Package 'LMN'

August 22, 2022
Type Package
Title Inference for Linear Models with Nuisance Parameters
Version 1.1.3
Date 2022-08-11
Description Efficient Frequentist profiling and Bayesian marginalization of parame-
ters for which the conditional likelihood is that of a multivariate linear regression model. Arbitrary inter-observation error correlations are supported, with optimized calculations provided for independent-heteroskedastic and stationary dependence structures.

URL https://github.com/mlysy/LMN
BugReports https://github.com/mlysy/LMN/issues
License GPL-3
Imports Rcpp ($>=0.12 .4 .4$), SuperGauss, stats
LinkingTo Rcpp, RcppEigen
Encoding UTF-8
RoxygenNote 7.2.1
Suggests testthat, numDeriv, mniw, knitr, rmarkdown, bookdown, kableExtra

VignetteBuilder knitr
NeedsCompilation yes
Author Martin Lysy [aut, cre], Bryan Yates [aut]
Maintainer Martin Lysy mlysy@uwaterloo.ca
Repository CRAN
Date/Publication 2022-08-22 16:20:02 UTC

R topics documented:

LMN-package 2
list2mniw 3
lmn_loglik 3
lmn_marg 4
lmn_post 5
lmn_prior 6
lmn_prof 7
lmn_suff 8
Index 11
LMN-package

Description

Efficient profile likelihood and marginal posteriors when nuisance parameters are those of linear regression models.

Details

Consider a model $p(\boldsymbol{Y} \mid \boldsymbol{B}, \boldsymbol{\Sigma}, \boldsymbol{\theta})$ of the form

$$
\boldsymbol{Y} \sim \text { Matrix-Normal }(\boldsymbol{X}(\boldsymbol{\theta}) \boldsymbol{B}, \boldsymbol{V}(\boldsymbol{\theta}), \boldsymbol{\Sigma})
$$

where $\boldsymbol{Y}_{n \times q}$ is the response matrix, $\boldsymbol{X}(\theta)_{n \times p}$ is a covariate matrix which depends on $\boldsymbol{\theta}, \boldsymbol{B}_{p \times q}$ is the coefficient matrix, $\boldsymbol{V}(\boldsymbol{\theta})_{n \times n}$ and $\boldsymbol{\Sigma}_{q \times q}$ are the between-row and between-column variance matrices, and (suppressing the dependence on $\boldsymbol{\theta}$) the Matrix-Normal distribution is defined by the multivariate normal distribution $\operatorname{vec}(\boldsymbol{Y}) \sim \mathcal{N}(\operatorname{vec}(\boldsymbol{X} \boldsymbol{B}), \boldsymbol{\Sigma} \otimes \boldsymbol{V})$, where $\operatorname{vec}(\boldsymbol{Y})$ is a vector of length $n q$ stacking the columns of of \boldsymbol{Y}, and $\boldsymbol{\Sigma} \otimes \boldsymbol{V}$ is the Kronecker product.
The model above is referred to as a Linear Model with Nuisance parameters (LMN) ($\boldsymbol{B}, \boldsymbol{\Sigma}$), with parameters of interest $\boldsymbol{\theta}$. That is, the $\mathbf{L M N}$ package provides tools to efficiently conduct inference on $\boldsymbol{\theta}$ first, and subsequently on $(\boldsymbol{B}, \boldsymbol{\Sigma})$, by Frequentist profile likelihood or Bayesian marginal inference with a Matrix-Normal Inverse-Wishart (MNIW) conjugate prior on $(\boldsymbol{B}, \boldsymbol{\Sigma})$.

Author(s)

Maintainer: Martin Lysy mlysy@uwaterloo.ca
Authors:

- Bryan Yates

See Also

Useful links:

- https://github.com/mlysy/LMN
- Report bugs at https://github.com/mlysy/LMN/issues
list2mniw Convert list of MNIW parameter lists to vectorized format.

Description

Converts a list of return values of multiple calls to lmn_prior() or lmn_post () to a single list of MNIW parameters, which can then serve as vectorized arguments to the functions in mniw.

Usage

list2mniw(x)

Arguments

$x \quad$ List of n MNIW parameter lists.

Value

A list with the following elements:
Lambda The mean matrices as an array of size $p \times p \times n$.
Omega The between-row precision matrices, as an array of size $p \times p \times$.
Psi The between-column scale matrices, as an array of size $q \times q \times n$.
nu The degrees-of-freedom parameters, as a vector of length n.
lmn_loglik Loglikelihood function for LMN models.

Description

Loglikelihood function for LMN models.

Usage

lmn_loglik(Beta, Sigma, suff)

Arguments

Beta A p x q matrix of regression coefficients (see lmn_suff()).
Sigma A q x q matrix of error variances (see lmn_suff()).
suff An object of class lmn_suff (see lmn_suff()).

