Package 'LogisticDx'

December 20, 2021
Type Package
Title Diagnostic Tests for Logistic Regression Models
Version 0.3
Date 2021-12-18
Author Chris Dardis
Maintainer Chris Dardis christopherdardis@gmail.com
License GPL (>=2)
Description Diagnostic tests and plots for GLMs (generalized linear models) with binomial/ binary outcomes, particularly logistic regression.
VignetteBuilder knitr
Depends R (>=3.0.0)
Imports rms, stats, statmod, graphics, speedglm, RColorBrewer, data.table, pROC, aod

Suggests knitr
LazyLoad yes
Collate 'LogisticDx_package.R' 'OR.R' 'ageChd.R' 'bbdm.R' 'dx.R' 'genBinom.R' 'gof.R' 'icu.R' 'lbw.R' 'llbw.R' 'mes.R' 'mlbw.R' 'nhanes3.R' 'pcs.R' 'plotGlm.R' 'printGofGlm.R' 'printSSglm.R' 'printSigGlm.R' 'sig.R' 'ss.R' 'uis.R'
NeedsCompilation no
RoxygenNote 7.1.2
Repository CRAN
Date/Publication 2021-12-20 12:12:03 UTC

R topics documented:

logisticDx-package 2
ageChd 3
bbdm 4
dx 5
genBinom 9
gof 11
icu 16
lbw 18
llbw 19
mes 20
mlbw 22
nhanes3 23
OR 26
pcs 28
plot.glm 29
sig 32
ss 34
uis 37
Index 39
logisticDx-package Diagnostic Tests for Models with a Binomial Response

Description

Diagnostic Tests for Models with a Binomial Response

Details

Package:	LogisticDx
Type:	Package
Version:	0.3
Date:	$2021-12-18$
License:	GPL $(>=2)$
LazyLoad:	yes

Diagnostic tests and plots for GLMs (generalized linear models) with binomial/ binary outcomes, particularly logistic regression.

The most commonly used functions are likely to be $d x$ (diagnostics), plot.glm (diagnostic plots) and gof (goodness-of-fit tests).

There have been changes to many of the functions between Version 0.1 and 0.2 of this package.

The package should be regarded as 'in development' until release 1.0 , meaning that there may be changes to certain function names and parameters, although I will try to keep this to a minimum.

There are references in many of the functions to the textbook:
Hosmer D, Lemeshow S (2003). Applied logistic regression, 2nd edition. New York: John Wiley \& Sons, Inc. doi: 10.1002/0471722146 which is herein referred to as H\&L 2nd ed.

For bug reports, feature requests or suggestions for improvement, please try to submit to github. Otherwise, email me at the address below.

Author(s)

Chris Dardis christopherdardis@gmail.com
ageChd Age and Coronary Heart Disease data

Description

Age and Coronary Heart Disease data

Format

A data. frame with 100 observations (rows) and 3 variables (columns).

Details

Age and presence of coronary heart disease for 100 subjects.
Columns are:
ID Identification code. 1 to 100 .
age Age (years).
chd Evidence of coronary heart disease? (a factor):
0 no
1 yes

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Page 3, Table 1.1.

See Also

sig OR

Description

Benign Breast Disease Matched study data

Format

A data.frame with 200 observations (rows) and 14 variables (columns).

Details

The relationship between the use of oral contraceptives and fibrocystic breast disease was examined in a hospital-based case-control study undertaken in New Haven, Connecticut, from 1977 to 1979.

This is a subset of the original dataset.
Columns are:
STR stratum $1-50$).
OBS observation within stratum (a factor):
1 Case
2-4 Control
AGMT Age (years) at interview.
FNDX Final diagnosis (a factor):
0 Control
1 Case
HIGD Highest grade in school. $5-20$.
DEG Degree (a factor):
0 none
1 high_school
2 junior_college
3 college
4 masters
5 doctoral
CHK Regular medical checkups? (a factor):
1 Yes
2 No
AGP1 Age (years) at first pregnancy.
AGMN Age (years) at menarche.
NLV Non-live 'births'. Number of stillbirths, miscarraiges etc. $0-7$.

LIV Number of live births. 0 - 11 .
WT Weight (lbs) at time of interview.
AGLP Age (years) at last menstrual period.
MST Marital status (factor):
1 married
2 divorced
3 separated
4 widowed
5 never_married

Source

Originally taken from the Wiley FTP at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

Pastides H, Kelsey JL, LiVolsi VA, Holford TR, Fischer DB, Goldenberg IS 1983. Oral contraceptive use and fibrocystic breast disease with special reference to its histopathology. Journal of the National Cancer Institute 71(1):5-9. doi: 10.1093/jnci/71.1.5
Pastides H, Kelsey JL, Holford TR, LiVolsi VA 1985. The epidemiology of fibrocystic breast disease with special reference to its histopathology. American Journal of Epidemiology 121(3):440447. doi: 10.1093/oxfordjournals.aje.a114016

Description

Returns diagnostic measures for a binary regression model by covariate pattern

Usage

$$
d x(x, \ldots)
$$

\#\# S3 method for class 'glm'
$d x$ (x, \ldots, byCov $=$ TRUE)

Arguments

x
... Additional arguments which can be passed to:
?stats::model.matrix
e.g. contrasts. arg which can be used for factor coding.
byCov Return values by covariate pattern, rather than by individual observation.

Value

A data. table, with rows sorted by $\Delta \hat{\beta}_{i}$.
If byCov==TRUE, there is one row per covariate pattern with at least one observation.
The initial columns give the predictor variables $1 \ldots p$.
Subsequent columns are labelled as follows:
y $y_{i} \quad$ The actual number of observations with $y=1$ in the model data.
P $P_{i} \quad$ Probability of this covariate pattern.
This is given by the inverse of the link function, $x \$$ family $\$ l i n k i n v$. See:
?stats::family
$\mathrm{n} \quad n_{i} \quad$ Number of observations with these covariates.
If byCov=FALSE then this will be $=1$ for all observations.
yhat $\hat{y} \quad$ The predicted number of observations having a response of $y=1$, according to the model.
This is:

$$
\hat{y_{i}}=n_{i} P_{i}
$$

h h_{i}
Leverage, the diagonal of the hat matrix used to generate the model:

$$
H=\sqrt{V} X\left(X^{T} V X\right)^{-1} X^{T} \sqrt{V}
$$

Here ${ }^{-1}$ is the inverse and ${ }^{T}$ is the transpose of a matrix.
X is the matrix of predictors, given by stats: :model.matrix.
V is an $N \times N$ sparse matrix. All elements are $=0$ except for the diagonal, which is:

$$
v_{i i}=n_{i} P_{i}\left(1-P_{i}\right)
$$

Leverage H is also the estimated covariance matrix of $\hat{\beta}$.
Leverage is measure of the influence of this covariate pattern on the model and is approximately

$$
h_{i} \approx x_{i}-\bar{x} \text { for } 0.1<P_{i}<0.9
$$

That is, leverage is approximately equal to the distance of the covariate pattern i from the mean \bar{x}.
For values of p which are large (>0.9) or small (<0.1) this relationship no longer holds.
$\operatorname{Pr} \quad \operatorname{Pr} \quad$ The Pearson residual, a measure of influence. This is:

$$
\operatorname{Pr}_{i}=\frac{y_{i}-\mu_{y}}{\sigma_{y}}
$$

where μ_{y} and σ_{y} refer to the mean and standard deviation of a binomial distribution.
$\sigma_{y}^{2}=V a r_{y}$, is the variance.

