp, RcppArmadillo

Suggests nlme,rpart,gplots,RColorBrewer,class,cvTools,glmnet,randomForest,survival, e1071,MASS,naivebayes,mRMRe,epiR,DescTools, irr,survminer,BeSS,ggplot2,robustbase,mda,twosamples,Rfast

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-05-19 21:40:02 UTC

R topics documented:

FRESA.CAD-package .							 													3
backVarElimination_Bin							 													9
backVarElimination_Res	•	•	•	•	•		 			•		•		•	•				•	10
baggedModel	•	•	•	•	•		 			•		•		•	•				•	12
barPlotCiError	•	•	•	•	•		 			•		•			•					13
benchmarking	•	•	•	•	•		 			•		•		•	•				•	14
BESS	•	•	•	•	•		 			•		•			•		•	•		19
bootstrapValidation_Bin	•	•	•	•	•		 			•		•			•		•	•		20
bootstrapValidation_Res							 													22

bootstrapVarElimination_Bin	
bootstrapVarElimination_Res	26
BSWiMS.model	28
cancerVarNames	32
ClustClass	33
clusterISODATA	35
crossValidationFeatureSelection_Bin	36
crossValidationFeatureSelection_Res	
CVsignature	
EmpiricalSurvDiff	
ensemblePredict	
featureAdjustment	
filteredFit	
FilterUnivariate	
ForwardSelection.Model.Bin	
ForwardSelection.Model.Res	
FRESA.Model	
FRESAScale	
GDSTMDecorrelation	
getKNNpredictionFromFormula	
getSignature	
getVar.Bin	
getVar.Res	
GLMNET	
GMVEBSWiMS	
GMVECluster	
heatMaps	
HLCM	
improvedResiduals	
jaccardMatrix	
KNN_method	
listTopCorrelatedVariables	
LM_RIDGE_MIN	
modelFitting	
mRMR.classic_FRESA	
NAIVE_BAYES	
nearestCentroid	
nearestNeighborImpute	
plot.bootstrapValidation_Bin	
plot.bootstrapValidation_Res	
plot.FRESA_benchmark	
plotModels.ROC	
predict.CLUSTER_CLASS	
predict.fitFRESA	
predict.FRESAKNN	
predict.FRESAsignature	
predict.FRESA_BESS	
predict.FRESA_FILTERFIT	
$piculcl.rkesa rillekril \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	94

predict.FRESA_GLMNET
predict.FRESA_HLCM
predict.FRESA_NAIVEBAYES
predict.FRESA_RIDGE
predict.FRESA_SVM
predict.GMVE
predict.GMVE_BSWiMS
predictionStats
randomCV
rankInverseNormalDataFrame
reportEquivalentVariables
residualForFRESA
signatureDistance
summary.bootstrapValidation_Bin
summary.fitFRESA
summaryReport
timeSerieAnalysis
trajectoriesPolyFeatures
TUNED_SVM
uniRankVar
univariateRankVariables
update.uniRankVar
updateModel.Bin
updateModel.Res
126

Index

FRESA.CAD-package

FeatuRE Selection Algorithms for Computer-Aided Diagnosis (*FRESA.CAD*)

Description

Contains a set of utilities for building and testing formula-based models for Computer Aided Diagnosis/prognosis applications via feature selection. Bootstrapped Stage Wise Model Selection (B:SWiMS) controls the false selection (FS) for linear, logistic, or Cox proportional hazards regression models. Utilities include functions for: univariate/longitudinal analysis, data conditioning (i.e. covariate adjustment and normalization), model validation and visualization.

Details

Package:	FRESA.CAD
Type:	Package
Version:	3.4.2
Date:	2022-05-19
License:	LGPL (>= 2)

3

Purpose: The design of diagnostic or prognostic multivariate models via the selection of significantly discriminant features. The models are selected via the bootstrapped step-wise selection of model features that offer a significant improvement in subject classification/error. The false selection control is achieved by train-test partitions, where train sets are used to select variables and test sets used to evaluate model performance. Variables that do not improve subject classification/error on the blind test are not included in the models. The main function of this package is the selection and cross-validation of diagnostic/prognostic linear, logistic, or Cox proportional hazards regression model constructed from a large set of candidate features. The variable selection may start by conditioning all variables via a covariate-adjustment and a *z*-inverse-rank-transformation. In order to integrate features with partial discriminant power, the package can be used to categorize the continuous variables and rank their discriminant power. Once ranked, each feature is bootstrap-tested in a multivariate model, and its blind performance is evaluated. Variables with a statistical significant improvement in classification/error are stored and finally inserted into the final model according to their relative store frequency. A cross-validation procedure may be used to diagnose the amount of model shrinkage produced by the selection scheme.

Author(s)

Jose Gerardo Tamez-Pena, Antonio Martinez-Torteya, Israel Alanis and Jorge Orozco Maintainer: <jose.tamezpena@tec.mx>

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

Examples

#Impute missing values

FRESA.CAD-package

```
dataCancerImputed <- nearestNeighborImpute(dataCancer)</pre>
# Remove the incomplete cases
dataCancer <- dataCancer[complete.cases(dataCancer),]</pre>
# Load a pre-stablished data frame with the names and descriptions of all variables
data(cancerVarNames)
# the Heat Map
hm <- heatMaps(cancerVarNames,varRank=NULL,Outcome="pgstat",</pre>
                data=dataCancer,title="Heat Map",hCluster=FALSE
                ,prediction=NULL,Scale=TRUE,
                theFiveColors=c("blue","cyan","black","yellow","red"),
                outcomeColors =
                  c("blue","lightgreen","yellow","orangered","red"),
                transpose=FALSE,cexRow=0.50,cexCol=0.80,srtCol=35)
# The univariate analysis
UniRankFeaturesRaw <- univariateRankVariables(variableList = cancerVarNames,</pre>
                                                formula = "pgstat ~ 1+pgtime",
                                                Outcome = "pgstat",
                                                data = dataCancer,
                                                categorizationType = "Raw",
                                                type = "LOGIT",
                                                rankingTest = "zIDI",
                                                description = "Description",
                                                uniType="Binary")
print(UniRankFeaturesRaw)
# A simple BSIWMS Model
BSWiMSModel <- BSWiMS.model(formula = Surv(pgtime, pgstat) ~ 1, dataCancerImputed)
# The Log-Rank Analysis using survdiff
lrsurvdiff <- survdiff(Surv(pgtime,pgstat)~</pre>
               BSWiMSModel$BSWiMS.model$back.model$linear.predictors > 0,
               data=dataCancerImputed)
# The Log-Rank Analysis EmpiricalSurvDiff and permutations of the null Chi distribution
lrp <- EmpiricalSurvDiff(dataCancerImputed$pgtime,dataCancerImputed$pgstat,</pre>
                          BSWiMSModel$BSWiMS.model$back.model$linear.predictors > 0,
                          type="Chi",plots=TRUE,samples=10000)
# The Log-Rank Analysis EmpiricalSurvDiff and permutations of the null SLR distribution
lrp <- EmpiricalSurvDiff(dataCancerImputed$pgtime,dataCancerImputed$pgstat,</pre>
                          BSWiMSModel$BSWiMS.model$back.model$linear.predictors > 0,
                          type="SLR",plots=TRUE,samples=10000)
# The Log-Rank Analysis EmpiricalSurvDiff and bootstrapping the SLR distribution
lrp <- EmpiricalSurvDiff(dataCancerImputed$pgtime,dataCancerImputed$pgstat,</pre>
                          BSWiMSModel$BSWiMS.model$back.model$linear.predictors > 0,
```

```
computeDist=TRUE,plots=TRUE)
#The performance of the final model using the summary function
sm <- summary(BSWiMSModel$BSWiMS.model$back.model)</pre>
print(sm$coefficients)
pv <- plot(sm$bootstrap)</pre>
# The equivalent model
eq <- reportEquivalentVariables(BSWiMSModel$BSWiMS.model$back.model,data=dataCancer,</pre>
                                 variableList=cancerVarNames,Outcome = "pgstat",
                                 timeOutcome="pgtime",
                                 type = "COX");
print(eq$equivalentMatrix)
#The list of all models of the bootstrap forward selection
print(BSWiMSModel$forward.selection.list)
#With FRESA.CAD we can do a leave-one-out using the list of models
pm <- ensemblePredict(BSWiMSModel$forward.selection.list,</pre>
                    dataCancer,predictType = "linear",type="LOGIT",Outcome="pgstat")
#Ploting the ROC with 95
pm <- plotModels.ROC(cbind(dataCancer$pgstat,</pre>
                   pm$ensemblePredict),main=("LOO Forward Selection Median Predict"))
#The plotModels.ROC provides the diagnosis confusion matrix.
summary(epi.tests(pm$predictionTable))
#FRESA.CAD can be used to create a bagged model using the forward selection formulas
bagging <- baggedModel(BSWiMSModel$forward.selection.list,dataCancer,useFreq=32)</pre>
pm <- predict(bagging$bagged.model)</pre>
pm <- plotModels.ROC(cbind(dataCancer$pgstat,pm),main=("Bagged"))</pre>
#Let's check the performance of the model
sm <- summary(bagging$bagged.model)</pre>
print(sm$coefficients)
#Using bootstrapping object I can check the Jaccard Index
print(bagging$Jaccard.SM)
#Ploting the evolution of the coefficient value
plot(bagging$coefEvolution$grade,main="Evolution of grade")
gplots::heatmap.2(bagging$formulaNetwork,trace="none",
                  mar=c(10,10),main="eB:SWIMS Formula Network")
barplot(bagging$frequencyTable,las = 2,cex.axis=1.0,
        cex.names=0.75,main="Feature Frequency")
n <- network::network(bagging$formulaNetwork, directed = FALSE,</pre>
                       ignore.eval = FALSE,names.eval = "weights")
```

6

```
ggnet2(n, label = TRUE, size = "degree", size.cut = 3, size.min = 1,
        mode = "circle",edge.label = "weights",edge.label.size=4)
 # Get a Cox proportional hazards model using:
 # - The default parameters
 mdCOXs <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,data = dataCancer)</pre>
 sm <- summary(mdCOXs$BSWiMS.model)</pre>
 print(sm$coefficients)
 # The model with singificant improvement in the residual error
 mdCOXs <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,</pre>
                        data = dataCancer,OptType = "Residual" )
 sm <- summary(mdCOXs$BSWiMS.model)</pre>
 print(sm$coefficients)
 # Get a Cox proportional hazards model using second order models:
 mdCOX <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,</pre>
                       data = dataCancer,categorizationType="RawRaw")
 sm <- summary(mdCOX$BSWiMS.model)</pre>
 print(sm$coefficients)
 namesc <- names(mdCOX$BSWiMS.model$coefficients)[-1]</pre>
 hm <- heatMaps(mdCOX$univariateAnalysis[namesc,],varRank=NULL,</pre>
                Outcome="pgstat",data=dataCancer,
                 title="Heat Map",hCluster=FALSE,prediction=NULL,Scale=TRUE,
                 theFiveColors=c("blue","cyan","black","yellow","red"),
                 outcomeColors = c("blue","lightgreen","yellow","orangered","red"),
                 transpose=FALSE,cexRow=0.50,cexCol=0.80,srtCol=35)
 # The LOO estimation
 pm <- ensemblePredict(mdCOX$BSWiMS.models$formula.list,dataCancer,</pre>
                        predictType = "linear",type="LOGIT",Outcome="pgstat")
pm <- plotModels.ROC(cbind(dataCancer$pgstat,pm$ensemblePredict),main=("LOO Median Predict"))</pre>
 #Let us check the diagnosis performance
 summary(epi.tests(pm$predictionTable))
 # Get a Logistic model using FRESA.Model
 # - The default parameters
 dataCancer2 <-dataCancer</pre>
 dataCancer2$pgtime <-NULL</pre>
 mdLOGIT <- FRESA.Model(formula = pgstat ~ 1,data = dataCancer2)</pre>
 if (!is.null(mdLOGIT$bootstrappedModel)) pv <- plot(mdLOGIT$bootstrappedModel)</pre>
 sm <- summary(mdLOGIT$BSWiMS.model)</pre>
 print(sm$coefficients)
 ## FRESA.Model with Cross Validation and Recursive Partitioning and Regression Trees
```

 colnames(md\$cvObject\$Models.testPrediction)

```
pm <- plotModels.ROC(md$cv0bject$LASS0.testPredictions,theCVfolds=10,main="CV LASS0",cex=0.90)</pre>
pm <- plotModels.ROC(md$cvObject$KNN.testPrediction,theCVfolds=10,main="KNN",cex=0.90)</pre>
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,</pre>
                       predictor="Prediction",main="B:SWiMS Bagging",cex=0.90)
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,</pre>
                       predictor="Ensemble.B.SWiMS"
                       ,main="Forward Selection Median Ensemble",cex=0.90)
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,</pre>
               predictor="Ensemble.Forward",main="Forward Selection Bagging",cex=0.90)
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,</pre>
                       predictor="eB.SWiMS",main="Equivalent Model",cex=0.90)
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,</pre>
              predictor="Forward.Selection.Bagged",main="The Forward Bagging",cex=0.90)
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=20,</pre>
                       predictor="usrFitFunction",
                       main="Recursive Partitioning and Regression Trees", cex=0.90)
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=20,</pre>
                       predictor="usrFitFunction_Sel",
                   main="Recursive Partitioning and Regression Trees with FS", cex=0.90)
 ## FRESA.Model with Cross Validation, LOGISTIC and Support Vector Machine
 md <- FRESA.Model(formula = pgstat ~ 1,data = dataCancer2,</pre>
                    CVfolds = 10, repeats = 5, equivalent = TRUE, usrFitFun=svm)
pm <- plotModels.ROC(md$cvObject$LASSO.testPredictions,theCVfolds=10,main="CV LASSO",cex=0.90)</pre>
pm <- plotModels.ROC(md$cvObject$KNN.testPrediction,theCVfolds=10,main="KNN",cex=0.90)</pre>
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,</pre>
                       predictor="Prediction",main="B:SWiMS Bagging",cex=0.90)
 md$cvObject$Models.testPrediction[,"usrFitFunction"] <-</pre>
                    md$cvObject$Models.testPrediction[,"usrFitFunction"] - 0.5
 md$cvObject$Models.testPrediction[,"usrFitFunction_Sel"] <-</pre>
                    md$cvObject$Models.testPrediction[,"usrFitFunction_Sel"] - 0.5
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,</pre>
                       predictor="usrFitFunction",
                       main="SVM",cex = 0.90)
 pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,</pre>
                       predictor="usrFitFunction_Sel",
                       main="SVM with FS",cex = 0.90)
 # Shut down the graphics device driver
 dev.off()
```

End(Not run)

backVarElimination_Bin

IDI/NRI-based backwards variable elimination

Description

This function removes model terms that do not significantly affect the integrated discrimination improvement (IDI) or the net reclassification improvement (NRI) of the model.

Usage

)

Arguments

object	An object of class 1m, g1m, or coxph containing the model to be analyzed
pvalue	The maximum p -value, associated to either IDI or NRI, allowed for a term in the model
Outcome	The name of the column in data that stores the variable to be predicted by the model
data	A data frame where all variables are stored in different columns
startOffset	Only terms whose position in the model is larger than the startOffset are candidates to be removed
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
selectionType	The type of index to be evaluated by the improveProb function (Hmisc package): <i>z</i> -score of IDI or of NRI

Details

For each model term x_i , the IDI or NRI is computed for the Full model and the reduced model(where the term x_i removed). The term whose removal results in the smallest drop in improvement is selected. The hypothesis: the term adds classification improvement is tested by checking the pvalue of improvement. If p(IDIorNRI) > pvalue, then the term is removed. In other words, only model terms that significantly aid in subject classification are kept. The procedure is repeated until no term fulfils the removal criterion.

Value

back.model	An object of the same class as object containing the reduced model			
loops	The number of loops it took for the model to stabilize			
reclas.info	A list with the NRI and IDI statistics of the reduced model, as given by the getVar.Bin function			
back.formula	An object of class formula with the formula used to fit the reduced model			
lastRemoved	The name of the last term that was removed (-1 if all terms were removed)			
at.opt.model	the model before the BH procedure			
beforeFSC.formula				
	the string formula of the model before the BH procedure			

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

See Also

backVarElimination_Res, bootstrapVarElimination_Bin, bootstrapVarElimination_Res

backVarElimination_Res

NeRI-based backwards variable elimination

Description

This function removes model terms that do not significantly improve the "net residual" (NeRI)

Usage

```
backVarElimination_Res(object,
```

```
pvalue = 0.05,
Outcome = "Class",
data,
startOffset = 0,
type = c("LOGIT", "LM", "COX"),
testType = c("Binomial", "Wilcox", "tStudent", "Ftest"),
setIntersect = 1
```

)

Arguments

object	An object of class lm, glm, or coxph containing the model to be analyzed
pvalue	The maximum <i>p</i> -value, associated to the NeRI, allowed for a term in the model
Outcome	The name of the column in data that stores the variable to be predicted by the model
data	A data frame where all variables are stored in different columns
startOffset	Only terms whose position in the model is larger than the startOffset are candidates to be removed
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
testType	Type of non-parametric test to be evaluated by the improvedResiduals func- tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student's <i>t</i> -test ("tStudent"), or <i>F</i> -test ("Ftest")
setIntersect	The intersect of the model (To force a zero intersect, set this value to 0)

Details

For each model term x_i , the residuals are computed for the Full model and the reduced model(where the term x_i removed). The term whose removal results in the smallest drop in residuals improvement is selected. The hypothesis: the term improves residuals is tested by checking the pvalue of improvement. If p(residualsbetterthanreducedresiduals) > pvalue, then the term is removed. In other words, only model terms that significantly aid in improving residuals are kept. The procedure is repeated until no term fulfils the removal criterion. The p-values of improvement can be computed via a sign-test (Binomial) a paired Wilcoxon test, paired t-test or f-test. The first three tests compare the absolute values of the residuals, while the f-test test if the variance of the residuals is improved significantly.

Value

back.model	An object of the same class as object containing the reduced model			
loops	The number of loops it took for the model to stabilize			
reclas.info	A list with the NeRI statistics of the reduced model, as given by the $getVar.Res$ function			
back.formula	An object of class formula with the formula used to fit the reduced model			
lastRemoved	The name of the last term that was removed (-1 if all terms were removed)			
at.opt.model	the model with before the FSR procedure.			
beforeFSC.formula				
	the string formula of the the FSR procedure			

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

backVarElimination_Bin, bootstrapVarElimination_Bin bootstrapVarElimination_Res

```
baggedModel
```

Description

This function will take the frequency-ranked of variables and the list of models to create a single bagged model

Usage

Arguments

modelFormulas	The name of the column in data that stores the variable to be predicted by the model					
data	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables					
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")					
Outcome	The name of the column in data that stores the time to outcome					
timeOutcome	The name of the column in data that stores the time to event (needed only for a Cox proportional hazards regression model fitting)					
frequencyThreshold						
	set the frequency the threshold of the frequency of features to be included in the model)					
univariate	The FFRESA.CAD univariate analysis matrix					
useFreq	Use the feature frequency to order the formula terms. If set to a positive value is the number of estimation loops					
n_bootstrap	if greater than 1, defines the number of bootstraps samples to be used					
equifreqCorrec	equifreqCorrection					
	Indicates the average size of repeated features in an equivalent model					

Value

bagged.model	the bagged model
formula	the formula of the model
frequencyTable	the table of variables ranked by their model frequency
faverageSize	the average size of the models
formulaNetwork	The matrix of interaction between formulas
Jaccard.SM	The Jaccard Stability Measure of the formulas
coefEvolution	The evolution of the coefficients
avgZvalues	The average Z value of each coefficient
featureLocatior	1
	The average location of the feature in the formulas

Author(s)

Jose G. Tamez-Pena

See Also

ensemblePredict

barPlotCiError Bar plot with error bars

Description

Ranked Plot a set of measurements with error bars or confidence intervals (CI)

Usage

Arguments

ciTable	A matrix with three columns: the value, the low CI value and the high CI value
metricname	The name of the plotted values
thesets	A character vector with the names of the sets
themethod	A character vector with the names of the methods
main	The plot title
angle	The angle of the x labels
offsets	The offset of the x-labels
scoreDirection	Indicates how to aggregate the supMethod score and the ingMethod score.
ho	the null hypothesis
	Extra parametrs pased to the barplot function

Value

barplot	the x-location of the bars
ciTable	the ordered matrix with the 95 CI
barMatrix	the mean values of the bars
supMethod	A superiority score equal to the numbers of methods that were inferior
infMethod	A inferiority score equal to the number of methods that were superior
interMethodSco	re
	the sum of supMethod and infMethod defined by the score direction.

Author(s)

Jose G. Tamez-Pena

benchmarking Compare performance of different model fitting/fil	filtering algorithms
---	----------------------

Description

Evaluates a data set with a set of fitting/filtering methods and returns the observed cross-validation performance

Usage

14

benchmarking

```
referenceFilterName="COX.BSWiMS")
```

Arguments

theData	The data frame
theOutcome	The outcome feature
reps	The number of times that the random cross-validation will be performed
trainFraction	The fraction of the data used for training.
referenceCV	A single random cross-validation object to be benchmarked or a list of CVObjects to be compared
referenceName referenceFilte	The name of the reference classifier to be used in the reporting tables rName

The name of the reference filter to be used in the reporting tables

Details

The benchmark functions provide the performance of different classification algorithms (Binary-Benchmark), registration algorithms (RegresionBenchmark) or ordinal regression algorithms (OrdinalBenchmark) The evaluation method is based on applying the random cross-validation method (randomCV) that randomly splits the data into train and test sets. The user can provide a Cross validated object that will define the train-test partitions.

