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Abstract

Ridge regression is a useful tool to deal with collinerity in the homoscedastic linear
regression model, which provide biased estimators of the regression parameters with lower
variance than the least square estimators. Evenmore, when the number of predictors (p)
is much larger than the number of observations (n), ridge regression give us unique least
square estimators by restringing the parametric space to the neighborhood of the origin.
From the Bayesian point of view ridge regression results of assigning a Gaussian prior
on the regression parameters and assuming they are conditionally independent. However,
from both classical and Bayesian approaches the estimation of parameters is a highly
demanding computational task, in the first one being an optimization problem and in
the second one a high dimensional integration problem usually faced up through Markov
Chain Monte Carlo (MCMC). The main drawback of MCMC is the practical impossibility
of checking convergence to the posterior distribution, which is commonly very slow due to
the large number of regression parameters. Here we propose a computational algorithm to
obtain posterior estimates of regression parameters, variance components and predictions
for the conventional ridge Regression model, based on a reparameterization of the model
which allows us to obtain the marginal posterior means and variances by integrating out
a nuisance parameter whose marginal posterior is defined on the open interval (0, 1).

Keywords: Bayesian Methods, Regression, Variable Selection, Shrinkage, Ridge Regression,
MCMC, R.

1. Introduction

Nowadays most research areas use massive quantities of information generated by the increas-
ingly sophisticated computer equipment; for example, in genomics an increasing amount of
data is available as new sequencing technologies appears. A lot of statistical models have been
proposed in order to learn valuable information from data; however, even with the simplest
models, the statisticians or data scientists have to deal with high dimensional inference prob-
lems which require millions of computation tasks. One of such models is the ridge regression,
being a useful tool to deal with collinearity in the homoscedastic linear regression model by
providing biased estimators of regression parameters with lower variance than the least square
estimators. Even more, when the number of predictors (p) is much larger than the number
of observations (n), ridge regression gives a unique least square estimator by restricting the
parametric space.

From the Bayesian point of view, ridge regression results of assigning a Gaussian prior on the
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regression parameters and assuming they are conditionally independent. However, since the
Bayesian estimation of parameters is a high dimensional integration problem, it is also a highly
demanding computational task which is usually faced up through Markov Chain Monte Carlo
(MCMC), in particular Gibbs Sampling because the full posterior conditionals are available
in closed form. The most successful MCMC option implemented in the R software is the
package BGLR(Pérez and de los Campos 2016) , other non Bayesian R package options are
penalized(Goeman et al. 2021) and ridge(Moritz et al. 2021).

The main drawback of MCMC in high dimensional settings is checking of convergence to the
joint posterior distribution, which is commonly very slow due to the large number of regression
parameters and the high correlations between successive samples from the conditional pos-
teriors in the Gibbs sampling implementation of MCMC. As Rajaratnam and Sparks (2015)
shows for the regression model, meanwhile the MCMC samples yield a good approximation of
the posterior means of the regression parameters, their posterior variances and the posterior
mean of the residual variance may be underestimated if the simulated Markov chain is not
large enough; nevertheless, the length of the chain is an issue that still being an open research
field. In this paper we propose a simple numerical method to estimate posterior means and
variances of the parameters in the ridge regression model as a way to abandon the theoretical
guarantees of MCMC methods. We use the SVD and the QR decompositions together with a
reparameterization to get closed expressions of the conditional posteriors from where we ob-
tain the marginal posterior means and variances by numerical integration on the open interval
(0, 1); furthermore, variable selection and prediction are straightforward consequences. The
proposed method is implemented in R and allows to work within the big matrix framework
by using storing and parallelization packages bigstatsr, bigparallelr and parallel.

2. Method and Materials

In the Bayesian approach to inference statistics we formally combine, through the Bayes rule,
prior information and sample data to learn about unknown quantities of interest. The previous
to data uncertainty about the parameter of interest θ is expressed by the prior distribution,
the information about θ that comes from observed data is incorporated by the likelihood func-
tion and by the Bayes formula we obtain the posterior distribution of the parameter given
the data (posterior distribution) (Lee 2012). However, calculating the posterior distribution
is not always an easy task because integration is required and, even in low dimensional set-
tings, Monte Carlo or numerical integration methods are needed. In this way, Gilks et al.
(1996) introduced the MCMC (Markov Chain Monte Carlo) which provides a straightforward
and intuitive way to both simulate values from an unknown distribution and use those sim-
ulated values to perform subsequent analyses (Speagle 2020). For more information about
MCMC see Robert and Casella (2010); Andrieu et al. (2003). In this paper we do not use
the sampling based approach to approximate de posterior distribution, instead we focus on
a numerical approximation of the posterior of a nuisance parameter to integrate out it and
to obtain numerical aproximations of posterior means and variances of regression parameters
and predictions.
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2.1. Model

Consider the linear model

yi = x′iβ + εi, i = 1, . . . , n.

where εi, i = 1, . . . , n, is a Gaussian error with mean 0 and variance σ2, β ⊆ Rp is a vector of
regression coefficients and xi, i = 1, . . . , n, is p dimensional vector of observed without error
covariates. Moreover, assume that cov (εi, εj) = 0, i 6= j. In matrix form the model is written
as

y = Xβ + ε, (1)

where β = (β1, . . . , βp)
′ is the vector of regression parameters, ε = (ε1, . . . , εn)T is the vector

of random errors distributed as Np(0, σ2Inn). The n× p matrix X is called the design matrix
and y is generally referred to as the vector response variable. Since the mean of y, Xβ, is a
linear combination of the columns of X, the model in (1) is known as the linear regression
model.