$$
E(y=1)=\mu_{y}=\hat{y}=n P \quad \text { and } \quad \sigma_{y}=\sqrt{n P(1-P)}
$$

Thus:

$$
\operatorname{Pr}_{i}=\frac{y_{i}-n_{i} P_{i}}{\sqrt{n_{i} P_{i}\left(1-P_{i}\right)}}
$$

$\mathrm{dr} \quad d r_{i} \quad$ The deviance residual, a measure of influence:

$$
d r_{i}=\operatorname{sign}\left(y_{i}-\hat{y}_{i}\right) \sqrt{d_{i}}
$$

d_{i} is the contribution of observation i to the model deviance.
The sign above is:

- $y_{i}>\hat{y}_{i} \quad \rightarrow \operatorname{sign}(i)=1$
- $y_{i}=\hat{y}_{i} \quad \rightarrow \operatorname{sign}(i)=0$
- $y_{i}<\hat{y}_{i} \quad \rightarrow \operatorname{sign}(i)=-1$

In logistic regression this is:

$$
\begin{gathered}
y_{i}=1 \quad \rightarrow \quad d r_{i}=\sqrt{2 \log (1+\exp (f(x)))-f(x)} \\
y_{i}=0 \quad \rightarrow \quad d r_{i}=-\sqrt{2 \log (1+\exp (f(x)))}
\end{gathered}
$$

where $f(x)$ is the linear function of the predictors $1 \ldots p$:

$$
f(x)=\hat{\beta_{0}}+\hat{\beta_{1}} x_{1 i}+\ldots+\hat{\beta_{p}} x_{i p}
$$

this is also:

$$
d r_{i}=\operatorname{sign}\left(y_{i}-\hat{y}_{i}\right) \sqrt{2\left(y_{i} \log \frac{y_{i}}{\hat{y}_{i}}+\left(n_{i}-y_{i}\right) \log \frac{n_{i}-y_{i}}{n_{i}\left(1-p_{i}\right)}\right)}
$$

To avoid the problem of division by zero:

$$
y_{i}=0 \quad \rightarrow \quad d r_{i}=-\sqrt{2 n_{i}\left|\log 1-P_{i}\right|}
$$

Similarly to avoid $\log \infty$:

$$
y_{i}=n_{i} \quad \rightarrow \quad d r_{i}=\sqrt{2 n_{i}\left|\log P_{i}\right|}
$$

The above equations are used when calculating $d r_{i}$ by covariate group.
$\mathrm{sPr} \quad s \mathrm{Pr}_{i} \quad$ The standardized Pearson residual.
The residual is standardized by the leverage h_{i} :

$$
s P r_{i}=\frac{P r_{i}}{\sqrt{\left(1-h_{i}\right)}}
$$

sdr $\quad s d r_{i}$
The standardized deviance residual.
The residual is standardized by the leverage, as above:

$$
s d r_{i}=\frac{d r_{i}}{\sqrt{\left(1-h_{i}\right)}}
$$

dChisq $\quad \Delta \mathrm{P} \chi_{\mathrm{i}}^{2} \quad$ The change in the Pearson chi-square statistic with observation i removed. Given by:

$$
\Delta P \chi_{i}^{2}=s P r_{i}^{2}=\frac{P r_{i}^{2}}{1-h_{i}}
$$

where $s P r_{i}$ is the standardized Pearson residual, $P r_{i}$ is the Pearson residual and h_{i} is the leverage.
$\Delta P \chi_{i}^{2}$ should be <4 if the observation has little influence on the model.
$\Delta D_{i} \quad \mathrm{dDev} \quad$ The change in the deviance statistic $D=\sum_{i=1}^{n} d r_{i}$ with observation i excluded. It is scaled by the leverage h_{i} as above:

$$
\Delta D_{i}=s d r_{i}^{2}=\frac{d r_{i}^{2}}{1-h_{i}}
$$

$\Delta \hat{\beta}_{i} \quad$ dBhat \quad The change in $\hat{\beta}$ with observation i excluded. This is scaled by the leverage as above:

$$
\Delta \hat{\beta}=\frac{s P r_{i}^{2} h_{i}}{1-h_{i}}
$$

where $s P r_{i}$ is the standardized Pearson residual.
$\Delta \hat{\beta}_{i}$ should be <1 if the observation has little influence on the model coefficients.

Note

By default, values for the statistics are calculated by covariate pattern. Different values may be obtained if calculated for each individual obervation (e.g. rows in a data.frame).

Generally, the values calculated by covariate pattern are preferred, particularly where the number of observations in a group is >5.
In this case Pearsons chi-squared and the deviance statistic should follow a chi-squared distribution with $i-p$ degrees of freedom.

See Also

```
plot.glm
```


Examples

```
## H&L 2nd ed. Table 5.8. Page 182.
## Pattern nos. 31, 477, 468
data(uis)
uis <- within(uis, {
    NDRGFP1 <- 10 / (NDRGTX + 1)
    NDRGFP2 <- NDRGFP1 * log((NDRGTX + 1) / 10)
})
(d1 <- dx(g1 <- glm(DFREE ~ AGE + NDRGFP1 + NDRGFP2 + IVHX +
    RACE + TREAT + SITE +
    AGE:NDRGFP1 + RACE:SITE,
    family=binomial, data=uis)))
d1[519:521, ]
```


Description

Generates a data. frame or data. table with a binary outcome, and a logistic model to describe it.

Usage

genBinomDf(
$b=2 L$,
$f=2 L$,
$c=1 \mathrm{~L}$,
n = 20L,
nlf = 3L,
$\mathrm{pb}=0.5$,
$r c=0.8$,
py $=0.5$,
asFactor = TRUE,
model = FALSE,
timelim = 5,
speedglm = FALSE
)
genBinomDt (
b $=2 \mathrm{~L}$,
$f=2 L$,
$c=1 \mathrm{~L}$,
n = 20L,
$n l f=3 L$,
$\mathrm{pb}=0.5$,
$r c=0.8$,
py $=0.5$,
asFactor = TRUE,
model = FALSE,
timelim = 5,
speedglm = FALSE
)

Arguments

b
f

C

The number of binomial variables (the number of predictors which are binary). These are limited to 0 or 1 .
$f \quad$ The number of factor predictors.
The number of predictors which are factors.
The number of continuous predictors.
the number of predictors which are continuous.

n	The number of observations (rows) in the data. frame or data. table.
nlf	The number of levels in a factor.
pb	The probability for binomnial predictors: the probability of binomial predictors being $=1$. E.g. if pb=0.3, 30% will be $1 \mathrm{~s}, 70 \%$ will be 0 s
rc	The ratio for continuous variables. The ratio of levels of continuous variables to the total number of observations n.
E.g. if rc=0.8 and n=100, it will be in the range 1 to 80.	

