Package 'IPV'

December 14, 2021
Title Item Pool Visualization
Type Package
Version 0.2.0
Description Generate plots based on the Item Pool Visualization concept for latent constructs. Item Pool Visualizations are used to display the conceptual structure of a set of items (self-report or psychometric). Dantlgraber, Stieger, \& Reips (2019) doi:10.1177/2059799119884283.

Depends R (>=3.5.0)
Imports ggforce, ggplot2, stats, stringr, lavaan, Matrix, reshape 2
Suggests knitr, rmarkdown, extrafont, readxl, cowplot, gplots
VignetteBuilder knitr
License GPL-2
LazyData true
Maintainer Nils Petras nils.petras@mailbox.org
RoxygenNote 7.1.2

URL https://github.com/NilsPetras/IPV

BugReports https://github.com/NilsPetras/IPV/issues

Encoding UTF-8

NeedsCompilation no
Author Nils Petras [aut, cre],
Michael Dantlgraber [aut],
Ulf-Dietrich Reips [ctb],
Matthias Bannert [ctb]
Repository CRAN
Date/Publication 2021-12-14 13:40:02 UTC

R topics documented:

coord_facets 2
coord_items 4
coord_nested 5
cormat 7
DSSEI 8
facet_chart 9
floads 12
get_names 13
get_xarrows 13
HEXACO 14
ind_lav 14
input_excel 15
input_excel_factor 16
input_manual_nested 17
input_manual_process 19
input_manual_process_factor 20
input_manual_simple 20
IPV 22
ipv_est 23
item_chart 24
item_overview 27
nested_chart 28
plot_facets 34
plot_items 35
plot_nested 37
rename 40
rename_est 40
rename_raw 41
rename_raw_simple 41
rename_simple 42
rename_xarrow 42
self_confidence 43
SMTQ 44
write_IPV_syntax 45
Index 46
coord_facets Coord Facets

Description

Generates the coordinates for a facet chart.

Usage

```
coord_facets(
        data,
        cd_method = "aggregate",
        facet_order = NULL,
        subradius = 0,
        tick = 0,
        rotate_tick_label = 0,
        rotate_radians = 0,
        rotate_degrees \(=0\),
        dist_test_label = 2/3,
        rotate_test_label_radians = 0,
        rotate_test_label_degrees = 0
    )
```


Arguments

data SEM estimates in the appropriate format, given by the input functions.
cd_method character; method to summarize center distances, either "mean" or "aggregate", see details; defaults to "aggregate".
facet_order character; vector of facet names in desired order (counter-clockwise); defaults to NULL, in which case the order is based on the correlation matrix columns in 'data'.
subradius integer; same unit as center distances; radius of the facet circles; defaults to 0 , in which case an appropriate value is estimated.
tick numeric; axis tick position; defaults to 0 , in which case an appropriate value is estimated.
rotate_tick_label
numeric; number of positions to move the tick label (counter-clockwise); defaults to 0 .
rotate_radians integer; radian angle to rotate the chart counter-clockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
rotate_degrees integer; angle in degrees to rotate the chart counter-clockwise by.
dist_test_label
integer; position of the test label relative to the surrounding circle; defaults to $2 / 3$, in which case the test label is displayed $2 / 3$ of the way from the center to the surrounding circle.
rotate_test_label_radians
integer; radian angle to rotate the test label counter-clockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
rotate_test_label_degrees
integer; angle in degrees to rotate the global label counter-clockwise by.

Details

Use facet_chart to create facet charts.

Value

List containing coordinates of chart objects.

```
See Also
    plot_facets facet_chart
```

 coord_items Coord Items

Description

Generates the coordinates for an item chart.

Usage

```
coord_items(
        data,
        facet_order = NULL,
        rotate_radians = 0,
        rotate_degrees = 0,
        grid_limit = 0,
        dist_test_label = 0.5,
        rotate_test_label_radians = 0,
        rotate_test_label_degrees = 0,
        width_items = 1,
        length_items = 1,
        length_ratio_items = 1.5,
        dodge = 1
)
```


Arguments

data SEM estimates in the appropriate format, given by the input functions.
facet_order character; vector of facet names in desired order (counter-clockwise); defaults to NULL, in which case the order is based on the correlation matrix columns in 'data'.
rotate_radians integer; radian angle to rotate the chart counter-clockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
rotate_degrees integer; angle in degrees to rotate the chart counter-clockwise by.
grid_limit integer; upper limit to which the grid lines should be drawn; defaults to 0 , in which case an appropriate value is estimated.
dist_test_label
integer; position of the test label relative to the surrounding circle; defaults to .5 , in which case the test label is displayed halfway from the center to the surrounding circle.

```
    rotate_test_label_radians
        integer; radian angle to rotate the test label counter-clockwise by; use fractions
        of pi (e.g. pi/2 \(=90\) degrees).
    rotate_test_label_degrees
        integer; angle in degrees to rotate the test label counter-clockwise by.
    width_items integer; item bar width relative to default.
    length_items integer; item bar length relative to default.
    length_ratio_items
        integer; relative item bar length; defaults to 1.5 .
    dodge integer; horizontal outward dodge of facet labels relative to default.
```


Details

Use item_chart to create item charts.

Value

List containing coordinates of chart objects.

```
See Also
    plot_items coord_nested item_chart
```

 coord_nested Coord Nested

Description

Generates the coordinates for a nested chart and all other charts.

Usage

coord_nested(
data,
cd_method = "aggregate",
test_order = NULL,
facet_order = NULL,
subradius $=0$,
tick = 0,
rotate_tick_label = 0,
rotate_radians = 0,
rotate_degrees = 0,
subrotate_radians = 0,
subrotate_degrees = 0,
dist_construct_label = 10,
rotate_construct_label_radians = 0,
rotate_construct_label_degrees = 0,

```
    dist_test_labels = 2/3,
    rotate_test_labels_radians = 0,
    rotate_test_labels_degrees = 0,
    prepare_item_charts = FALSE,
    correlations = TRUE,
    cor_spacing = 0,
    relative_scaling = 0,
    xarrows = NULL
)
```


Arguments

data SEM estimates in the appropriate format, given by the input functions.
cd_method character; method to summarize center distances, either "mean" or "aggregate", see details; defaults to "aggregate".
test_order character; vector of test names in desired order (counter-clockwise); defaults to NULL, in which case the order is based on the correlation matrix columns in 'data'.
facet_order character; vector of all facet names of all tests in desired order (counter-clockwise); defaults to NULL, in which case the order is based on the correlation matrix columns in 'data'.
subradius integer; same unit as center distances; radius of the facet circles; defaults to 0 , in which case an appropriate value is estimated.
tick numeric; axis tick position; defaults to 0 , in which case an appropriate value is estimated.
rotate_tick_label
numeric; number of positions to move the tick label (counter-clockwise); defaults to 0 .
rotate_radians integer; radian angle to rotate the chart counter-clockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
rotate_degrees integer; angle in degrees to rotate the chart counter-clockwise by.
subrotate_radians
integer; radian angle or vector of radian angles to rotate the nested facet charts counter-clockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
subrotate_degrees
integer; angle in degrees or vector of angles in degrees to rotate the nested facet charts counter-clockwise by.
dist_construct_label
integer; position of the construct label relative to the surrounding circle; defaults to 10 , in which case an appropriate value is estimated; a value of .5 would position the label halfway between the center and the surrounding circle.
rotate_construct_label_radians
integer; radian angle to rotate the construct label counter-clockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
rotate_construct_label_degrees
integer; angle in degrees to rotate the construct label counter-clockwise by.

dist_test_labels

integer; position of the test labels relative to the surrounding circle; defaults to $2 / 3$, in which case the test labels are displayed $2 / 3$ of the way from the centers to the surrounding circles.
rotate_test_labels_radians
integer; radian angle or vector of radian angles to rotate the test labels counterclockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
rotate_test_labels_degrees
integer; angle or vector of angle in degrees to rotate the test labels counterclockwise by.
prepare_item_charts
logical; if TRUE, generates the item chart coordinates for all factors by calling coord_items.
correlations logical; if TRUE, generates the coordinates for the latent correlations between tests. Sets up a ring to draw them in. If FALSE, the ring and the correlations are omitted, simplifying the chart significantly.
cor_spacing integer; if correlations = TRUE: width of the ring, the latent correlations between tests are drawn in; defaults to 0 , in which case an appropriate value is estimated.
relative_scaling
integer; relative size of the global chart scale compared to the nested facet chart scales; defaults to 0 , in which case an appropriate value is estimated.
xarrows data frame containing information about additional correlation arrows between facets of different tests; see examples.