When the number observations is greater than the number of covariates, n > p, the best
linear unbiased estimator of β is β̂ = (X′X)−1X′y. However, when multicollinearity oc-
curs, although the least squares estimators are unbiased, their variances are inflated because
(X′X)−1 tends to be singular. Another scenario where the obtention of the least squares
estimator is an ill-posed problem occurs when p >> n, which implies that β̂ is not unique. In
both cases some sort of restriction of the parametric space or penalization is needed in order
to have unique estimators with lower variance. By adding a degree of bias to the regression
estimates, ridge regression gives an unique estimator of β with variance lower than the least
squares estimator variance.

2.2. Ridge Regression

Hoerl (1962) and Hoerl and Kennard (1968) first suggested that to control the inflation and
general instability associated with the least squares estimates we may use the same Tikhonov
regularization for all the regression parameters, which gives the ridge estimator:

β̂
∗

=
(
X′X + kI

)−1
(X′y); k > 0, (2)

where k is the ridge penalty parameter. Large values of k tend to reduce the magnitude of the
estimated regression coefficients, leading to fewer effective model parameters Cannon (2009).
See Hoerl and Kennard (1970b,a); Hoerl et al. (1975); van Wieringen (2015); Alheety and
Kibria (2011); Yahya and Olaifa (2014) for more about ridge regression.

2.3. Bayesian inference for ridge regression

In Bayesian inference all the uncertainty about the unknown parameters
(
β, σ2

)
is described

by the join posterior distribution, which is obtained, through the Bayes rule, as the likelihood
function, the joint density of y seen as a function of the parameters, times the prior. The
prior is a probability density function we use to measure the uncertainty about

(
β, σ2

)
before

any data has been observed.

From model in (1) the likelihood function for the parameters
(
β, σ2

)
is given by
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L(β, σ2 | y) ∝
(

1

σ2

)n/2
exp

{
− 1

2σ2
(y −Xβ)T (y −Xβ)

}
. (3)

If the prior for each βj , j = 1, . . . , p, is Gaussian with mean 0 and variance σ2β and prior

independence of β and σ2 is assumed then the joint prior is of the form

π(β, σ2, σ2β) = π
(
β |σ2β

)
π(σ2)π(σ2β), (4)

where,

π
(
β |σ2β

)
= Np

(
β |0, σ2βIp

)
and for the variance parameters we may assign conjugate priors (Reich and Ghosh 2019;
Gelman et al. 2021); that is, the inverse gamma distributions

π
(
σ2
)

= IG
(
σ2
∣∣∣∣n02 , n0s202

)
π
(
σ2β
)

= IG
(
σ2β

∣∣∣∣p02 , p0d202

)
,

where n0, s
2
0, p0 and d20 are known hyperparameters.The prior independence of the elementos

of β given σ2β implies that marginally the distribution of β is multivariate t with p0 degrees
of freedom. Then, this hierarchical structure implies that regression parameters are not inde-
pendent to each other, which seems to be an appropiated structure in presence of colineallity
or when p >> n. The prior variance of the elements of β has also an interpretation in terms
of regularization: for fixed σ2, as σ2β tends to 0 the shrinkage to the prior mean increases,
which means that large values of the parameters are penalized.

Due to the problem of estimation of the ridge regression parameters is ill-posed, prior elicita-
tion is a critical step in Bayesian inference since the posterior is too sensitive to the assignation
of values to the hyperparameters in the prior of β. Here we use an approach closed to those
proposed by Guan and Stephens (2011) and Pérez and de los Campos (2016) to model the
initial knowledge of β, σ2 and σ2β. Thus, the prior expected values of σ2 and σ2β are

E

[
σ2
∣∣∣∣n02 , n0s202

]
=

n0s
2
0

n0 − 2
, n0 > 2.

Var

[
σ2
∣∣∣∣n02 , n0s202

]
=

n20s
4
0

(n0 − 2)2(2n0 − 8)
, n0 > 4.

Therefore, in order to have prior moments of first and second order finite for the variance
components, the value of n0 and p0 should be at least 5. Then,we use 5 as the default value
for n0 and p0 in the HDBRR package, but flat priors could be obtained as n0 and p0 tend to
0. To assign values to s20 and d20 we will use the prior expected value of the proportion of
variance explained (PVE) by the model with respect to the residual variance, that is given by

PVE =
1

n

n∑
i=1

(x′iβ)2

σ2
=

1

nσ2

n∑
i=1

(

p∑
j=1

xijβj)
2.
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Then, by noting that

E

 p∑
j=1

xijβj

2 ∣∣σ2, σ2β
 = Var

 p∑
j=1

xijβj
∣∣σ2, σ2β

 = σ2β

p∑
j=1

x2ij

we have that

E[PVE] = E[E[PVE
∣∣σ2, σ2β]] =

1

s20

p0d
2
0

p0 − 1

n∑
i=1

p∑
j=1

x2ij
n
.