Value

If model=TRUE: a list with the following values:

df or dt	A data.frame (for genBinomDf) or data. table (for genBinomDt). Predictors are labelled $x 1, x 2, \ldots, x n$.
	The response is y. Rows represent to n observations
model	A model fit with stats: :glm or speedglm: :speedglm
If model=FALSE a data.frame or data.table as above.	

Note

genBinomDt is faster and more efficient for large datasets.
Using asFactor=TRUE with factors which have a large number of levels (e.g. nlf >30) on large datasets (e.g. $n>1000$) can cause fitting to be excessively slow.

Examples

```
set.seed(1)
genBinomDf(speedglm=TRUE)
genBinomDt(b=0, c=2, n=100L, rc=0.7, model=FALSE)
```


Description

Goodness of fit tests for binomial regression

Usage

gof(x, \ldots)
\#\# S3 method for class 'glm'
gof $(x, \ldots, g=10$, plotROC $=$ TRUE $)$

Arguments

$x \quad$ A regression model with class glm and $x \$$ family $\$$ family $==$ "binomial".
... Additional arguments when plotting the receiver-operating curve. See: ?pROC::roc
and
?pROC::plot.roc
g
Number of groups (quantiles) into which to split observations for the HosmerLemeshow and the modified Hosmer-Lemeshow tests.
plotROC Plot a receiver operating curve?

Details

Details of the elements in the returned list follow below:
ct:
A contingency table, similar to the output of dx .
The following are given per covariate group:
n number of observations
ylhat predicted number of observations with $y=1$
y1 actual number of observations with $y=1$
y0hat predicted number of observations with $y=0$
y0 actual number of observations with $y=0$

chiSq:

$P \chi^{2}$ tests of the significance of the model.
Pearsons test and the deviance D test are given.
These are calculated by indididual I, by covariate group G and also from the contingency table CT above. They are calculated as:

$$
P \chi^{2}=\sum_{i=1}^{n} P_{i}^{2}
$$

and

$$
D=\sum_{i=1}^{n} d r_{i}^{2}
$$

The statistics should follow a χ^{2} distribution with $n-p$ degrees of freedom.
Here, n is the number of observations (taken individually or by covariate group) and p is the number pf predictors in the model.
A high p value for the test suggests that the model is a poor fit.
The assumption of a χ^{2} distribution is most valid when observations are considered by group.
The statistics from the contingency table should be similar to those obtained when caluclated by group.

ctHL:

The contingency table for the Hosmer-Lemeshow test.
The observations are ordered by probability, then grouped into g groups of approximately equal size.
The columns are:

P	the probability
y 1	the actual number of observations with $y=1$
y 1 hat	the predicted number of observations with $y=1$
y 0	the actual number of observations with $y=0$
y0hat	the predicted number of observations with $y=0$
n	the number of observations
Pbar	the mean probability, which is $\frac{n P}{\sum_{n}}$

gof:
All of these tests rely on assessing the effect of adding an additional variable to the model.
Thus a low p value for any of these tests implies that the model is a poor fit.
Hosmer and Lemeshow tests: Hosmer and Lemeshows C statistic is based on: y_{k}, the number of observations where $y=1, n_{k}$, the number of observations and \bar{P}_{k}, the average probability in group k :

$$
\bar{P}_{k}=\sum_{i=1}^{i=n_{k}} \frac{n_{i} P_{i}}{n_{k}}, \quad k=1,2, \ldots, g
$$

The statistic is:

$$
C=\sum_{k=1}^{g} \frac{\left(y_{k}-n_{k} \bar{P}_{k}\right)^{2}}{n_{k} \bar{P}_{k}\left(1-\bar{P}_{k}\right)}
$$

This should follow a χ^{2} distribution with $g-2$ degrees of freedom.
The modified Hosmer and Lemeshow test is assesses the change in model deviance D when G is added as a predictor. That is, a linear model is fit as:

$$
d r_{i} \sim G, \quad d r_{i} \equiv \text { devianceresidual }
$$

and the effect of adding G assessed with anova $(\operatorname{lm}(d r \sim G))$.

Osius and Rojek's tests: These are based on a power-divergence statistic $P D_{\lambda}$ ($\lambda=1$ for Pearsons test) and the standard deviation (herein, of a binomial distribution) σ. The statistic is:

$$
Z_{O R}=\frac{P D_{\lambda}-\mu_{\lambda}}{\sigma_{\lambda}}
$$

For logistic regression, it is calculated as:

$$
Z_{O R}=\frac{P \chi^{2}-(n-p)}{\sqrt{2\left(n-\sum_{i=1}^{n} \frac{1}{n_{i}}\right)+R S S}}
$$

where $R S S$ is the residual sum-of-squares from a weighted linear regression:

$$
\frac{1-2 P_{i}}{\sigma_{i}} \sim X, \quad \text { weights }=\sigma_{i}
$$

Here \boldsymbol{X} is the matrix of model predictors.
A two-tailed test against a standard normal distribution $N(0,1)$ should not be significant.
Stukels tests: These are based on the addition of the vectors:

$$
z_{1}=\text { Pgeq } 0.5=\operatorname{sign}\left(P_{i} \geq 0.5\right)
$$

and / or

$$
z_{2}=\mathrm{Pl} 0.5=\operatorname{sign}\left(P_{i}<0.5\right)
$$

to the existing model predictors.
The model fit is compared to the original using the score (e.g. SstPgeq0.5) and likelihood-ratio (e.g. SllP10.5) tests. These models should not be a significantly better fit to the data.

R2:

Pseudo- R^{2} comparisons of the predicted values from the fitted model vs. an intercept-only model.
sum-of-squares: The sum-of-squres (linear-regression) measure based on the squared Pearson correlation coefficient by individual is based on the mean probability:

$$
\bar{P}=\frac{\sum n_{i}}{n}
$$

and is given by:

$$
R_{s s I}^{2}=1-\frac{\sum\left(y_{i}-P_{i}\right)^{2}}{\sum\left(y_{i}-\bar{P}\right)^{2}}
$$

The same measure, by covariate group, is:

$$
R_{s s G}^{2}=1-\frac{\sum\left(y_{i}-n_{i} P_{i}\right)^{2}}{\sum\left(y_{i}-n_{i} \bar{P}\right)^{2}}
$$

log-likelihood: The log-likelihood based R^{2} measure per individual is based on:

- $l l_{0}$, the log-likelihood of the intercept-only model
- $l l_{p}$, the log-likelihood of the model with p covariates

It is calculated as

$$
R_{l l I}^{2}=\frac{l l_{0}-l l_{p}}{l l_{0}}=1-\frac{l l_{p}}{l l_{0}}
$$

This measure per covariate group is based on $l l_{s}$, the log-likelihood for the saturated model, which is calculated from the model deviance D :

$$
l l_{s}=l l_{p}-\frac{D}{2}
$$

It is cacluated as:

$$
R_{l l G}^{2}=\frac{l l_{0}-l l_{p}}{l l_{0}-l l_{s}}
$$

auc:
The area under the receiver-operating curve.
This may broadly be interpreted as:

auc	Discrimination
auc $=0.5$	useless
$0.7 \leq$ auc <0.8	acceptable
$0.8 \leq$ auc <0.9	excellent
auc ≥ 0.9	outstanding

auc ≥ 0.9 occurs rarely as this reuqires almost complete separation/ perfect classification.