The BinaryBenchmark compares: BSWiMS,Random Forest ,RPART,LASSO,SVM/mRMR,KNN and the ensemble of them in their ability to correctly classify the test data. Furthermore, it evaluates the ability of the following feature selection algorithms: BSWiMS or ReferenceCV, LASSO, RPART, RF/BSWiMS, IDI, NRI, t-test, Wilcoxon, Kendall, and mRMR in their ability to select the best set of features for the following classification methods: SVM, KNN, Naive Bayes, Random Forest Nearest Centroid (NC) with root sum square (RSS), and NC with Spearman correlation

The RegresionBenchmark compares: BSWiMS,Random Forest,RPART,LASSO,SVM/mRMR and the ensemble of them in their ability to correctly predict the test data. Furthermore, it evaluates the ability of the following feature selection algorithms: BSWiMS or referenceCV, LASSO, RPART, RF/BSWiMS, F-Test, W-Test, Pearson Kendall, and mRMR in their ability to select the best set of features for the following regression methods: Linear Regression, Robust Regression, Ridge Regression, LASSO, SVM, and Random Forest.

The OrdinalBenchmark compares: BSWiMS,Random Forest ,RPART,LASSO,KNN ,SVM and the ensemble of them in their ability to correctly predict the test data. Furthermore, it evaluates the ability of the following feature selection algorithms: BSWiMS or referenceCV, LASSO, RPART, RF/BSWiMS, F-Test, Kendall, and mRMR in their ability to select the best set of features for the following regression methods: Ordinal, KNN, SVM, Random Forest, and Naive Bayes.

The CoxBenchmark compares: BSWiMS, LASSO, BeSS and Univariate Cox analysis in their ability to correctly predict the risk of event happening. It uses cox regression with the four alternatives, but BSWiMS, LASSO are also compared as Wrapper methods.

luc	
errorciTable	the matrix of the balanced error with the 95 CI
accci⊺able	the matrix of the classification accuracy with the 95 CI
aucTable	the matrix of the ROC AUC with the 95 CI
senTable	the matrix of the sensitivity with the 95 CI
speTable	the matrix of the specificity with the 95 CI
errorciTable_f	ilter
	the matrix of the balanced error with the 95 CI for filter methods
accciTable_fil	
conciTable file	the matrix of the classification accuracy with the 95 CI for filter methods
<pre>senciTable_fil</pre>	the matrix of the classification sensitivity with the 95 CI for filter methods
<pre>speciTable_fil</pre>	-
. –	the matrix of the classification specificity with the 95 CI for filter methods
aucTable_filte	r
	the matrix of the ROC AUC with the 95 CI for filter methods
CorTable	the matrix of the Pearson correlation with the 95 CI
RMSETable	the matrix of the root mean square error (RMSE) with the 95 CI
BiasTable	the matrix of the prediction bias with the 95 CI
CorTable_filte	
DMCETable filt	the matrix of the Pearson correlation with the 95 CI for filter methods
RMSETable_filte	the matrix of the root mean square error (RMSE) with the 95 CI for filter meth-
	ods
BiasTable_filte	
	the matrix of the prediction bias with the 95 CI for filter methods
BMAETable	the matrix of the balanced mean absolute error (MEA) with the 95 CI for filter methods
Kappa⊤able	the matrix of the Kappa value with the 95 CI
BiasTable	the matrix of the prediction Bias with the 95 CI
KendallTable MAETable_filte	the matrix of the Kendall correlation with the 95 CI
	the matrix of the mean absolute error (MEA) with the 95 CI for filter methods
KappaTable_fil	
	the matrix of the Kappa value with the 95 CI for filter methods
BiasTable_filte	er the matrix of the prediction Bias with the 95 CI for filter methods
KendallTable_f:	*
Rendarrabie_1.	the matrix of the Kendall correlation with the 95 CI for filter methods
CIRiskTable CIFollowUpTable	the matrix of the concordance index on Risk with the 95 CI
	the matrix of the concordance index on Follow-up times with the 95 CI

benchmarking

	LogRankTable	the matrix of the LogRank Test with the 95 CI
	CIRisksTable_fi	llter
		the matrix of the concordance index on Risk with the 95 CI for the filter methods
	CIFollowUpTable	e_filter
		the matrix of the concordance index on Follow-up times with the 95 CI for the filter methods
	LogRankTable_fi	ilter
		the matrix of the LogRank Test with the 95 CI for the filter methods
	times	The average CPU time used by the method
	jaccard_filter	The average Jaccard Index of the feature selection methods
	TheCVEvaluation	ns
		The output of the random CV ($random CV$) evaluations of the different methods
	testPredictions	3
		A matrix with all the test predictions
	featureSelectio	pnFrequency
		The frequency of feature selection
	cpuElapsedTimes	3
		The mean elapsed times
	cpuElapsedTimes	
Aut	chor(s)	

Jose G. Tamez-Pena

See Also

randomCV

Examples

Not run:

```
### Binary Classification Example ####
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "BinaryClassificationExample.pdf",width = 8, height = 6)
# Get the stage C prostate cancer data from the rpart package
data(stagec,package = "rpart")
# Prepare the data. Create a model matrix without the event time
stagec$pgtime <- NULL
stagec$eet <- as.factor(stagec$eet)</pre>
```

```
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,
as.data.frame(model.matrix(pgstat ~ .,stagec))[-1])
```

```
dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)</pre>
# Cross validating a LDA classifier.
# 80
cv <- randomCV(dataCancerImputed,"pgstat",MASS::lda,trainFraction = 0.8,</pre>
repetitions = 10,featureSelectionFunction = univariate_tstudent,
featureSelection.control = list(limit = 0.5,thr = 0.975));
# Compare the LDA classifier with other methods
cp <- BinaryBenchmark(referenceCV = cv,referenceName = "LDA",</pre>
                      referenceFilterName="t.Student")
pl <- plot(cp,prefix = "StageC: ")</pre>
# Default Benchmark classifiers method (BSWiMS) and filter methods.
# 80
cp <- BinaryBenchmark(theData = dataCancerImputed,</pre>
theOutcome = "pgstat", reps = 10, fraction = 0.8)
# plot the Cross Validation Metrics
pl <- plot(cp,prefix = "Stagec:");</pre>
# Shut down the graphics device driver
dev.off()
#### Regression Example ######
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "RegressionExample.pdf",width=8, height=6)
# Get the body fat data from the TH package
data("bodyfat", package = "TH.data")
# Benchmark regression methods and filter methods.
#80
cp <- RegresionBenchmark(theData = bodyfat,</pre>
theOutcome = "DEXfat", reps = 10, fraction = 0.8)
# plot the Cross Validation Metrics
pl <- plot(cp,prefix = "Body Fat:");</pre>
# Shut down the graphics device driver
dev.off()
#### Ordinal Regression Example #####
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "OrdinalRegressionExample.pdf",width=8, height=6)
# Get the GBSG2 data
data("GBSG2", package = "TH.data")
# Prepare the model frame for benchmarking
GBSG2$time <- NULL;</pre>
```

BESS

```
GBSG2$cens <- NULL;
GBSG2_mat <- cbind(tgrade = as.numeric(GBSG2$tgrade),
as.data.frame(model.matrix(tgrade~.,GBSG2))[-1])
# Benchmark regression methods and filter methods.
#30
cp <- OrdinalBenchmark(theData = GBSG2_mat,
theOutcome = "tgrade", reps = 10, fraction = 0.3)
# plot the Cross Validation Metrics
pl <- plot(cp,prefix = "GBSG:");
# Shut down the graphics device driver
dev.off()
## End(Not run)
```

BESS

CV BeSS fit

Description

Fits a BeSS: : bess object to the data, and return the selected features

Usage

```
BESS(formula = formula, data=NULL, method="sequential", ic.type="BIC",...)
BESS_GSECTION(formula = formula, data=NULL, method="gsection", ic.type="NULL",...)
BESS_EBIC(formula = formula, data=NULL, ic.type="EBIC",...)
```

Arguments

formula	The base formula to extract the outcome
data	The data to be used for training the bess model
method	BeSS: Methods to be used to select the optimal model size
ic.type	BeSS: Types of best model returned.
	Parameters to be passed to the BeSS::bess function

Value

fit	The BsSS::bess fitted object	
formula	The formula	
usedFeatures	The list of features used by fit	
selectedfeatures		
	The character vector of the model features according to BeSS type	

Author(s)

Jorge Orozco

See Also

BeSS::bess

bootstrapValidation_Bin

Bootstrap validation of binary classification models

Description

This function bootstraps the model n times to estimate for each variable the empirical distribution of model coefficients, area under ROC curve (AUC), integrated discrimination improvement (IDI) and net reclassification improvement (NRI). At each bootstrap the non-observed data is predicted by the trained model, and statistics of the test prediction are stored and reported. The method keeps track of predictions and plots the bootstrap-validated ROC. It may plots the blind test accuracy, sensitivity, and specificity, contrasted with the bootstrapped trained distributions.

Usage

Arguments

fraction	The fraction of data (sampled with replacement) to be used as train
loops	The number of bootstrap loops
model.formula	An object of class formula with the formula to be used
Outcome	The name of the column in data that stores the variable to be predicted by the model
data	A data frame where all variables are stored in different columns
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
plots	Logical. If TRUE, density distribution plots are displayed
best.model.formula	
	An object of class formula with the formula to be used for the best model

An object of class formula with the formula to be used for the best model

Details

The bootstrap validation will estimate the confidence interval of the model coefficients and the NRI and IDI. The non-sampled values will be used to estimate the blind accuracy, sensitivity, and specificity. A plot to monitor the evolution of the bootstrap procedure will be displayed if plots is set to TRUE. The plot shows the train and blind test ROC. The density distribution of the train accuracy, sensitivity, and specificity are also shown, with the blind test results drawn along the y-axis.

Value

data	The data frame used to bootstrap and validate the model	
outcome	A vector with the predictions made by the model	
•	The accuracy of the model in the blind test set	
blind.sensitivi	The sensitivity of the model in the blind test set	
blind.specifici	-	
biind.specifiei	The specificity of the model in the blind test set	
train.ROCAUC	A vector with the AUC in the bootstrap train sets	
blind.ROCAUC	An object of class roc containing the AUC in the bootstrap blind test set	
boot.ROCAUC	An object of class roc containing the AUC using the mean of the bootstrapped coefficients	
fraction	The fraction of data that was sampled with replacement	
loops	The number of loops it took for the model to stabilize	
base.Accuracy	The accuracy of the original model	
base.sensitivit	Ly .	
	The sensitivity of the original model	
base.specificity		
	The specificity of the original model	
accuracy	A vector with the accuracies in the bootstrap test sets	
sensitivities	A vector with the sensitivities in the bootstrap test sets	
specificities	A vector with the specificities in the bootstrap test sets	
train.accuracy	A vector with the accuracies in the bootstrap train sets	
train.sensitivity		
	A vector with the sensitivities in the bootstrap train sets	
train.specificity		
	A vector with the specificities in the bootstrap train sets	
s.coef	A matrix with the coefficients in the bootstrap train sets	
boot.model	An object of class lm, glm, or coxph containing a model whose coefficients are the median of the coefficients of the bootstrapped models	
boot.accuracy	The accuracy of the mboot.model model	
boot.sensitivity		
	The sensitivity of the mboot.model model	

<pre>boot.specificit</pre>	У
	The specificity of the mboot.model model
z.NRIs	A matrix with the <i>z</i> -score of the NRI for each model term, estimated using the bootstrap train sets
z.IDIs	A matrix with the <i>z</i> -score of the IDI for each model term, estimated using the bootstrap train sets
test.z.NRIs	A matrix with the <i>z</i> -score of the NRI for each model term, estimated using the bootstrap test sets
test.z.IDIs	A matrix with the <i>z</i> -score of the IDI for each model term, estimated using the bootstrap test sets
NRIS	A matrix with the NRI for each model term, estimated using the bootstrap test sets
IDIs	A matrix with the IDI for each model term, estimated using the bootstrap test sets
testOutcome	A vector that contains all the individual outcomes used to validate the model in the bootstrap test sets
testPrediction	A vector that contains all the individual predictions used to validate the model in the bootstrap test sets

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

bootstrapValidation_Res, plot.bootstrapValidation_Bin, summary.bootstrapValidation_Bin

bootstrapValidation_Res

Bootstrap validation of regression models

Description

This function bootstraps the model n times to estimate for each variable the empirical bootstrapped distribution of model coefficients, and net residual improvement (NeRI). At each bootstrap the nonobserved data is predicted by the trained model, and statistics of the test prediction are stores and reported.

Usage

```
bootstrapValidation_Res(fraction = 1,
                        loops = 200,
                        model.formula,
                        Outcome,
                        data,
                        type = c("LM", "LOGIT", "COX"),
                        plots = FALSE,
```

bestmodel.formula=NULL)

Arguments

fraction	The fraction of data (sampled with replacement) to be used as train
loops	The number of bootstrap loops
model.formula	An object of class formula with the formula to be used
Outcome	The name of the column in data that stores the variable to be predicted by the model
data	A data frame where all variables are stored in different columns
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
plots	Logical. If TRUE, density distribution plots are displayed
bestmodel.formula	
	An object of class formula with the best formula to be compared

Details

The bootstrap validation will estimate the confidence interval of the model coefficients and the NeRI. It will also compute the train and blind test root-mean-square error (RMSE), as well as the distribution of the NeRI *p*-values.

Value

data	The data frame used to bootstrap and validate the model	
outcome	A vector with the predictions made by the model	
boot.model	An object of class lm, glm, or coxph containing a model whose coefficients are the median of the coefficients of the bootstrapped models	
NeRIs	A matrix with the NeRI for each model term, estimated using the bootstrap test sets	
tStudent.pvalue	25	
	A matrix with the <i>t</i> -test <i>p</i> -value of the NeRI for each model term, estimated using the bootstrap train sets	
wilcox.pvalues	A matrix with the Wilcoxon rank-sum test <i>p</i> -value of the NeRI for each model term, estimated using the bootstrap train sets	
bin.pvalues	A matrix with the binomial test <i>p</i> -value of the NeRI for each model term, esti- mated using the bootstrap train sets	
F.pvalues	A matrix with the <i>F</i> -test <i>p</i> -value of the NeRI for each model term, estimated using the bootstrap train sets	
test.tStudent.pvalues		
	A matrix with the <i>t</i> -test <i>p</i> -value of the NeRI for each model term, estimated using the bootstrap test sets	
test.wilcox.pvalues		
	A matrix with the Wilcoxon rank-sum test <i>p</i> -value of the NeRI for each model term, estimated using the bootstrap test sets	
test.bin.pvalues		
	A matrix with the binomial test <i>p</i> -value of the NeRI for each model term, esti- mated using the bootstrap test sets	

test.F.pvalues A matrix with the F-test p-value of the NeRI for each model term, estimated using the bootstrap test sets testPrediction A vector that contains all the individual predictions used to validate the model in the bootstrap test sets testOutcome A vector that contains all the individual outcomes used to validate the model in the bootstrap test sets testResiduals A vector that contains all the residuals used to validate the model in the bootstrap test sets trainPrediction A vector that contains all the individual predictions used to validate the model in the bootstrap train sets trainOutcome A vector that contains all the individual outcomes used to validate the model in the bootstrap train sets trainResiduals A vector that contains all the residuals used to validate the model in the bootstrap train sets testRMSE The global RMSE, estimated using the bootstrap test sets trainRMSE The global RMSE, estimated using the bootstrap train sets trainSampleRMSE A vector with the RMSEs in the bootstrap train sets testSampledRMSE A vector with the RMSEs in the bootstrap test sets

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

bootstrapValidation_Bin, plot.bootstrapValidation_Res

bootstrapVarElimination_Bin

IDI/NRI-based backwards variable elimination with bootstrapping

Description

This function removes model terms that do not improve the bootstrapped integrated discrimination improvement (IDI) or net reclassification improvement (NRI) significantly.

Usage

```
bootstrapVarElimination_Bin(object,
```

```
pvalue = 0.05,
Outcome = "Class",
data,
startOffset = 0,
type = c("LOGIT", "LM", "COX"),
selectionType = c("zIDI", "zNRI"),
loops = 64,
print=TRUE,
plots=TRUE
)
```

Arguments

object	An object of class 1m, g1m, or coxph containing the model to be analyzed
pvalue	The maximum p -value, associated to either IDI or NRI, allowed for a term in the model
Outcome	The name of the column in data that stores the variable to be predicted by the model
data	A data frame where all variables are stored in different columns
startOffset	Only terms whose position in the model is larger than the startOffset are candidates to be removed
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
selectionType	The type of index to be evaluated by the improveProb function (Hmisc pack-age): <i>z</i> -score of IDI or of NRI
loops	The number of bootstrap loops
print	Logical. If TRUE, information will be displayed
plots	Logical. If TRUE, plots are displayed

Details

For each model term x_i , the IDI or NRI is computed for the Full model and the reduced model (where the term x_i removed). The term whose removal results in the smallest drop in bootstrapped improvement is selected. The hypothesis: the term adds classification improvement is tested by checking the p value of average improvement. If p(IDIorNRI) > pvalue, then the term is removed. In other words, only model terms that significantly aid in subject classification are kept. The procedure is repeated until no term fulfils the removal criterion.

Value

back.model	An object of the same class as object containing the reduced model
loops	The number of loops it took for the model to stabilize
reclas.info	A list with the NRI and IDI statistics of the reduced model, as given by the getVar.Bin function

bootCV	An object of class bootstrapValidation_Bin containing the results of the bootstrap validation in the reduced model	
back.formula	An object of class formula with the formula used to fit the reduced model	
lastRemoved	The name of the last term that was removed (-1 if all terms were removed)	
at.opt.model	The model will have the fitted model that had close to maximum bootstrapped test accuracy	
beforeFSC.formula		
	The formula of the model before False Selection Correction	
at.Accuracy.formula		
	the string formula of the model that had the best or close to the best test accuracy	

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

See Also

bootstrapVarElimination_Res, backVarElimination_Bin, backVarElimination_Res

bootstrapVarElimination_Res

NeRI-based backwards variable elimination with bootstrapping

Description

This function removes model terms that do not improve the bootstrapped net residual improvement (NeRI) significantly.

Usage

```
bootstrapVarElimination_Res(object,
```

```
loops = 64,
setIntersect = 1,
print=TRUE,
plots=TRUE
)
```

Arguments

object	An object of class lm, glm, or coxph containing the model to be analysed
pvalue	The maximum <i>p</i> -value, associated to the NeRI, allowed for a term in the model
Outcome	The name of the column in data that stores the variable to be predicted by the model
data	A data frame where all variables are stored in different columns
startOffset	Only terms whose position in the model is larger than the startOffset are candidates to be removed
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
testType	Type of non-parametric test to be evaluated by the improvedResiduals func- tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student's <i>t</i> -test ("tStudent"), or <i>F</i> -test ("Ftest")
loops	The number of bootstrap loops
setIntersect	The intersect of the model (To force a zero intersect, set this value to 0)
print	Logical. If TRUE, information will be displayed
plots	Logical. If TRUE, plots are displayed

Details

For each model term x_i , the residuals are computed for the Full model and the reduced model (where the term x_i removed). The term whose removal results in the smallest drop in bootstrapped test residuals improvement is selected. The hypothesis: the term improves residuals is tested by checking the p-value of average improvement. If p(residualsbetterthanreducedresiduals) > pvalue, then the term is removed. In other words, only model terms that significantly aid in improving residuals are kept. The procedure is repeated until no term fulfils the removal criterion. The p-values of improvement can be computed via a sign-test (Binomial) a paired Wilcoxon test, paired t-test or f-test. The first three tests compare the absolute values of the residuals, while the f-test test if the variance of the residuals is improved significantly.

Value

back.model	An object of the same class as object containing the reduced model
loops	The number of loops it took for the model to stabilize
reclas.info	A list with the NeRI statistics of the reduced model, as given by the $getVar.Res$ function
bootCV	An object of class bootstrapValidation_Res containing the results of the bootstrap validation in the reduced model

back.formula	An object of class formula with the formula used to fit the reduced model	
lastRemoved	The name of the last term that was removed (-1 if all terms were removed)	
at.opt.model	The model with close to minimum bootstrapped RMSE	
beforeFSC.formula		
	The formula of the model before the FSC stage	
at.RMSE.formula		
	the string formula of the model that had the minimum or close to minimum RMSE	

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

bootstrapVarElimination_Bin, backVarElimination_Res, bootstrapValidation_Res

BSWiMS.model

BSWiMS model selection

Description

This function returns a set of models that best predict the outcome. Based on a Bootstrap Stage Wise Model Selection algorithm.