Let

h =
E[PVE]

1 + E[PVE]
=

p0d
2
0

∑n
i=1

∑p
j=1

x2ij
n

s20(p0 − 1) + p0d20
∑n

i=1

∑p
j=1

x2ij
n

.

the proportion of the total prior variance explained by the model. From this,

h

1− h
=

p0d
2
0

∑n
i=1

∑p
j=1

x2ij
n

s20(p0 − 1)
,

therefore

d20 =

(
h

1− h

)
s20(p0 − 1)

p0
∑n

i=1

∑p
j=1

x2ij
n

.

The value s20 may be interpreted as a prior guess about the residual variance.

In particular, when each covariate and the response have been centered about its sample mean

d20 =

(
h

1− h

)
s20(p0 − 1)

p0
∑p

j=1 s
2
j

;

moreover, if the all the data are standardized and s20 = 1 we have that d20 =
(

h
1−h

)
(p0−1)
p0p

which approaches to 1/p when h = 0.5 and p0 is large. Also note that as h tends to 1 the
prior for σ2β becomes flat but proper distribution.

Once the prior distribution has been assigned and the likelihood function defined, then the
posterior distribution of the regression parameters is derived in what follows.

2.4. Posterior Distribution

By the Baye’s Rule, the joint posterior is obtained as the product of likelihood function in
(3) and the prior in (4). Thus,

π
(
β, σ2, σ2β | y

)
∝ L

(
β, σ2 |y

)
π(β, σ2, σ2β),

Now, cosiderer the transformations v = 1/σ2 + 1/σ2β and u = σ2/
(
σ2 + σ2β

)
; then, the

joint posterior distribution of (β, u, v) is given by

π(β, u, v | y) ∝ v
n+n0+p+p0

2
−1u

p+p0
2
−1(1− u)

n+n0
2
−1 (5)

× exp

{
−v(1− u)

2

[(
β − β̂(u)

)′
Σ−1n (u)

(
β − β̂(u)

)
+ SSE(u) + n0s

2
0

]}
× exp

{
−uv

2

(
β̂(u)β̂(u) + p0d

2
0

)}
,
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where Σn(u) =
(
X′X + u

1−uI
)−1

, β̂(u) = Σn(u)X′y, ŷ(u) = Xβ̂(u) and SSE(u) =

(y − ŷ(u))′ (y − ŷ(u)). From (5), the full conditional posterior of β is

π(β |u, v, y) = Np
(
β

∣∣∣∣ β̂(u),
1

v(1− u)
Σn(u)

)
. (6)

Now, let S(u) = (1 − u) (SSE(u) + n0s
2
0) + u(β̂

′
(u)β̂(u) + p0d

2
0) and by the definition of

conditional distribution of β given (u, v), we have that

π(v |u, y) =
π(β, v |u, y)

π(β |u, v, y)
= G

(
v

∣∣∣∣n+ n0 + p0
2

,
S(u)

2

)
, (7)

where π(β, v |u, y), from (5), is a Normal-Gamma density. It follows that, the posterior
distribution of β given u is t with ν = n+ n0 + p0 degrees of freedom, mean

E[β |u, y] = β̂(u)

and variance

V[β |u, y] =
S(u)

(ν − 2)(1− u)
Σn(u), ν − 2 > 0.

Finally, the marginal posterior of u is obtained as

π(u |y) =
π(u, v |y)

π(v |u, y)
=

π(β, u, v |y)/π(β |u, v, y)

π(v |u, y)

∝ u
p+p0

2
−1(1− u)

n−p+n0
2

−1 |Σn(u)|1/2

×
[
(1− u)(SSE(u) + n0s

2
0) + u

(
β̂
′
(u)β̂(u) + p0d

2
0

)]−n+n0+p0
2

, u ∈ (0, 1)(8)

It is important to point out that the marginal moments π(β | y) can be obtained by theorem
of total expectation. I such a way, the unconditional posterior mean and variance of β are,
respectively,

E[β |y] = E [E[β |u, y]] =

∫ 1

0
β̂(u)π(u |y)du

and

V[β |y] = E [V[β |u, y]] + V [E[β |u, y]]

=

∫ 1

0

(
S(u)

(ν − 2)(1− u)
Σn(u) +

(
β̂(u)− E[β |y]

)2)
π(u |y)du.

Both integrals above may be evaluated numerically with accurate precision in most cases.

Marginal posterior distributions of variance components

The marginal distributions of σ2 and σ2β are obtained from the joint distribution, π(u, v |y) =
π(v |u,y)π(u |y); that is, using the change of variable formula,

π(σ2, σ2β |y) = π(v(σ2, σ2β) |u
(
σ2, σ2β

)
, y)π

(
u
(
σ2, σ2β

)
| y
) ∣∣∣∣∣∣ ∂(u, v)

∂
(
σ2, σ2β

)
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However, the marginals can not be obtained in closed form, so numerical or Monte Carlo
integration over R+ is needed. However, if only points estimates are needed, it is possible to
get them using one dimensional integration over the interval (0, 1). For example, the Bayesian
estimator under square loss of the ridge parameter λ = σ2/σ2β = u/(1− u) is given by

λ̂ = E[λ | y] =

∫ 1

0

u

1− u
π(u |y) du.