Value

A list of data. tables as follows:

```
ct Contingency table.
    chiSq }\quad\mp@subsup{\chi}{}{2}\mathrm{ tests of the significance of the model. The tests are:
            PrI test of the Pearsons residuals, calculated by individual
            drI test of the deviance residuals, calculated by individual
            PrG test of the Pearsons residuals, calculated by covariate group
            drG test of the deviance residuals, calculated by covariate group
            PrCT test of the Pearsons residuals, calculated from the contingency table
            drCT test of the deviance residuals, calculated from the contingency table
    ctHL Contingency table for the Hosmer-Lemeshow test.
    gof Goodness-of-fit tests. These are:
                - HL Hosmer-Lemeshow's C statistic.
                    - mHL The modified Hosmer-Lemeshow test.
                - OsRo Osius and Rojek's test of the link function.
                    - S Stukel's tests:
```

 SstPgeq0.5 score test for addition of vector \(z 1\)
 | SstPl0.5 | score test for addition of vector $z 2$ |
| :--- | :--- |
| SstBoth | score test for addition of vector $z 2$ |
| SllPgeq0.5 | log-likelihood test for addition of vector $z 1$ |
| SllP10.5 | log-likelihood test for addition of vector $z 2$ |
| SllBoth | log-likelihood test for addition of vectors $z 1$ and $z 2$ |
| R-squared like tests: | |

ssI sum-of-squares, by individual
ssG sum-of-squares, by covariate group
11 l log-likelihood, by individual
11G log-likelihood, by covariate group.
auc Area under the receiver-operating curve (ROC) with 95 \% CIs.
Additionally, if plotROC=TRUE, a plot of the ROC.

Note

The returned list has the additional class of "gof.glm".
The print method for this class shows only those results which have a p value.

Author(s)

Modified Hosmer \& Lemeshow goodness of fit test: adapted from existing work by Yongmei Ni. Code at github.

References

Osius G \& Rojek D, 1992. Normal goodness-of-fit tests for multinomial models with large degrees of freedom. Journal of the American Statistical Association. 87(420):1145-52. doi: 10.1080/ 01621459.1992.10476271. Also available at JSTOR at https://www.jstor.org/stable/2290653

Hosmer D, Hosmer T, Le Cessie S \& Lemeshow S (1997). A comparison of goodness-of-fit tests for the logistic regression model. Statistics in Medicine. 16(9):965-80. doi: 10.1002/(SICI)10970258(19970515)16:9<965::AIDSIM509>3.0.CO;2O
Mittlboch M, Schemper M (1996). Explained variation for logistic regression. Statistics in Medicine. 15(19):1987-97. doi: 10.1002/(SICI)10970258(19961015)15:19<1987::AIDSIM318>3.0.CO;29 Also available from CiteSeerX / Penn State University (free).

Examples

```
## H&L 2nd ed. Sections 5.2.2, 5.2.4, 5.2.5. Pages 147-167.
## Not run:
data(uis)
uis$NDRGFP1 <- 10 / (uis$NDRGTX + 1)
uis$NDRGFP2 <- uis$NDRGFP1 * log((uis$NDRGTX + 1) / 10)
g1 <- glm(DFREE ~ AGE + NDRGFP1 + NDRGFP2 + IVHX +
    RACE + TREAT + SITE +
    AGE:NDRGFP1 + RACE:SITE,
```

```
            family=binomial, data=uis)
    gof(g1, plotROC=FALSE)
    unclass(g1)
    attributes(g1$gof)
    ## End(Not run)
```

icu
Intensive Care Unit study data

Description

Intensive Care Unit study data

Format

A data.frame with 200 observations (rows) and 14 variables (columns).

Details

A sample of 200 subjects who were part of a study on survival of patients admitted to an adult intensive care unit (ICU).
The observed variable values were modified to protect patient confidentiality.
Columns are:
ID Identification code.
STA Vital status (factor):
0 lived
1 died
AGE Age (years).
SEX Gender (factor):
0 male
1 female
RACE Race (factor):
1 white
2 black
3 other
SER Service, when admitted to ICU (factor):
0 Medical
1 Surgical
CAN Cancer part of present problem? (factor):
0 no
1 yes

CRN Chronic renal failure? (factor):
0 no
1 yes
INF Infection probable when admitted to ICU? (factor):
0 no
1 yes
CPR Cardiopulmonary resuscitataion prior to ICU admission? (factor):
0 no
1 yes
SYS Systolic blood pressure (mmHG) when admitted to ICU.
HRA Heart rate when admitted to ICU.
PRE Previous admission to ICU within 6 months? (factor):
0 no
1 yes
TYP Type of admission (factor):
0 elective
1 emergency
FRA Fracture present (long bone, multiple, neck, single area or hip)? (factor):
0 no
1 yes
PO2 pO2 from initial blood gases (factor):
$0>60$
$1<=60$
PH pH from initial blood gases (factor):
$0>=7.25$
$1<7.25$
PCO pCO 2 from initial blood gases (factor):
$0>=18$
$1<18$
CRE Creatinine from initial blood gases (factor):
$0<=2$
$1>2$
LOC Level of consciousness when admitted to ICU (factor):
0 no_coma
1 deep_stupor
2 coma

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Page 22, Section 1.6.1.
Lemeshow S, Teres D, Avrunin JS, Pastides H 1988. Predicting the outcome of intensive care unit patients. Journal of the American Statistical Association. 83(402):348-356. JSTOR (free)
Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport John 1993. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. Journal of the American Medical Association. 270(20):2478-2486. doi: 10.1001/jama.1993.03510200084037
Lemeshow S, Le Gall J 1994. Modeling the severity of illness of ICU patients: a systems update. Journal of the American Medical Association. 272(13):1049-1055. doi: 10.1001/jama.1994.03520130087038

Description

Low Birth Weight study data

Format

A data. frame with 189 observations (rows) and 11 variables (columns).

Details

This data was collected as part of a larger study at Bayside Medical Center, Springfield, Massachusetts. It contains information on 189 births to women that were seen in the obsetetrics clinic.