Details

Use nested_chart to create nested charts.

Value

List containing coordinates of chart objects.

See Also

plot_nested nested_chart

cormat $\operatorname{Cor}($ relation) Mat(rix)

Description

Retrieve factor correlation matrix from lavaan model

Usage

cormat(fit)

Arguments

fit fitted lavaan model

Value

matrix; correlation matrix

DSSEI
Domain Specific Self-Esteem Inventory

Description

A set of center distances and latent correlations for items and facets of the DSSEI, completed by 2272 german speaking participants using the german version of the questionnaire. SEM estimation performed on the DSSEI data alone (differing from the estimation in "self_confidence").

Usage

DSSEI

Format

An object of class list of length 2.

Items

__ Social Competence (So) __

1. I usually feel as if I have handled myself well at social gatherings.
2. I feel secure in social situations.
3. I feel confident of my social behaviour.
4. I am often troubled with shyness. (R)
5. At social gatherings I am often withdrawn, not at all outgoing. (R)
__ Task-Related Abilities (Ab) \qquad
6. I feel as if I lack the necessary skills to really succeed at the work I do. (R)
7. I am able to do things as well as most other people.
8. I usually expect to succeed at the things I do.
9. I almost always accomplish the goals I set for myself.
10. In general, I feel confident about my abilities.
__ Physical Appeal (Ph) __
11. I feel that others would consider me to be attractive.
12. I'm not as nice looking as most people. (R)
13. I feel confident that my physical appearance is appealing to others.
14. I am satisfied with the way I look.
15. I feel unattractive compared to most people my age. (R)
__ Public Presentation (Pb) __
16. When I speak in a large group discussion, I usually feel sure of myself.
17. I enjoy being in front of large audiences.
18. I feel quite confident when speaking before a group of my peers.
19. I find it very hard to talk in front of a group. (R)
20. When I talk in front of a group of people my own age, I am usually somewhat worried or afraid. (R)
(Hoyle, R. H. (1991). Evaluating measurement models in clinical research: Covariance structure analysis of latent variable models of self-conception. Journal of Consulting and Clinical Psychology, 59(1), 67.)

Source

Dantlgraber, M., Stieger, S., \& Reips, U. D. (2019). Introducing Item Pool Visualization: A method for investigation of concepts in self-reports and psychometric tests. Methodological Innovations, 12(3), 2059799119884283.

```
facet_chart Facet Chart
```


Description

Creates a facet chart, showing the facets of a test.

Usage

facet_chart(data,
cd_method = "aggregate",
facet_order = NULL,
subradius = 0,
file_name = "none",
size $=1$,
font = "sans",
rotate_radians = 0,
rotate_degrees $=0$,
file_width = 10,
file_height = 10,
zoom_x = NULL,
zoom_y = NULL,
dpi = 500,
color = "\#007AD6",
fade $=85$,

```
    tick = 0,
    rotate_tick_label = 0,
    cor_labels = TRUE,
    dist_test_label = 2/3,
    rotate_test_label_radians = 0,
    rotate_test_label_degrees = 0,
    title = NULL,
    size_title = 1,
    size_cor_labels = 1,
    size_test_label = 1,
    size_facet_labels = 1,
    width_axes = 1,
    width_circles = 1,
    width_tick = 1,
    size_tick_label = 1
)
```


Arguments

data cd_method	SEM estimates in the appropriate format, given by the input functions. character; method to summarize center distances, either "mean" or "aggregate", see details; defaults to "aggregate".
facet_order	character; vector of facet names in desired order (counter-clockwise); defaults to NULL, in which case the order is based on the correlation matrix columns in 'data'.
subradius	integer; same unit as center distances; radius of the facet circles; defaults to 0 , in which case an appropriate value is estimated.
file_name	character; name of the file to save. Supported formats are: "pdf" (highest quality and smallest file size), "png", "jpeg"; defaults to "none".
size	integer; changes the size of most chart objects simultaneously.
font	character; text font, use extrafonts to access additional fonts; defaults to "sans", which is "Helvetica".
rotate_radians	integer; radian angle to rotate the chart counter-clockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
rotate_degrees	integer; angle in degrees to rotate the chart counter-clockwise by.
file_width	integer; file width in inches; defaults to 10.
file_height	integer; file height in inches; defaults to 10 .
zoom_x	integer; vector with two values, the edges of the zoomed section on the x-axis; defaults to NULL.
zoom_y	integer; vector with two values, the edges of the zoomed section on the y-axis; defaults to NULL.
dpi	integer; resolution in dots per inch for "png" and "jpeg" files; defaults to 500.
color	accent color; defaults to blue ("\#007AD6").
fade	integer; brightness of the gray tones between $0=$ "black" and $100=$ "white" in steps of 1 ; defaults to 85 .

```
tick numeric; axis tick position; defaults to 0, in which case an appropriate value is
    estimated.
rotate_tick_label
    numeric; number of positions to move the tick label (counter-clockwise); de-
        faults to 0.
cor_labels logical; if TRUE, shows latent correlations between facets; defaults to TRUE.
dist_test_label
    integer; position of the test label relative to the surrounding circle; defaults to
    2/3, in which case the test label is displayed 2/3 of the way from the center to
    the surrounding circle.
rotate_test_label_radians
    integer; radian angle to rotate the test label counter-clockwise by; use fractions
    of pi (e.g. pi/2 = 90 degrees).
rotate_test_label_degrees
    integer; angle in degrees to rotate the global label counter-clockwise by.
title character; overall chart title; defaults to NULL.
size_title integer; title font size relative to default.
size_cor_labels
    integer; correlation font size relative to default.
size_test_label
    integer; test font size relative to default.
size_facet_labels
    integer; facet font size relative to default.
width_axes integer; radial axis width relative to default.
width_circles integer; facet circle outline width relative to default.
width_tick integer; axis tick line width relative to default.
size_tick_label
integer; axis tick font size relative to default.
```


Details

To summarize center distances (cd_method), the "mean" method computes the average center distance (compute cds first, summarize across items second), while the "aggregate" method computes a center distance based on the sum of the squared loadings (summarize across items first, compute cds second). "Aggregate" (default) is recommended, because it is more meaningful in cases with heterogeneous factor loadings, while "mean" is the originally proposed method.
Pdf files will be vector based and can be scaled arbitrarily. For other formats use file_width, file_height, and dpi to avoid later rescaling and loss of quality.
Instead of using screenshots to crop the chart, it is highly recommendable to use zoom_x and zoom_y. This allows for vector-based graphics quality when showing sections of the chart. With this cropping method, use file_width to set the overall size of the file output, file_height will automatically adjust to retain the correct aspect ratio, if both zoom_x and zoom_y are provided.
Consider adding title and caption in your typesetting software (LaTeX, MS Word, ...), not here. The option to add a title is only a quick and dirty shurtcut. It reduces chart size and is inflexible. Adding the title manually will provide additional options, but requires you to save to a file manually. To manually add a title or caption use labs.