In the same way, the posterior means of σ2β and σ2 are

E
[
σ2β | y

]
= E

[
1

uv

∣∣∣∣ y] = E

[
1

u
E

[
1

v

∣∣∣∣u, y

]]
=

1

n+ n0 + p0 − 1

∫ 1

0

S(u)

u
π(u |y) du.

and

E[σ2 | y] = E

[
1

v(1− u)

∣∣∣∣ y

]
=

1

n+ n0 + p0 − 1

∫ 1

0

S(u)

1− u
π(u |y) du.

2.5. Variable Selection

Suppose that the prior density for β is such that,

π
(
βj |σ2β, γj

)
= (1− γj)N

(
βj | 0, σ2β

)
+ γjN

(
βj | 0, c2jσ2β

)
, j = 1, . . . , p.

Where γj
iid∼ Bernoulli(φj) is an indicator variable which is γj = 1 if the j − th predictor

variable is included in the model, in other case γj = 0. To use this hierarchical mixture setup
for variable selection, the hyperparameters σ2β and c2σ2β are set “small and large”, respectively,

so that N (0, σ2β) is concentrated around 0 and N (0, c2jσ
2
β) is diffuse as in Figure 1.

If the data supports γj = 0 over γj = 1, then βj is probably small enough so that Xj will not
be needed in the model. Suppose a value δj > 0 such that if |βj | < δj it would be preferable to
exclude Xj . The parameter δj should be chosen so that the posterior probability Pr(γj = 1 | y)
must be higher for those values of βj such that |βj | > δj than for those in the neighborhood
of 0. Before any data has been observed, δj may be fixed by choosing σ2β and c2jσ

2
β such that

the pdf π (βj | γj = 0) = N (βj | 0, σ2β) is larger than the pdf π (βj | γj = 1) = N (βj | 0, c2jσ2β)
on the interval (−δjγ , δjγ) (see Figure 1). This condition is satisfied for any σβ and cj such
that

log

(
c2jσ

2
β

σ2
β

)
1
σ2
β
− 1

c2jσ
2
β

≤ δ2j . (9)

Hence,

δj =

√√√√2c2jσ
2
β log (cj)

c2j − 1
, cj > 1.
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− δj 0 δj
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0

0.
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0.
4

0.
6
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8

Figure 1: N (0, σ2β) and N (0, c2jσ
2
β) densities. Intersection at δi

For the selection of cj , note that it is equal to the ratio of π (βj = 0 | γj = 0) and π (βj = 0 | γj = 1);
thus, cj may be interpreted as the prior odds that Xj should be excluded of the model if βj
is to small. Further explanation about the selection of cj and δj can be found in George
and McCulloch (1993). In what follows, we will assume that, for j = 1, . . . , p, φj = φ and
cj = c, which implies that δj = δ. In this way, the variable selection procedure is suitable for
covariates in the same scale.

The joint posterior distribution of γ = (γ1, . . . , γp) is given by

π(γ |y) = π(y |γ)π(γ)/π(y)

where the marginal model given γ in terms of the joint posterior of
(
β, σ2, σ2β

)
is

π (y |γ) =
L
(
β, σ2 |y

)
π
(
β |σ2β,γ

)
π
(
σ2
)
π
(
σ2β

)
π
(
β, σ2, σ2β |γ,y

) .

Then,

π(γ |y) =
π(γ)L

(
β, σ2 |y

)
π
(
β |σ2β,γ

)
π
(
σ2
)
π
(
σ2β

)
π(y)π

(
β, σ2, σ2β |γ,y

)
∝

π(γ)π
(
β
∣∣∣σ2β,γ)

π
(
β, σ2, σ2β

∣∣∣ γ,y) (10)
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where it should be noted that π
(
β, σ2, σ2β

∣∣∣ γ = 0,y
)

is the joint posterior given in (5).

Since,

π(γ |y) = π
(
γj |γ−j ,y

)
π
(
γ−j |y

)
,

where θ−j is the subvector composed by all the elements of θ except the j-th element θj .
Then, it follows from (10) and prior independence that

π
(
γj |γ−j ,y

)
=

π(γ |y)

π
(
γ−j |y

) ∝
π (γj)π

(
βj | σ2β, γj

)
π
(
γ−j |y

)
π
(
β, σ2, σ2β |γ,y

)
∝

φγj (1− φ)1−γjπ
(
βj |σ2β, γj

)
π
(
β, σ2, σ2β |γ,y

) .