The observed variable values were modified to protect patient confidentiality.
Columns are:
ID Identification code.
LOW Low birth weight? (factor):
0 BWT > 2500g
1 BWT <= 2500g
AGE Age of mother.
LWT Weight of mother (lbs) at last menstrual period.
RACE Race (factor):
1 white
2 black
3 other
SMOKE Smoking status during pregnancy (factor):
0 no
1 yes

PTL Number of previous premature labors. $0=$ none.
HT History of hypertension (factor):
0 no
1 yes
UI History of uterine irritability (factor):
0 no
1 yes
FTV Number of first trimester physician visits. $0=$ none.
BWT Birth weight (grams).

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Page 24. Section 1.6.2.

See Also

$\operatorname{sig} 0 R$

llbw

Longitudinal Low Birth Weight study data

Description

Longitudinal Low Birth Weight study data

Format

A data. frame with 200 observations (rows) and 8 variables (columns).

Details

A hypothetical data set based on the reference below.
The woman age 45 was excluded as an outlier.
A hypothetical additional number (1 to 3) of births was generated for each woman, yielding an average of 2.6 births per woman.

This is a subset of the original dataset.
Columns are:
ID Identification code.
BIRTH Birth number. 1 to 4 .

SMOKE Smoking status during pregnancy (factor):
0 no
1 yes
RACE Race (factor):
1 white
2 black
3 other
AGE Age of mother.
LWT Weight of mother (lbs) at last menstrual period.
BWT Birth weight (grams).
LBW Low birth weight? (factor):
0 BWT $>2500 \mathrm{~g}$
1 BWT $<=2500 \mathrm{~g}$

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Sections 1.6.2 and 8.3.
mes Mammography Experience Study data

Description

Mammography Experience Study data

Format

A data. frame with 412 observations (rows) and 7 variables (columns).

Details

A subset of data from a study to assess factors associated with women's knowledge of and attitude towards mammography.

The observed variable values were modified to protect patient confidentiality.
Columns are:
OBS Observation/ identification code.
ME Mammography experience (factor):

0 never
1 within_one_year
2 over_one_year_ago
SYMPT "You do not need a mammogram unless you have symptoms" (factor):
1 stongly_agree
2 agree
3 disagree
4 strongly_disagree
PB Perveived benefit of mammography.
This is the sum of five scaled responses, each on a four point scale.
A low value is indicative of a woman with strong agreement with the benefits of mammography.

HIST Mother or sister with a history of breast cancer? (factor):
0 no
1 yes
BSE Breast self-exam.
"Has anyone taught you how to examine your own breasts?" (factor):
0 no
1 yes
DETC "How likely is it that a mammogram could find a new case of breast cancer?" (factor):
1 not_likely
2 somewhat_likely
3 very_likely

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Page 265. Table 8.1.
Zapka JG, Stoddard A, Maul L, Costanza ME 1991. Interval adherence to mammography screening guidelines. Medical Care 29(8):697-707.
JSTOR (free):
http://www.jstor.org/stable/3766098
Costanza ME, Stoddard AM, Gaw VP, Zapka JG 1992. The risk factors of age and family history and their relationship to screening mammography utilization. Journal of the American Geriatrics Society 40(8):774-778. doi: 10.1111/j.15325415.1992.tb01848.x

Zapka JG, Hosmer D, Costanza ME, Harris DR, Stoddard A 1992. Changes in mammography use: economic, need and service factors. American Journal of Public Health 82(10):1345-1351. doi: 10.2105/AJPH.82.10.1345

Description

Matched Low Birth Weight data

Format

A data. frame with 112 observations (rows) and 9 variables (columns).

Details

This data was collected as part of a larger study at Bayside Medical Center, Springfield, Massachusetts. It contains information on 56 cases (of low birth weight deliveries) and an equal number of age-matched controls.

The observed variable values were modified to protect patient confidentiality.
A one-to-one matched set was created from the low birth weight data. For each woman who gave birth to a low birth weight baby, a mother of the same age was randomly selected who did not give birth to a low birth weight baby. For three mothers aged <17, it was not possible to identify a match.

Columns are:
ID Identification code.
LOW Low birth weight? (factor):
0 BWT > 2500g
1 BWT <= 2500g
AGE Age of mother.
LWT Weight of mother (lbs) at last menstrual period.
RACE Race (factor):
1 white
2 black
3 other
SMOKE Smoking status during pregnancy (factor):
0 no
1 yes
PTD Pre-term delivery previously? (factor):
0 no
1 yes
HT History of hypertension (factor):

0 no
1 yes
UI History of uterine irritability (factor):
0 no
1 yes

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Page 230. Section 7.3.

See Also
lbw
nhanes3 NHANES III data

Description

NHANES III data

Format

A data. frame with 17030 observations (rows) and 16 variables (columns).

Details

A subset of data from the National Health and Nutrition Examination Study (NHANES) III. Subjects age $>=20$ are included.
A sample of 39,695 subjects was selected, representing more than 250 million people living in the USA. Data was collected 1988-1994.

49 pseudo strata were created with 2 pseudo-PSU's in each stratum (primary sampling units).

This is a subset of the original dataset.

Columns are:
SEQN Respondent sequence number.
SDPPSU6 Pseudo-PSU (primary sampling unit).
SDPSTRA6 Pseudo stratum.
WTPFHX6 Statistical weight. Range 225.93 to 139744.9.

HSAGEIR Age (years).
HSSEX Gender (a factor):
0 female
1 male
DMARACER Race (a factor):
1 white
2 black
3 other
BMPWTLBS Body weight (lbs).
BMPHTIN Standing height (inches).
PEPMNK1R Average Systolic BP.
PEPMNK5R Average Diastolic BP.
HAR1 Has respondent smoked >100 cigarettes in life (a factor):
1 yes
2 no
HAR3 Does respondent smoke cigarettes now? (a factor):
1 yes
2 no
SMOKE Smoking (a factor):
1 never (HAR1 = 2)
$2>100$ cigs (HAR1 = $1 \& \operatorname{HAR} 3=2$)
3 current (HAR1 =1 \& HAR3 = 1)
TCP Serum cholesterol ($\mathrm{mg} / 100 \mathrm{ml}$).a
HBP High blood pressure? (a factor):
1 yes (PEPMNK1R > 140)
2 no (PEPMNK1R <= 140)

Note

Taken from:
ANALYTIC AND REPORTING GUIDELINES: The Third National Health and Nutrition Examination Survey, NHANES III (1988-94).

In the NHANES III, 89 survey locations were randomly divided into 2 sets or phases, the first consisting of 44 and the other, 45 locations. One set of primary sampling units (PSUs) was allocated to the first 3-year survey period (1988-91) and the other set to the second 3-year period (1991-94).
Therefore, unbiased national estimates of health and nutrition characteristics can be independently produced for each phase as well as for both phases combined. Computation of national estimates from both phases combined (i.e. total NHANES III) is the preferred option; individual phase estimates may be highly variable. In addition, individual phase estimates are not statistically independent.