Value

Scalar; the value of the loglikelihood.

Examples

```
    # generate data
    n <- 50
    q<- 3
    Y <- matrix(rnorm(n*q),n,q) # response matrix
    X <- 1 # intercept covariate
    V <- 0.5 # scalar variance specification
    suff <- lmn_suff(Y, X = X, V = V) # sufficient statistics
    # calculate loglikelihood
    Beta <- matrix(rnorm(q),1,q)
    Sigma <- diag(rexp(q))
    lmn_loglik(Beta = Beta, Sigma = Sigma, suff = suff)
```

 lmn_marg
 Marginal log-posterior for the LMN model.

Description

Marginal log-posterior for the LMN model.

Usage

lmn_marg(suff, prior, post)

Arguments

suff An object of class lmn_suff (see lmn_suff()).
prior A list with elements Lambda, Omega, Psi, nu corresponding to the parameters of the prior MNIW distribution. See lmn_prior().
post A list with elements Lambda, Omega, Psi, nu corresponding to the parameters of the posterior MNIW distribution. See lmn_post ().

Value

The scalar value of the marginal log-posterior.

Examples

```
# generate data
n <- 50
q<- 2
p<- 3
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- matrix(rnorm(n*p),n,p) # covariate matrix
V <- . . * exp(-(1:n)/n) # Toeplitz variance specification
suff <- lmn_suff(Y = Y, X = X, V = V, Vtype = "acf") # sufficient statistics
```

\# default noninformative prior pi(Beta, Sigma) ~ |Sigma|^(-(q+1)/2)
prior <- lmn_prior(p = suff\$p, q = suff\$q)
post <- lmn_post(suff, prior = prior) \# posterior MNIW parameters
lmn_marg(suff, prior = prior, post = post)
lmn_post Parameters of the posterior conditional distribution of an LMN model.

Description

Calculates the parameters of the LMN model's Matrix-Normal Inverse-Wishart (MNIW) conjugate posterior distribution (see Details).

Usage

lmn_post(suff, prior)

Arguments

suff An object of class lmn_suff (see lmn_suff()).
prior A list with elements Lambda, Omega, Psi, nu as returned by lmn_prior().

Details

The Matrix-Normal Inverse-Wishart (MNIW) distribution $(\boldsymbol{B}, \boldsymbol{\Sigma}) \sim \operatorname{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}, \boldsymbol{\Psi}, \nu)$ on random matrices $\boldsymbol{X}_{p \times q}$ and symmetric positive-definite $\boldsymbol{\Sigma}_{q \times q}$ is defined as

$$
\begin{aligned}
\boldsymbol{\Sigma} & \sim \text { Inverse-Wishart }(\boldsymbol{\Psi}, \nu) \\
\boldsymbol{B} \mid \boldsymbol{\Sigma} & \sim \text { Matrix-Normal }\left(\boldsymbol{\Lambda}, \boldsymbol{\Omega}^{-1}, \boldsymbol{\Sigma}\right)
\end{aligned}
$$

where the Matrix-Normal distribution is defined in lmn_suff().
The posterior MNIW distribution is required to be a proper distribution, but the prior is not. For example, prior $=$ NULL corresponds to the noninformative prior

$$
\pi(B, \boldsymbol{\Sigma}) \sim|\boldsymbol{S i g m a}|^{-(q+1) / 2}
$$

Value

A list with elements named as in prior specifying the parameters of the posterior MNIW distribution. Elements Omega $=$ NA and nu $=$ NA specify that parameters Beta $=0$ and Sigma $=\operatorname{diag}(q)$, respectively, are known and not to be estimated.

Examples

\# generate data
$\mathrm{n}<-50$
$q<-2$
$p<-3$
Y <- matrix(rnorm(n*q), n, q) \# response matrix
$X<-$ matrix (rnorm(n*p), $n, p)$ \# covariate matrix
$\vee<-.5 * \exp (-(1: n) / n)$ \# Toeplitz variance specification
suff <- lmn_suff $(Y=Y, X=X, V=V, V t y p e=" a c f ")$ \# sufficient statistics
lmn_prior
Conjugate prior specification for LMN models.

Description

The conjugate prior for LMN models is the Matrix-Normal Inverse-Wishart (MNIW) distribution. This convenience function converts a partial MNIW prior specification into a full one.

Usage

lmn_prior(p, q, Lambda, Omega, Psi, nu)

Arguments

$p \quad$ Integer specifying row dimension of Beta. $p=0$ corresponds to no Beta in the model, i.e., $X=0$ in $1 m n _\operatorname{suff}()$.
$q \quad$ Integer specifying the dimension of Sigma.

Lambda

Omega

Psi
nu

Mean parameter for Beta. Either:

- Ap x q matrix.
- A scalar, in which case Lambda = matrix (Lambda, p, q).
- Missing, in which case Lambda = matrix (0, p, q).