Expressing the right hand side of the result above in terms of (β, u, v) we have the following:

π(γj |γ−j ,y) ∝ φγj (1− φ)1−γjπ (βj |u, v, γj)
π (β, u, v |γ,y)

∝ φγj (1− φ)1−γjπ (βj |u, v, γj)
π
(
βj |β−j , u, v,γ,y

)
π
(
β−j |u, v,γ,y

)
π(v |u,γ,y)π(u |γ,y)

∝ φγj (1− φ)1−γjπ (βj |u, v, γj)
π
(
βj |β−j , u, v,γ,y

)
π(v |u,γ,y)π(u |γ,y)

.

Then, the conditional posterior probability of exclusion of the variable Xj is

Pr
(
γj = 0 |γ−j = 0,y

)
= π

(
γj = 0 |γ−j = 0,y

)
(11)

∝ (1− φ)π (βj |u, v, γj = 0)

π
(
βj |β−j , u, v,γ = 0,y

)
π(v |u,γ = 0,y)π(u |γ = 0,y)

= Cj
(1− φ)π (βj |u, v, γj = 0)

π
(
βj |β−j , u, v,γ = 0,y

) .
Note that probability exclusion (11) does not depend on the values of β, u and v and should
be equal to one when the conditional posterior mean of βj is equal to the prior mean and
βj = 0. Moreover, since the prior and the conditional posterior are both normal, it can be

verified that he proportionality constant is Cj = (1 − φ)−1
√∑n

i=1
1−u
u x2ij + 1. Thus, the

probability of the j-th predictor to be included in the model given that the others have been
excluded is:

p̂j = Pr
(
γj = 1 |γ−j = 0,y

)
= 1− Pr

(
γj = 0 |γ−j = 0,y

)
= 1− exp

{
− ũṽ

2
β̃2j −

(1− ũ)ṽ

2Vj

(
β̃j − Ej

)2}
(12)

where, Vj =
(∑n

i=1 x
2
ij + ũ

1−ũ

)−1
and Ej = VjX

′
j

(
y −X−jβ̃−j

)
are the conditional posterior

variance and mean of βj . The quantities ũ,ṽ and β̃ are arbitrary values u,v and β, but
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with high posterior density. From(12) we have that the conditional Bayes factor in favour of
including the covariate Xj in the model is

BFj =
(1− φ)p̂j
(1− p̂j)φ

=
(1− φ)

φ

(
exp

{
ṽ(1− ũ)

2

[
ũ

(1− ũ)
β̃2j +

1

Vj

(
β̃j − Ej

)2]}
− 1

)

2.6. Posterior Computation

The main feature of the parameterization proposed above is that it enable to use standard
matrix algebra to speed up the computation of the posterior distributions without using
sampling techniques. This helps to significantly reduce computation time, avoiding slow
sampling methods. In fact, once the posterior distribution of u is calculated all the estimations
of interest are almost automatically available.

Posterior computation through SVD decomposition

Let UDV′ the full singular value decomposition (SVD) of the matrix of covariates X in the
linear model (1). Note that V = [V1,V2], where V1 and V2 are orthonormals and D = [S,0]
is a rectangular diagonal matrix, where S is the diagonal matrix of size n × n of positive
singular values, s1 ≥ · · · ≥ sn of X and the last p− n columns are all vectors of zeros.
Hence

Σn(u) =

(
X′X +

u

1− u
Ip

)−1
=

(
VD′DV′ +

u

1− u
VV′

)−1
= V

([
Λ 0n,p−n

0p−n,n 0p−n,p−n

]
+

u

1− u
Ip

)−1
V′

= V

[
Λ + u

1−uIn 0n,p−n
0p−n,n

u
1−uIp−n

]−1
V′,

where Λ = S′S = diag(λ1, . . . , λn) is diagonal matrix whose elements are the eigenvalues of
XX′.
Similarly,

β̂u = ΣuX
′y

= V

[
Λ + u

1−uIn 0n,p−n
0p−n,n

u
1−uIp−n

]−1
V′VD′U′y

= V1

(
Λ +

u

1− u
In

)−1
SU′y.
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And

ŷ(u) = Xβ̂(u)

= UDV′V1

(
Λ +

u

1− u
In

)−1
SU′y

= US

(
Λ +

u

1− u
In

)−1
S′U′y

= UPU′y,

where P is a diagonal matrix with Pjj =
(1−u)λj

(1−u)λj+u , j = 1, . . . , n.

Thus, for p > n, substituting in (8) the covariance matrix by its SVD decomposition we have,

π(u |y) ∝ u
p0+p

2
−1(1− u)

n0+n−p
2

−1|X′X +
u

1− u
I|−1/2[(1− u)(SSE(u) + n0s

2
0)]
−n+n0+p0

2

×

[
1 +

u

1− u
β̂
′
(u)β̂(u) + p0d

2
0

SSE(u) + n0s20

]−n+n0+p0
2

∝ u
p0+p

2
−1(1− u)

n0+n−p
2

−1
∣∣∣∣Λ + u

1−uIn 0n,p−n
0p−n,p

u
1−uIp−n

∣∣∣∣−1/2

× [(1− u)(SSE(u) + n0s
2
0)]
−n+n0+p0

2

[
1 +

u

1− u
β̂
′
(u)β̂(u) + p0d

2
0

SSE(u) + n0s20

]−n+n0+p0
2

∝ u
p+p0

2
−1(1− u)

n+n0
2
−1u

n−p
2

 n∏
j=1

(1− u)λj + u

− 1
2

(13)

×[(1− u)(SSE(u) + n0s
2
0)]
−n+n0+p0

2

[
1 +

u

1− u
β̂
′
(u)β̂(u) + p0d

2
0

SSE(u) + n0s20

]−n+n0+p0
2

,

where

SSE(u) = (y − ŷ(u))′(y − ŷ(u))

= (y −UPU′y)′(y −UPU′y) (14)

= y′U(I−P)2U′y.