It is also difficult to evaluate whether differences in individual phase estimates are real or due to methodological differences. That is, differences may be due to changes in sampling methods or data collection methodology over time. At this time, there is no valid statistical test for examining differences between phase 1 and phase 2 .

NHANES III is based on a complex multistage probability sample design. Several aspects of the NHANES design must be taken into account in data analysis, including the sampling weights and the complex survey design. Appropriate sampling weights are needed to estimate prevalence, means, medians, and other statistics. Sampling weights are used to produce correct population estimates because each sample person does not have an equal probability of selection. The sampling weights incorporate the differential 3 probabilities of selection and include adjustments for noncoverage and nonresponse.

With the large oversampling of young children, older persons, black persons, and Mexican Americans in NHANES III, it is essential that the sampling weights be used in all analyses. Otherwise, misinterpretation of results is highly likely.

Other aspects of the design that must be taken into account in data analyses are the strata and PSU pairings from the sample design. These pairings should be used to estimate variances and test for statistical significance.

For weighted analyses, analysts can use special computer software packages that use an appropriate method for estimating variances for complex samples such as SUDAAN (Shah 1995) and WesVarPC (Westat 1996).

Although initial exploratory analyses may be performed on unweighted data with standard statistical packages assuming simple random sampling, final analyses should be done on weighted data using appropriate sampling weights.

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Page 215. Table 6.3.
National Center for Health Statistics (US) and others 1996. NHANES III reference manuals and reports. National Center for Health Statistics. CDC (free)

Examples

```
## use simpler column names
data("nhanes3", package="LogisticDx")
n1 <- c("ID", "pStrat", "pPSU", "sWt", "age", "sex",
    "race", "bWt", "h", "sysBP", "diasBP", "sm100",
    "smCurr", "smok", "chol", "htn")
names(nhanes3) <- n1
```


Description

Odds ratio for binary regression models fit with glm

Usage

```
    OR (x, ...)
    \#\# Default S3 method:
    OR (x, ...)
    \#\# S3 method for class 'glm'
    OR(
        x ,
        ...,
        newdata \(=\) rep(1L, length(stats: \(\operatorname{coef}(x))\) ),
        ci = TRUE,
        alpha = 0.95,
        what = c("model", "all", "data")
    )
```


Arguments

x
... Not used.
ci
newdata A vector of new variables to use.
There should be one value, in sequence, for each coefficient in the model.
By default, values are calculated for a change in the value of the coefficient for the predictor from 0 to 1 .
For continuous predictors changes of >1 unit may have more practical significance.
A numeric object containing probabilities P.
I.e. the range of P must be 0 to 1 .

The odds ratio $O R$ is given by:

$$
O R_{i}=\frac{P_{i}}{1-P_{i}}=\frac{\frac{P_{1}}{1-P_{1}}}{\frac{P_{0}}{1-P_{0}}}=\frac{\text { odds }_{1}}{\operatorname{odds}_{0}}
$$

There is a method for regression models with class $(x)==g l m$ and $x \$ f a m i l y \$ f a m i l y$ == "binomial".

If $\mathrm{ci}=$ TRUE (the default), include a confidence interval for P_{i} and $O R_{i}$ in the returned values.
alpha Used to cacluate the confidence interval, which is:

$$
\mathrm{CI}=x \pm Z_{1-\alpha} \sigma
$$

where the normal distribution $Z \sim N(0,1)$ and σ is the standard deviation.
what See Value below.

Value

A data.table. Columns give the model, the value of the link function and the associated probability P_{i} and odds ratio $O R_{i}$.

If $c i=T R U E$, will also give upper and lower bounds of the confidence intervals for these values.
Rows are determined by what:
what="model" The value of the link function is given for the full model. If an intercept term is included, the value if given with and without the intercept.
what="all" The value of the link function is given for each combination of coefficients in the model.
what="data" The value of the link function is given for each set of predictors in the data with which the model was fit.
This option will ignore the argument newdata.

Note
In the model formulas, the intercept term is specified as 0 (absent) or 1 (present). The variance of the values of the link function is:

$$
\sigma^{2}=\sum x_{i}^{2} \sigma^{2}\left(\hat{\beta}_{i}\right)+\sum 2 x_{i} x_{j} \operatorname{cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)
$$

where σ^{2} is the variance and cov is the covariance.

See Also

?stats::predict.glm

Examples

```
## Not run:
if(require("graphics")){
    plot(x <- seq(from=0.1, to=0.9, by=0.05), y=OR(x))}
## End(Not run)
## H&L 2nd ed. Table 1.3. Page 10.
data(ageChd)
summary(g1 <- glm(chd ~ age, data=ageChd, family=binomial))
OR(g1)
```

```
attributes(OR(g1))
## Table 1.4. Page 20.
stats::vcov(g1)
## Table 2.3. Page 38.
data(lbw)
summary(g1 <- glm(LOW ~ LWT + RACE, data=lbw, family=binomial))
## Table 2.4. Page 42.
vcov(g1)
ageChd$gr54 <- ageChd$age > 54
OR(glm(chd ~ gr54, data=ageChd, family=binomial))
```

 pcs Prostate Cancer Study data

Description

Prostate Cancer Study data

Format

A data. frame with 380 observations (rows) and 9 variables (columns).

Details

A subset of data from a study of patient with prostate cancer. Variables measured at the baseline patient exam were used to try to determine whether the tumor had penetrated the prostate capsule.

The observed variable values were modified to protect patient confidentiality.
Columns are:
ID Identification code.
CAPSULE Tumor penetration of prostatic capsule? (a factor):
0 no
1 yes
AGE Age (years).
RACE Race (a factor):
1 white
2 black
DPROS Digital rectal exam (a factor):
1 no nodule
2 unilobar nodule (left)
3 unilobar nodule (right)
4 bilobar nodule

DCAPS Capsular involvement on rectal exam? (a factor):
0 no
1 yes
PSA Prostate Specific Antigen Value ($\mathrm{mg} / \mathrm{ml}$).
VOL Tumor volume (cm3)
GLEASON Gleason score (total). Range 0 to 10.

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Page 25. Section 1.6.3.

```
plot.glm
Plot diagnostics for a binomial glm model
```


Description

Standard diagnostic plots.

Usage

```
## S3 method for class 'glm'
plot(
        x,
        y = NULL,
        ...,
        toPdf = FALSE,
        file = "dxPlots.pdf",
        palette = c("Dark2", "Set2", "Accent", "Blues"),
        usePalette = TRUE,
        bg = NULL,
        col = "white",
        alpha = 0.4,
        cex = 2,
        pch = 21,
        cex.main = 1.5,
        inches = 0.25,
        identify = FALSE,
        devNew = TRUE
)
```


Arguments

x
y
file
bg
col
alpha
cex
pch
cex.main
inches

A regression model with class glm and $x \$ f a m i l y \$ f a m i l y==" b i n o m i a l "$.
Not used. Present for compatibility with generic plot() function.
Additional arguments, which can be passed to the plotting functions. See:
?graphics::plot.default
?graphics::symbols
?graphics::par

- If toPdf=TRUE the output will be directed to a . pdf file.
- If toPdf=FALSE a new device is opened for each plot.