Usage

```
BSWiMS.model(formula,
            data,
            type = c("Auto","LM","LOGIT","COX"),
            testType = c("Auto","zIDI",
                          "zNRI",
                          "Binomial",
                          "Wilcox",
                          "tStudent",
                          "Ftest"),
            pvalue=0.05,
            variableList=NULL,
            size=0,
            loops=20,
            elimination.bootstrap.steps = 200,
            fraction=1.0,
            maxTrainModelSize=20,
            maxCycles=20,
            print=FALSE,
            plots=FALSE,
```

featureSize=0, NumberofRepeats=1
)

Arguments

formula	An object of class formula with the formula to be fitted	
data	A data frame where all variables are stored in different columns	
type	The fit type. Auto will determine the fitting based on the formula	
testType	For an Binary-based optimization, the type of index to be evaluated by the improveProb function (Hmisc package): <i>z</i> -value of Binary or of NRI. For a NeRI-based optimization, the type of non-parametric test to be evaluated by the improvedResiduals function: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student's <i>t</i> -test ("tStudent"), or <i>F</i> -test ("Ftest")	
pvalue	The maximum p -value, associated to the testType, allowed for a term in the model (it will control the false selection rate)	
variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables	
size	The number of candidate variables to be tested (the first size variables from variableList)	
loops	The number of bootstrap loops for the forward selection procedure	
elimination.bootstrap.steps		
	The number of bootstrap loops for the backwards elimination procedure	
fraction	The fraction of data (sampled with replacement) to be used as train	
maxTrainModelS		
	Maximum number of terms that can be included in the each forward selection model	
maxCycles	The maximum number of model generation cycles	
print	Logical. If TRUE, information will be displayed	
plots	Logical. If TRUE, plots are displayed	
featureSize	The original number of features to be explored in the data frame.	
NumberofRepeat	5	
	How many times the BSWiMS search will be repeated	

Details

This is a core function of FRESA.CAD. The function will generate a set of B:SWiMS models from the data based on the provided baseline formula. The function will loop extracting a models whose all terms are statistical significant. After each loop it will remove the significant terms, and it will repeat the model generation until no mode significant models are found or the maximum number of cycles is reached.

Value

BSWiMS.model	the output of the bootstrap backwards elimination step	
forward.model	The output of the forward selection step	
update.model	The output of the forward selection step	
univariate	The univariate ranking of variables if no list of features was provided	
bagging	The model after bagging the set of models	
formula.list	The formulas extracted at each cycle	
forward.selection.list		
	All formulas generated by the forward selection procedure	
oridinalModels	A list of scores, the data and a formulas vector required for ordinal scores pre- dictions	

Author(s)

Jose G. Tamez-Pena

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

Examples

Not run:

```
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "BSWiMS.model.Example.pdf",width = 8, height = 6)
```

```
#Plot the bootstrap validation
pt <- plot(md$BSWiMS.model$bootCV)</pre>
```

```
#Get the coefficients summary
sm <- summary(md)</pre>
print(sm$coefficients)
#Plot the bagged model
pl <- plotModels.ROC(cbind(dataCancerImputed$pgstat,</pre>
  predict(md,dataCancerImputed)),
 main = "Bagging Predictions")
# Get a Cox proportional hazards model using:
# - The default parameters but repeated 10 times
md <- BSWiMS.model(formula = Surv(pgtime, pgstat) ~ 1,</pre>
   data = dataCancerImputed,
   Number of Repeats = 10)
#Get the coefficients summary
sm <- summary(md)</pre>
print(sm$coefficients)
#Check all the formulas
print(md$formula.list)
#Plot the bagged model
pl <- plotModels.ROC(cbind(dataCancerImputed$pgstat,</pre>
   predict(md,dataCancerImputed)),
 main = "Bagging Predictions")
# Get a regression of the survival time
timeSubjects <- dataCancerImputed</pre>
timeSubjects$pgtime <- log(timeSubjects$pgtime)</pre>
md <- BSWiMS.model(formula = pgtime ~ 1,</pre>
  data = timeSubjects,
  )
pt <- plot(md$BSWiMS.model$bootCV)</pre>
sm <- summary(md)</pre>
print(sm$coefficients)
# Get a logistic regression model using
# - The default parameters and removing time as possible predictor
data(stagec,package = "rpart")
stagec$pgtime <- NULL</pre>
stagec_mat <- cbind(pgstat = stagec$pgstat,</pre>
                       as.data.frame(model.matrix(pgstat ~ .*.,stagec))[-1])
fnames <- colnames(stagec_mat)</pre>
fnames <- str_replace_all(fnames,":","__")</pre>
colnames(stagec_mat) <- fnames</pre>
dataCancerImputed <- nearestNeighborImpute(stagec_mat)</pre>
```

```
md <- BSWiMS.model(formula = pgstat ~ 1,</pre>
 data = dataCancerImputed)
pt <- plot(md$BSWiMS.model$bootCV)</pre>
sm <- summary(md)</pre>
print(sm$coefficients)
# Get a ordinal regression of grade model using GBSG2 data
# - The default parameters and removing the
# time and status as possible predictor
data("GBSG2", package = "TH.data")
# Prepare the model frame for prediction
GBSG2$time <- NULL;</pre>
GBSG2$cens <- NULL;</pre>
GBSG2_mat <- cbind(tgrade = as.numeric(GBSG2$tgrade),</pre>
                        as.data.frame(model.matrix(tgrade~.*.,GBSG2))[-1])
fnames <- colnames(GBSG2_mat)</pre>
fnames <- str_replace_all(fnames,":","__")</pre>
colnames(GBSG2_mat) <- fnames</pre>
md <- BSWiMS.model(formula = tgrade ~ 1,</pre>
   data = GBSG2_mat)
sm <- summary(md$oridinalModels$theBaggedModels[[1]]$bagged.model)</pre>
print(sm$coefficients)
sm <- summary(md$oridinalModels$theBaggedModels[[2]]$bagged.model)</pre>
print(sm$coefficients)
print(table(GBSG2_mat$tgrade,predict(md,GBSG2_mat)))
# Shut down the graphics device driver
dev.off()
## End(Not run)
```

cancerVarNames	Data frame used in several	examples of this package
----------------	----------------------------	--------------------------

Description

This data frame contains two columns, one with names of variables, and the other with descriptions of such variables. It is used in several examples of this package. Specifically, it is used in examples working with the stage C prostate cancer data from the rpart package

32

ClustClass

Usage

data(cancerVarNames)

Format

A data frame with names and descriptions of the variables used in several examples

Var A column with the names of the variables

Description A column with a short description of the variables

Examples

data(cancerVarNames)

ClustClass

Hybrid Hierarchical Modeling

Description

This function returns the outcome associated features and the supervised-classifier present at each one of the unsupervised data clusters

Usage

Arguments

formula	An object of class formula with the formula to be fitted
data	A data frame where all variables are stored in different columns
filtermethod	The function name that will return the relevant features
clustermethod	The function name that will cluster the data points
classmethod	The function name of the binary classification method

filtermethod.co	ntrol
	A list with the parameters to be passed to the filter function
clustermethod.c	control
	A list with the parameters to be passed to the clustering function
classmethod.con	trol
	A list with the parameters to be passed to the classification function
рса	if TRUE it will compute the PCA transform
normalize	if pca=TRUE and normalize=TRUE it will normalize all the data.

Details

This function will first call the filter function that should return the relevant a named vector with the p-value of the features associated with the outcome. Then it will call user-supplied clustering algorithm that must return a relevant data partition based on the discovered features. The returned object of the clustering function must contain a \$classification object indicates the class label of each data point. Finally, the function will call the classification function on each cluster returned by the clustering function.

Value

features	The named vector of FDR adjusted p-values returned by the filtering function.
cluster	The clustering function output
models	The list of classification objects per data cluster

Author(s)

Jose G. Tamez-Pena

Examples

```
## Not run:
    library(mlbench) # Location of the Sonar data set
    library(mclust) # The cluster library
    data(Sonar)
    Sonar$Class <- 1*(Sonar$Class == "M")
#Train hierachical classifier
    mc <- ClustClass(Class~.,Sonar,clustermethod=Mclust,clustermethod.control=list(G = 1:4))
#report the classification
    pb <- predict(mc,Sonar)
    print(table(1*(pb>0.0),Sonar$Class))
```

End(Not run)

clusterISODATA

Description

Returns the set of Gaussian Ellipsoids that best model the data

Usage

Arguments

dataset	The data set to be clustered	
clusteringMethod		
	The clustering method.	
trainFraction	The fraction of the data used to train the clusters	
randomTests	The number of clustering sets that will be generated	
jaccardThreshold		
	The minimum Jaccard index to be considered for data clustering	
isoDataThreshold		
	The minimum distance (as p.value) between gaussian clusters	
plot	If true it will plot the clustered points	
	Parameter list to be passed to the clustering method	

Details

The data will be clustered N times as defined by a number of randomTests. After clustering, the Jaccard Index map will be generated and ordered from high to low. The mean clusters parameters (Covariance sets) associated with the point with the highest Jaccard index will define the first cluster. A cluster will be added if the Mahalanobis distance between clusters is greater than the given acceptance p.value (isoDataThreshold) Only clusters associated with points with a Jaccard index greater than jaccardThreshold will be considered.

Value

cluster	The numeric vector with the cluster label of each point
classification	The numeric vector with the cluster label of each point
robustCovariance	
	The list of robust covariances per cluster
pointjaccard	The mean of jaccard index per data point
centers	The list of cluster centers
covariances	The list of cluster covariance
features	The characer vector with the names of the features used

Author(s)

Jose G. Tamez-Pena

crossValidationFeatureSelection_Bin

IDI/NRI-based selection of a linear, logistic, or Cox proportional hazards regression model from a set of candidate variables

Description

This function performs a cross-validation analysis of a feature selection algorithm based on the integrated discrimination improvement (IDI) or the net reclassification improvement (NRI) to return a predictive model. It is composed of an IDI/NRI-based feature selection followed by an update procedure, ending with a bootstrapping backwards feature elimination. The user can control how many train and blind test sets will be evaluated.

Usage

```
crossValidationFeatureSelection_Bin(size = 10,
                                 fraction = 1.0,
                                 pvalue = 0.05,
                                 loops = 100,
                                 covariates = "1",
                                 Outcome,
                                 timeOutcome = "Time",
                                 variableList,
                                 data,
                                 maxTrainModelSize = 20,
                                 type = c("LM", "LOGIT", "COX"),
                                 selectionType = c("zIDI", "zNRI"),
                                 startOffset = 0,
                                 elimination.bootstrap.steps = 100,
                                 trainFraction = 0.67,
                                 trainRepetition = 9,
```

```
bootstrap.steps = 100,
nk = 0,
unirank = NULL,
print=TRUE,
plots=TRUE,
lambda="lambda.1se",
equivalent=FALSE,
bswimsCycles=10,
usrFitFun=NULL,
featureSize=0)
```

size	The number of candidate variables to be tested (the first size variables from variableList)	
fraction	The fraction of data (sampled with replacement) to be used as train	
pvalue	The maximum p -value, associated to either IDI or NRI, allowed for a term in the model	
loops	The number of bootstrap loops	
covariates	A string of the type "1 + var1 + var2" that defines which variables will always be included in the models (as covariates)	
Outcome	The name of the column in data that stores the variable to be predicted by the model	
timeOutcome	The name of the column in data that stores the time to event (needed only for a Cox proportional hazards regression model fitting)	
variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables	
data	A data frame where all variables are stored in different columns	
maxTrainModelS	12e Maximum number of terms that can be included in the model	
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")	
selectionType	The type of index to be evaluated by the improveProb function (Hmisc pack-age): <i>z</i> -score of IDI or of NRI	
startOffset	Only terms whose position in the model is larger than the startOffset are candidates to be removed	
elimination.bootstrap.steps		
	The number of bootstrap loops for the backwards elimination procedure	
trainFraction	The fraction of data (sampled with replacement) to be used as train for the cross-validation procedure	
trainRepetition		
	The number of cross-validation folds (it should be at least equal to 1/trainFraction for a complete cross-validation)	
bootstrap.steps		
	The number of bootstrap loops for the confidence intervals estimation	

nk	The number of neighbours used to generate a k -nearest neighbours (KNN) classification. If zero, k is set to the square root of the number of cases. If less than zero, it will not perform the KNN classification
unirank	A list with the results yielded by the uniRankVar function, required only if the rank needs to be updated during the cross-validation procedure
print	Logical. If TRUE, information will be displayed
plots	Logical. If TRUE, plots are displayed
lambda	The passed value to the s parameter of the glmnet cross validation coefficient
equivalent	Is set to TRUE CV will compute the equivalent model
bswimsCycles	The maximum number of models to be returned by BSWiMS.model
usrFitFun	A user fitting function to be evaluated by the cross validation procedure
featureSize	The original number of features to be explored in the data frame.

Details

This function produces a set of data and plots that can be used to inspect the degree of over-fitting or shrinkage of a model. It uses bootstrapped data, cross-validation data, and, if possible, retrain data. During each cycle, a train and a test ROC will be generated using bootstrapped data. At the end of the cross-validation feature selection procedure, a set of three plots may be produced depending on the specifications of the analysis. The first plot shows the ROC for each cross-validation blind test. The second plot, if enough samples are given, shows the ROC of each model trained and tested in the blind test partition. The final plot shows ROC curves generated with the train, the bootstrapped blind test, and the cross-validation test data. Additionally, this plot will also contain the ROC of the cross-validation mean test data, and of the cross-validation coherence. These set of plots may be used to get an overall performance of the system (accuracy, sensitivity, and specificity). The function also produces a report of the expected performance of a KNN algorithm trained with the selected features of the model, and an elastic net algorithm. The test predictions obtained with these algorithms can then be compared to the predictions generated by the logistic, linear, or Cox proportional hazards regression model.

Value

formula.list A list containing objects of class formula with the formulas used to fit the models found at each cycle

Models.testPrediction

A data frame with the blind test set predictions (Full B:SWiMS,Median,Bagged,Forward,Backwards Eliminations) made at each fold of the cross validation, where the models used to generate such predictions (formula.list) were generated via a feature selection process which included only the train set. It also includes a column with the Outcome of each prediction, and a column with the number of the fold at which the prediction was made.

FullBSWiMS.testPrediction

A data frame similar to Models.testPrediction, but where the model used to generate the predictions was the Full model, generated via a feature selection process which included all data.

TestRetrained.blindPredictions

A data frame similar to Models.testPrediction, but where the models were retrained on an independent set of data (only if enough samples are given at each fold)

LastTrainBSWiMS.bootstrapped

An object of class bootstrapValidation_Bin containing the results of the bootstrap validation in the last trained model

Test.accuracy The global blind test accuracy of the cross-validation procedure Test.sensitivity The global blind test sensitivity of the cross-validation procedure

Test.specificity

The global blind test specificity of the cross-validation procedure

Train.correlationsToFull

The Spearman ρ rank correlation coefficient between the predictions made with each model from formula.list and the Full model in the train set

Blind.correlationsToFull

The Spearman ρ rank correlation coefficient between the predictions made with each model from formula.list and the Full model in the test set

FullModelAtFoldAccuracies

The blind test accuracy for the Full model at each cross-validation fold

FullModelAtFoldSpecificties

The blind test specificity for the Full model at each cross-validation fold FullModelAtFoldSensitivities

The blind test sensitivity for the Full model at each cross-validation fold FullModelAtFoldAUC

The blind test ROC AUC for the Full model at each cross-validation fold AtCVFoldModelBlindAccuracies

The blind test accuracy for the Full model at each final cross-validation fold AtCVFoldModelBlindSpecificities

The blind test specificity for the Full model at each final cross-validation fold AtCVFoldModelBlindSensitivities

The blind test sensitivity for the Full model at each final cross-validation fold CVTrain.Accuracies

The train accuracies at each fold

CVTrain.Sensitivity

The train sensitivity at each fold

CVTrain.Specificity

The train specificity at each fold

CVTrain.AUCs The train ROC AUC for each fold

forwardSelection

A list containing the values returned by ForwardSelection.Model.Bin using all data

updateforwardSelection

A list containing the values returned by updateModel.Bin using all data and the model from forwardSelection

DCWINC	A list containing the college action of her heat at any (an Elimination Discussion	
BSWiMS	A list containing the values returned by bootstrapVarElimination_Bin using all data and the model from updateforwardSelection	
FullBSWiMS.boot	strapped	
	An object of class bootstrapValidation_Bin containing the results of the bootstrap validation in the Full model $% \left({{\left[{{{\rm{D}}_{\rm{T}}} \right]}_{\rm{T}}} \right)$	
Models.testSens	itivities	
	A matrix with the mean ROC sensitivities at certain specificities for each train and all test cross-validation folds using the cross-validation models (i.e. 0.95, 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, and 0.05)	
FullKNN.testPre	diction	
	A data frame similar to Models.testPrediction, but where a KNN classifier with the same features as the Full model was used to generate the predictions	
KNN.testPredict	ion	
	A data frame similar to Models.testPrediction, but where KNN classifiers with the same features as the cross-validation models were used to generate the predictions at each cross-validation fold	
Fullenet	An object of class $cv.glmnet$ containing the results of an elastic net cross-validation fit	
LASSO.testPredi	ctions	
	A data frame similar to Models.testPrediction, but where the predictions were made by the elastic net model	
LASSOVariables	A list with the elastic net Full model and the models found at each cross-validation fold	
uniTrain.Accuracies		
uni n uni. Accura		
	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets	
uniTest.Accurac	The list of accuracies of an univariate analysis on each one of the model variables in the train sets	
uniTest.Accurac	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets	
	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence	
uniTest.Accurac uniTest.TopCohe	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set	
uniTest.Accurac	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rrence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set	
uniTest.Accurac uniTest.TopCohe	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model nPrediction	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ites The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model nPrediction A data frame with the outcome and the train prediction at each CV fold for the main model	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre FullBSWiMS.trai	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ites The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model nPrediction A data frame with the outcome and the train prediction at each CV fold for the main model	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre FullBSWiMS.trai	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set terence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model nPrediction A data frame with the outcome and the train prediction at each CV fold for the main model lictions A data frame with the outcome and the prediction of each enet lasso model	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre FullBSWiMS.trai LASSO.trainPred	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ties The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set terence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model nPrediction A data frame with the outcome and the train prediction at each CV fold for the main model lictions A data frame with the outcome and the prediction of each enet lasso model	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre FullBSWiMS.trai LASSO.trainPred	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ites The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model nPrediction A data frame with the outcome and the train prediction at each CV fold for the main model lictions A data frame with the outcome and the prediction of each enet lasso model .prediction The ensemble prediction by all models on the test data	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre FullBSWiMS.trai LASSO.trainPred BSWiMS.ensemble	The list of accuracies of an univariate analysis on each one of the model vari- ables in the train sets ites The list of accuracies of an univariate analysis on each one of the model vari- ables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model nPrediction A data frame with the outcome and the train prediction at each CV fold for the main model lictions A data frame with the outcome and the prediction of each enet lasso model .prediction The ensemble prediction by all models on the test data	
uniTest.Accurac uniTest.TopCohe uniTrain.TopCoh Models.trainPre FullBSWiMS.trai LASSO.trainPred BSWiMS.ensemble	The list of accuracies of an univariate analysis on each one of the model variables in the train sets ties The list of accuracies of an univariate analysis on each one of the model variables in the test sets rence The accuracy coherence of the top ranked variable on the test set erence The accuracy coherence of the top ranked variable on the train set diction A data frame with the outcome and the train prediction of every model nPrediction A data frame with the outcome and the train prediction at each CV fold for the main model lictions A data frame with the outcome and the prediction of each enet lasso model .prediction The ensemble prediction by all models on the test data ist The list of formulas with "optimal" performance	

baggFormulas.list The list of the bagged models LassoFilterVarList The list of variables used by LASSO fitting

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

See Also

crossValidationFeatureSelection_Res, ForwardSelection.Model.Bin, ForwardSelection.Model.Res

crossValidationFeatureSelection_Res

NeRI-based selection of a linear, logistic, or Cox proportional hazards regression model from a set of candidate variables

Description

This function performs a cross-validation analysis of a feature selection algorithm based on net residual improvement (NeRI) to return a predictive model. It is composed of a NeRI-based feature selection followed by an update procedure, ending with a bootstrapping backwards feature elimination. The user can control how many train and blind test sets will be evaluated.

Usage

```
"Ftest"),
startOffset = 0,
elimination.bootstrap.steps = 100,
trainFraction = 0.67,
trainRepetition = 9,
setIntersect = 1,
unirank = NULL,
print=TRUE,
plots=TRUE,
lambda="lambda.1se",
equivalent=FALSE,
bswimsCycles=10,
usrFitFun=NULL,
featureSize=0)
```

size	The number of candidate variables to be tested (the first size variables from variableList)
fraction	The fraction of data (sampled with replacement) to be used as train
pvalue	The maximum p -value, associated to the NeRI, allowed for a term in the model
loops	The number of bootstrap loops
covariates	A string of the type "1 + var1 + var2" that defines which variables will always be included in the models (as covariates)
Outcome	The name of the column in data that stores the variable to be predicted by the model
timeOutcome	The name of the column in data that stores the time to event (needed only for a Cox proportional hazards regression model fitting)
variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables
data	A data frame where all variables are stored in different columns
maxTrainModelSize	
	Maximum number of terms that can be included in the model
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
testType	Type of non-parametric test to be evaluated by the improvedResiduals func- tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student's <i>t</i> -test ("tStudent"), or <i>F</i> -test ("Ftest")
startOffset	Only terms whose position in the model is larger than the startOffset are candidates to be removed
elimination.bootstrap.steps	
	The number of bootstrap loops for the backwards elimination procedure
trainFraction	The fraction of data (sampled with replacement) to be used as train for the cross-validation procedure
setIntersect	The intersect of the model (To force a zero intersect, set this value to 0)

trainRepetition

	The number of cross-validation folds (it should be at least equal to $1/trainFraction$ for a complete cross-validation)
unirank	A list with the results yielded by the uniRankVar function, required only if the rank needs to be updated during the cross-validation procedure
print	Logical. If TRUE, information will be displayed
plots	Logical. If TRUE, plots are displayed
lambda	The passed value to the s parameter of the glmnet cross validation coefficient
equivalent	Is set to TRUE CV will compute the equivalent model
bswimsCycles	The maximum number of models to be returned by BSWiMS.model
usrFitFun	A user fitting function to be evaluated by the cross validation procedure
featureSize	The original number of features to be explored in the data frame.