In general,the marginal posterior of u is

π(u |y) ∝ u
p+p0

2
−1(1− u)

n+n0
2
−1u

n−p
2
I(p>n)

min(n,p)∏
j=1

(1− u)λj + u

− 1
2

(15)

×[(1− u)(SSE(u) + n0s
2
0)]
−n+n0+p0

2

[
1 +

u

1− u
β̂
′
(u)β̂(u) + p0d

2
0

SSE(u) + n0s20

]−n+n0+p0
2

Also note that

Cov (ŷ(u),y |u) = Cov
(
UPU′y,y |u

)
= UPU′Cov(y) = σ2UPU′
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and

Var (ŷ(u) |u) = σ2UPU′,

hence

cor (ŷi, yi) =

∫ 1

0

∑r
j=1 u

2
i,jPjj√∑r

j=1 u
2
i,jP

2
jj

π(u |y) du. (16)

For ridge regression the efcetive degrees of freedom may be calculated as the expected value
trace of the matrix UPU′; that is:

edf = E
[
tr(UPU′ |y)

]
= E [tr(P |y)] =

∫ 1

0

p∑
j=1

Pjjπ(u |y) du.

A naive but useful approach to calculate the quantities above may be to plug in the posterior
mode of u. Thus, for example, the effective degrees of freedom may be approximated by

êdf =

p∑
j=1

(1− û)λj
(1− û)λj + û

,

where û = max argπ(u |y). Obviously, when there is no shrinkage û = 0 and edf = rank(X).

Posterior Computation through QR decomposition

Another procedure to compute the posterior distribution is given by the QR factorization of
X′. This is, let X′ = QR, where Q = [Q1,Q2] is a p×p orthonormal matrix and R = [R′1,R

′
2]
′

is a p × n upper triangular matrix, where the entries of the (p − n) × n matrix R2 are all
zeros. Thus, proceeding in the same way as with SVD decomposition,

Σn(u) =

(
X′X +

u

1− u
Ip

)−1
(17)

=

(
QRR′Q′ +

u

1− u
QQ′

)−1
= Q

(
RR′ +

u

1− u
Ip

)−1
Q′

= Q

[(
R1R

′
1 + u

1−uIn

)−1
0n,p−n

0p−n,n
1−u
u Ip−nQ

′

]
.

In the same way,

β̂(u) = Σn(u)X′y (18)

= Q

(
RR′ +

u

1− u
Ip

)−1
Q′QRy

= Q

(
RR′ +

u

1− u
Ip

)−1
Ry

= Q1

(
R1R

′
1 +

u

1− u
In

)−1
R1y,
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and

ŷ(u) = Xβ̂(u)

= R′Q′Q

(
RR′ +

u

1− u
Ip

)−1
Ry (19)

= R′1

(
R1R

′
1 +

u

1− u
In

)−1
R1y.

Hence, by plugging (17) and (18) in (13) is obtained another way to calculate the marginal
posterior of u, this is,

π(u |y) ∝ u
p0+p

2
−1(1− u)

n0+n
2
−1 ∣∣(1− u)R1R

′
1 + uIn

∣∣−1/2
×[(1− u)(SSE(u) + n0s

2
0)]
−n+n0+p0

2

[
1 +

u

1− u
β̂
′
(u)β̂(u) + p0d

2
0

SSE(u) + n0s20

]−n+n0+p0
2

(20)

when n > p. The other form, u
p+p0

2
−1 is replaced by u

n+p0
2
−1. Note that the covariance is

Cov (ŷ(u),y |u) = σ2R′1

(
R1R

′
1 +

u

1− u
In

)−1
R1.

and the variance

Var (ŷ(u) |u) = σ2R′1

(
R1R

′
1 +

u

1− u
In

)−1
R1

[
R′1

(
R1R

′
1 +

u

1− u
In

)−1
R1

]′
.

Therefore it is possible to calculate the correlation as in the equation (16).
In the same way the effective degrees of freedom are

edf = E

[
tr

(
R′1

(
R1R

′
1 +

u

1− u
In

)−1
R1

)∣∣∣∣∣y
]

= E

[
tr

(
R1R

′
1

(
R1R

′
1 +

u

1− u
In

)−1)∣∣∣∣∣y
]

=

∫ 1

0

[
tr

(
R1R

′
1

(
R1R

′
1 +

u

1− u
In

)−1)]
π(u |y) du. (21)

Therefore the (edf) can be approximated as,

êdf =

[
tr

(
R1R

′
1

(
R1R

′
1 +

û

1− û
In

)−1)]
, (22)

where û = max argπ(u |y).