Value

Object of the class "ggplot".

See Also

item_chart nested_chart

Examples

\# as simple as that:
facet_chart(SMTQ)

floads Load(ing)s

Description

Extract the standardized factor loadings from a fitted lavaan model.

Usage

floads(fit, vars = NULL)

Arguments

fit fitted lavaan model
vars character; variables for which loadings should be extracted; defaults to NULL, in which case all variables are considered

Value

numeric; vector of standardized factor loadings

```
get_names Get names
```


Description

Extract the names of tests, facets, and items from the variable names of a dataset.

Usage

get_names(dat)

Arguments

dat data frame; dataset

Details

variable names in the data have to strictly match the following scheme: "test_facet_item" or "facet_item".

Value

data frame; names of tests, facets and items

```
get_xarrows Get Xarrows
```


Description

Creates a data frame for the drawing of arrows in nested charts, including all correlations between facets that exceed the correlation of the respective tests.

Usage

get_xarrows(cors, design)

Arguments

$$
\begin{array}{ll}
\text { cors } & \text { list; list of latent correlation matrices of each model } \\
\text { design } & \text { data frame; each facet (column "facet") is matched with its superordinate test } \\
\text { (column "test") }
\end{array}
$$

Value

data frame; data frame in the required format for the drawing of arrows in nested charts, including only those latent facet correlations, that exceed the correlation between the respective tests.

Description

Cleaned-up data from an ad-hoc online sample of $\mathrm{n}=22786$ participants on the 240 items of the IPIP HEXACO Equivalent Scales. Data were collected before 21st June 2014 within the Open-Source Psychometrics Project (https://openpsychometrics.org/). After listwise deletion of missing values and including only those participants who did at least "agree" on the items "I understand the instructions for this test." and "I have answered all of these questions as accurately as possible.", data on $n=20174$ participants remains.

Usage

HEXACO

Format

An object of class data. frame with 20174 rows and 245 columns.

Items

https://ipip.ori.org/newhexaco_pi_key.htm

Source

:
https://openpsychometrics.org/_rawdata/ (May 6th, 2020)
ind_lav ind lav

Description

create a lavaan model syntax based on a set of variable names and indicator names that comprise these variable names

Usage

ind_lav(vars, indicators)

Arguments

vars character; variable names
indicators character; indicator names, may include unused indicators

Details

Indicator names have to include the variable names like this: "...variable_...". Variable names have to be unique and cannot be contained in one another like this: "variable_" and "ariable_"

Value

character; lavaan model syntax

```
input_excel Input Excel
```


Description

Reads excel files containing factor loadings and latent correlations for IPV charts.

Usage

input_excel(global = NULL, tests)

Arguments

global character; name of the excel file containing factor loadings from the global level and the test level, and latent correlations from the test level.
tests character; name(s) of the excel file(s) containing factor loadings from the test level and the facet level, and latent correlations from the facet level.

Details

Note that the excel files need a very specific structure. Use the example files as templates.
The global argument defaults to NULL. This allows to only use the tests argument, resulting in a simple model with one test and its facets.
If you specify an element in tests as NA, this test will be treated as having no facets.

Value

List containing formatted data including center distances for item_chart, facet_chart, and nested_chart.

Examples

```
# read data for a simple model by ignoring the "global" parameter of
# input_excel
single_file <- system.file(
    "extdata",
    "DSSEI.xlsx",
    package = "IPV",
    mustWork = TRUE)
x <- input_excel(tests = single_file)
```

```
    # read data for a nested model
    # the estimates need to be split into several excel files as in the example
    global <- system.file(
    "extdata",
    "IPV_global.xlsx",
    package = "IPV",
    mustWork = TRUE)
tests <- c(
    system.file(
            "extdata",
            "IPV_DSSEI.xlsx",
            package = "IPV",
            mustWork = TRUE),
    system.file(
            "extdata",
            "IPV_SMTQ.xlsx",
            package = "IPV",
            mustWork = TRUE),
    system.file(
            "extdata",
            "IPV_RSES.xlsx",
            package = "IPV",
            mustWork = TRUE))
x <- input_excel(global = global, tests = tests)
```

input_excel_factor Input Excel Factor

Description

Reads factor loadings and latent correlations from an excel file.

Usage

input_excel_factor(file)

Arguments

file character; filename of the excel file

Details

Helper function of input_excel.

Value

list containing formatted data including center distances for item_chart, facet_chart

See Also

```
input_excel
```

```
input_manual_nested Input Manual Nested
```


Description

Generates manual data input for a nested model with several tests.

Usage

```
input_manual_nested(
    construct_name,
    test_names,
    items_per_test,
    item_names,
    construct_loadings,
    test_loadings,
    correlation_matrix
)
```


Arguments

construct_name character; the name of the overall construct.
test_names character; the names of the tests in correct order.
items_per_test integer; number of items per test in correct order (determined by test_names), if all tests have the same number of items a single number can be used, e.g. 10 instead of $c(10,10,10)$.
item_names character or integer; the names of the items in correct order (determined by test_names).
construct_loadings
integer; vector of the factor loadings from the single factor model of the construct in correct order (determined by item_names).
test_loadings integer; vector of the factor loadings on the test factors from the group factor model in correct order (determined by item_names).
correlation_matrix
matrix containing the latent correlations between tests, pay attention to the order of rows and columns, which is determined by test_names.

Details

Pay attention to the order of tests and items, it has to be coherent throughout the whole data. test_names and items_per_test determine which test is listed first and how many items are listed for that test. item_names, construct_loadings and test_loadings have to match that order. The correlation matrix uses the order in test_names for rows and columns.
This function only lists the name of the tests in output\$tests. For each of those tests, the data on the facets needs to be added using input_manual_simple. Every test for which you do not provide this data will be treated as having no facets.

Visually inspect the returned object before continuing with input_manual_process!

Value

list containing "raw" data. The data on the facets of the tests needs to be added using input_manual_simple. Afterwards, the whole data needs to be pre-processed using input_manual_process.

See Also

```
input_manual_simple input_manual_process
```


Examples

```
# these data can also be seen in self_confidence, the example data of
# this package
mydata <- input_manual_nested(
construct_name = "Self-Confidence",
test_names = c("DSSEI", "SMTQ", "RSES"),
items_per_test = c(20, 14, 10),
item_names = c(
    1, 5, 9, 13, 17, # DSSEI
    3, 7, 11, 15, 19, # DSSEI
    16, 4, 12, 8, 20, # DSSEI
    2, 6, 10, 14, 18, # DSSEI
    11, 13, 14, 1, 5, 6, # SMTQ
    3, 10, 12, 8, # SMTQ
    7, 2, 4, 9, # SMTQ
    1, 3, 4, 7, 10, # RSES
    2, 5, 6, 8, 9), # RSES
construct_loadings = c(
    .5189, .6055, .618, .4074, .4442,
    .5203, .2479, .529, .554, .5144,
    .3958, .5671, .5559, .4591, .4927,
    .3713, .5941, .4903, .5998, .6616,
    .4182, . 2504, .4094, . 3977, .5177, .4603,
    .3271, .261, .3614, .4226,
    .2076, .3375, .5509, .3495,
    .5482, .4627, .4185, .4185, .5319,
    .4548, .4773, .4604, .4657, .4986),
test_loadings = c(
    .5694, .6794, .6615, .4142, .4584, # DSSEI
    .5554, .2165, .5675, .5649, .4752, # DSSEI
```

```
    . 443 , .6517, .6421, . 545 , .5266, # DSSEI
    . 302 , .6067, .5178, .5878, .6572, # DSSEI
    .4486, .3282, .4738, .4567, .5986, .5416, # SMTQ
    .3602, .2955, .3648, .4814, # SMTQ
    .2593, .4053, . 61 , .4121, # SMTQ
    .6005, .4932, .4476, .5033, .6431, # RSES
    .5806, .5907, .6179, .5899, .6559), # RSES
correlation_matrix = matrix(data = c( 1, .73, .62,
    .73, 1, .75,
    .62, .75, 1),
    nrow = 3,
    ncol = 3))
    mydata
```

input_manual_process Input Manual Process

Description

Pre-processes the SEM estimates listed using input_manual_simple or input_manual_nested for the use of chart functions.