Details

This function produces a set of data and plots that can be used to inspect the degree of over-fitting or shrinkage of a model. It uses bootstrapped data, cross-validation data, and, if possible, retrain data.

Value

formula.list	A list containing objects of class formula with the formulas used to fit the mod- els found at each cycle
Models.testPred	diction
	A data frame with the blind test set predictions made at each fold of the cross val- idation (Full B:SWiMS,Median,Bagged,Forward,Backward Elimination), where the models used to generate such predictions (formula.list) were generated via a feature selection process which included only the train set. It also includes a column with the Outcome of each prediction, and a column with the number of the fold at which the prediction was made.
FullBSWiMS.tes	tPrediction
	A data frame similar to Models.testPrediction, but where the model used to generate the predictions was the Full model, generated via a feature selection process which included all data.
BSWiMS	A list containing the values returned by bootstrapVarElimination_Res using all data and the model from updatedforwardModel
forwardSelectio	on
	A list containing the values returned by ForwardSelection.Model.Res using all data
updatedforward	Model
	A list containing the values returned by <code>updateModel.Res</code> using all data and the model from <code>forwardSelection</code>
testRMSE	The global blind test root-mean-square error (RMSE) of the cross-validation procedure
testPearson	The global blind test Pearson r product-moment correlation coefficient of the cross-validation procedure

testSpearman	The global blind test Spearman ρ rank correlation coefficient of the cross-validation procedure	
FulltestRMSE FullTestPearsor	The global blind test RMSE of the Full model	
	The global blind test Pearson r product-moment correlation coefficient of the Full model	
FullTestSpearma	The global blind test Spearman ρ rank correlation coefficient of the Full model	
trainRMSE	The train RMSE at each fold of the cross-validation procedure	
trainPearson	The train Pearson r product-moment correlation coefficient at each fold of the cross-validation procedure	
trainSpearman	The train Spearman ρ rank correlation coefficient at each fold of the cross-validation procedure	
FullTrainRMSE	The train RMSE of the Full model at each fold of the cross-validation procedure	
FullTrainPearso	on	
	The train Pearson <i>r</i> product-moment correlation coefficient of the Full model at each fold of the cross-validation procedure	
FullTrainSpearm		
	The train Spearman ρ rank correlation coefficient of the Full model at each fold of the cross-validation procedure	
testRMSEAtFold The blind test RMSE at each fold of the cross-validation procedure $FullTestRMSEAtFold$		
	The blind test RMSE of the Full model at each fold of the cross-validation pro- cedure	
Fullenet	An object of class $cv.glmnet$ containing the results of an elastic net cross-validation fit	
LASSO.testPredi		
	A data frame similar to Models.testPrediction, but where the predictions were made by the elastic net model	
LASSOVariables	A list with the elastic net Full model and the models found at each cross-validation fold	
byFoldTestMS	A vector with the Mean Square error for each blind fold	
byFoldTestSpear		
	A vector with the Spearman correlation between prediction and outcome for each blind fold	
byFoldTestPears	A vector with the Pearson correlation between prediction and outcome for each	
	blind fold	
byFoldCstat	A vector with the C-index (Somers' Dxy rank correlation :rcorr.cens) between prediction and outcome for each blind fold	
CVBlindPearson	each repeated experiment	
CVBlindSpearmar		
	A vector with the Spearm correlation between the outcome and prediction for each repeated experiment	

CVsignature

CVBlindRMS	A vector with the RMS between the outcome and prediction for each repeated experiment	
Models.trainPrediction		
	A data frame with the outcome and the train prediction of every model	
FullBSWiMS.trai	nPrediction	
	A data frame with the outcome and the train prediction at each CV fold for the main model	
LASSO.trainPred	lictions	
	A data frame with the outcome and the prediction of each enet lasso model	
uniTrainMSS	A data frame with mean square of the train residuals from the univariate models of the model terms	
uniTestMSS	A data frame with mean square of the test residuals of the univariate models of the model terms	
BSWiMS.ensemble.prediction		
	The ensemble prediction by all models on the test data	
AtOptFormulas.list		
	The list of formulas with "optimal" performance	
ForwardFormulas.list		
	The list of formulas produced by the forward procedure	
baggFormulas.list		
	The list of the bagged models	
LassoFilterVarL	ist	
	The list of variables used by LASSO fitting	

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

crossValidationFeatureSelection_Bin, improvedResiduals, bootstrapVarElimination_Res

CVsignature Cross-validated Signature

Description

A formula based wrapper of the getSignature function

Usage

CVsignature(formula = formula,data=NULL,...)

Arguments

formula	The base formula
data	The data to be used for training the signature method
	Parameters for the getSignature function

Value

fit	A getSignature object.
method	The distance method
variable.importance	
	The named vector of relevant features

Author(s)

Jose G. Tamez-Pena

See Also

getSignature, signatureDistance

EmpiricalSurvDiff Estimate the LR value and its associated p-values

Description

Permutations or Bootstrapping computation of the standardized log-rank (SLR) or the Chi=SLR^2 p-values for differences in survival times

Usage

```
EmpiricalSurvDiff(times=times,
    status=status,
    groups=groups,
    samples=1000,
    type=c("SLR","Chi"),
    plots=FALSE,
    minAproxSamples=100,
    computeDist=FALSE,
    ...
    )
```

EmpiricalSurvDiff

Arguments

times	A numeric vector with he observed times to event	
status	A numeric vector indicating if the time to event is censored	
groups	A numeric vector indicating the label of the two survival groups	
samples	The number of bootstrap samples	
type	The type of log-rank statistics. SLR or Chi	
plots	If TRUE, the Kaplan-Meier plot will be plotted	
minAproxSamples		
	The number of tail samples used for the normal-distribution approximation	
computeDist	If TRUE, it will compute the bootstrapped distribution of the SLR	
	Additional parameters for the plot	

Details

It will compute the null distribution of the SRL or the square SLR (Chi) via permutations, and it will return the p-value of differences between survival times between two groups. It may also be used to compute the empirical distribution of the difference in SLR using bootstrapping. (computeDist=TRUE) The p-values will be estimated based on the sampled distribution, or normal-approximated along the tails.

Value

pvalue	the minimum one-tailed p-value : min[p(SRL < 0),p(SRL > 0)] for type="SLR" or the two tailed p-value: 1-p(SRL > 0) for type="Chi"
LR	A list of LR statistics: LR=Expected, VR=Variance, SLR=Standardized LR.
p.equal	The two tailed p-value: $1-p(SRL > 0)$
p.sup	The one tailed p-value: p(SRL < 0), return NA for type="Chi"
p.inf	The one tailed p-value: p(SRL > 0), return NA for type="Chi"
nullDist	permutation derived probability density function of the null distribution
LRDist	bootstrapped derived probability density function of the SLR (computeDist=TRUE)

Author(s)

Jose G. Tamez-Pena

Examples

```
## Not run:
```

```
library(rpart)
data(stagec)
```

The Log-Rank Analysis using survdiff

lrsurvdiff <- survdiff(Surv(pgtime,pgstat)~grade>2,data=stagec)

```
print(lrsurvdiff)
# The Log-Rank Analysis: permutations of the null Chi distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,
                   type="Chi",plots=TRUE,samples=10000,
                   main="Chi Null Distribution")
print(list(unlist(c(lrp$LR,lrp$pvalue))))
# The Log-Rank Analysis: permutations of the null SLR distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,
                   type="SLR",plots=TRUE,samples=10000,
                   main="SLR Null Distribution")
print(list(unlist(c(lrp$LR,lrp$pvalue))))
# The Log-Rank Analysis: Bootstraping the SLR distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,
                   computeDist=TRUE,plots=TRUE,samples=100000,
                   main="SLR Null and SLR bootrapped")
print(list(unlist(c(lrp$LR,lrp$pvalue))))
```

End(Not run)

ensemblePredict

The median prediction from a list of models

Description

Given a list of model formulas, this function will train such models and return the a single(ensemble) prediction from the list of formulas on a test data set. It may also provides a *k*-nearest neighbors (KNN) prediction using the features listed in such models.

Usage

formulaList	A list made of objects of class formula, each representing a model formula to be fitted and predicted with
trainData	A data frame with the data to train the model, where all variables are stored in different columns

testData	A data frame similar to trainData, but with the data set to be predicted. If NULL, trainData will be used
predictType	Prediction type: Probability ("prob") or linear predictor ("linear")
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
Outcome	The name of the column in data that stores the variable to be predicted by the model
nk	The number of neighbors used to generate the KNN classification. If zero, k is set to the square root of the number of cases. If less than zero, it will not perform the KNN classification

Value

ensemblePredict	
	A vector with the median prediction for the $\texttt{testData}$ data set, using the models
	from formulaList
medianKNNPredic	ct
	A vector with the median prediction for the $\texttt{testData}$ data set, using the KNN models
predictions	A matrix, where each column represents the predictions made with each model from formulaList
KNNpredictions	A matrix, where each column represents the predictions made with a different KNN model
wPredict	A vector with the weighted mean ensemble

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

featureAdjustment Adjust each listed variable to the provided set of covariates

Description

This function fits the candidate variables to the provided model formula, for each strata, on a control population. If the variance of the residual (the fitted observation minus the real observation) is reduced significantly, then, such residual is used in the resulting data frame. Otherwise, the control mean is subtracted to the observation.

Usage

```
type = c("LM", "GLS", "RLM","NZLM","SPLINE","MARS","LOESS"),
pvalue = 0.05,
correlationGroup = "ID",
...
)
```

Arguments

variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables	
baseFormula	A string of the type "var1 ++ varn" that defines the model formula to which variables will be fitted	
strata	The name of the column in data that stores the variable that will be used to stratify the fitting	
data	A data frame where all variables are stored in different columns	
referenceframe	A data frame similar to data, but with only the control population	
type	Fit type: linear fitting ("LM"), generalized least squares fitting ("GLS") or Robust ("RLM")	
pvalue	The maximum p -value, associated to the F -test, for the model to be allowed to reduce variability	
correlationGroup		
	The name of the column in data that stores the variable to be used to group the data (only needed if type defined as "GLS")	
	parameters for smooth.spline, loess or mda::mars)	

Value

A data frame, where each input observation has been adjusted from data at each strata

Note

This function prints the residuals and the F-statistic for all candidate variables

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

filteredFit

A generic fit method with a filtered step for feature selection

Description

Sequential application of feature selection method followed by optional scaling, PCA then fitting algorithm

filteredFit

Usage

Arguments

formula	the base formula to extract the outcome
data	the data to be used for training the KNN method
filtermethod	the method for feature selection
fitmethod	the fit function to be used
filtermethod.c	ontrol
	the set of parameters required by the feature selection function
Scale	Scale the data using the provided method
PCA	Estimate the PCA
DECOR	Decorrelate the input data using FCA and the GDSTM
DECOR.control	Parameters to the decorrelation function
	parameters for the fitting function

Value

fit	The fitted model	
filter	The output of the feature selection function	
selectedfeatures		
	The character vector with all the selected features	
usedFeatures	The set of features used for training	
parameters	The parameters passed to the fitting method	
asFactor	Indicates if the fitting was to a factor	
classLen	The number of possible outcomes	

Author(s)

Jose G. Tamez-Pena

FilterUnivariate Univariate Filters

Description

Returns the top set of features that are statistically associated with the outcome.

Usage

```
univariate_Logit(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
                 uniTest=c("zIDI","zNRI"),limit=0,...,n=0)
univariate_residual(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
                    uniTest=c("Ftest", "Binomial", "Wilcox", "tStudent"),
                    type=c("LM","LOGIT"),limit=0,...,n=0)
univariate_tstudent(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
                    limit=0,...,n=0)
univariate_Wilcoxon(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
                     limit=0,...,n=0)
univariate_KS(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
                     limit=0,...,n=0)
univariate_DTS(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
                     limit=0,...,n=0)
univariate_correlation(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
                       method = "kendall",limit=0,...,n=0)
univariate_cox(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
                     limit=0,...)
univariate_BinEnsemble(data,Outcome, pvalue=0.2,limit=0,adjustMethod="BH",...)
univariate_Strata(data,Outcome,pvalue=0.2,limit=0,
                   adjustMethod="BH",
                   unifilter=univariate_BinEnsemble,strata="Gender",...)
correlated_Remove(data=NULL,fnames=NULL,thr=0.999,isDataCorMatrix=FALSE)
```

data	The data frame
Outcome	The outcome feature
pvalue	The threshold pvalue used after the p.adjust method
adjustMethod	The method used by the p.adjust method
uniTest	The unitTest to be performed by the linear fitting model
type	The type of linear model: LM or LOGIT
method	The correlation method: pearson, spearman or kendall.
limit	The samples-wise fraction of features to return.
fnames	The list of features to test inside the correlated_Remove function
thr	The maximum correlation to allow between features

FilterUnivariate

unifilter	The filter function to be stratified
strata	The feature to be used for data stratification
	Parameters to be passed to the correlated_Remove function
n	the number of original features passed to p.adjust
isDataCorMatrix	
	The provided data is the correlation matrix

Value

Named vector with the adjusted p-values or the list of no-correlated features for the correlated_Remove

Author(s)

Jose G. Tamez-Pena

Examples

```
## Not run:
    library("FRESA.CAD")
    ### Univariate Filter Examples ####
    # Get the stage C prostate cancer data from the rpart package
    data(stagec,package = "rpart")
   # Prepare the data. Create a model matrix without the event time and interactions
    stagec$pgtime <- NULL</pre>
    stagec$eet <- as.factor(stagec$eet)</pre>
    options(na.action = 'na.pass')
    stagec_mat <- cbind(pgstat = stagec$pgstat,</pre>
                         as.data.frame(model.matrix(pgstat ~ .*.,stagec))[-1])
    fnames <- colnames(stagec_mat)</pre>
    fnames <- str_replace_all(fnames,":","__")</pre>
    colnames(stagec_mat) <- fnames</pre>
    # Impute the missing data
    dataCancerImputed <- nearestNeighborImpute(stagec_mat)</pre>
 dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)</pre>
    # Get the top Features associated to pgstat
    q_values <- univariate_Logit(data=dataCancerImputed,</pre>
                                  Outcome="pgstat",
                                  pvalue = 0.05)
    qValueMatrix <- q_values</pre>
    idiqValueMatrix <- q_values</pre>
    barplot(-log(q_values),las=2,cex.names=0.4,ylab="-log(Q)",
    main="Association with PGStat: IDI Test")
```

```
q_values <- univariate_Logit(data=dataCancerImputed,</pre>
                              Outcome="pgstat",
                              uniTest="zNRI",pvalue = 0.05)
qValueMatrix <- cbind(idiqValueMatrix,q_values[names(idiqValueMatrix)])</pre>
q_values <- univariate_residual(data=dataCancerImputed,</pre>
                              Outcome="pgstat",
                              pvalue = 0.05,type="LOGIT")
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])</pre>
q_values <- univariate_tstudent(data=dataCancerImputed,</pre>
                                 Outcome="pgstat",
                                 pvalue = 0.05)
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])</pre>
q_values <- univariate_Wilcoxon(data=dataCancerImputed,</pre>
                                 Outcome="pgstat",
                                 pvalue = 0.05)
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])</pre>
q_values <- univariate_correlation(data=dataCancerImputed,</pre>
                                 Outcome="pgstat",
                                 pvalue = 0.05)
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])</pre>
q_values <- univariate_correlation(data=dataCancerImputed,</pre>
                                    Outcome="pgstat",
                                    pvalue = 0.05,
                                    method = "pearson")
#The qValueMatrix has the qValues of all filter methods.
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])</pre>
colnames(qValueMatrix) <- c("IDI","NRI","F","t","W","K","P")</pre>
#Do the log transform to display the heatmap
qValueMatrix <- -log10(qValueMatrix)</pre>
#the Heatmap of the q-values
gplots::heatmap.2(qValueMatrix,Rowv = FALSE,dendrogram = "col",
main = "Method q.values",cexRow = 0.4)
```

End(Not run)

ForwardSelection.Model.Bin

IDI/NRI-based feature selection procedure for linear, logistic, and Cox proportional hazards regression models

Description

This function performs a bootstrap sampling to rank the variables that statistically improve prediction. After the frequency rank, the function uses a forward selection procedure to create a final model, whose terms all have a significant contribution to the integrated discrimination improvement (IDI) or the net reclassification improvement (NRI). For each bootstrap, the IDI/NRI is computed and the variable with the largest statically significant IDI/NRI is added to the model. The procedure is repeated at each bootstrap until no more variables can be inserted. The variables that enter the model are then counted, and the same procedure is repeated for the rest of the bootstrap loops. The frequency of variable-inclusion in the model is returned as well as a model that uses the frequency of inclusion.

Usage

```
ForwardSelection.Model.Bin(size = 100,
```

```
fraction = 1,
pvalue = 0.05,
loops = 100,
covariates = "1",
Outcome,
variableList,
data,
maxTrainModelSize = 20,
type = c("LM", "LOGIT", "COX"),
timeOutcome = "Time",
selectionType=c("zIDI", "zNRI"),
cores = 6,
randsize = 0,
featureSize=0)
```

size	The number of candidate variables to be tested (the first size variables from variableList)
fraction	The fraction of data (sampled with replacement) to be used as train
pvalue	The maximum p -value, associated to either IDI or NRI, allowed for a term in the model
loops	The number of bootstrap loops
covariates	A string of the type "1 + var1 + var2" that defines which variables will always be included in the models (as covariates)
Outcome	The name of the column in data that stores the variable to be predicted by the model
variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables
data maxTrainModelS	A data frame where all variables are stored in different columns ize
	Maximum number of terms that can be included in the model
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
timeOutcome	The name of the column in data that stores the time to event (needed only for a Cox proportional hazards regression model fitting)

selectionType	The type of index to be evaluated by the improveProb function (Hmisc pack-age): <i>z</i> -score of IDI or of NRI
cores	Cores to be used for parallel processing
randsize	the model size of a random outcome. If randsize is less than zero. It will estimate the size
featureSize	The original number of features to be explored in the data frame.

Value

final.model	An object of class lm, glm, or coxph containing the final model
var.names	A vector with the names of the features that were included in the final model
formula	An object of class formula with the formula used to fit the final model
ranked.var	An array with the ranked frequencies of the features
z.selection	A vector in which each term represents the <i>z</i> -score of the index defined in selectionType obtained with the Full model and the model without one term
formula.list	A list containing objects of class formula with the formulas used to fit the models found at each cycle
variableList	A list of variables used in the forward selection

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

See Also

ForwardSelection.Model.Res

ForwardSelection.Model.Res

NeRI-based feature selection procedure for linear, logistic, or Cox proportional hazards regression models

Description

This function performs a bootstrap sampling to rank the most frequent variables that statistically aid the models by minimizing the residuals. After the frequency rank, the function uses a forward selection procedure to create a final model, whose terms all have a significant contribution to the net residual improvement (NeRI).

Usage

```
ForwardSelection.Model.Res(size = 100,
            fraction = 1,
            pvalue = 0.05,
            loops = 100,
            covariates = "1",
            Outcome,
            variableList,
            data,
            maxTrainModelSize = 20,
            type = c("LM", "LOGIT", "COX"),
            testType=c("Binomial", "Wilcox", "tStudent", "Ftest"),
            timeOutcome = "Time",
            cores = 6,
            randsize = 0,
            featureSize=0)
```

size	The number of candidate variables to be tested (the first size variables from variableList)	
fraction	The fraction of data (sampled with replacement) to be used as train	
pvalue	The maximum <i>p</i> -value, associated to the NeRI, allowed for a term in the model (controls the false selection rate)	
loops	The number of bootstrap loops	
covariates	A string of the type "1 + var1 + var2" that defines which variables will always be included in the models (as covariates)	
Outcome	The name of the column in data that stores the variable to be predicted by the model	
variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables	
data A data frame where all variables are stored in different columns maxTrainModelSize		
	Maximum number of terms that can be included in the model	
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")	
testType	Type of non-parametric test to be evaluated by the improvedResiduals func- tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student's <i>t</i> -test ("tStudent"), or <i>F</i> -test ("Ftest")	
timeOutcome	The name of the column in data that stores the time to event (needed only for a Cox proportional hazards regression model fitting)	
cores	Cores to be used for parallel processing	
randsize	the model size of a random outcome. If randsize is less than zero. It will estimate the size	
featureSize	The original number of features to be explored in the data frame.	