Row-wise precision parameter for Beta. Either:

- Ap x p matrix.
- A scalar, in which case Omega = diag (rep (Omega, p)).
- Missing, in which case Omega = matrix (0, p, p).
- NA, which signifies that Beta is known, in which case the prior is purely Inverse-Wishart on Sigma (see Details).
Scale parameter for Sigma. Either:
- Aqx q matrix.
- A scalar, in which case Psi $=\operatorname{diag}(r e p(P s i, q))$.
- Missing, in which case Psi $=\operatorname{matrix}(0, q, q)$.

Degrees-of-freedom parameter for Sigma. Either a scalar, missing (defaults to nu $=0$), or NA, which signifies that Sigma $=\operatorname{diag}(q)$ is known, in which case the prior is purely Matrix-Normal on Beta (see Details).

Details

The Matrix-Normal Inverse-Wishart (MNIW) distribution $(\boldsymbol{B}, \boldsymbol{\Sigma}) \sim \operatorname{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}, \boldsymbol{\Psi}, \nu)$ on random matrices $\boldsymbol{X}_{p \times q}$ and symmetric positive-definite $\boldsymbol{\Sigma}_{q \times q}$ is defined as

$$
\begin{aligned}
& \boldsymbol{\Sigma} \\
& \sim \text { Inverse-Wishart }(\boldsymbol{\Psi}, \nu) \\
\boldsymbol{B} \mid \boldsymbol{\Sigma} & \sim \text { Matrix-Normal }\left(\boldsymbol{\Lambda}, \boldsymbol{\Omega}^{-1}, \boldsymbol{\Sigma}\right)
\end{aligned}
$$

where the Matrix-Normal distribution is defined in lmn_suff().

Value

A list with elements Lambda, Omega, Psi, nu with the proper dimensions specified above, except possibly Omega = NA or nu = NA (see Details).

Examples

```
# problem dimensions
p <- 2
q<- 4
# default noninformative prior pi(Beta, Sigma) ~ |Sigma|^(-(q+1)/2)
lmn_prior(p, q)
# pi(Sigma) ~ |Sigma|^(-(q+1)/2)
# Beta | Sigma ~ Matrix-Normal(0, I, Sigma)
lmn_prior(p, q, Lambda = 0, Omega = 1)
# Sigma = diag(q)
# Beta ~ Matrix-Normal(0, I, Sigma = diag(q))
lmn_prior(p, q, Lambda = 0, Omega = 1, nu = NA)
```

lmn_prof

Description

Calculate the loglikelihood of the LMN model defined in lmn_suff() at the MLE Beta = Bhat and Sigma $=$ Sigma. hat.

Usage

lmn_prof(suff, noSigma = FALSE)

Arguments

suff
An object of class lmn_suff (see lmn_suff()).
noSigma
Logical. If TRUE assumes that Sigma $=\operatorname{diag}(\operatorname{ncol}(Y))$ is known and therefore not estimated.

Value

Scalar; the calculated value of the profile loglikelihood.

Examples

```
# generate data
n <- 50
q<- 2
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- matrix(1,n,1) # covariate matrix
V <- exp(-(1:n)/n) # diagonal variance specification
suff <- lmn_suff(Y, X = X, V = V, Vtype = "diag") # sufficient statistics
# profile loglikelihood
lmn_prof(suff)
# check that it's the same as loglikelihood at MLE
lmn_loglik(Beta = suff$Bhat, Sigma = suff$S/suff$$n, suff = suff)
```

lmn_suff \quad Calculate the sufficient statistics of an LMN model.

Description

Calculate the sufficient statistics of an LMN model.

Usage

lmn_suff(Y, X, V, Vtype, npred = 0)

Arguments

$Y \quad$ An $n \times q$ matrix of responses.
$X \quad$ An $N \times p$ matrix of covariates, where $N=n+n p r e d$ (see Details). May also be passed as:

- A scalar, in which case the one-column covariate matrix is $X=X *$ matrix (1 , $N, 1) .-X=0$, in which case the mean of Y is known to be zero, i.e., no regression coefficients are estimated.
V, Vtype The between-observation variance specification. Currently the following options are supported:
- Vtype = "full": V is an $N \times N$ symmetric positive-definite matrix.
- Vtype = "diag": V is a vector of length N such that $V=\operatorname{diag}(V)$.
- Vtype = "scalar": V is a scalar such that $\mathrm{V}=\mathrm{V} * \operatorname{diag}(\mathrm{~N})$.
- Vtype = "acf": V is either a vector of length N or an object of class SuperGauss: :Toeplitz, such that $V=$ toeplitz (V).

For V specified as a matrix or scalar, Vtype is deduced automatically and need not be specified.
npred A nonnegative integer. If positive, calculates sufficient statistics to make predictions for new responses. See Details.