Usage

input_manual_process(data)

Arguments

data list generated by input_manual_simple or input_manual_nested with complete data.

Value

List containing formatted data including center distances for item_chart, facet_chart, and nested_chart.

See Also

input_manual_simple input_manual_nested

Examples

```
# these RSES data can also be seen in self_confidence, the example data of
# this package
mydata <- input_manual_simple(
test_name = "RSES",
facet_names = c("Ns", "Ps"),
items_per_facet = 5,
item_names = c(2, 5, 6, 8, 9,
            1, 3, 4, 7, 10),
```

```
    test_loadings = c(. 5806, . 5907, . 6179, . 5899, .6559,
    .6005, .4932, .4476, . 5033, .6431),
facet_loadings = c(.6484, .6011, .6988, .6426, .6914,
    .6422, . 5835, .536, .5836, .6791),
    correlation_matrix = matrix(data = c(1, . 69,
        .69, 1),
        nrow = 2,
        ncol = 2))
    mydata
    input_manual_process(mydata)
```

input_manual_process_factor
Input Manual Process Factor

Description

Helper function of input_manual_process.

Usage

input_manual_process_factor(data)

Arguments

data list generated by input_manual_simple with complete data.

Value

List containing formatted data including center distances for a single factor.

```
input_manual_simple Input Manual Simple
```


Description

Generates manual data input for a simple model with one test.

Usage

```
input_manual_simple(
        test_name,
        facet_names,
        items_per_facet,
        item_names,
        test_loadings,
        facet_loadings,
        correlation_matrix
)
```


Arguments

test_name character; the name of the test.
facet_names character; the names of the facets in correct order.
items_per_facet
integer; number of items per facet in correct order (determined by facet_names), if all facets have the same number of items a single number can be used, e.g. 5 instead of $c(5,5,5,5)$.
item_names character or integer; the names of the items in correct order (determined by facet_names).
test_loadings integer; vector of the factor loadings from the single factor model of the test or a group factor model of multiple tests in correct order (determined by item_names).
facet_loadings integer; vector of the factor loadings on the facet factors from the group factor model in correct order (determined by item_names).
correlation_matrix
matrix containing the latent correlations between facets, pay attention to the order of rows and columns, which is determined by facet_names.

Details

Pay attention to the order of facets and items, it has to be coherent throughout the whole data. facet_names and items_per_facet determine which facet is listed first and how many items there are listed for that facet. item_names, test_loadings and facet_loadings have to match that order. The correlation matrix uses the order in facet_names for rows and columns.

Visually inspect the returned object before continuing with input_manual_process!

Value

list containing "raw" data, that needs to be pre-processed using input_manual_process.

See Also

input_manual_nested input_manual_process

Examples

```
# these RSES data can also be seen in self_confidence, the example data of
# this package
mydata <- input_manual_simple(
test_name = "RSES",
facet_names = c("Ns", "Ps"),
items_per_facet = 5,
item_names = c(2, 5, 6, 8, 9,
            1, 3, 4, 7, 10),
test_loadings = c(.5806, .5907, .6179, . 5899, .6559,
                    .6005, .4932, .4476, .5033, .6431),
facet_loadings = c(.6484, .6011, .6988, .6426, .6914,
                    .6422, .5835, .536, . 5836, .6791),
correlation_matrix = matrix(data = c(1, . 69,
                                    .69, 1),
                    nrow = 2,
                        ncol = 2))
mydata
input_manual_process(mydata)
```


IPV

Description

The IPV package provides the following functions.

Estimation function

ipv_est uses raw data to estimate the IPV models and pre-format their estimates for chart creation. This is the easiest and recommended Workflow.

Chart Functions

Chart functions create a ggplot2 object (the chart). There are three types of charts. item_chart facet_chart nested_chart

Input Functions

The input functions prepare existing model estimates for the chart functions. This is not recommended, if the raw data are available. Read in vectors containing model estimates from within R by using input_manual_simple, input_manual_nested) and input_manual_process. Read in model estimates via MS Excel files and input_excel.

Miscellaneous functions

The function item_overview creates a grid of bar plots showing the (squared) factor loadings of all items in all models underlying a nested chart. Use this to inspect the absolute values underlying the charts.
The function rename enables quick changes of the labels for variables.

Basic Workflow

1. Prepare your raw data.
2. Generate the model estimates using the estimation function.
3. Select a chart function and use it with the estimates, a file name (.pdf), and otherwise default values.
4. Change the default values of the chart function arguments.
5. Check the chart's appearance by opening the created file (do not rely on the display of plots in R , results may differ).
6. Repeat until you are satisfied with the result.
```
ipv_est IPV estimation
```


Description

IPV estimation

```
Usage
    ipv_est(
        dat,
        name,
        estimator = "ML",
        include_raw = TRUE,
        include_lav = TRUE,
        include_xarrow = TRUE
    )
```


Arguments

dat data frame; raw data (see details)
name character; name of the overall construct or test that comprises all items used
estimator character; estimator used by lavaan; defaults to "ML" (Maximum Likelihood)
include_raw logical; should raw estimates of factor loadings be included in the output?; defaults to TRUE
include_lav logical; should lavaan objects of the fitted models be included in the output?; defaults to TRUE
include_xarrow logical; should an object for the drawing of arrows in nested plots be returned?; defaults to TRUE

Details

the data given to dat have to conform to the following rules: * no additional variables / columns * variables are named according to the following pattern: "test_facet_item". * If there is only one test in the data, the pattern is "facet_item". For tests without facets in a larger dataset also comprising tests with items, the pattern is "test_item". * Variable names have to be unique. Item names have to be unique at the level of the test (not only at the level of the facet) See example

Value

list; \$est includes the center distances and all necessary input for the IPV chart functions, \$est_raw includes the factor loadings and latent correlations, \$lav includes the fitted models (class: lavaan), \$xarrow includes a data frame for arrows between facets in nested charts, that can be passed on directly to nested_chart; by default, all three of these elements are provided.
\$xarrow includes only those cases, where the estimate of the latent correlation between facets exceeds the estimate of the latent correlation between their respective tests, as recommended by the original authors.

Examples

```
# an IPV that comprises the honesty/humility and the agreeableness factor of
# the HEXACO (reduced to first 4 items per facet and first 1000 observations
# to reduce runtime)
res <- ipv_est(
    HEXACO[1:500, grep("^H_.*[1-4]$|^A_.*[1-4]$", names(HEXACO))],
    "HA")
nested_chart(res$est)
```

```
item_chart Item Chart
```


Description

Creates an item chart, showing the items of a test arranged by facets.