Value

final.model	An object of class 1m, g1m, or coxph containing the final model
var.names	A vector with the names of the features that were included in the final model
formula	An object of class formula with the formula used to fit the final model
ranked.var	An array with the ranked frequencies of the features
formula.list	A list containing objects of class formula with the formulas used to fit the models found at each cycle
variableList	A list of variables used in the forward selection

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

ForwardSelection.Model.Bin

FRESA.Model

Automated model selection

Description

This function uses a wrapper procedure to select the best features of a non-penalized linear model that best predict the outcome, given the formula of an initial model template (linear, logistic, or Cox proportional hazards), an optimization procedure, and a data frame. A filter scheme may be enabled to reduce the search space of the wrapper procedure. The false selection rate may be empirically controlled by enabling bootstrapping, and model shrinkage can be evaluated by cross-validation.

Usage

```
"Categorical",
                        "ZCategorical",
                        "RawZCategorical",
                        "RawTail",
                        "RawZTail<sup>"</sup>,
                        "Tail",
                        "RawRaw"),
cateGroups = c(0.1, 0.9),
raw.dataFrame = NULL,
var.description = NULL,
testType = c("zIDI",
              "zNRI",
              "Binomial",
              "Wilcox",
              "tStudent",
              "Ftest"),
lambda="lambda.1se",
equivalent=FALSE,
bswimsCycles=20,
usrFitFun=NULL
)
```

formula	An object of class formula with the formula to be fitted	
data	A data frame where all variables are stored in different columns	
OptType	Optimization type: Based on the integrated discrimination improvement (Bi- nary) index for binary classification ("Binary"), or based on the net residual improvement (NeRI) index for linear regression ("Residual")	
pvalue	The maximum p -value, associated to the testType, allowed for a term in the model (it will control the false selection rate)	
filter.p.value	The maximum p -value, for a variable to be included to the feature selection procedure	
loops	The number of bootstrap loops for the forward selection procedure	
maxTrainModelSize		
	Maximum number of terms that can be included in the model	
elimination.bootstrap.steps		
	The number of bootstrap loops for the backwards elimination procedure	
bootstrap.steps	3	
	The number of bootstrap loops for the bootstrap validation procedure	
print	Logical. If TRUE, information will be displayed	
plots	Logical. If TRUE, plots are displayed	
CVfolds	The number of folds for the final cross-validation	
repeats	The number of times that the cross-validation procedure will be repeated	

nk	The number of neighbors used to generate a k -nearest neighbors (KNN) classification. If zero, k is set to the square root of the number of cases. If less than zero, it will not perform the KNN classification
categorization	Туре
	How variables will be analyzed: As given in data ("Raw"); broken into the <i>p</i> -value categories given by cateGroups ("Categorical"); broken into the <i>p</i> -value categories given by cateGroups, and weighted by the <i>z</i> -score ("ZCategorical"); broken into the <i>p</i> -value categories given by cateGroups, weighted by the <i>z</i> -score, plus the raw values ("RawZCategorical"); raw values, plus the tails ("RawTail"); or raw values, weighted by the <i>z</i> -score, plus the tails ("RawZTail")
cateGroups	A vector of percentiles to be used for the categorization procedure
raw.dataFrame	A data frame similar to data, but with unadjusted data, used to get the means and variances of the unadjusted data
var.descriptio	n
	A vector of the same length as the number of columns of <i>data</i> , containing a description of the variables
testType	For an Binary-based optimization, the type of index to be evaluated by the improveProb function (Hmisc package): <i>z</i> -value of Binary or of NRI. For a NeRI-based optimization, the type of non-parametric test to be evaluated by the improvedResiduals function: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student's <i>t</i> -test ("tStudent"), or <i>F</i> -test ("Ftest")
lambda	The passed value to the s parameter of the glmnet cross validation coefficient
equivalent	Is set to TRUE CV will compute the equivalent model
bswimsCycles	The maximum number of models to be returned by BSWiMS.model
usrFitFun	An optional user provided fitting function to be evaluated by the cross validation procedure: fitting: usrFitFun(formula,data), with a predict function

Details

This important function of FRESA.CAD will model or cross validate the models. Given an outcome formula, and a data.frame this function will do an univariate analysis of the data (univariateRankVariables), then it will select the top ranked variables; after that it will select the model that best describes the outcome. At output it will return the bootstrapped performance of the model (bootstrapValidation_Bin or bootstrapValidation_Res). It can be set to report the cross-validation performance of the se-lection process which will return either a crossValidationFeatureSelection_Bin or a crossValidationFeatureSelect object.

Value

BSWiMS.model	An object of class lm, glm, or coxph containing the final model	
reducedModel	The resulting object of the backward elimination procedure	
univariateAnaly	sis	
	A data frame with the results from the univariate analysis	
forwardModel	The resulting object of the feature selection function.	
updatedforwardModel		
	The resulting object of the the update procedure	

FRESA.Model

bootstrappedModelThe resulting object of the bootstrap procedure on final.modelcvObjectThe resulting object of the cross-validation procedureused.variablesThe number of terms that passed the filter procedurecallthe function call

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

Examples

```
## Not run:
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "FRESA.Model.Example.pdf",width = 8, height = 6)
# Get the stage C prostate cancer data from the rpart package
data(stagec,package = "rpart")
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,
    pgtime = stagec$pgtime,
    as.data.frame(model.matrix(Surv(pgtime,pgstat) ~ .,stagec))[-1])
data(cancerVarNames)
```

dataCancerImputed <- nearestNeighborImpute(stagec_mat)</pre>

```
# Get a Cox proportional hazards model using:
# - The default parameters
md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,
    data = dataCancerImputed,
    var.description = cancerVarNames[,2])
pt <- plot(md$bootstrappedModel)
sm <- summary(md$BSWiMS.model)
print(sm$coefficients)
```

```
# Get a 10 fold CV Cox proportional hazards model using:
# - Repeat 10 times de CV
md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,
    data = dataCancerImputed, CVfolds = 10,
    repeats = 10,
    var.description = cancerVarNames[,2])
pt <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds = 10)
print(pt$predictionTable)
```

```
pt <- plotModels.ROC(md$cvObject$LASSO.testPredictions,theCVfolds = 10)</pre>
pt <- plotModels.ROC(md$cvObject$KNN.testPrediction,theCVfolds = 10)</pre>
# Get a regression of the survival time
timeSubjects <- dataCancerImputed</pre>
timeSubjects$pgtime <- log(timeSubjects$pgtime)</pre>
md <- FRESA.Model(formula = pgtime ~ 1,</pre>
  data = timeSubjects,
  var.description = cancerVarNames[,2])
pt <- plot(md$bootstrappedModel)</pre>
sm <- summary(md$BSWiMS.model)</pre>
print(sm$coefficients)
# Get a logistic regression model using
# - The default parameters and removing time as possible predictor
dataCancerImputed$pgtime <- NULL</pre>
md <- FRESA.Model(formula = pgstat ~ 1,</pre>
  data = dataCancerImputed,
  var.description = cancerVarNames[,2])
pt <- plot(md$bootstrappedModel)</pre>
sm <- summary(md$BSWiMS.model)</pre>
print(sm$coefficients)
# Get a logistic regression model using:
# - residual-based optimization
md <- FRESA.Model(formula = pgstat ~ 1,</pre>
  data = dataCancerImputed,
  OptType = "Residual",
  var.description = cancerVarNames[,2])
pt <- plot(md$bootstrappedModel)</pre>
sm <- summary(md$BSWiMS.model)</pre>
print(sm$coefficients)
# Shut down the graphics device driver
dev.off()
## End(Not run)
```

```
FRESAScale
```

Data frame normalization

Description

All features from the data will be normalized based on the distribution of the reference data-frame

GDSTMDecorrelation

Usage

Arguments

data	The dataframe to be normalized
refFrame	The reference frame that will be used to extract the feature distribution
method	The normalization method. Norm: Mean and Std, Order: Median and IQR, OrderLogit order plus logit, RankInv: rankInverseNormalDataFrame
refMean	The mean vector of the reference frame
refDisp	the data dispersion method of the reference frame
strata	the data stratification variable for the RankInv method

Details

The data-frame will be normalized according to the distribution of the reference frame or the mean vector(refMean) scaled by the reference dispersion vector(refDisp).

Value

scaledData	The scaled data set
refMean	The mean or median vector of the reference frame
refDisp	The data dispersion (standard deviation or IQR)

Author(s)

Jose G. Tamez-Pena

See Also

rankInverseNormalDataFrame

GDSTMDecorrelation Decorrelation of data frames

Description

All continous features that with significant correlation will be decorrelated

Usage

predictDecorrelate(decorrelatedobject,testData)

Arguments

data	The dataframe whose features will de decorrelated	
thr	The maximum allowed correlation.	
refdata	Option: A data frame that may be used to decorrelate the target dataframe	
Outcome	The target outcome for supervised basis	
baseFeatures	A vector of features to be used as basis vectors.	
unipvalue	Maximum p-value for correlation significance	
useDeCorr	if TRUE, the transformation matrix (GDSTM) will be computed	
maxLoops	the maxumum number of iteration loops	
verbose	if TRUE, it will display internal evolution of algorithm.	
method	if not set to "fast" the method will be pased to the cor() function.	
skipRelaxed	is set to FALSE it will use relaxed convergence	
	parameters passed to the featureAdjustment function.	
decorrelatedobject		
	The returned dataframe of the GDSTMDecorrelation function	
testData	the new dataframe to be decorrelated	

Details

The dataframe will be analyzed and significantly correlated features whose correlation is larger than the user supplied threshold will be decorrelated. Basis feature selection may be based on Outcome association or by an unsupervised method. The default options will run the decorrelation using fast matrix operations using Rfast; hence, Pearson correlation will be used to estimate the GDSTM.

Value

```
decorrelatedDataframe
The decorrelated data frame with the follwing attributes
attr:topFeatures)
Attribute of adjustedErame: The list of features that were
```

Attribute of adjustedFrame: The list of features that were decorrelated

64

attr:TotalAdjustments		
	Attribute of adjustedFrame: The count of how many iteration were required	
attr:GDSTM	Attribute of adjustedFrame: The Decorrelation matrix with the beta coefficients	
attr:varinclude	ed	
	Attribute of adjustedFrame: The list of input variables used in GDSTM	
attr:baseFeatur	res	
	Attribute of adjustedFrame: The list of features used as base features for super- vised basis	
attr:useDeCorr	Attribute of adjustedFrame: If TRUE the estimated GDSTM is used for decorrelation	
attr:correlatedToBase		
	Attribute of adjustedFrame: List of correlated features to the base features	
attr:AbaseFeatures		
	Attribute of adjustedFrame: List of unsupervised basis features	
attr:fscore	Attribute of adjustedFrame: The score of each feature.	

Author(s)

Jose G. Tamez-Pena

See Also

featureAdjustment

Examples

```
# load FRESA.CAD library
# library("FRESA.CAD")
# iris data set
data('iris')
colors <- c("red","green","blue")</pre>
names(colors) <- names(table(iris$Species))</pre>
classcolor <- colors[iris$Species]</pre>
#Decorrelating with usupervised basis and correlation goal set to 0.25
system.time(irisDecor <- GDSTMDecorrelation(iris,thr=0.25))</pre>
## The transformation matrix is stored at "GDSTM" attribute
GDSTM <- attr(irisDecor,"GDSTM")</pre>
print(GDSTM)
#Decorrelating with supervised basis and correlation goal set to 0.25
system.time(irisDecorOutcome <- GDSTMDecorrelation(iris,Outcome="Species",thr=0.25))</pre>
## The transformation matrix is stored at "GDSTM" attribute
GDSTM <- attr(irisDecorOutcome,"GDSTM")</pre>
print(GDSTM)
```

```
## Compute PCA
features <- colnames(iris[,sapply(iris,is,"numeric")])
irisPCA <- prcomp(iris[,features]);
## The PCA transformation
print(irisPCA$rotation)
## Plot the transformed sets
plot(iris[,features],col=classcolor,main="Raw IRIS")
plot(as.data.frame(irisPCA$x),col=classcolor,main="PCA IRIS")
featuresDecor <- colnames(irisDecor[,sapply(irisDecor,is,"numeric")])
plot(irisDecor[,featuresDecor],col=classcolor,main="Unsupervised FCA IRIS")</pre>
```

```
featuresDecor <- colnames(irisDecorOutcome[,sapply(irisDecorOutcome,is,"numeric")])
plot(irisDecorOutcome[,featuresDecor],col=classcolor,main="Supervised FCA IRIS")</pre>
```

getKNNpredictionFromFormula

Predict classification using KNN

Description

This function will return the classification of the samples of a test set using a *k*-nearest neighbors (KNN) algorithm with euclidean distances, given a formula and a train set.

Usage

Arguments

model.formula	An object of class formula with the formula to be used
trainData	A data frame with the data to train the model, where all variables are stored in different columns
testData	A data frame similar to trainData, but with the data set to be predicted
Outcome	The name of the column in trainData that stores the variable to be predicted by the model
nk	The number of neighbors used to generate the KNN classification

66

getSignature

Value

prediction	A vector with the predicted outcome for the testData data set
prob	The proportion of k neighbors that predicted the class to be the one being reported in prediction
binProb	The proportion of k neighbors that predicted the class of the outcome to be equal to 1
featureList	A vector with the names of the features used by the KNN procedure

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

predict.fitFRESA, knn

getSignature

Returns a CV signature template

Description

This function returns the matrix template [mean,sd,IQR] that maximizes the ROC AUC between cases of controls.

Usage

)

data	A data frame whose rows contains the sampled "subject" data, and each column is a feature.
varlist	The varlist is a character vector that list all the features to be searched by the Backward elimination forward selection procedure.
Outcome	The name of the column that has the binary outcome. 1 for cases, 0 for controls
target	The target template that will be used to maximize the AUC.

CVFolds	The number of folds to be used	
repeats	how many times the CV procedure will be repeated	
distanceFunction		
	The function to be used to compute the distance between the template and each sample	
	the parameters to be passed to the distance function	

Details

The function repeats full cycles of a Cross Validation (RCV) procedure. At each CV cycle the algorithm estimate the mean template and the distance between the template and the test samples. The ROC AUC is computed after the RCV is completed. A forward selection scheme. The set of features that maximize the AUC during the Forward loop is returned.

Value

controlTemplate		
	the control matrix with quantile probs[0.025,0.25,0.5,0.75,0.975] that maximized the AUC (template of controls subjects)	
caseTamplate	the case matrix with quantile probs[0.025,0.25,0.5,0.75,0.975] that maximized the AUC (template of case subjects)	
AUCevolution	The AUC value at each cycle	
featureSizeEvolution		
	The number of features at each cycle	
featureList	The final list of features	
CVOutput	A data frame with four columns: ID, Outcome, Case Distances, Control Dis- tances. Each row contains the CV test results	
MaxAUC	The maximum ROC AUC	

Author(s)

Jose G. Tamez-Pena

getVar.Bin

Analysis of the effect of each term of a binary classification model by analysing its reclassification performance

Description

This function provides an analysis of the effect of each model term by comparing the binary classification performance between the Full model and the model without each term. The model is fitted using the train data set, but probabilities are predicted for the train and test data sets. Reclassification improvement is evaluated using the improveProb function (Hmisc package). Additionally, the integrated discrimination improvement (IDI) and the net reclassification improvement (NRI) of each model term are reported.

getVar.Bin

Usage

getVar.Bin(object,

```
data,
Outcome = "Class",
type = c("LOGIT", "LM", "COX"),
testData = NULL,
callCpp=TRUE)
```

Arguments

object	An object of class lm, glm, or coxph containing the model to be analysed
data	A data frame where all variables are stored in different columns
Outcome	The name of the column in data that stores the variable to be predicted by the model
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
testData	A data frame similar to data, but with a data set to be independently tested. If NULL, data will be used.
callCpp	is set to true it will use the c++ implementation of improvement.

Value

z.IDIs	A vector in which each term represents the <i>z</i> -score of the IDI obtained with the Full model and the model without one term	
z.NRIs	A vector in which each term represents the <i>z</i> -score of the NRI obtained with the Full model and the model without one term	
IDIs	A vector in which each term represents the IDI obtained with the Full model and the model without one term	
NRIs	A vector in which each term represents the NRI obtained with the Full model and the model without one term	
testData.z.IDIs		
	A vector similar to z.IDIs, where values were estimated in testdata	
testData.z.NRIs		
	A vector similar to z.NRIs, where values were estimated in testdata	
testData.IDIs	A vector similar to IDIs, where values were estimated in testdata	
testData.NRIs	A vector similar to NRIs, where values were estimated in testdata	
uniTrainAccuracy		
	A vector with the univariate train accuracy of each model variable	
uniTestAccuracy		
	A vector with the univariate test accuracy of each model variable	
	A vector with the univariate train accuracy of each model variable	

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

See Also

getVar.Res

getVar.Res

Analysis of the effect of each term of a linear regression model by analysing its residuals

Description

This function provides an analysis of the effect of each model term by comparing the residuals of the Full model and the model without each term. The model is fitted using the train data set, but analysis of residual improvement is done on the train and test data sets. Residuals are compared by a paired t-test, a paired Wilcoxon rank-sum test, a binomial sign test and the F-test on residual variance. Additionally, the net residual improvement (NeRI) of each model term is reported.

Usage

object	An object of class lm, glm, or coxph containing the model to be analyzed
data	A data frame where all variables are stored in different columns
Outcome	The name of the column in data that stores the variable to be predicted by the model
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
testData	A data frame similar to data, but with a data set to be independently tested. If NULL, data will be used.
callCpp	is set to true it will use the c++ implementation of residual improvement.

Value

tP.value	A vector in which each element represents the single sided <i>p</i> -value of the paired <i>t</i> -test comparing the absolute values of the residuals obtained with the Full model and the model without one term	
BinP.value	A vector in which each element represents the <i>p</i> -value associated with a significant improvement in residuals according to the binomial sign test	
WilcoxP.value	A vector in which each element represents the single sided <i>p</i> -value of the Wilcoxon rank-sum test comparing the absolute values of the residuals obtained with the Full model and the model without one term	
FP.value	A vector in which each element represents the single sided <i>p</i> -value of the <i>F</i> -test comparing the residual variances of the residuals obtained with the Full model and the model without one term	
NeRIs	A vector in which each element represents the net residual improvement be- tween the Full model and the model without one term	
testData.tP.va	lue	
	A vector similar to tP.value, where values were estimated in testdata	
testData.BinP.	value	
	A vector similar to BinP.value, where values were estimated in testdata	
testData.WilcoxP.value		
	A vector similar to WilcoxP.value, where values were estimated in testdata	
testData.FP.value		
	A vector similar to FP.value, where values were estimated in testdata	
testData.NeRIs	A vector similar to NeRIs, where values were estimated in testdata	
unitestMSE	A vector with the univariate residual mean sum of squares of each model variable on the test data	
unitrainMSE	A vector with the univariate residual mean sum of squares of each model variable on the train data	

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

getVar.Bin

GLMNET

GLMNET fit with feature selection"

Description

Fits a glmnet::cv.glmnet object to the data, and sets the prediction to use the features that created the minimum CV error or one SE.

Usage

```
GLMNET(formula = formula,data=NULL,coef.thr=0.001,s="lambda.min",...)
LASSO_MIN(formula = formula,data=NULL,...)
LASSO_1SE(formula = formula,data=NULL,...)
GLMNET_ELASTICNET_MIN(formula = formula,data=NULL,...)
GLMNET_RIDGE_MIN(formula = formula,data=NULL,...)
GLMNET_RIDGE_1SE(formula = formula,data=NULL,...)
```

Arguments

formula	The base formula to extract the outcome
data	The data to be used for training the KNN method
coef.thr	The threshold for feature selection when $alpha < 1$.
S	The lambda threshold to be use at prediction and feature selection
	Parameters to be passed to the cv.glmnet function

Value

fit	The glmnet::cv.glmnet fitted object
S	The s. Set to "lambda.min" or "lambda.lse" for prediction
formula	The formula
outcome	The name of the outcome
usedFeatures	The list of features to be used

Author(s)

Jose G. Tamez-Pena

See Also

glmnet::cv.glmnet

GMVEBSWiMS

Hybrid Hierarchical Modeling with GMVE and BSWiMS

Description

This function returns the BSWiMS supervised-classifier present at each one of the GMVE unsupervised Gaussian data clusters

72

GMVEBSWiMS

Usage

Arguments

formula	An object of class formula with the formula to be fitted
data	A data frame where all variables are stored in different columns
GMVE.control	Control parameters of the GMVECluster function
	Parameters to be passed to the BSWiMS.model function

Details

First, the function calls the BSWiMS function that returns the relevant features associated with the outcome. Then, it calls the GMVE clustering algorithm (GMVECluster) that returns a relevant data partition based on Gaussian clusters. Finally, the function will execute the BSWiMS.model classification function on each cluster returned by GMVECluster.