Filename if writing to .pdf as above, e.g. "plots.pdf".
Palette of colors to use as the 'fill'/ 'background' colors for the plots.
The options are taken from color_brewer.
usePalette Use the colorscheme in palette above.

- If usePalette=TRUE (the default), this colorscheme will be passed to the argument bg below:

```
- graphics::plot.default(bg=)
- graphics::symbols(bg=)
```

- If usePalette=FALSE, then the color specified in bg below will be used instead.

The 'fill' or background color(s) to use, if usePalette=FALSE. This can be a vector of colors.

The 'edge' or 'foreground' color used to outline points in the plot. The default, "white" is used to make overlapping points easier to see. This is passed as an argument to

- graphics::plot.default(col=)
- graphics::symbols(fg=)

Transparency for colors above.
Should be in the range 0 (transparent) to 1 (opaque). See:
?grDevices::adjustcolor
Character expansion.
A multiplier used for size of the plotting symbols/ characters. See: ?graphics::par
Plotting character.
The symbol/ character to for the plot.
The default, pch=21 shows filled circles at each point. See:
?graphics::points
Character expansion for the plot title and the labels for the axes.
Width of circles for the bubble plot. See
?graphics::symbols
identify If TRUE will give option to identify individual points on a number of the plots produced.
The number which appears next to the point corresponds to the relevant row as given by dx .
This may be useful for identifying outliers. See:
?graphics::identify
devNew If devNew==TRUE (the default), dev. new will be called before each plot. This is useful in interactive mode.
devNew==FALSE is used for vignette building by package: knitr.

Value

There is one point per observation.
The following show probability P_{i} on the x-axis:
$P_{i} \times h_{i} \quad$ Probability vs. leverage.
$P_{i} \times \Delta P \chi_{i}^{2} \quad$ Probability vs. the change in the standardized Pearsons chi-squared with observation i excluded.
$P_{i} \times \Delta D_{i} \quad$ Probability vs. the change in the standardized deviance with observation i excluded.
$P_{i} \times \Delta \hat{\beta}_{i} \quad$ Probability vs. the change in the standardized maximum likelihood estimators of the model coefficients with observation i excluded.
$P_{i} \times \Delta P \chi_{i}^{2} \quad$ Bubbleplot of probability vs. the change in the standardized Pearsons chisquared with observation i excluded.
The area A_{i} of each circle is proportional to $\Delta \hat{\beta}_{i}$:

$$
A_{i}=\pi r_{i}^{2} \quad r_{i}=\sqrt{\frac{\Delta \hat{\beta}_{i}}{P_{i}}}
$$

For details see:
?graphics::symbols
The following show leverage h_{i} on the x-axis:
$h_{i} \times \Delta P \chi_{i}^{2} \quad$ Leverage vs. the change in the standardized Pearsons chi-squared with observation i excluded.
$h_{i} \times \Delta D_{i} \quad$ Leverage vs. the change in the standardized deviance with observation i excluded.
$h_{i} \times \Delta \hat{\beta}_{i} \quad$ Leverage vs. the change in the standardized maximum likelihood estimators of the model coefficients with observation i excluded.

The correlation of $\Delta \chi_{i}^{2}, \Delta D_{i} \operatorname{and} \hat{\beta}_{i}$. is shown in a pairs plot. See:
?graphics::pairs
The Value of dx is also returned, invisibly.

Note

A choice of colors can be found with e.g.
grDevices::colours()[grep("blue", grDevices::colours())]

Examples

```
## H&L 2nd ed. Table 4.9. Figures 5.5-5.8. Pages 177-180.
data(uis)
uis <- within(uis, {
    NDRGFP1 <- 10 / (NDRGTX + 1)
    NDRGFP2 <- NDRGFP1 * log((NDRGFP1 + 1) / 10)
})
summary(g1 <- glm(DFREE ~ AGE + NDRGFP1 + NDRGFP2 + IVHX +
    RACE + TREAT + SITE +
    AGE:NDRGFP1 + RACE:SITE,
    family=binomial, data=uis))
plot(g1)
## H&L. Similar to Figure 5.3.
set.seed(133)
(g1 <- glm(sample(c(0, 1), size=100,
                            replace=TRUE, prob=c(0.5, 0.5))
    ~ 0 + I(0.08 * rnorm(n=100, mean=0, sd=sqrt(9))),
        family=binomial))$coef # approx. 0.8
plot(g1)
```

sig

Description

Significance tests for a binary regression models fit with glm

Usage

```
sig(x, ...)
## S3 method for class 'glm'
sig(x, ..., test = c("var", "coef"))
```


Arguments

x	A regression model with class glm and x\$family\$family == "binomial".
\ldots	Not used.
test	What to test.

- If test="var" (the default), will test significance for each variable in the model.
This includes the intercept, if present.
This means factors are tested for all levels simultaneously.
- If test="coef", will test significance for each coefficient in the model. This means the 'dummy variables' created from factors will be tested individually.

Value
A list of data. tables as follows:
Wald The Wald test for each coefficient which is:

$$
W=\frac{\hat{\beta}}{S \hat{E}_{\beta}}
$$

This should be normally distributed.
LR
score
The likelihood ratio test for each coefficient:

$$
L R=-2 \log \frac{\text { likelihood without variable }}{\text { likelihood with variable }}
$$

which is:

$$
L R=-2 \sum_{i=1}^{n}\left(y_{i} \log \frac{P_{i}}{y_{i}}+\left(1-y_{i}\right) \log \frac{1-P_{i}}{1-y_{i}}\right)
$$

When comparing a fitted model to a saturated model (i.e. $P_{i}=y_{i}$ and likelihood $=1$), the $L R$ is referred to as the model deviance, D.
The score test, also known as the Rao, Cochran-Armitage trend and the Lagrange multiplier test.
This removes a variable from the model, then assesses the change. For logistic regression this is based on:

$$
\bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}
$$

and

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i} n_{i}}{n}
$$

The statistic is:

$$
\mathrm{ST}=\frac{\sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right)}{\sqrt{\bar{y}(1-\bar{y}) \sum_{i=1}^{n}\left(x_{i}-\bar{x}^{2}\right)}}
$$

If the value of the coefficient is correct, the test should follow a standard normal distribution.

Note

The result has the class "sig.glm". The print method for this class shows only the model coefficients and p values.