Usage

```
item_chart(
    data,
    facet_order = NULL,
    file_name = "none",
    size = 1,
    font = "sans",
    rotate_radians = 0,
    rotate_degrees = 0,
    grid_limit = 0,
    file_width = 12,
    file_height = 10,
```

```
    zoom_x = NULL,
    zoom_y = NULL,
    dpi = 500,
    color = "black",
    color2 = "black",
    fade_axes = 50,
    fade_grid_major = 15,
    fade_grid_minor = 65,
    dodge = 1,
    dist_test_label = 0.5,
    rotate_test_label_radians = 0,
    rotate_test_label_degrees = 0,
    width_items = 1,
    length_items = 1,
    length_ratio_items = 1.5,
    title = NULL,
    size_title = 1,
    size_tick_label = 1,
    size_test_label = 1,
    size_facet_labels = 1,
    width_axes = 1,
    size_arrow_heads = 1,
    width_grid = 1
)
```


Arguments

data

facet_order character; vector of facet names in desired order (counter-clockwise); defaults to NULL, in which case the order is based on the correlation matrix columns in 'data'.
file_name character; name of the file to save. Supported formats are: "pdf" (highest quality and smallest file size), "png", "jpeg"; defaults to "none".
size integer; changes the size of most chart objects simultaneously.
font character; text font, use extrafonts to access additional fonts; defaults to "sans", which is "Helvetica".
rotate_radians integer; radian angle to rotate the chart counter-clockwise by; use fractions of pi (e.g. pi/2 $=90$ degrees).
rotate_degrees integer; angle in degrees to rotate the chart counter-clockwise by.
grid_limit integer; upper limit to which the grid lines should be drawn; defaults to 0 , in which case an appropriate value is estimated.
file_width integer; file width in inches; defaults to 12 .
file_height integer; file height in inches; defaults to 10 .
zoom_x integer; vector with two values, the edges of the zoomed section on the x-axis; defaults to NULL.

```
zoom_y integer; vector with two values, the edges of the zoomed section on the y-axis;
    defaults to NULL.
dpi integer; resolution in dots per inch for "png" and "jpeg" files; defaults to 500.
color first accent color; defaults to "black".
color2 second accent color; defaults to "black".
fade_axes integer; brightness of the gray tone of the axes between 0 = "black" and 100=
    "white" in steps of 1; defaults to 50.
fade_grid_major
    integer; brightness of the gray tone of the major grid lines between 0 = "black"
    and 100 = "white" in steps of 1; defaults to 15.
fade_grid_minor
    integer; brightness of the gray tone of the minor grid lines between 0 = "black"
    and 100 = "white" in steps of 1; defaults to 65.
dodge integer; horizontal outward dodge of facet labels relative to default.
dist_test_label
    integer; position of the test label relative to the surrounding circle; defaults to
    .5, in which case the test label is displayed halfway from the center to the sur-
    rounding circle.
rotate_test_label_radians
    integer; radian angle to rotate the test label counter-clockwise by; use fractions
    of pi (e.g. pi/2 = 90 degrees).
rotate_test_label_degrees
    integer; angle in degrees to rotate the test label counter-clockwise by.
width_items integer; item bar width relative to default.
length_items integer; item bar length relative to default.
length_ratio_items
    integer; relative item bar length; defaults to 1.5.
title character; overall chart title; defaults to NULL.
size_title integer; title font size relative to default.
size_tick_label
    integer; axis tick label font size relative to default.
size_test_label
    integer; test label font size relative to default.
size_facet_labels
    integer; facet label font size relative to default.
width_axes integer; radial axis width relative to default.
size_arrow_heads
    integer; arrow head size relative to default.
width_grid integer; grid line width relative to default.
```


Details

When changing the size of objects, consider the size parameter first and make specific adjustments with the other size_ and width_ parameters after.
To better display overlapping item values, change the width of the item bars, or set the accent colors to different values, or change the ratio of item lengths.

Pdf files will be vector based and can be scaled arbitrarily. For other formats use file_width, file_height, and dpi to avoid later rescaling and loss of quality.
Instead of using screenshots to crop the chart, it is highly recommendable to use zoom_x and zoom_y. This allows for vector-based graphics quality when showing sections of the chart. With this cropping method, use file_width to set the overall size of the file output, file_height will automatically adjust to retain the correct aspect ratio, if both zoom_x and zoom_y are provided.

Consider adding title and caption in your typesetting software (LaTeX, MS Word, ...), not here. The option to add a title is only a quick and dirty shurtcut. It reduces chart size and is inflexible. Adding the title manually will provide additional options, but requires you to save to a file manually. To manually add a title or caption use labs.

Using a grid_limit higher than the default will re-scale the whole chart, while a value below the default will only remove grid lines.

Value

Object of the class "ggplot" and, by default, the same object saved as a file.

See Also

facet_chart nested_chart

Examples

```
# as simple as that
item_chart(SMTQ)
```

item_overview Item Overview

Description

Shows all (squared) factor loadings of all items in all models in a plot grid of bar plots.

Usage

item_overview(
data,
squared = TRUE, file_name = "none", dpi $=500$,

```
        color = NULL,
        font = "mono"
    )
```


Arguments

data	raw SEM estimates in the appropriate format, given by the input functions.
squared	logical; should factor loadings be squared?; defaults to TRUE
character; name of the file to save. Supported formats are: "pdf" (highest quality	
and smallest file size), "png", "jpeg"; defaults to "none".	

Details

File output produces much more reliable results than display within R. Display within R may scatter elements of the chart and distort the overall appearance.

Value

gg / ggplot object; plot grid with one bar plot per item showing (squared) factor loadings of that item in all IPV models, arranged by facets and tests

Examples

```
# Honesty/Humility and Agreeableness items
# the use of file output is recommended
# to prevent irregular placement of plot labels
res <- ipv_est(
    HEXACO[1:1000,grep("^H_..*[1-4]$|^A A_.*[1-4]$", names(HEXACO))],
    "HA")
# reduced to first 4 items per facet and first }1000\mathrm{ observations to reduce
# runtime
item_overview(res$est_raw) # file output is recommended (see details)
```

```
nested_chart Nested Chart
```


Description

Creates a nested chart, showing several tests and their facets.

Usage

```
nested_chart(
    data,
    cd_method = "aggregate",
    test_order = NULL,
    facet_order = NULL,
    xarrows = NULL,
    subradius = 0,
    file_name = "none",
    size = 1,
    relative_scaling = 0,
    font = "sans",
    rotate_radians = 0,
    rotate_degrees = 0,
    subrotate_radians = 0,
    subrotate_degrees = 0,
    file_width = 10,
    file_height = 10,
    zoom_x = NULL,
    zoom_y = NULL,
    dpi = 500,
    color_global = "#11C1FF",
    color_nested = "#007AD6",
    fade = 85,
    cor_spacing = 0,
    tick = 0,
    rotate_tick_label = 0,
    dist_construct_label = 10,
    rotate_construct_label_radians = 0,
    rotate_construct_label_degrees = 0,
    dist_test_labels = 2/3,
    rotate_test_labels_radians = 0,
    rotate_test_labels_degrees = 0,
    cor_labels_tests = TRUE,
    cor_labels_facets = TRUE,
    title = NULL,
    size_title = 1,
    size_construct_label = 1,
    size_test_labels = 1,
    size_facet_labels = 1,
    width_axes = 1,
    width_axes_inner = 1,
    width_circles = 1,
    width_circles_inner = 1,
    width_tick = 1,
    width_tick_inner = 1,
    size_tick_label = 1,
    size_cor_labels = 1,
```

```
    size_cor_labels_inner = 1,
    width_xarrows = 1,
    size_xarrow_heads = 1,
    size_xarrow_labels = 1
)
```