Value

features	The character vector with the releavant BSWiMS features.
cluster	The GMVECluster object
models	The list of BSWiMS.model models per cluster

Author(s)

Jose G. Tamez-Pena

Examples

```
## Not run:
# Get the Sonar data set
    library(mlbench)
    data(Sonar)
    Sonar$Class <- 1*(Sonar$Class == "M")
#Train hierachical classifier
    mc <- GMVEBSWiMS(Class~.,Sonar)
#report the classification
    pb <- predict(mc,Sonar)
    print(table(1*(pb>0.0),Sonar$Class))
```

End(Not run)

GMVECluster

Description

The Function will return the set of Gaussian Ellipsoids that best model the data

Usage

```
GMVECluster(dataset,
    p.threshold=0.975,
    samples=10000,
    p.samplingthreshold=0.50,
    sampling.rate = 3,
    jitter=TRUE,
    tryouts=25,
    pca=TRUE,
    verbose=FALSE)
```

Arguments

dataset	The data set to be clustered
p.threshold	The p-value threshold of point acceptance into a set.
samples	If the set is large, The number of random samples
p.samplingthre	shold
	Defines the maximum distance between set candidate points
sampling.rate	Uniform sampling rate for candidate clusters
jitter	If true, will jitter the data set
tryouts	The number of cluster candidates that will be analyed per sampled point
рса	If TRUE, it will use the PCA transform for dimension reduction
verbose	If true it will print the clustering evolution

Details

Implementation of the GMVE clustering algorithm as proposed by Jolion et al. (1991).

Value

cluster	The numeric vector with the cluster label of each point
classification	The numeric vector with the cluster label of each point
centers	The list of cluster centers
covariances	The list of cluster covariance

heatMaps

robCov	The list of robust covariances per cluster
k	The number of discovered clusters
features	The characer vector with the names of the features used
jitteredData	The jittered dataset

Author(s)

Jose G. Tamez-Pena

References

Jolion, Jean-Michel, Peter Meer, and Samira Bataouche. "Robust clustering with applications in computer vision." IEEE Transactions on Pattern Analysis & Machine Intelligence 8 (1991): 791-802.

```
heatMaps
```

Plot a heat map of selected variables

Description

This function creates a heat map for a data set based on a univariate or frequency ranking

Usage

```
heatMaps(variableList=NULL,
    varRank = NULL,
    Outcome,
    data,
    title = "Heat Map",
    hCluster = FALSE,
    prediction = NULL,
    Scale = FALSE,
    theFiveColors=c("blue","cyan","black","yellow","red"),
    outcomeColors = c("blue","lightgreen","yellow","orangered","red"),
    transpose=FALSE,
    ...)
```

Arguments

variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables
varRank	A data frame with the name of the variables in variableList, ranked according to a certain metric
Outcome	The name of the column in data that stores the variable to be predicted by the model
data	A data frame where all variables are stored in different columns

title	The title of the plot
hCluster	Logical. If TRUE, variables will be clustered
prediction	A vector with a prediction for each subject, which will be used to rank the heat map
Scale	An optional value to force the data normalization outcome
theFiveColors	the colors of the heatmap
outcomeColors	the colors of the outcome bar
transpose	transpose the heatmap
	additional parameters for the heatmap.2 function

Value

dataMatrix	A matrix with all the terms in data described by variableList
orderMatrix	A matrix similar to dataMatrix, where rows are ordered according to the outcome
heatMap	A list with the values returned by the heatmap.2 function (gplots package)

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

Examples

```
## Not run:
library(rpart)
data(stagec)
# Set the options to keep the na
options(na.action='na.pass')
# create a model matrix with all the NA values imputed
stagecImputed <- as.data.frame(nearestNeighborImpute(model.matrix(~.,stagec)[,-1]))</pre>
# the simple heat map
hm <- heatMaps(Outcome="pgstat",data=stagecImputed,title="Heat Map",Scale=TRUE)</pre>
# transposing the heat-map with clustered colums
hm <- heatMaps(Outcome="pgstat",data=stagecImputed,title="Heat Map",Scale=TRUE,</pre>
   transpose= TRUE, hCluster = TRUE,
   cexRow=0.80,cexCol=0.50,srtCol=35)
# transposing the heat-map with reds and time to event as outcome
hm <- heatMaps(Outcome="pgtime",data=stagecImputed,title="Heat Map",Scale=TRUE,</pre>
   theFiveColors=c("black","red","orange","yellow","white"),
   cexRow=0.50,cexCol=0.80,srtCol=35)
## End(Not run)
```

HLCM

Description

Modeling a binary outcome via the the discovery of latent clusters. Each discovered latent cluster is modeled by the user provided fit function. Discovered clusters will be modeled by KNN or SVM.

Usage

```
)
```

Arguments

formula	the base formula to extract the outcome	
data	the data to be used for training the method	
method	the binary classification function	
hysteresis	the hysteresis shift for detecting wrongly classified subjects	
classMethod	the function name for modeling the discovered latent clusters	
classModel.Control		
	the parameters to be passed to the latent-class fitting function	
minsize	the minimum size of the discovered clusters	
	parameters for the classification function	

Value

original	The original model trained with all the dataset	
alternativeModel		
	The model used to classify the wrongly classified samples	
classModel	The method that models the latent class	
accuracy	The original accuracy	
selectedfeatures		
	The character vector of selected features	
hysteresis	The used hysteresis	
classSet	The discovered class label of each sample	

Author(s)

Jose G. Tamez-Pena

See Also

class::knn

improvedResiduals Estimate the significance of the reduction of predicted residuals

Description

This function will test the hypothesis that, given a set of two residuals (new vs. old), the new ones are better than the old ones as measured with non-parametric tests. Four *p*-values are provided: one for the binomial sign test, one for the paired Wilcoxon rank-sum test, one for the paired *t*-test, and one for the F-test. The proportion of subjects that improved their residuals, the proportion that worsen their residuals, and the net residual improvement (NeRI) will be returned.

Usage

Arguments

oldResiduals	A vector with the residuals of the original model
newResiduals	A vector with the residuals of the new model
testType	Type of non-parametric test to be evaluated: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student's <i>t</i> -test ("tStudent"), or <i>F</i> -test ("Ftest")

Details

This function will test the hypothesis that the new residuals are "better" than the old residuals. To test this hypothesis, four types of tests are performed:

- 1. The paired *t*-test, which compares the absolute value of the residuals
- 2. The paired Wilcoxon rank-sum test, which compares the absolute value of residuals
- 3. The binomial sign test, which evaluates whether the number of subjects with improved residuals is greater than the number of subjects with worsened residuals
- 4. The *F*-test, which is the standard test for evaluating whether the residual variance is "better" in the new residuals.

The proportions of subjects that improved and worsen their residuals are returned, and so is the NeRI.

78

jaccardMatrix

Value

р1	Proportion of subjects that improved their residuals to the total number of subjects
p2	Proportion of subjects that worsen their residuals to the total number of subjects
NeRI	The net residual improvement (p1-p2)
p.value	The one tail <i>p</i> -value of the test specified in <i>testType</i>
BinP.value	The <i>p</i> -value associated with a significant improvement in residuals
WilcoxP.value	The single sided <i>p</i> -value of the Wilcoxon rank-sum test comparing the absolute values of the new and old residuals
tP.value	The single sided <i>p</i> -value of the paired t-test comparing the absolute values of the new and old residuals
FP.value	The single sided <i>p</i> -value of the F-test comparing the residual variances of the new and old residuals

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

jaccardMatrix

Jaccard Index of two labeled sets

Description

The Jaccard Index analysis of two labeled sets

Usage

```
jaccardMatrix(clustersA=NULL,clustersB=NULL)
```

Arguments

clustersA	The first labeled point set
clustersB	The second labeled point set

Details

This function will compute the Jaccard Index Matrix: ((A==i) and (B==j))/((A==i) or (B==j)) for all i,j possible label pairs present in A and B

Value

jaccardMat The numeric matrix of Jaccard Indexes of all possible paired sets elementJaccard The corresponding Jaccard index for each data point balancedMeanJaccard The average of all marginal Jaccards

Author(s)

Jose G. Tamez-Pena

KNN_method

KNN Setup for KNN prediction

Description

Prepares the KNN function to be used to predict the class of a new set

Usage

KNN_method(formula = formula,data=NULL,...)

Arguments

formula	the base formula to extract the outcome
data	the data to be used for training the KNN method
	parameters for the KNN function and the data scaling method

Value

trainData	The data frame to be used to train the KNN prediction
scaledData	The scaled training set
classData	A vector with the outcome to be used by the KNN function
outcome	The name of the outcome
usedFeatures	The list of features to be used by the KNN method
mean_col	A vector with the mean of each training feature
disp_col	A vector with the dispesion of each training feature
kn	The number of neigbors to be used by the predict function
scaleMethod	The scaling method to be used by FRESAScale() function

Author(s)

Jose G. Tamez-Pena

See Also

class::knn,FRESAScale

listTopCorrelatedVariables

List the variables that are highly correlated with each other

Description

This function computes the Pearson, Spearman, or Kendall correlation for each specified variable in the data set and returns a list of the variables that are correlated to them. It also provides a short variable list without the highly correlated variables.

Usage

Arguments

variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables
data	A data frame where all variables are stored in different columns
pvalue	The maximum p -value, associated to method, allowed for a pair of variables to be defined as significantly correlated
corthreshold	The minimum correlation score, associated to method, allowed for a pair of variables to be defined as significantly correlated
method	Correlation method: Pearson product-moment ("pearson"), Spearman's rank ("spearman"), or Kendall rank ("kendall")

Value

correlated.va	riables
	A data frame with two columns:
	 cor.var.names: The variables that are correlated cor.var.value: The correlation value
short.list	A vector with a list of variables that are not correlated to each other. For every correlated pair, only the variable that first entered the correlation analysis was kept

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

Examples

```
## Not run:
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "Example.pdf")
# Get the stage C prostate cancer data from the rpart package
library(rpart)
data(stagec)
# Split the stages into several columns
dataCancer <- cbind(stagec[,c(1:3,5:6)],</pre>
                    gleason4 = 1*(stagec[,7] == 4),
                    gleason5 = 1*(stagec[,7] == 5),
                    gleason6 = 1*(stagec[,7] == 6),
                    gleason7 = 1*(stagec[,7] == 7),
                    gleason8 = 1*(stagec[,7] == 8),
                    gleason910 = 1*(stagec[,7] >= 9),
                    eet = 1*(stagec[,4] == 2),
                    diploid = 1*(stagec[,8] == "diploid"),
                    tetraploid = 1*(stagec[,8] == "tetraploid"),
                    notAneuploid = 1-1*(stagec[,8] == "aneuploid"))
# Remove the incomplete cases
dataCancer <- dataCancer[complete.cases(dataCancer),]</pre>
# Load a pre-stablished data frame with the names and descriptions of all variables
data(cancerVarNames)
# Get the variables that have a correlation coefficient larger
# than 0.65 at a p-value of 0.05
cor <- listTopCorrelatedVariables(variableList = cancerVarNames,</pre>
                                   data = dataCancer,
                                   pvalue = 0.05,
                                   corthreshold = 0.65,
                                   method = "pearson")
# Shut down the graphics device driver
dev.off()
## End(Not run)
```

LM_RIDGE_MIN Ridge Linear Models

Description

FRESA wrapper to fit MASS::lm.ridge object to the data and returning the coef with minimum GCV $% \mathcal{A}_{\mathrm{S}}$

Usage

LM_RIDGE_MIN(formula = formula,data=NULL,...)

Arguments

formula The base formula to extract the outcome

82

modelFitting

data	The data to be used for training the method
	Parameters to be passed to the MASS::lm.ridge function

Value

fit	The MASS::lm.ridge fitte	ed object
-----	--------------------------	-----------

Author(s)

Jose G. Tamez-Pena

See Also

MASS::lm.ridge

modelFitting Fit a model to the data

Description

This function fits a linear, logistic, or Cox proportional hazards regression model to given data

Usage

Arguments

model.formula	An object of class formula with the formula to be used
data	A data frame where all variables are stored in different columns
type	Fit type: Logistic ("LOGIT"), linear ("LM"), Cox proportional hazards ("COX") or "SVM"
fitFRESA	if true it will perform use the FRESA cpp code for fitting
	Additional parameters for fitting a default glm object

Value

A fitted model of the type defined in type

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

mRMR.classic_FRESA FRESA.CAD wrapper of mRMRe::mRMR.classic

Description

Returns the positive MI-scored set of maximum relevance minimum redundancy (mRMR) features returned by the mMRM.classic function

Usage

```
mRMR.classic_FRESA(data=NULL, Outcome=NULL, feature_count=0,...)
```

Arguments

data	The data frame
Outcome	The outcome feature
feature_count	The number of features to return
	$Extra \ parameters \ to \ be \ passed \ to \ the \ mRMRe::mMRM.classic \ function$

Value

Named vector with the MI-score of the selected features

Author(s)

Jose G. Tamez-Pena

See Also

mRMRe::mRMR.classic

NAIVE_BAYES Naive Bayes Modeling

Description

FRESA wrapper to fit naivebayes::naive_bayes object to the data

Usage

```
NAIVE_BAYES(formula = formula,data=NULL,pca=TRUE,normalize=TRUE,...)
```

nearestCentroid

Arguments

formula	The base formula to extract the outcome
data	The data to be used for training the method
рса	Apply PCA?
normalize	Apply data normalization?
	Parameters to be passed to the naivebayes::naive_bayes function

Value

Author(s)

Jose G. Tamez-Pena

See Also

naivebayes::naive_bayes

nearestCentroid Class Label Based on the Minimum Mahalanobis Distance

Description

The function will return the set of labels of a data set

Usage

Arguments

dataset	The data set to be labeled
clustermean	The list of cluster centers.
clustercov	The list of cluster covariances
p.threshold	The minimum aceptance p.value

Details

The data set will be labeled based on the nearest cluster label. Points distance with membership probability lower than the acceptance threshold will have the "0" label.

Value

ClusterLabels The labels of each point

Author(s)

Jose G. Tamez-Pena

nearestNeighborImpute nearest neighbor NA imputation

Description

The function will replace any NA present in the data-frame with the median values of the nearest neighbours.

Usage

Arguments

tobeimputed	a data frame with missing values (NA values)
referenceSet	An optional data frame with a set of complete observations. This data frame will be added to the search set
catgoricCol	An optional list of columns names that should be consider categorical
distol	The tolerance used to define if a particular set of row observations is similar to the minimum distance
useorder	Impute using the last observation on startified by categorical data

Details

This function will find any NA present in the data set and it will search for the row set of complete observations that have the closest IQR normalized Manhattan distance to the row with missing values. If a set of rows have similar minimum distances (toldis*(minimum distance) > row set distance) the median value will be used.

Value

A data frame, where each NA has been replaced with the value of the nearest neighbors

Author(s)

Jose G. Tamez-Pena

Examples

```
## Not run:
# Get the stage C prostate cancer data from the rpart package
library(rpart)
data(stagec)
# Set the options to keep the na
options(na.action='na.pass')
# create a model matrix with all the NA values imputed
stagecImputed <- nearestNeighborImpute(model.matrix(~.,stagec)[,-1])</pre>
```

End(Not run)

Description

This function plots ROC curves and a Kaplan-Meier curve (when fitting a Cox proportional hazards regression model) of a bootstrapped model.

Usage

Arguments

х	A bootstrapValidation_Bin object
xlab	The label of the <i>x</i> -axis
ylab	The label of the <i>y</i> -axis
strata.levels	stratification level for the Kaplan-Meier plots
main	Main Plot title
cex	The text cex
	Additional parameters for the generic plot function

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

plot.bootstrapValidation_Res

plot.bootstrapValidation_Res

Plot ROC curves of bootstrap results

Description

This function plots ROC curves and a Kaplan-Meier curve (when fitting a Cox proportional hazards regression model) of a bootstrapped model.

Usage

Arguments

х	A bootstrapValidation_Res object
xlab	The label of the <i>x</i> -axis
ylab	The label of the <i>y</i> -axis
	Additional parameters for the plot

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

plot.bootstrapValidation_Bin

88

plot.FRESA_benchmark Plot the results of the model selection benchmark

Description

The different output metrics of the benchmark (BinaryBenchmark,RegresionBenchmark or OrdinalBenchmark) are plotted. It returns data matrices that describe the different plots.

Usage

```
## S3 method for class 'FRESA_benchmark'
plot(x,...)
```

Arguments

х	A FRESA_benchmark object
	Additional parameters for the generic plot function

Value

metrics	The model test performance based on the predictionStats_binary, predictionStats_regression or predictionStats_ordinal functions.	
barPlotsCI	The barPlotCiError outputs for each metric.	
<pre>metrics_filter</pre>	The model test performance for each filter method based on the predictionStats_binary function.	
barPlotsCI_filter		
	The barPlotCiError outputs for each metric on the filter methods	
minMaxMetrics	Reports the min and maximum value for each reported metric.	

Author(s)

Jose G. Tamez-Pena

See Also

BinaryBenchmark, predictionStats_binary

plotModels.ROC

Description

This function plots test ROC curves of each model found in the cross validation process. It will also aggregate the models into a single prediction performance, plotting the resulting ROC curve (models coherence). Furthermore, it will plot the mean sensitivity for a given set of specificities.

Usage

```
plotModels.ROC(modelPredictions,
    number.of.models=0,
    specificities=c(0.975,0.95,0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20,0.10,0.05),
    theCVfolds=1,
    predictor="Prediction",
    cex=1.0,
        ...)
```

Arguments

modelPredictions

	A data frame returned by the crossValidationFeatureSelection_Bin func-
	tion, either the Models.testPrediction, the FullBSWiMS.testPrediction,
	the Models.CVtestPredictions, the TestRetrained.blindPredictions,
	the KNN.testPrediction, or the LASSO.testPredictions value
odo]	

number.of.models

	The maximum number of models to plot
specificities	Vector containing the specificities at which the ROC sensitivities will be calculated
theCVfolds	The number of folds performed in a Cross-validation experiment
predictor	The name of the column to be plotted
cex	Controlling the font size of the text inside the plots
	Additional parameters for the roc function (pROC package)

Value

ROC.AUCs	A vector with the AUC of each ROC
mean.sensitivit	ies
	A vector with the mean sensitivity at the specificities given by specificities
model.sensitivi	ties
	A matrix where each row represents the sensitivity at the specificity given by specificities for a different ROC
specificities	The specificities used to calculate the sensitivities
senAUC	The AUC of the ROC curve that resulted from using mean.sensitivities

predict.CLUSTER_CLASS

predictionTable The confusion matrix between the outcome and the ensemble prediction ensemblePrediction

The ensemble (median prediction) of the repeated predictions

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

predict.CLUSTER_CLASS Predicts ClustClass outcome

Description

This function predicts the outcome from a ClustClass classifier

Usage

S3 method for class 'CLUSTER_CLASS'
predict(object,...)

Arguments

object	An object of class CLUSTER_CLASS
	A list with: testdata=testdata

Value

the predict of a hierarchical ClustClass classifier

Author(s)

Jose G. Tamez-Pena

See Also

ClustClass

predict.fitFRESA Linear or probabilistic prediction

Description

This function returns the predicted outcome of a specific model. The model is used to generate linear predictions. The probabilistic values are generated using the logistic transformation on the linear predictors.

Usage

Arguments

object	An object of class fitFRESA containing the model to be analyzed
	A list with: testdata=testdata;predictType=c("linear","prob") and impute=FALSE.
	If impute is set to TRUE it will use the object model to impute missing data

Value

A vector with the predicted values

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

nearestNeighborImpute

predict.FRESAKNN Predicts class::knn models

Description

This function predicts the outcome from a FRESAKNN model

Usage

S3 method for class 'FRESAKNN'
predict(object,...)

Arguments

object	An object of class FRESAKNN containing the KNN train set
	A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

KNN_method, class::knn

predict.FRESAsignature

Predicts CVsignature models

Description

This function predicts the outcome from a FRESAsignature model

Usage

```
## S3 method for class 'FRESAsignature'
predict(object,...)
```

Arguments

object	An object of class FRESAsignature
	A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

CVsignature,getSignature,signatureDistance

predict.FRESA_BESS Predicts BESS models

Description

This function predicts the outcome from a BESS model

Usage

```
## S3 method for class 'FRESA_BESS'
predict(object,...)
```

Arguments

object	An object of class FRESA_BESS
	A list with: testdata=testdata

Value

the predict BESS object

Author(s)

Jose G. Tamez-Pena

See Also

BESS

predict.FRESA_FILTERFIT

Predicts filteredFit models

Description

This function predicts the outcome from a filteredFit model

Usage

```
## S3 method for class 'FRESA_FILTERFIT'
predict(object,...)
```

Arguments

object	An object of class FRESA_FILTERFIT
	A list with: testdata=testdata

predict.FRESA_GLMNET

Value

the predicted outcome

Author(s)

Jose G. Tamez-Pena

predict.FRESA_GLMNET Predicts GLMNET fitted objects

Description

This function predicts the outcome from a FRESA_GLMNET fitted object

Usage

S3 method for class 'FRESA_GLMNET'
predict(object,...)

Arguments

object	An object of class FRESA_GLMNET containing the model to be analyzed
	A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

GLMNET

predict.FRESA_HLCM Predicts BOOST_BSWiMS models

Description

This function predicts the outcome from a BOOST_BSWiMS model

Usage

```
## S3 method for class 'FRESA_HLCM'
predict(object,...)
```

Arguments

object	An object of class FRESA_HLCM
	A list with: testdata=testdata

Value

the predict of boosted BSWiMS

Author(s)

Jose G. Tamez-Pena

See Also

BSWiMS.model

predict.FRESA_NAIVEBAYES

Predicts NAIVE_BAYES models

Description

This function predicts the outcome from a FRESA_NAIVEBAYES model

Usage

```
## S3 method for class 'FRESA_NAIVEBAYES'
predict(object,...)
```

Arguments

object	An object of class FRESA_NAIVEBAYES
	A list with: testdata=testdata

predict.FRESA_RIDGE

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

NAIVE_BAYES

predict.FRESA_RIDGE *Predicts* LM_RIDGE_MIN *models*

Description

This function predicts the outcome from a LM_RIDGE_MIN model

Usage

S3 method for class 'FRESA_RIDGE'
predict(object,...)