Since manipulating high dimensional inverse matrices is complicated and expensive, then
when we want to work with the QR method, the posterior mode of u will be used to obtain
the values described above. That is, instead of using a vector u, the posterior mode of u will
be taken.
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3. Results

With this information we can build the package HDBRR (Pérez-Elizalde et al. 2021) in R,
the HDBRR function is,

Box 1a: List of arguments of the HDBRR function

HDBRR(y, X, n0 = 5, p0 = 5, s20 = NULL, d20 = NULL, h = 0.5,

intercept = TRUE, vpapp = TRUE,npts = NULL,c = NULL,

corpred = NULL, method = c("svd","qr"),bigmat = TRUE, ncores = 2)

also we have a second function, the matop function, this help us to compute the SVD or QR
decomposition, the matop form is

Box 1b: List of arguments of the matop function

matop(y, X, method = c("svd", "qr"), bigmat = TRUE)

3.1. Application Example

In this example we will use a database in the package named “phenowheat”, this contain data
from a balanced, four-way multiparental cross population from four elite durum wheat culti-
vars (Neodur, Claudio, Colosseo, and Rascon/Tarro) that were chosen as diverse contributors
of different alleles of agronomic relevance. The cultivars were crossed pair-wise following the
scheme ([Neodur × Claudio] × [Colosseo × Rascon/Tarro], i.e., NCCR) to produce two-way
F1 NCCR hybrids. These four-way F1 hybrids were advanced through single-seed descent and
bulked in the F8 generation. The final NCCR population includes 338 recombinant inbred
lines (RILs) (Milner et al. 2015).This population is representative of segregating populations
commonly used in wheat breeding, where the three- and four-way cross scheme is increasingly
adopted to generate wider genotypic variance in segregating populations as compared with
the traditional biparental cross (Crossa et al. 2016).

The final number of SNPs included in the NCCR linkage map was 7594. The markers were
centered and standardized. Phenotypic evaluation of the NCCR population was performed
during two growing seasons (2010-2011 and 2011-2012) in locations in the Po Valley represen-
tative of the target environments where durum wheat is grown: Cadriano in the 2010-2011
growin season (Cad11) and the 2011-2012 growing season (Cad12); Poggio Renatico in the
2010-2011 growing season (Pr11) and Argelato in the 2011-2012 growing season (Arg12). The
338 RILs, the four parents, and the five control genotypes were evaluated in an a-lattice
incomplete-block experimental design; a 19 by 19 α-lattice design with two replications was
considered in each environment.The four traits included in this study were GY (Mg ha-1),
HD (d), GWT (g 1000 kernels-1), and GVW (kg hL-1) where GY is the grain yield, HD
the heading data, GWT the 1000-kernel weight and GVW the grain volume weight. The
phenotypes of the four traits used for data analysis were the best linear unbiased estimates
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after recovering the incomplete block information (i.e., adjusting for the random incomplete
block effect) in each environment and across environments (Crossa et al. 2016).

The next code shows the HDBRR function with this data, y is obtained with the lmer function,
this allows us to find the BLUP of the line with respect to the environment.

Box 1c: Example with dataset ”phenowheat”

data("phenowheat")

mod <- lmer(pheno$HD~pheno$env+(1|pheno$Line))

y <- unlist(ranef(mod))

n <- length(y)

X <- scale(X, scale=F)

fitall <- HDBRR(y, X/sqrt(ncol(X)), intercept = FALSE, corpred = "eb", c = 100)

summary(fitall)

plot(fitall)

The code in the Box 1c return the results for fitall, this shows us the coefficients obtained. If
we have p > 250, the object shows only 250 coefficients.

Box 1c: Structure of the object fitall returned by HDBRR (after running the code
in Box 1c)

> fitall

Call:

HDBRR(y = y, X = X/sqrt(ncol(X)), intercept = F, c = 100, corpred = "eb")

Coefficients:

X1 X2 X3 X4 X5 X6 X7

-0.069050 0.117750 -0.075723 -0.115526 -0.006621 -0.111297 -0.062642

X8 X9 X10 X11 X12 X13 X14

-0.088641 -0.096674 -0.114091 -0.063993 -0.082015 -0.114091 -0.107933

... 7580 coefficients was omitted

In the same way, the object HDBRR returns a list of 21 elements, included betahat (β̂), yhat
(ŷ), sigsqhat (σ̂2) and sigbsqhat (σ̂2β).
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Box 1d: Structure of the object returned by HDBRR (after running the code in Box
1c)

str(fm)

List of 21

$ betahat : num [1:7594] -0.06905 0.11775 0.07572 ...

$ yhat : num [1:338] -0.394 -0.52 2.876 ...

$ sdyhat : num [1:338] 0.643 0.648 0.619 ...

$ sdpred : num [1:338] 1.71 1.72 1.7 ...

$ varb : num [1:7594] 0.3219 0.8271 0.0511 ...

$ sigsqhat : num 2.52

$ sigbsqhat : num 6.88

$ u : num [1:200] 0.116 0.117 0.119 ...