Arguments

$\left.\begin{array}{ll}\text { data } \\ \text { cd_method } & \begin{array}{l}\text { SEM estimates in the appropriate format, given by the input functions. } \\ \text { character; method to summarize center distances, either "mean" or "aggregate", } \\ \text { see details; defaults to "aggregate". }\end{array} \\ \text { test_order } & \begin{array}{l}\text { character; vector of test names in desired order (counter-clockwise); defaults to } \\ \text { NULL, in which case the order is based on the correlation matrix columns in } \\ \text { 'data'. }\end{array} \\ \text { character; vector of all facet names of all tests in desired order (counter-clockwise); } \\ \text { defaults to NULL, in which case the order is based on the correlation matrix } \\ \text { columns in 'data'. }\end{array}\right]$

```
dpi integer; resolution in dots per inch for "png" and "jpeg" files; defaults to 500.
color_global global accent color; defaults to light blue ("#11C1FF").
color_nested nested accent color; defaults to blue ("#007AD6").
fade integer; brightness of the gray tones between 0 (black) and }100\mathrm{ (white) in steps
    of 1; defaults to 85.
cor_spacing integer; if correlations = TRUE: width of the ring, the correlations between
    tests are drawn in; defaults to 0, in which case an appropriate value is estimated.
tick numeric; axis tick position; defaults to 0, in which case an appropriate value is
        estimated.
rotate_tick_label
    numeric; number of positions to move the tick label (counter-clockwise); de-
        faults to 0.
dist_construct_label
    integer; position of the construct label relative to the surrounding circle; de-
    faults to 10, in which case an appropriate value is estimated; a value of . }5\mathrm{ would
    position the label halfway between the center and the surrounding circle.
rotate_construct_label_radians
    integer; radian angle to rotate the construct label counter-clockwise by; use frac-
    tions of pi (e.g. pi/2 = 90 degrees).
rotate_construct_label_degrees
    integer; angle in degrees to rotate the construct label counter-clockwise by.
dist_test_labels
    integer; position of the test labels relative to the surrounding circle; defaults to
        2/3, in which case the test labels are displayed 2/3 of the way from the centers
        to the surrounding circles.
rotate_test_labels_radians
    integer; radian angle or vector of radian angles to rotate the test labels counter-
    clockwise by; use fractions of pi (e.g. pi/2 = 90 degrees).
rotate_test_labels_degrees
    integer; angle or vector of angle in degrees to rotate the test labels counter-
    clockwise by.
cor_labels_tests
        logical; if TRUE, shows the correlations between tests as text.
cor_labels_facets
    logical; if TRUE, shows the correlations between facets as text.
title character; overall chart title; defaults to NULL.
size_title integer; title font size relative to default.
size_construct_label
    integer; construct label font size relative to default.
size_test_labels
    integer; test label font size relative to default.
size_facet_labels
    integer; facet label font size relative to default.
width_axes integer; global radial axis width relative to default.
```

```
width_axes_inner
integer; nested radial axis width relative to default.
width_circles integer; global circle outline width relative to default.
width_circles_inner
    integer; nested circle outline width relative to default.
width_tick integer; global axis tick line width relative to default.
width_tick_inner
    integer; nested axis tick line width relative to default.
size_tick_label
    integer; axis tick label font size relative to default.
size_cor_labels
    integer; font size of the correlations between tests relative to default.
size_cor_labels_inner
    integer; font size of the correlations between facets relative to default.
width_xarrows integer; extra arrow line width relative to default.
size_xarrow_heads
    integer; extra arrow head length relative to default.
size_xarrow_labels
    integer; font size of the correlations indicated by extra arrows relative to default.
```


Details

To summarize center distances (cd_method), the "mean" method computes the average center distance (compute cds first, summarize across items second), while the "aggregate" method computes a center distance based on the sum of the squared loadings (summarize across items first, compute cds second). "Aggregate" (default) is recommended, because it is more meaningful in cases with heterogeneous factor loadings, while "mean" is the originally proposed method.
To get tidy results, it is often required to use rotate_ and subrotate_ for better alignment.
If you set subrotate_ to a single value, all nested facet charts will be rotated by the same amount. If you use a vector of values, the nested facet charts will be rotated one by one by the values from that vector.
Increase relative_scaling to avoid circle overlap. Decrease it to make small chart objects more visible.
correlations and cor_spacing add larger circles around the nested facet charts, but do not change these facet charts.

When changing the size of objects, consider the size parameter first and make specific adjustments with the other size_ and width_ parameters after.
Pdf files will be vector based and can be scaled arbitrarily. For other formats use file_width, file_height, and dpi to avoid later rescaling and loss of quality.

Instead of using screenshots to crop the chart, it is highly recommendable to use zoom_x and zoom_y. This allows for vector-based graphics quality when showing sections of the chart. With this cropping method, use file_width to set the overall size of the file output, file_height will automatically adjust to retain the correct aspect ratio, if both zoom_x and zoom_y are provided.

If facet1 or facet2 is NA for a given xarrow, the arrow will end on the test's circle. Note: this correlation is usually not part of the model.
Consider adding title and caption in your typesetting software (LaTeX, MS Word, ...), not here. The option to add a title is only a quick and dirty shurtcut. It reduces chart size and is inflexible. Adding the title manually will provide additional options, but requires you to save to a file manually. To manually add a title or caption use labs.

Value

Object of the class "ggplot".

See Also

```
item_chart facet_chart
```


Examples

```
# as simple as that
nested_chart(self_confidence, subradius = .6)
# adding xarrows, in this example for all cases where the correlation between
# facets exceeds the correlation between their respective tests.
x <- data.frame(
    test1 = rep(NA, 3),
    facet1 = NA,
    test2 = NA,
    facet2 = NA,
    value = NA)
x[1, ] <- c("DSSEI", "Ab", "RSES", "Ps", ".67")
x[2, ] <- c("DSSEI", "Ab", "SMTQ", "Cs", ".81")
x[3, ] <- c("SMTQ", "Ct", "RSES", "Ns", ".76")
nested_chart(self_confidence,
                    subradius = .6,
                    xarrows = x)
# rotating the nested facet charts one by one
nested_chart(self_confidence,
                        subradius = .6,
                        subrotate_radians = c(0, pi / 2, 0))
# test without facets
global <- system.file(
    "extdata", "IPV_global.xlsx", package = "IPV", mustWork = TRUE)
tests <- c(
    system.file("extdata", "IPV_DSSEI.xlsx", package = "IPV", mustWork = TRUE),
    system.file("extdata", "IPV_SMTQ.xlsx", package = "IPV", mustWork = TRUE),
    NA)
x <- input_excel(global = global, tests = tests)
nested_chart(x)
```

```
plot_facets Plot Facets
```


Description

Generates a facet chart from coordinates.

Usage

```
plot_facets(
        coord,
        title \(=\) NULL,
        size = 1,
        file_name = "none",
        file_width = 10,
        file_height = 10,
        zoom_x = NULL,
        zoom_y = NULL,
        dpi \(=500\),
        color = "black",
        fade \(=85\),
        font = "sans",
        cor_labels = TRUE,
        size_title = 1,
        size_cor_labels = 1,
        size_test_label = 1,
        size_facet_labels = 1,
        width_axes = 1,
        width_circles = 1,
        width_tick = 1,
        size_tick_label = 1
    )
```