Arguments

object	An object of class FRESA_RIDGE
	A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

LM_RIDGE_MIN

predict.FRESA_SVM Predicts TUNED_SVM models

Description

This function predicts the outcome from a TUNED_SVM model

Usage

```
## S3 method for class 'FRESA_SVM'
predict(object,...)
```

Arguments

object	An object of class FRESA_SVM
	A list with: testdata=testdata

Value

the predict e1071::svm object

Author(s)

Jose G. Tamez-Pena

See Also

TUNED_SVM

predict.GMVE

Predicts GMVECluster clusters

Description

This function predicts the class of a GMVE generated cluster

Usage

S3 method for class 'GMVE'
predict(object,...)

Arguments

object	An object of class GMVE
	A list with: testdata=testdata. thr=p.value threshold

predict.GMVE_BSWiMS

Value

a named list with the predicted class of every data sample

Author(s)

Jose G. Tamez-Pena

See Also

GMVECluster

predict.GMVE_BSWiMS *Predicts* GMVEBSWiMS *outcome*

Description

This function predicts the outcome from a GMVEBSWiMS classifier

Usage

S3 method for class 'GMVE_BSWiMS'
predict(object,...)

Arguments

object	An object of class GMVE_BSWiMS
	A list with: testdata=testdata

Value

the predict of a hierarchical GMVE-BSWiMS classifier

Author(s)

Jose G. Tamez-Pena

See Also

GMVEBSWiMS

predictionStats Prediction Evaluation

Description

This function returns the statistical metrics describing the association between model predictions and the ground truth outcome

Usage

```
predictionStats_binary(predictions, plotname="", center=FALSE,...)
predictionStats_regression(predictions, plotname="",...)
predictionStats_ordinal(predictions, plotname="",...)
predictionStats_survival(predictions, plotname="", atriskthr=1.0,...)
```

Arguments

predictions	A matrix whose first column is the ground truth, and the second is the model prediction
plotname	The main title to be used by the plot function. If empty, no plot will be provided
center	For binary predictions indicates if the prediction is around zero
atriskthr	For survival predictions indicates the threshoold for at risk subjects.
	Extra parameters to be passed to the plot function.

Details

These functions will analyze the prediction outputs and will compare to the ground truth. The output will depend on the prediction task: Binary classification, Linear Regression, Ordinal regression or Cox regression.

Value

ассс	The classification accuracy with its95% confidence intervals (95/
berror	The balanced error rate with its 95%CI
aucs	The ROC area under the curve (ROC AUC) of the binary classifier with its 95% CI
specificity	The specificity with its 95%CI
sensitivity	The sensitivity with its 95%CI
ROC.analysis	The output of the ROC function
CM.analysis	The output of the epiR::epi.tests function
corci	the Pearson correlation with its 95%CI
biasci	the regression bias and its 95%CI

randomCV

RMSEci	the root mean square error (RMSE) and its 95%CI
spearmanci	the Spearman correlation and its 95%CI
MAEci	the mean absolute difference(MAE) and its 95%CI
pearson	the output of the cor.test function
Kendall	the Kendall correlation and its 95%CI
Bias	the ordinal regression bias and its 95%CI
BMAE	the balanced mean absolute difference for ordinal regression
class95ci	the output of the bootstrapped estimation of accuracy, sensitivity, and ROC AUC
KendallTauB	the output of the DescTools::KendallTauB function
Kappa.analysis	the output of the irr::kappa2 function
CIFollowUp	The follow-up concordance index with its95% confidence intervals (95/
CIRisk	The risks concordance index with its95% confidence intervals (95/
LogRank	The LogRank test with its95% confidence intervals (95/

Author(s)

Jose G. Tamez-Pena

See Also

randomCV

randomCV

Cross Validation of Prediction Models

Description

The data set will be divided into a random train set and a test sets. The train set will be modeled by the user provided fitting method. Each fitting method must have a prediction function that will be used to predict the outcome of the test set.

Usage

randomCV

```
"NoAugmented","Augmented",
"LOO"),
testingSet=NULL,
```

Arguments

...)

theData	The data-frame for cross-validation
theOutcome fittingFunctior	The name of the outcome
	The fitting function used to model the data
trainFraction	The percentage of the data to be used for training
repetitions	The number of times that the CV process will be repeated
trainSampleSets	5
	A set of train samples
featureSelectio	pnFunction
	The feature selection function to be used to filter out irrelevant features
featureSelectio	on.control
	The parameters to control the feature selection function
asFactor	Set theOutcome as factor
addNoise	if TRUE will add 0.1
classSamplingType	
	if "Proportional": proportional to the data classes. "Augmented": Augment samples to balance training class "NoAugmented": Avoid Data augmentation hece training may not be balanced "Balanced": All class in training set have the same samples
testingSet	An extra set for testing Models
	Parameters to be passed to the fitting function

Value

testPredictions	
	All the predicted outcomes. Is a data matrix with three columns c("Outcome", "Model", "Prediction").
	Each row has a prediction for a given test subject
trainPrediction	IS
	All the predicted outcomes in the train data set. Is a data matrix with three
	columns c("Outcome", "Model", "Prediction"). Each row has a prediction for a
	given test subject
medianTest	The median of the test prediction for each subject
medianTrain	The median of the prediction for each train subject
boxstaTest	The statistics of the boxplot for test data
boxstaTrain	The statistics of the boxplot for train data
trainSamplesSets	
	The id of the subjects used for training

The id of the subjects used for training

randomCV

selectedFeature	esSet
	A list with all the features used at each training cycle
featureFrequence	Cy
	A order table object that describes how many times a feature was selected.
jaccard	The jaccard index of the features as well as the average number of features used for prediction
theTimes	The CPU time analysis

Author(s)

Jose G. Tamez-Pena

Examples

Not run:

```
### Cross Validation Example ####
  # Start the graphics device driver to save all plots in a pdf format
  pdf(file = "CrossValidationExample.pdf",width = 8, height = 6)
  # Get the stage C prostate cancer data from the rpart package
  data(stagec,package = "rpart")
   # Prepare the data. Create a model matrix with interactions but no event time
  stagec$pgtime <- NULL</pre>
  stagec$eet <- as.factor(stagec$eet)</pre>
  options(na.action = 'na.pass')
  stagec_mat <- cbind(pgstat = stagec$pgstat,</pre>
                    as.data.frame(model.matrix(pgstat ~ .*.,stagec))[-1])
  fnames <- colnames(stagec_mat)</pre>
   fnames <- str_replace_all(fnames,":","__")</pre>
  colnames(stagec_mat) <- fnames</pre>
  # Impute the missing data
   dataCancerImputed <- nearestNeighborImpute(stagec_mat)</pre>
dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)</pre>
  # Cross validating a Random Forest classifier
  cvRF <- randomCV(dataCancerImputed,"pgstat",</pre>
                    randomForest::randomForest,
                     trainFraction = 0.8,
                    repetitions = 10,
                    asFactor = TRUE);
  # Evaluate the prediction performance of the Random Forest classifier
  RFStats <- predictionStats_binary(cvRF$medianTest,</pre>
  plotname = "Random Forest",cex = 0.9);
  # Cross validating a BSWiMS with the same train/test set
  cvBSWiMS <- randomCV(fittingFunction = BSWiMS.model,</pre>
   trainSampleSets = cvRF$trainSamplesSets);
```

```
# Evaluate the prediction performance of the BSWiMS classifier
 BSWiMSStats <- predictionStats_binary(cvBSWiMS$medianTest,</pre>
  plotname = "BSWiMS",cex = 0.9);
  # Cross validating a LDA classifier with a t-student filter
  cvLDA <- randomCV(dataCancerImputed,"pgstat",MASS::lda,</pre>
                    trainSampleSets = cvRF$trainSamplesSets,
                     featureSelectionFunction = univariate_tstudent,
                    featureSelection.control = list(limit = 0.5,thr = 0.975));
 # Evaluate the prediction performance of the LDA classifier
 LDAStats <- predictionStats_binary(cvLDA$medianTest,plotname = "LDA",cex = 0.9);</pre>
# Cross validating a QDA classifier with LDA t-student features and RF train/test set
  cvQDA <- randomCV(fittingFunction = MASS::qda,</pre>
                    trainSampleSets = cvRF$trainSamplesSets,
                    featureSelectionFunction = cvLDA$selectedFeaturesSet);
  # Evaluate the prediction performance of the QDA classifier
 QDAStats <- predictionStats_binary(cvQDA$medianTest,plotname = "QDA",cex = 0.9);</pre>
  #Create a barplot with 95
  errorciTable <- rbind(RFStats$berror,</pre>
  BSWiMSStats$berror,
  LDAStats$berror,
  QDAStats$berror)
  bpCI <- barPlotCiError(as.matrix(errorciTable),metricname = "Balanced Error",</pre>
                       thesets = c("Classifier Method"),
                       themethod = c("RF", "BSWiMS", "LDA", "QDA"),
                       main = "Balanced Error",
                       offsets = c(0.5, 0.15),
                       scoreDirection = "<",</pre>
                       ho = 0.5,
                       args.legend = list(bg = "white",x = "topright"),
                       col = terrain.colors(4));
```

dev.off()

End(Not run)

rankInverseNormalDataFrame

rank-based inverse normal transformation of the data

Description

This function takes a data frame and a reference control population to return a *z*-transformed data set conditioned to the reference population. Each sample data for each feature column in the data frame is conditionally *z*-transformed using a rank-based inverse normal transformation, based on the rank of the sample in the reference frame.

Usage

Arguments

variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables
data	A data frame where all variables are stored in different columns
referenceframe	A data frame similar to data, but with only the control population
strata	The name of the column in data that stores the variable that will be used to stratify the model

Value

A data frame where each observation has been conditionally z-transformed, given control data

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

Examples

```
## Not run:
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "Example.pdf")
# Get the stage C prostate cancer data from the rpart package
library(rpart)
data(stagec)
# Split the stages into several columns
dataCancer <- cbind(stagec[,c(1:3,5:6)],</pre>
                    gleason4 = 1*(stagec[,7] == 4),
                    gleason5 = 1*(stagec[,7] == 5),
                    gleason6 = 1*(stagec[,7] == 6),
                    gleason7 = 1*(stagec[,7] == 7),
                    gleason8 = 1*(stagec[,7] == 8),
                    gleason910 = 1*(stagec[,7] >= 9),
                    eet = 1*(stagec[,4] == 2),
                    diploid = 1*(stagec[,8] == "diploid"),
                    tetraploid = 1*(stagec[,8] == "tetraploid"),
                    notAneuploid = 1-1*(stagec[,8] == "aneuploid"))
```

```
reportEquivalentVariables
```

Report the set of variables that will perform an equivalent IDI discriminant function

Description

Given a model, this function will report a data frame with all the variables that may be interchanged in the model without affecting its classification performance. For each variable in the model, this function will loop all candidate variables and report all of which result in an equivalent or better zIDI than the original model.

Usage

```
reportEquivalentVariables(object,
```

```
pvalue = 0.05,
data,
variableList,
Outcome = "Class",
timeOutcome=NULL,
type = c("LOGIT", "LM", "COX"),
description = ".",
method="BH",
osize=0,
fitFRESA=TRUE)
```

Arguments

object	An object of class lm, glm, or coxph containing the model to be analyzed
pvalue	The maximum p -value, associated to the IDI, allowed for a pair of variables to be considered equivalent
data	A data frame where all variables are stored in different columns
variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables

106

residualForFRESA

Outcome	The name of the column in data that stores the variable to be predicted by the model
timeOutcome	The name of the column in data that stores the time to event
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
description	The name of the column in variableList that stores the variable description
method	The method used by the p-value adjustment algorithm
osize	The number of features used for p-value adjustment
fitFRESA	if TRUE it will use the cpp based fitting method

Value

pvalueList	A list with all the unadjusted p-values of the equivalent features per model variable
equivalentMatri	x
	A data frame with three columns. The first column is the original variable of the model. The second column lists all variables that, if interchanged, will not statistically affect the performance of the model. The third column lists the corresponding <i>z</i> -scores of the IDI for each equivalent variable.
formulaList	a character vector with all the equivalent formulas
equivalentModel	
	a bagged model that used all the equivalent formulas. The model size is limited by the number of observations

Author(s)

Jose G. Tamez-Pena

residualForFRESA Return residuals from prediction

Description

Given a model and a new data set, this function will return the residuals of the predicted values. When dealing with a Cox proportional hazards regression model, the function will return the Martingale residuals.

Usage

```
residualForFRESA(object,
testData,
Outcome,
eta = 0.05)
```

Arguments

object	An object of class lm, glm, or coxph containing the model to be analyzed
testData	A data frame where all variables are stored in different columns, with the data set to be predicted
Outcome	The name of the column in data that stores the variable to be predicted by the model
eta	The weight of the contribution of the Martingale residuals, or 1 - the weight of the contribution of the classification residuals (only needed if object is of class coxph)

Value

A vector with the residuals (i.e. the differences between the predicted and the real outcome)

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

signatureDistance Distance to the signature template

Description

This function returns a normalized distance to the signature template

Usage

```
signatureDistance(
    template,
    data=NULL,
    method = c("pearson","spearman","kendall","RSS","MAN","NB"),
    fwts=NULL
```

)

Arguments

template	A list with a template matrix of the signature described with quantiles = $[0.025, 0.100, 0.159, 0.250, 0.500, 0.$
data	A data frame that will be used to compute the distance
method	The distance method.
fwts	A numeric vector defining the weight of each feature

Details

The distance to the template: "pearson", "spearman" and "kendall" distances are computed using the correlation function i.e. 1-r. "RSS" distance is the normalized root sum square distance "MAN" Manhattan. The standardized L^1 distance "NB" Weighted Naive-Bayes distance

Value

result the distance to the template

Author(s)

Jose G. Tamez-Pena

summary.bootstrapValidation_Bin

Generate a report of the results obtained using the bootstrapValidation_Bin function

Description

This function prints two tables describing the results of the bootstrap-based validation of binary classification models. The first table reports the accuracy, sensitivity, specificity and area under the ROC curve (AUC) of the train and test data set, along with their confidence intervals. The second table reports the model coefficients and their corresponding integrated discrimination improvement (IDI) and net reclassification improvement (NRI) values.

Usage

Arguments

object	An object of class bootstrapValidation_Bin
	Additional parameters for the generic summary function

Value

performance	A vector describing the results of the bootstrapping procedure	
summary	An object of class summary.lm, summary.glm, or summary.coxph containing a summary of the analyzed model	
coef	A matrix with the coefficients, IDI, NRI, and the 95% confidence intervals obtained via bootstrapping	
performance.table		
	A matrix with the tabulated results of the blind test accuracy, sensitivity, speci- ficities, and area under the ROC curve	

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

summaryReport

summary.fitFRESA Returns the summary of the fit

Description

Returns a summary of fitted model created by the modelFitting function with the fitFRESA parameter set to TRUE

Usage

```
## S3 method for class 'fitFRESA'
summary(object,
type=c("Improvement","Residual"),
ci=c(0.025,0.975),
data=NULL,
...)
```

Arguments

object	fitted model with the modelFitting function
type	the type of coefficient estimation
ci	lower and upper limit of the ci estimation
data	the data to be used for 95
	parameters of the boostrap method

Value

a list with the analysis results.

Author(s)

Jose G. Tamez-Pena

See Also

modelFitting,bootstrapValidation_Bin,bootstrapValidation_Res

110

summaryReport

Report the univariate analysis, the cross-validation analysis and the correlation analysis

Description

This function takes the variables of the cross-validation analysis and extracts the results from the univariate and correlation analyses. Then, it prints the cross-validation results, the univariate analysis results, and the correlated variables. As output, it returns a list of each one of these results.

Usage

Arguments

univariateObjec	t	
	A data frame that contains the results of the univariateRankVariables func-	
	tion	
summaryBootstra	р	
	A list that contains the results of the summary. bootstrapValidation_Bin func- $% \mathcal{A} = \mathcal{A}$	
	tion	
listOfCorrelatedVariables		
	A matrix that contains the correlated.variables value from the results obtained with the listTopCorrelatedVariables function	
digits	The number of significant digits to be used in the print function	

Value

performance.table		
	A matrix with the tabulated results of the blind test accuracy, sensitivity, speci- ficities, and area under the ROC curve	
coefStats	A data frame that lists all the model features along with its univariate statistics and bootstrapped coefficients	
cor.varibles	A matrix that lists all the features that are correlated to the model variables	

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

summary.bootstrapValidation_Bin

timeSerieAnalysis

Description

This function plots the time evolution and does a longitudinal analysis of time dependent features. Features listed are fitted to the provided time model (mixed effect model) with a generalized least squares (GLS) procedure. As output, it returns the coefficients, standard errors, *t*-values, and corresponding *p*-values.

Usage

variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables
baseModel	A string of the type "1 + var1 + var2" that defines the model to which variables will be fitted
data	A data frame where all variables are stored in different columns
timevar	The name of the column in data that stores the visit ID
contime	The name of the column in data that stores the continuous time (e.g. days or months) that has elapsed since the baseline visit
Outcome	The name of the column in data that stores an optional binary outcome that may be used to show the stratified analysis
description	The name of the column in variableList that stores the variable description
Ptoshow	Index of the <i>p</i> -values to be shown in the plot
plegend	Legend of the <i>p</i> -values to be shown in the plot
timesign	The direction of the arrow of time
catgo.names	The legends of the binary categories
	Additional parameters to be passed to the gls function

Details

This function will plot the evolution of the mean value of the listed variables with its corresponding error bars. Then, it will fit the data to the provided time model with a GLS procedure and it will plot the fitted values. If a binary variable was provided, the plots will contain the case and control data. As output, the function will return the model coefficients and their corresponding *t*-values, and the standard errors and their associated *p*-values.

Value

coef	A matrix with the coefficients of the GLS fitting
std.Errors	A matrix with the standardized error of each coefficient
t.values	A matrix with the <i>t</i> -value of each coefficient
p.values	A matrix with the <i>p</i> -value of each coefficient
sigmas	The root-mean-square error of the fitting

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

```
trajectoriesPolyFeatures
```

Extract the per patient polynomial Coefficients of a feature trayectory

Description

Given a longituinal data set, it will extract the associated polynomial coefficients for each sample.

Usage

```
trajectoriesPolyFeatures(data,
```

```
feature="v1",
degree=2,
time="t",
group="ID",
timeOffset=0,
strata=NULL,
plot=TRUE,
...)
```

data	The dataframe
feature	The name of the outcome
degree	The fitting function used to model the data
time	The percentage of the data to be used for training

group	The number of times that the CV process will be repeated
timeOffset	The time offset
strata	Data strafication
plot	if TRUE it will plot the data
	parameters passed to plot

Value

coef The trayaectory coefficient matrix

Author(s)

Jose G. Tamez-Pena

Description

FRESA wrapper to fit grid-tuned e1071::svm object

Usage

Arguments

formula	The base formula to extract the outcome
data	The data to be used for training the method
gamma	The vector of possible gamma values
cost	The vector of possible cost values
	Parameters to be passed to the e1071::svm function

Value

fit	The e1071::svm fitted object
tuneSVM	The e1071::tune.svm object

Author(s)

Jose G. Tamez-Pena

uniRankVar

See Also

e1071::svm

```
uniRankVar
```

Univariate analysis of features (additional values returned)

Description

This function reports the mean and standard deviation for each feature in a model, and ranks them according to a user-specified score. Additionally, it does a Kolmogorov-Smirnov (KS) test on the raw and *z*-standardized data. It also reports the raw and *z*-standardized *t*-test score, the *p*-value of the Wilcoxon rank-sum test, the integrated discrimination improvement (IDI), the net reclassification improvement (NRI), the net residual improvement (NeRI), and the area under the ROC curve (AUC). Furthermore, it reports the *z*-value of the variable significance on the fitted model. Besides reporting an ordered data frame, this function returns all arguments as values, so that the results can be updates with the update.uniRankVar if needed.