$ postu : Named num [1:200] 0.116 0.117 0.119 ...

..- attr(*,"names") = chr [1:200] "84.1344\%" ...

$ uhat : num 0.273

$ umode : num 0.261

$ whichNa : int(0)

$ phat : num [1:7594] 0.52 0.52 0.521 ...

$ delta : num 7.96

$ edf : num 140

$ corr : num [1:338] 0.804 0.818 0.793 ...

$ y : num [1:338] 0.0228 -1.5949 2.7807 ...

$ intercept : num 0

Now, we have the option for a summary, this function returns the estimate, standard devi-

ation, SNR and 2 logBF for the coefficients, in the principal function we have the argument
c, when c = NULL then the summary don’t have the last column (2 logBF ). Even more, we
have the arguments all.coef and crit, when we have all.coef = TRUE then summary re-
turns all coefficients, but when we have all.coef = FALSE (the default value) summary only
returns the coefficients that log(bayes factor) > crit where the default value for crit

is log(4). the summary returns the ridge parameter (λ) and the effective degrees of

freedom (edf) too, when c = NULL, edf = NULL.
The form of the summary is in the Box 1e.
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Box 1e: Summary of the object returned by HDBRR (after running the code in Box
1c) using the default values

> summary(fitall)

Call:

HDBRR(y = y, X = X/sqrt(ncol(X)), intercept = F, c = 100, corpred = "eb")

Coefficients:

Estimate Std. dev SNR 2ln(BF)

X1187 2.448331 0.7079706 3.458238 1.733250

X1189 -3.477229 0.5949053 -5.845014 3.105383 *

X1190 -3.411983 0.5887797 -5.795009 3.020875 *

X1191 -3.437302 0.6060903 -5.671272 3.056947 *

X1192 -3.578898 0.6424279 -5.570895 3.252233 *

X1193 -3.595580 0.6084415 -5.909492 3.273802 *

X1194 -3.548588 0.5963829 -5.950185 3.206101 *

X1195 -3.581506 0.6196334 -5.780039 3.257444 *

X1196 -3.376780 0.5930485 -5.693935 2.971416 *

X1197 -3.444590 0.6027798 -5.714507 3.063753 *

X1198 -3.443699 0.6013025 -5.727066 3.062512 *

X1199 -3.395415 0.5896655 -5.758205 2.995950 *

X1200 2.524250 0.7140561 3.535086 1.811552

X1205 -3.623269 0.6607038 -5.483955 3.312073 *

X1931 -2.484760 0.6701858 -3.707569 1.845033

X1932 -2.422271 0.6321472 -3.831815 1.774233

X1933 -2.417706 0.6402461 -3.776214 1.769846

X1934 -2.452866 0.6641450 -3.693269 1.807623

X1935 -2.120806 0.7404535 -2.864199 1.433109

X1936 -2.752589 0.7502858 -3.668721 2.168280 *

X1937 -2.437252 0.6639373 -3.670907 1.790789

X1938 -2.572225 0.6453258 -3.985932 1.946329

X1950 2.164019 0.7499884 2.885403 1.447961

-----

Signif. codes: 10 '***' 6 '**' 2 '*' 0 ' '

Ridge parameter: 0.3754

Effective degrees of freedom: 140.3917

The other function implemented for a package HDBRR is plot, this returns the variable
selection graphs, this use the argument crit = log(4) as default value. The graphs “y
observed vs y predicted”, “coefficients”,“Std.dev.” and “SNR” are included too. Finally we
have the graph of “Marginal posterior of u”. Then with plot(fitall) we obtain Figures 2,
3 and 4.

Finally we have the option predict for a HDBRR object, this returns the vector of predicted
values.

One option to study the results obtained with the package is to use the cross validation, in
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Figure 4: Marginal posterior of u.

this case we use a K-Fold cross validation with K = 10, and we obtain the results in the Table
1.

MSE Correlation

Fold = 1 4.7367 0.6752
Fold = 2 5.9848 0.3813
Fold = 3 3.533 0.5907
Fold = 4 4.772 0.6583
Fold = 5 3.9884 0.6657
Fold = 6 5.8835 0.5838
Fold = 7 3.4608 0.5146
Fold = 8 3.6765 0.6828
Fold = 9 5.1121 0.553
Fold = 10 2.7146 0.6892
Pooled 4.3862 0.5995

Table 1: K-Fold cross validation with K=10

4. Conclusions

We propose a computational method to make Bayesian inference for high-dimensional ridge
regression without using MCMC methods. Posterior means and variances of regression pa-
rameters, variance components and predictions for the conventional ridge Regression model
are obtained by using a convenient reparameterization. The problem is reduced to numerical
integration on the open interval (0, 1) to get rid of a nuisance parameter, after SVD or QR
decomposition of the matrix X′X. The method is implemented in the R package HDBRR,
which allows us also to make also variable selection and prediction without appealing the



20 HDBRR: An R-package for Ridge Regression without MCMC

theoretical guarantees of MCMC methods. The results of cross validation shown that the
proposed method has a performance in computation time and accuracy at least as good as
the results obtained by using MCMC methods.
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