Arguments

coord list generated by coord_facets or coord_nested.
title character; overall chart title; defaults to NULL.
size integer; changes the size of most chart objects simultaneously.
file_name character; name of the file to save. Supported formats are: "pdf" (highest quality and smallest file size), "png", "jpeg"; defaults to "none".
file_width integer; file width in inches; defaults to 10 .
file_height integer; file height in inches; defaults to 10 .
zoom_x integer; vector with two values, the edges of the zoomed section on the x-axis; defaults to NULL.

```
plot_items
```

zoom_y integer; vector with two values, the edges of the zoomed section on the y-axis;

```
zoom_y integer; vector with two values, the edges of the zoomed section on the y-axis;
    defaults to NULL.
    defaults to NULL.
dpi integer; resolution in dots per inch for "png" and "jpeg" files; defaults to 500.
dpi integer; resolution in dots per inch for "png" and "jpeg" files; defaults to 500.
color accent color; defaults to "black".
color accent color; defaults to "black".
fade integer; brightness of the gray tones between 0 = "black" and 100= "white" in
fade integer; brightness of the gray tones between 0 = "black" and 100= "white" in
    steps of 1; defaults to 85.
    steps of 1; defaults to 85.
font character; text font, use extrafonts to access additional fonts; defaults to "sans",
font character; text font, use extrafonts to access additional fonts; defaults to "sans",
    which is "Helvetica".
    which is "Helvetica".
cor_labels logical; if TRUE, shows latent correlations between facets; defaults to TRUE.
cor_labels logical; if TRUE, shows latent correlations between facets; defaults to TRUE.
size_title integer; title font size relative to default.
size_title integer; title font size relative to default.
size_cor_labels
size_cor_labels
    integer; correlation font size relative to default.
    integer; correlation font size relative to default.
size_test_label
size_test_label
    integer; test font size relative to default.
    integer; test font size relative to default.
size_facet_labels
size_facet_labels
    integer; facet font size relative to default.
    integer; facet font size relative to default.
width_axes integer; radial axis width relative to default.
width_axes integer; radial axis width relative to default.
width_circles integer; facet circle outline width relative to default.
width_circles integer; facet circle outline width relative to default.
width_tick integer; axis tick line width relative to default.
width_tick integer; axis tick line width relative to default.
size_tick_label
size_tick_label
    integer; axis tick font size relative to default.
```

 integer; axis tick font size relative to default.
    ```

\section*{Details}

Use facet_chart to create facet charts.

\section*{Value}

Object of the class "ggplot".

\section*{See Also}
coord_facets facet_chart
plot_items Plot Items

\section*{Description}

Generates an item chart from coordinates.

\section*{Usage}
```

 plot_items(
 coord,
 size = 1,
 file_name = "none",
 file_width = 12,
 file_height = 10,
 zoom_x = NULL,
 zoom_y = NULL,
 dpi = 500,
 color = "black",
 color2 = "black",
 fade_axes = 50,
 fade_grid_major = 15,
 fade_grid_minor = 65,
 font = "sans",
 title = NULL,
 size_title = 1,
 size_tick_label = 1,
 size_test_label = 1,
 size_facet_labels = 1,
 width_axes = 1,
 size_arrow_heads = 1,
 width_items = 1,
 width_grid = 1
)
    ```

\section*{Arguments}
coord list generated by coord_items or coord_nested.
size integer; changes the size of most chart objects simultaneously.
file_name character; name of the file to save. Supported formats are: "pdf" (highest quality and smallest file size), "png", "jpeg"; defaults to "none".
file_width integer; file width in inches; defaults to 12 .
file_height integer; file height in inches; defaults to 10 .
zoom_x integer; vector with two values, the edges of the zoomed section on the \(x\)-axis; defaults to NULL.
zoom_y integer; vector with two values, the edges of the zoomed section on the y-axis; defaults to NULL.
dpi integer; resolution in dots per inch for "png" and "jpeg" files; defaults to 500.
color first accent color; defaults to "black".
color2 second accent color; defaults to "black".
fade_axes integer; brightness of the gray tone of the axes between \(0=\) "black" and \(100=\) "white" in steps of 1 ; defaults to 50 .
```

plot_nested
fade_grid_major
integer; brightness of the gray tone of the major grid lines between 0 = "black"
and 100 = "white" in steps of 1; defaults to 15.
fade_grid_minor
integer; brightness of the gray tone of the minor grid lines between 0 = "black"
and 100 = "white" in steps of 1; defaults to 65.
font character; text font, use extrafonts to access additional fonts; defaults to "sans",
which is "Helvetica".
title character; overall chart title; defaults to NULL.
size_title integer; title font size relative to default.
size_tick_label
integer; axis tick label font size relative to default.
size_test_label
integer; test font size relative to default.
size_facet_labels
integer; facet font size relative to default.
width_axes integer; radial axis width relative to default.
size_arrow_heads
integer; arrow head size relative to default.
width_items integer; item bar width relative to default.
width_grid integer; grid line width relative to default.

```

\section*{Details}

Use item_chart to create item charts.

\section*{Value}

Object of the class "ggplot".

\section*{See Also}
coord_items item_chart

\section*{Description}

Generates a nested chart from coordinates.

\section*{Usage}
```

plot_nested(
coord,
size = 1,
file_name = "none",
file_width = 10,
file_height $=10$,
zoom_x = NULL,
zoom_y = NULL,
dpi $=500$,
cor_labels_tests = TRUE,
cor_labels_facets = TRUE,
color_global = "black",
color_nested = "black",
fade $=85$,
font = "sans",
size_construct_label = 1,
size_test_labels = 1,
size_facet_labels = 1,
width_axes = 1 ,
width_axes_inner = 1,
width_circles = 1,
width_circles_inner = 1,
width_tick = 1,
width_tick_inner = 1,
title = NULL,
size_title = 1,
size_tick_label = 1,
size_cor_labels = 1,
size_cor_labels_inner = 1,
width_xarrows = 1,
size_xarrow_heads = 1,
size_xarrow_labels = 1
)

```

\section*{Arguments}
coord list generated by coord_nested.
size integer; changes the size of most chart objects simultaneously.
file_name character; name of the file to save. Supported formats are: "pdf" (highest quality and smallest file size), "png", "jpeg"; defaults to "none".
file_width integer; file width in inches; defaults to 10 .
file_height integer; file height in inches; defaults to 10 .
zoom_x integer; vector with two values, the edges of the zoomed section on the x-axis; defaults to NULL.
zoom_y integer; vector with two values, the edges of the zoomed section on the y-axis; defaults to NULL.
```

dpi integer; resolution in dots per inch for "png" and "jpeg" files; defaults to 500.
cor_labels_tests
logical; if TRUE, shows the correlations between tests as text.
cor_labels_facets
logical; if TRUE, shows the correlations between facets as text.
color_global global accent color; defaults to "black".
color_nested nested accent color; defaults to "black".
fade integer; brightness of the gray tones between 0 (black) and 100 (white) in steps
of 1; defaults to 85.
font character; text font, use extrafonts to access additional fonts; defaults to "sans",
which is "Helvetica".
size_construct_label
integer; construct label font size relative to default.
size_test_labels
integer; test label font size relative to default.
size_facet_labels
integer; facet label font size relative to default.
width_axes integer; global radial axis width relative to default.
width_axes_inner
integer; nested radial axis width relative to default.
width_circles integer; global circle outline width relative to default.
width_circles_inner
integer; nested circle outline width relative to default.
width_tick integer; global axis tick line width relative to default.
width_tick_inner
integer; nested axis tick line width relative to default.
title character; overall chart title; defaults to NULL.
size_title integer; title font size relative to default.
size_tick_label
integer; axis tick label font size relative to default.
size_cor_labels
integer; font size of the correlations between tests relative to default.
size_cor_labels_inner
integer; font size of the correlations between facets relative to default.
width_xarrows integer; extra arrow line width relative to default.
size_xarrow_heads
integer; extra arrow head length relative to default.
size_xarrow_labels
integer; font size of the correlations indicated by extra arrows relative to default.

```

\section*{Details}

Use nested_chart to create nested charts

\section*{Value}

Object of the class "ggplot" and, by default, the same object saved as a file.

\section*{See Also}
coord_nested nested_chart
rename Rename

\section*{Description}

Renames tests, facets, or items in IPV estimates

\section*{Usage}
rename(data, before, after)

\section*{Arguments}
\begin{tabular}{ll} 
data & IPV estimates for chart creation or full output of ipv_est \\
before & character; a vector of names to replace \\
after & character; a vector of replacement names
\end{tabular}

\section*{Value}
the same data with renamed values / variables
```