Details

The multi-response normal linear regression model is defined as

$$
\boldsymbol{Y} \sim \text { Matrix-Normal }(\boldsymbol{X} \boldsymbol{B}, \boldsymbol{V}, \boldsymbol{\Sigma})
$$

where $\boldsymbol{Y}_{n \times q}$ is the response matrix, $\boldsymbol{X}_{n \times p}$ is the covariate matrix, $\boldsymbol{B}_{p \times q}$ is the coefficient matrix, $\boldsymbol{V}_{n \times n}$ and $\boldsymbol{\Sigma}_{q \times q}$ are the between-row and between-column variance matrices, and the MatrixNormal distribution is defined by the multivariate normal distribution vec $(\boldsymbol{Y}) \sim \mathcal{N}(\operatorname{vec}(\boldsymbol{X} \boldsymbol{B}), \boldsymbol{\Sigma} \otimes$ \boldsymbol{V}), where $\operatorname{vec}(\boldsymbol{Y})$ is a vector of length $n q$ stacking the columns of of \boldsymbol{Y}, and $\boldsymbol{\Sigma} \otimes \boldsymbol{V}$ is the Kronecker product.

The function lmn_suff() returns everything needed to efficiently calculate the likelihood function

$$
\mathcal{L}(\boldsymbol{B}, \boldsymbol{\Sigma} \mid \boldsymbol{Y}, \boldsymbol{X}, \boldsymbol{V})=p(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{V}, \boldsymbol{B}, \boldsymbol{\Sigma})
$$

When npred >0, define the variables Y_{-}star $=\operatorname{rbind}(Y, y)$, X_star $=r b i n d(X, x)$, and $V _$star $=r b i n d(c b i n d(V, w)$, cbind $(t(w), v))$. Then lmn_suff() calculates summary statistics required to estimate the conditional distribution

$$
p\left(\boldsymbol{y} \mid \boldsymbol{Y}, \boldsymbol{X}_{\star}, \boldsymbol{V}_{\star}, \boldsymbol{B}, \boldsymbol{\Sigma}\right)
$$

The inputs to $\operatorname{lmn} _$suff () in this case $\operatorname{are} Y=Y, X=X _s t a r$, and $V=V _$star.

Value

An S3 object of type lmn_suff, consisting of a list with elements:
Bhat The $p \times q$ matrix $\hat{\boldsymbol{B}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}$.
T The $p \times p$ matrix $\boldsymbol{T}=\boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X}$.
S The $q \times q$ matrix $\boldsymbol{S}=(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{B}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{B}})$.
ldV The scalar log-determinant of V.
n, p, q The problem dimensions, namely $n=\operatorname{nrow}(Y), p=\operatorname{nrow}($ Beta $)($ or $p=0$ if $X=0)$, and $q=$ ncol (Y).

In addition, when npred >0 and with $\boldsymbol{x}, \boldsymbol{w}$, and v defined in Details:
Ap The npred x q matrix $\boldsymbol{A}_{p}=\boldsymbol{w}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}$.
Xp The npred x p matrix $\boldsymbol{X}_{p}=\boldsymbol{x}-\boldsymbol{w} \boldsymbol{V}^{-1} \boldsymbol{X}$.
Vp The scalar $V_{p}=v-\boldsymbol{w} \boldsymbol{V}^{-1} \boldsymbol{w}$.

Examples

\# Data
n <- 50
$q<-3$
Y <- matrix (rnorm $(n * q), n, q)$
\# No intercept, diagonal V input
$x<-0$
$V<-\exp (-(1: n) / n)$
lmn_suff($\mathrm{Y}, \mathrm{X}=\mathrm{X}, \mathrm{V}=\mathrm{V}, \mathrm{Vtype}=$ "diag")
\# X = (scaled) Intercept, scalar V input (no need to specify Vtype)
$x<-2$
$\vee<-.5$
$\operatorname{lmn} _\operatorname{suff}(\mathrm{Y}, \mathrm{X}=\mathrm{X}, \mathrm{V}=\mathrm{V})$
\# $X=$ dense matrix, Toeplitz variance matrix
p<- 2
$X<-\operatorname{matrix}(r n o r m(n * p), n, p)$
Tz <- SuperGauss: :Toeplitz\$new(acf $=0.5 * \exp (-\operatorname{seq}(1: n) / n))$
lmn_suff $(Y, X=X, V=T z, V t y p e=" a c f ")$

Index

list2mniw, 3
LMN (LMN-package), 2
LMN-package, 2
lmn_loglik, 3
lmn_marg, 4
lmn_post, 5
lmn_post(), 3, 4
lmn_prior, 6
lmn_prior(), 3-5
lmn_prof, 7
lmn_suff, 8
lmn_suff(), 3-7
SuperGauss: :Toeplitz, 8