Usage

```
uniRankVar(variableList,
           formula,
           Outcome,
           data,
           categorizationType = c("Raw",
                                     "Categorical",
                                     "ZCategorical",
                                     "RawZCategorical",
                                     "RawTail",
                                     "RawZTail"
                                     "Tail",
                                     "RawRaw"),
           type = c("LOGIT", "LM",
                                     "COX"),
           rankingTest = c("zIDI",
                            "zNRI",
                            "IDI",
                            "NRI"
                            "NeRI",
                            "Ztest",
                            "AUC",
                            "CStat"
                            "Kendall"),
            cateGroups = c(0.1, 0.9),
            raw.dataFrame = NULL,
            description = ".",
            uniType = c("Binary", "Regression"),
            FullAnalysis=TRUE,
            acovariates = NULL,
            timeOutcome = NULL)
```

Arguments

variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables
formula	An object of class formula with the formula to be fitted
Outcome	The name of the column in data that stores an optional binary outcome that may be used to show the stratified analysis
data categorization ⁻	A data frame where all variables are stored in different columns Type
	How variables will be analyzed : As given in data ("Raw"); broken into the <i>p</i> -value categories given by cateGroups ("Categorical"); broken into the <i>p</i> -value categories given by cateGroups, and weighted by the <i>z</i> -score ("ZCategorical"); broken into the <i>p</i> -value categories given by cateGroups, weighted by the <i>z</i> -score, plus the raw values ("RawZCategorical"); raw values, plus the tails ("RawTail"); or raw values, weighted by the <i>z</i> -score, plus the tails ("RawZategorical"); raw values ("RawZTail")
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
rankingTest	Variables will be ranked based on: The <i>z</i> -score of the IDI ("zIDI"), the <i>z</i> -score of the NRI ("zNRI"), the IDI ("IDI"), the NRI ("NRI"), the NeRI ("NeRI"), the <i>z</i> -score of the model fit ("Ztest"), the AUC ("AUC"), the Somers' rank correlation ("Cstat"), or the Kendall rank correlation ("Kendall")
cateGroups	A vector of percentiles to be used for the categorization procedure
raw.dataFrame	A data frame similar to data, but with unadjusted data, used to get the means and variances of the unadjusted data
description	The name of the column in variableList that stores the variable description
uniType	Type of univariate analysis: Binary classification ("Binary") or regression ("Re- gression")
FullAnalysis	If FALSE it will only order the features according to its z-statistics of the linear model
acovariates	the list of covariates
timeOutcome	the name of the Time to event feature

Details

This function will create valid dummy categorical variables if, and only if, data has been z-standardized. The p-values provided in cateGroups will be converted to its corresponding z-score, which will then be used to create the categories. If non z-standardized data were to be used, the categorization analysis would return wrong results.

Value

orderframe	A sorted list of model variables stored in a data frame
variableList	The argument variableList
formula	The argument formula
Outcome	The argument Outcome

univariateRankVariables

data	The argument data	
categorizationType		
	The argument categorizationType	
type	The argument type	
rankingTest	The argument rankingTest	
cateGroups	The argument cateGroups	
raw.dataFrame	The argument raw.dataFrame	
description	The argument description	
uniType	The argument uniType	

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

See Also

update.uniRankVar, univariateRankVariables

univariateRankVariables

Univariate analysis of features

Description

This function reports the mean and standard deviation for each feature in a model, and ranks them according to a user-specified score. Additionally, it does a Kolmogorov-Smirnov (KS) test on the raw and *z*-standardized data. It also reports the raw and *z*-standardized *t*-test score, the *p*-value of the Wilcoxon rank-sum test, the integrated discrimination improvement (IDI), the net reclassification improvement (NRI), the net residual improvement (NeRI), and the area under the ROC curve (AUC). Furthermore, it reports the *z*-value of the variable significance on the fitted model.

Usage

```
univariateRankVariables(variableList,
```

```
"ZCategorical",
                       "RawZCategorical",
                       "RawTail",
                        "RawZTail",
                       "Tail",
                        "RawRaw"),
type = c("LOGIT", "LM", "COX"),
rankingTest = c("zIDI",
                "zNRI",
                "IDI",
                "NRI",
                "NeRI",
                "Ztest",
                "AUC",
                "CStat",
                "Kendall"),
cateGroups = c(0.1, 0.9),
raw.dataFrame = NULL,
description = ".",
uniType = c("Binary", "Regression"),
FullAnalysis=TRUE,
acovariates = NULL,
timeOutcome = NULL
```

)

variableList	A data frame with the candidate variables to be ranked
formula	An object of class formula with the formula to be fitted
Outcome	The name of the column in data that stores the variable to be predicted by the model
data categorization ⁻	A data frame where all variables are stored in different columns Type
	How variables will be analyzed: As given in data ("Raw"); broken into the <i>p</i> -value categories given by cateGroups ("Categorical"); broken into the <i>p</i> -value categories given by cateGroups, and weighted by the <i>z</i> -score ("ZCategorical"); broken into the <i>p</i> -value categories given by cateGroups, weighted by the <i>z</i> -score, plus the raw values ("RawZCategorical"); raw values, plus the tails ("RawTail"); or raw values, weighted by the <i>z</i> -score, plus the tails ("RawZTail")
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
rankingTest	Variables will be ranked based on: The <i>z</i> -score of the IDI ("zIDI"), the <i>z</i> -score of the NRI ("zNRI"), the IDI ("IDI"), the NRI ("NRI"), the NRI ("NRI"), the Z-score of the model fit ("Ztest"), the AUC ("AUC"), the Somers' rank correlation ("Cstat"), or the Kendall rank correlation ("Kendall")
cateGroups	A vector of percentiles to be used for the categorization procedure
raw.dataFrame	A data frame similar to data, but with unadjusted data, used to get the means and variances of the unadjusted data

univariateRankVariables

description	The name of the column in variableList that stores the variable description
uniType	Type of univariate analysis: Binary classification ("Binary") or regression ("Re- gression")
FullAnalysis	If FALSE it will only order the features according to its z-statistics of the linear model
acovariates	the list of covariates
timeOutcome	the name of the Time to event feature

Details

This function will create valid dummy categorical variables if, and only if, data has been *z*-standardized. The *p*-values provided in cateGroups will be converted to its corresponding *z*-score, which will then be used to create the categories. If non *z*-standardized data were to be used, the categorization analysis would return wrong results.

Value

A sorted data frame. In the case of a binary classification analysis, the data frame will have the following columns:

Name	Name of the raw variable or of the dummy variable if the data has been catego- rized
parent	Name of the raw variable from which the dummy variable was created
descrip	Description of the parent variable, as defined in description
cohortMean	Mean value of the variable
cohortStd	Standard deviation of the variable
cohortKSD	D statistic of the KS test when comparing a normal distribution and the distribution of the variable
cohortKSP	Associated <i>p</i> -value to the cohortKSD
caseMean	Mean value of cases (subjects with Outcome equal to 1)
caseStd	Standard deviation of cases
caseKSD	D statistic of the KS test when comparing a normal distribution and the distribution of the variable only for cases
caseKSP	Associated <i>p</i> -value to the caseKSD
caseZKSD	D statistic of the KS test when comparing a normal distribution and the distribution of the <i>z</i> -standardized variable only for cases
caseZKSP	Associated <i>p</i> -value to the caseZKSD
controlMean	Mean value of controls (subjects with Outcome equal to 0)
controlStd	Standard deviation of controls
controlKSD	D statistic of the KS test when comparing a normal distribution and the distribution of the variable only for controls
controlKSP	Associated <i>p</i> -value to the controlsKSD

controlZKSD	D statistic of the KS test when comparing a normal distribution and the distribution of the <i>z</i> -standardized variable only for controls	
controlZKSP	Associated <i>p</i> -value to the controlsZKSD	
t.Rawvalue	Normal inverse <i>p</i> -value (<i>z</i> -value) of the <i>t</i> -test performed on raw.dataFrame	
t.Zvalue	z-value of the <i>t</i> -test performed on data	
wilcox.Zvalue	z-value of the Wilcoxon rank-sum test performed on data	
ZGLM	z-value returned by the lm, glm, or coxph functions for the z-standardized variable	
zNRI	$z\mbox{-}value$ returned by the improve Prob function (Hmisc package) when evaluating the NRI	
zIDI	$z\mbox{-value}$ returned by the improve Prob function (Hmisc package) when evaluating the IDI	
zNeRI	<i>z</i> -value returned by the improvedResiduals function when evaluating the NeRI	
ROCAUC	Area under the ROC curve returned by the roc function (pROC package)	
cStatCorr	c index of Somers' rank correlation returned by the <code>rcorr.cens</code> function (Hmisc package)	
NRI	NRI returned by the improveProb function (Hmisc package)	
IDI	IDI returned by the improveProb function (Hmisc package)	
NeRI	NeRI returned by the improvedResiduals function	
kendall.r	Kendall τ rank correlation coefficient between the variable and the binary outcome	
kendall.p	Associated <i>p</i> -value to the kendall.r	
TstudentRes.p	<i>p</i> -value of the improvement in residuals, as evaluated by the paired <i>t</i> -test	
WilcoxRes.p	p-value of the improvement in residuals, as evaluated by the paired Wilcoxon rank-sum test	
FRes.p	p-value of the improvement in residual variance, as evaluated by the F -test	
caseN_Z_Low_Tail		
Number of cases in the low tail caseN_Z_Hi_Tail		
	Number of cases in the top tail	
controlN_Z_Low_Tail Number of controls in the low tail		
controlN_Z_Hi_T		
	Number of controls in the top tail	
In the case of regression analysis, the data frame will have the following columns:		
Name	Name of the raw variable or of the dummy variable if the data has been catego- rized	
parent	Name of the raw variable from which the dummy variable was created	
descrip	Description of the parent variable, as defined in description	
cohortMean	Mean value of the variable	

cohortStd	Standard deviation of the variable
cohortKSD	D statistic of the KS test when comparing a normal distribution and the distribution of the variable
cohortKSP	Associated <i>p</i> -value to the cohortKSP
cohortZKSD	D statistic of the KS test when comparing a normal distribution and the distribution of the <i>z</i> -standardized variable
cohortZKSP	Associated <i>p</i> -value to the cohortZKSD
ZGLM	z-value returned by the glm or Cox procedure for the z-standardized variable
zNRI	$z\mbox{-}value\mbox{ returned}$ by the improve Prob function (Hmisc package) when evaluating the NRI
NeRI	NeRI returned by the improvedResiduals function
cStatCorr	c index of Somers' rank correlation returned by the <code>rcorr.cens</code> function (Hmisc package)
spearman.r	Spearman ρ rank correlation coefficient between the variable and the outcome
pearson.r	Pearson r product-moment correlation coefficient between the variable and the outcome
kendall.r	Kendall τ rank correlation coefficient between the variable and the outcome
kendall.p	Associated <i>p</i> -value to the kendall.r
TstudentRes.p	p-value of the improvement in residuals, as evaluated by the paired t -test
WilcoxRes.p	p-value of the improvement in residuals, as evaluated by the paired Wilcoxon rank-sum test
FRes.p	p-value of the improvement in residual variance, as evaluated by the F -test

Author(s)

Jose G. Tamez-Pena

References

Pencina, M. J., D'Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine* **27**(2), 157-172.

update.uniRankVar Update the univariate analysis using new data

Description

This function updates the results from an univariate analysis using a new data set

Usage

Arguments

object	A list with the results from the uniRankVar function
	Additional parameters to be passed to the uniRankVar function, used to update the univariate analysis

Value

A list with the same format as the one yielded by the uniRankVar function

Author(s)

Jose G. Tamez-Pena

See Also

uniRankVar

updateModel.Bin	Update the IDI/NRI-based model using new data or new threshold
	values

Description

This function will take the frequency-ranked set of variables and will generate a new model with terms that meet either the integrated discrimination improvement (IDI), or the net reclassification improvement (NRI), threshold criteria.

Usage

Arguments

Outcome	The name of the column in data that stores the variable to be predicted by the model	
covariates	A string of the type "1 + var1 + var2" that defines which variables will always be included in the models (as covariates)	
pvalue	The maximum <i>p</i> -value, associated to either IDI or NRI, allowed for a term in the model	
VarFrequencyTa	ble	
	An array with the ranked frequencies of the features, (e.g. the ranked.var value returned by the ForwardSelection.Model.Bin function)	
variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables	
data	A data frame where all variables are stored in different columns	
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")	
lastTopVariable		
	The maximum number of variables to be tested	
timeOutcome	The name of the column in data that stores the time to event (needed only for a Cox proportional hazards regression model fitting)	
selectionType	The type of index to be evaluated by the improveProb function (Hmisc pack-age): <i>z</i> -score of IDI or of NRI	
maxTrainModelSize		
	Maximum number of terms that can be included in the model	
zthrs	The z-thresholds estimated in forward selection	

Value

final.model	An object of class lm, glm, or coxph containing the final model
var.names	A vector with the names of the features that were included in the final model
formula	An object of class formula with the formula used to fit the final model
<pre>z.selectionType</pre>	
	A vector in which each term represents the <i>z</i> -score of the index defined in selectionType obtained with the Full model and the model without one term

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

updateModel.Res

updateModel.Res

Description

This function will take the frequency-ranked set of variables and will generate a new model with terms that meet the net residual improvement (NeRI) threshold criteria.

Usage

Outcome	The name of the column in data that stores the variable to be predicted by the model	
covariates	A string of the type "1 + var1 + var2" that defines which variables will always be included in the models (as covariates)	
pvalue	The maximum <i>p</i> -value, associated to the NeRI, allowed for a term in the model	
VarFrequencyTable		
	An array with the ranked frequencies of the features, (e.g. the ranked.var value returned by the ForwardSelection.Model.Res function)	
variableList	A data frame with two columns. The first one must have the names of the can- didate variables and the other one the description of such variables	
data	A data frame where all variables are stored in different columns	
type	Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")	
testType	Type of non-parametric test to be evaluated by the improvedResiduals func- tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student's <i>t</i> -test ("tStudent"), or <i>F</i> -test ("Ftest")	
lastTopVariable		
	The maximum number of variables to be tested	
timeOutcome	The name of the column in data that stores the time to event (needed only for a Cox proportional hazards regression model fitting)	

updateModel.Res

maxTrainModelSize		
	Maximum number of terms that can be included in the model	
p.thresholds	The p.value thresholds estimated in forward selection	

Value

final.model	An object of class lm, glm, or coxph containing the final model
var.names	A vector with the names of the features that were included in the final model
formula	An object of class formula with the formula used to fit the final model
z.NeRI	A vector in which each element represents the <i>z</i> -score of the NeRI, associated to the testType, for each feature found in the final model

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

updateModel.Bin

Index

* Benchmarking barPlotCiError, 13 benchmarking, 14 ***** Cluster Evaluation jaccardMatrix, 79 * Cluster_Generation clusterISODATA, 35 GMVECluster, 74 * Cluster_Prediction predict.GMVE, 98 * Data Labeling nearestCentroid, 85 *** Data Transformations** GDSTMDecorrelation, 63 * Data_Conditioning featureAdjustment, 49 nearestNeighborImpute, 86 rankInverseNormalDataFrame, 104 * Data Inspection heatMaps, 75 listTopCorrelatedVariables, 81 timeSerieAnalysis, 112 uniRankVar, 115 univariateRankVariables, 117 update.uniRankVar, 121 * Datasets cancerVarNames, 32 * Feature_Filtering FilterUnivariate, 52 mRMR.classic_FRESA, 84 * Feature_Selection getSignature, 67 signatureDistance, 108 * Hypothesis_Testing EmpiricalSurvDiff, 46 * Model CV FRESAScale, 62 randomCV, 101 * Model_Diagnosis

bootstrapValidation_Bin, 20 bootstrapValidation_Res, 22 *** Model Generation** backVarElimination_Bin,9 backVarElimination_Res, 10 baggedModel, 12 BESS, 19 bootstrapVarElimination_Bin, 24 bootstrapVarElimination_Res, 26 BSWiMS.model. 28 ClustClass, 33 crossValidationFeatureSelection_Bin, 36 crossValidationFeatureSelection_Res, 41 CVsignature, 45 filteredFit, 50 ForwardSelection.Model.Bin. 54 ForwardSelection.Model.Res, 56 FRESA.Model, 58 GLMNET, 71 GMVEBSWiMS, 72 HLCM, 77 KNN_method, 80 LM_RIDGE_MIN, 82 NAIVE_BAYES, 84 TUNED_SVM, 114 updateModel.Bin, 122 updateModel.Res, 124 * Model_Inspection ensemblePredict, 48 getKNNpredictionFromFormula, 66 getVar.Bin,68 getVar.Res,70 improvedResiduals, 78 modelFitting, 83 plot.bootstrapValidation_Bin, 87 plot.bootstrapValidation_Res, 88 plot.FRESA_benchmark, 89

INDEX

```
plotModels.ROC, 90
    predictionStats, 100
    reportEquivalentVariables, 106
    residualForFRESA, 107
    summary.bootstrapValidation_Bin,
         109
    summary.fitFRESA, 110
    summaryReport, 111
* Model Prediction
    predict.CLUSTER_CLASS, 91
    predict.fitFRESA, 92
    predict.FRESA_BESS, 94
    predict.FRESA_FILTERFIT, 94
    predict.FRESA_GLMNET, 95
    predict.FRESA_HLCM, 96
    predict.FRESA_NAIVEBAYES, 96
    predict.FRESA_RIDGE, 97
    predict.FRESA_SVM, 98
    predict.FRESAKNN, 92
    predict.FRESAsignature, 93
    predict.GMVE_BSWiMS, 99
* Trajectory
    trajectoriesPolyFeatures, 113
* package
    FRESA.CAD-package, 3
backVarElimination_Bin, 9, 11, 26
backVarElimination_Res, 10, 10, 26, 28
baggedModel, 12
barPlotCiError, 13
benchmarking, 14
BESS, 19, 94
BESS_EBIC (BESS), 19
BESS_GSECTION (BESS), 19
BinaryBenchmark, 89
BinaryBenchmark (benchmarking), 14
bootstrapValidation_Bin, 20, 24, 110
bootstrapValidation_Res, 22, 22, 28, 110
bootstrapVarElimination_Bin, 10, 11, 24,
         28
bootstrapVarElimination_Res, 10, 11, 26,
        26,45
BSWiMS.model, 28, 96
cancerVarNames, 32
ClustClass, 33, 91
clusterISODATA, 35
correlated_Remove (FilterUnivariate), 52
CoxBenchmark (benchmarking), 14
```

crossValidationFeatureSelection_Bin, 36.45 crossValidationFeatureSelection_Res, 41.41 CVsignature, 45, 93 EmpiricalSurvDiff, 46 ensemblePredict, 13, 48 featureAdjustment, 49 filteredFit, 50, 94 FilterUnivariate, 52 ForwardSelection.Model.Bin, 41, 54, 58 ForwardSelection.Model.Res, 41, 56, 56 FRESA.CAD (FRESA.CAD-package), 3 FRESA.CAD-package, 3 FRESA.Model, 58 FRESAScale, 62, 80 GDSTMDecorrelation. 63 getKNNpredictionFromFormula, 66 getSignature, 45, 46, 67, 93 getVar.Bin, 68, 71 getVar.Res, 70, 70 GLMNET, 71, 95 GLMNET_ELASTICNET_1SE (GLMNET), 71 GLMNET_ELASTICNET_MIN (GLMNET), 71 GLMNET_RIDGE_1SE (GLMNET), 71 GLMNET_RIDGE_MIN (GLMNET), 71 GMVEBSWiMS, 72, 99 GMVECluster, 74, 98, 99 heatMaps, 75 HLCM, 77 HLCM_EM (HLCM), 77 improvedResiduals, 45, 78 jaccardMatrix, 79 knn, 67 KNN_method, 80, 93 LASSO_1SE (GLMNET), 71 LASSO_MIN (GLMNET), 71 listTopCorrelatedVariables, 81 LM_RIDGE_MIN, 82, 97 modelFitting, 83, 110 mRMR.classic_FRESA, 84

INDEX

NAIVE_BAYES, 84, 96, 97 nearestCentroid, 85 nearestNeighborImpute, 86, 92

OrdinalBenchmark (benchmarking), 14

plot (plot.bootstrapValidation_Bin), 87 plot.bootstrapValidation_Bin, 22, 87, 88 plot.bootstrapValidation_Res, 24, 88, 88 plot.FRESA_benchmark, 89 plotModels.ROC, 90 predict (predict.fitFRESA), 92 predict.CLUSTER_CLASS, 91 predict.fitFRESA, 67, 92 predict.FRESA_BESS, 94 predict.FRESA_FILTERFIT, 94 predict.FRESA_GLMNET,95 predict.FRESA_HLCM, 96 predict.FRESA_NAIVEBAYES, 96 predict.FRESA_RIDGE, 97 predict.FRESA_SVM, 98 predict.FRESAKNN, 92 predict.FRESAsignature, 93 predict.GMVE, 98 predict.GMVE_BSWiMS,99 predictDecorrelate (GDSTMDecorrelation), 63 predictionStats, 100 predictionStats_binary, 89 predictionStats_binary (predictionStats), 100 predictionStats_ordinal (predictionStats), 100 predictionStats_regression (predictionStats), 100 predictionStats_survival (predictionStats), 100

randomCV, *15*, *17*, *101*, 101 rankInverseNormalDataFrame, *63*, 104 RegresionBenchmark (benchmarking), 14 reportEquivalentVariables, 106 residualForFRESA, 107

summaryReport, 110, 111 timeSerieAnalysis, 112 trajectoriesPolyFeatures, 113 TUNED_SVM, 98, 114 uniRankVar, 115, 122 univariate_BinEnsemble (FilterUnivariate), 52 univariate_correlation (FilterUnivariate), 52 univariate_cox (FilterUnivariate), 52 univariate_DTS (FilterUnivariate), 52 univariate_KS (FilterUnivariate), 52 univariate_Logit (FilterUnivariate), 52 univariate_residual (FilterUnivariate), 52 univariate_Strata (FilterUnivariate), 52 univariate_tstudent (FilterUnivariate), 52 univariate_Wilcoxon (FilterUnivariate), 52 univariateRankVariables, 117, 117 update (update.uniRankVar), 121 update.uniRankVar, 117, 121 updateModel.Bin, 122, 125 updateModel.Res, 123, 124

128