rename_est Rename estimates

```

\section*{Description}

Renames tests, facets, or items in IPV data

\section*{Usage}
rename_est(data, before, after)

\section*{Arguments}
\begin{tabular}{ll} 
data & IPV chart creation data (nested or simple) \\
before & character; a vector of names to replace \\
after & character; a vector of replacement names
\end{tabular}

\section*{Value}
the same data with renamed values / variables
```

rename_raw Rename raw estimates

```

\section*{Description}

Renames tests, facets, or items in IPV raw estimates

\section*{Usage}
rename_raw(data, before, after)

\section*{Arguments}
\begin{tabular}{ll} 
data & IPV raw estimates (as provided by ipv_est as est_raw) \\
before & character; a vector of names to replace \\
after & character; a vector of replacement names
\end{tabular}

\section*{Value}
the same data with renamed values / variables
rename_raw_simple Rename Raw Simple

\section*{Description}

Rename Raw Simple

\section*{Usage}
rename_raw_simple(data, before, after, regex = FALSE)

\section*{Arguments}
\begin{tabular}{ll} 
data & IPV raw estimates (simple) \\
before & character; a vector of names to replace \\
after & character; a vector of replacement names \\
regex & \begin{tabular}{l} 
logical; should items be renamed based on regular expressions for treatment of \\
global section in nested data?; defaults to FALSE
\end{tabular}
\end{tabular}

\section*{Details}

This function does not support regular expressions. Provide full names only.

\section*{Value}
the same data with renamed values / variables
rename_simple Rename Simple

\section*{Description}

\section*{Rename Simple}

\section*{Usage}
rename_simple(data, before, after, regex = FALSE)

\section*{Arguments}
\begin{tabular}{ll} 
data & IPV estimates (simple) \\
before & character; a vector of names to replace \\
after & character; a vector of replacement names \\
regex & \begin{tabular}{l} 
logical; should items be renamed based on regular expressions for treatment of \\
global section in nested data?; defaults to FALSE
\end{tabular}
\end{tabular}

\section*{Details}

This function does not support regular expressions. Provide full names only.

\section*{Value}
the same data with renamed values / variables
```

rename_xarrow Rename Xarrow

```

\section*{Description}

Rename Xarrow

\section*{Usage}
rename_xarrow(data, before, after)

\section*{Arguments}
\begin{tabular}{ll} 
data & IPV estimates for extra arrows (as provided e.g. by ipv_est) \\
before & character; a vector of names to replace \\
after & character; a vector of replacement names
\end{tabular}

\section*{Value}
the same data with renamed values / variables
self_confidence Self-Confidence

\section*{Description}

A set of center distances and latent correlations for items and facets of the Domain Specific SelfEsteem Inventory (DSSEI), Sports Mental Toughness Questionnaire (SMTQ), and Rosenberg SelfEsteem Scale (RSES) completed by 2272 german speaking participants using the german versions of the questionnaires. SEM estimation performed for all tests as one item pool.

\section*{Usage}
self_confidence

\section*{Format}

An object of class list of length 2.

\section*{Items}

RSES \(\qquad\)
_ Positive Self-Esteem (Ps) \(\qquad\)
1. On the whole, I am satisfied with myself.
3. I feel that I have a number of good qualities.
4. I am able to do things as well as most other people.
7.I feel that I'm a person of worth.
10. I take a positive attitude toward myself.
_ Lack of Negative Self-Esteem (Ns)
2. At times I think I am no good at all.
5. I feel I do not have much to be proud of.
6. I certainly feel useless at times.
8. I wish I could have more respect for myself.
9. All in all, I am inclined to think that I am a failure.
(Rosenberg, M. (1965). Rosenberg self-esteem scale (RSE). Acceptance and commitment therapy. Measures package, 61, 52.)
\(\qquad\) SMTQ \(\qquad\)
SMTQ
___ DSSEI \(\qquad\)
DSSEI

\section*{Source}

Dantlgraber, M., Stieger, S., \& Reips, U. D. (2019). Introducing Item Pool Visualization: A method for investigation of concepts in self-reports and psychometric tests. Methodological Innovations, 12(3), 2059799119884283.

\section*{Description}

A set of center distances and latent correlations for items and facets of the SMTQ, completed by 2272 german speaking participants using the german version of the questionnaire. SEM estimation performed together with DSSEI and RSES (same as in "self_confidence").

\section*{Usage}

SMTQ

\section*{Format}

An object of class list of length 2.

\section*{Items}
__ Confidence (Cf) __
13. I interpret potential threats as positive opportunities
5. I have an unshakeable confidence in my ability
11. I have qualities that set me apart from other competitors
6. I have what it takes to perform well while under pressure
14. Under pressure, I am able to make decisions with confidence and commitment
1. I can regain my composure if I have momentarily lost it
_ Constancy (Cs) __
3. I am committed to completing the tasks I have to do
12. I take responsibility for setting myself challenging targets
8. I give up in difficult situations
10. I get distracted easily and lose my concentration
__ Control (Ct) \(\qquad\)
2. I worry about performing poorly
4. I am overcome by self-doubt
9. I get anxious by events I did not expect or cannot control
7. I get angry and frustrated when things do not go my way
(Sheard, M., Golby, J., \& Van Wersch, A. (2009). Progress toward construct validation of the Sports Mental Toughness Questionnaire (SMTQ). European Journal of Psychological Assessment, 25(3), 186-193.)

\section*{Source}

Dantlgraber, M., Stieger, S., \& Reips, U. D. (2019). Introducing Item Pool Visualization: A method for investigation of concepts in self-reports and psychometric tests. Methodological Innovations, 12(3), 2059799119884283.
```

write_IPV_syntax Write IPV syntax

```

\section*{Description}

Write lavaan model syntax of IPV models on the given dataset

\section*{Usage}
write_IPV_syntax(dat, name)

\section*{Arguments}
dat data frame; correctly formatted raw data
name character; name of the overall construct or test

\section*{Details}

Variable names in dat have to conform to the pattern "test_facet_item". If there is only one test in the data, the pattern is "facet_item". For tests without facets in a larger dataset also comprising tests with items, the pattern is "test_item". Variable names have to be unique at the level of the test AND the facet. Item names have to be unique at the level of the test (not only at the level of the facet).

\section*{Value}
list of character; lavaan model syntax

\section*{Index}
```

* datasets
DSSEI, 8
HEXACO, 14
self_confidence,43
SMTQ,44
coord_facets, 2, 34, 35
coord_items, 4, 7, 36, 37
coord_nested, 5, 5, 34, 36, 38,40
cormat, }
DSSEI, 8, 43
facet_chart, 3, 4, 9, 15, 16, 19, 22, 27, 33, 35
floads,12
get_names,13
get_xarrows,13
HEXACO,14
ind_lav, 14
input_excel, 15, 16, 17, 22
input_excel_factor,16
input_manual_nested, 17, 19, 21, 22
input_manual_process, 18, 19, 20-22
input_manual_process_factor, 20
input_manual_simple, 18-20, 20, 22
IPV, 22
ipv_est, 22, 23
item_chart, 5, 12, 15, 16, 19, 22, 24, 33, 37
item_overview, 23, 27
labs, 11, 27, 33
nested_chart, 7, 12, 15, 19, 22, 27, 28, 39, 40
plot_facets, 4, 34
plot_items, 5, 35
plot_nested, 7,37
rename, 23,40

```
```

