IRTest: Parameter Estimation of Item Response Theory with Estimation of Latent Distribution

Item response theory (IRT) parameter estimation using marginal maximum likelihood and expectation-maximization algorithm (Bock & Aitkin, 1981 <doi:10.1007/BF02293801>). Within parameter estimation algorithm, several methods for latent distribution estimation are available (Li, 2022 <https://www.riss.kr/search/detail/DetailView.do?p_mat_type=be54d9b8bc7cdb09&control_no=9a95f68e2c1126c5ffe0bdc3ef48d419>). Reflecting some features of the true latent distribution, these latent distribution estimation methods can possibly free the normality assumption on the latent distribution.

Version: 0.0.2
Depends: R (≥ 2.10)
Imports: betafunctions, dcurver, ggplot2
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2022-09-06
Author: Seewoo Li [aut, cre]
Maintainer: Seewoo Li <cu at yonsei.ac.kr>
BugReports: https://github.com/SeewooLi/IRTest/issues
License: GPL (≥ 3)
URL: https://github.com/SeewooLi/IRTest
NeedsCompilation: no
Citation: IRTest citation info
Materials: README NEWS
CRAN checks: IRTest results

Documentation:

Reference manual: IRTest.pdf
Vignettes: IRT without the normality assumption

Downloads:

Package source: IRTest_0.0.2.tar.gz
Windows binaries: r-devel: IRTest_0.0.2.zip, r-release: IRTest_0.0.2.zip, r-oldrel: IRTest_0.0.2.zip
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): IRTest_0.0.2.tgz, r-oldrel (x86_64): IRTest_0.0.2.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=IRTest to link to this page.