See Also

?aod::wald.test
?statmod::glm.scoretest
For corrected score tests:
?mdscore::mdscore

Examples

```
    data(ageChd)
    ## H&L 2nd ed. Table 1.3. Page 10.
    summary(g1 <- glm(chd ~ age, data=ageChd, family=binomial))
    sig(g1)
    data(lbw)
    ## Table 2.2. Page 36.
    summary(g2 <- glm(LOW ~ AGE + LWT + RACE + FTV,
        data=lbw, family=binomial))
    sig(g2)
    ## Table 2.3. Pages 38-39.
    summary(g3 <- glm(LOW ~ LWT + RACE,
            data=lbw, family=binomial))
    sig(g3, test="coef")
    ## RACE is more significant when dropped as a factor
    ##
    sig(g3, test="var")
```

 ss
 Sample size for a given coefficient and events per covariate for model

Description

Sample size for a given coefficient and events per covariate for model

Usage

```
    ss(x, ...)
    \#\# S3 method for class 'glm'
    ss(
        x,
        ...,
        alpha \(=0.05\),
        beta \(=0.8\),
        coeff \(=\) names(stats: : \(\operatorname{coef}(x))[2]\),
        std = FALSE,
        alternative = c("one.sided", "two.sided"),
        OR = NULL,
        Px0 = NULL
    )
```


Arguments

$x \quad$ A regression model with class glm and $x \$$ family $\$$ family $==$ "binomial".
... Not used.
alpha significance level α for the null-hypothesis significance test.

beta	power β for the null-hypothesis significance test.
coeff	Name of coefficient (variable) in the model to be tested.
std	Standardize the coefficient? If $s t d=T R U E$ (the default), a continuous coefficent will be standardized, using the mean \bar{x} and standard deviation σ_{x} :
	$z_{x}=\frac{x_{i}-\bar{x}}{\sigma_{x}}$
alternative	The default, alternative="one.sided", checks the null hypothesis with $z=1$ -alpha. If alternative="two.sided", z = 1 -alpha/2 is used instead.
OR	Odds ratio. The size of the change in the probability.
Px0	The probability that $x=0$. If not supplied, this is estimated from the data.

Details

Gives the sample size necessary to demonstrate that a coefficient in the model for the given predictor is equal to its given value rather than equal to zero (or, if OR is supplied, the sample size needed to check for such a change in probability).

Also, the number of events per predictor.
This is the smaller value of the outcome $y=0$ and outcome $y=1$.
For a continuous coefficient, the calculation uses $\hat{\beta}$, the estimated coefficient from the model, δ :

$$
\delta=\frac{1+\left(1+\hat{\beta}^{2}\right) \exp 1.25 \hat{\beta}^{2}}{1+\exp -0.25 \hat{\beta}^{2}}
$$

and P_{0}, the probability calculated from the intercept term β_{0} from the logistic model glm($x \$ y$ ~ coeff, family=binomial)
as $P_{0}=\frac{\exp \beta_{0}}{1+\exp \beta_{0}}$ For a model with one predictor, the calculation is:

$$
n=\left(1+2 P_{0} \delta\right) \frac{z_{1-\alpha}+z_{\text {beta }} \exp 0.25 \hat{\beta}^{2}}{P_{0} \hat{\beta}^{2}}
$$

For a multivariable model, the value is adjusted by R^{2}, the correlation of coeff with the other predictors in the model:

$$
n_{m}=\frac{n}{1-R^{2}}
$$

For a binomial coefficient, the calculation uses P_{0}, the probability given the null hypothesis and P_{a}, the probability given the alternative hypothesis and and the average probability $\bar{P}=\frac{P_{0}+P_{a}}{2}$ The calculation is:

$$
n=\frac{\left(z_{1-\alpha} \sqrt{2 \bar{P}(1-\bar{P})}+z_{\mathrm{beta}} \sqrt{P_{0}\left(1-P_{0}\right)+P_{a}\left(1-P_{a}\right)}\right)^{2}}{\left(P_{a}+P_{0}\right)^{2}}
$$

An alternative given by Whitemore uses $\hat{P}=P(x=0)$.
The lead term in the equation below is used to correct for large values of \hat{P} :

$$
n=\left(1+2 P_{0}\right) \frac{\left(z_{1-\alpha} \sqrt{\frac{1}{1-\hat{P}}+\frac{1}{\hat{P}}}+z_{\operatorname{beta}} \sqrt{\frac{1}{1-\hat{P}}+\frac{1}{\hat{P} \exp \hat{\beta}}}\right)^{2}}{\left(P_{0} \hat{\beta}\right)^{2}}
$$

As above these can be adjusted in the multivariable case:

$$
n_{m}=\frac{n}{1-R^{2}}
$$

In this case, Pearsons R^{2} correlation is between the fitted values from a logistic regression with coeff as the response and the other predictors as co-variates.
The calculation uses \bar{P}, the mean probability (mean of the fitted values from the model):

$$
R^{2}=\frac{\left(\sum i=1^{n}\left(y_{i}-\bar{P}\right)\left(P_{i}-\bar{P}\right)\right)^{2}}{\sum i=1^{n}\left(y_{i}-\bar{P}\right)^{2} \sum i=1^{n}\left(P_{i}-\bar{P}\right)^{2}}
$$

Value

A list of:
ss Sample size required to show coefficient for predictor is as given in the model rather than the alternative (by default $=0$).
epc \quad Events per covariate; should be >10 to make meaningful statements about the coefficients obtained.

Note

The returned list has the additional class of "ss.glm".
The print method for this class does not show the attributes.

References

Whitemore AS (1981). Sample Size for Logistic Regression with Small Response Probability. Journal of the American Statistical Association. 76(373):27-32. doi: 10.2307/2287036 Also available at JSTOR at https://www.jstor.org/stable/2287036

Hsieh FY (1989). Sample size tables for logistic regression. Statistics in Medicine. 8(7):795-802. doi: $10.1002 /$ sim. 4780080704 Also available at statpower (free).

Fleiss J (2003). Statistical methods for rates and proportions. 3rd ed. John Wiley, New York. doi: 10.1002/0471445428 Also available at Google books (free preview).

Peduzzi P, Concato J, Kemper E, Holford T R, Feinstein A R (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology. 49(12):1373-79. doi: 10.1016/S08954356(96)002363

Examples

```
## H&L 2nd ed. Section 8.5.
## Results here are slightly different from the text due to rounding.
data(uis)
with(uis, prop.table(table(DFREE, TREAT), 2))
(g1 <- glm(DFREE ~ TREAT, data=uis, family=binomial))
ss(g1, coeff="TREATlong")
## Pages 340 - 341.
ss(g1, coeff="TREATlong", OR=1.5, Px0=0.5)
## standardize
uis <- within(uis, {
    AGES <- (AGE - 32) / 6
    NDRGTXS <- (NDRGTX - 5) / 5
})
## H&L 2nd ed. Section 8.5. Page 343.
## results slightly different due to rounding
g1 <- glm(DFREE ~ AGES, data=uis, family=binomial)
ss(g1, coeff="AGES", std=FALSE, OR=1.5)
## H&L 2nd ed. Section 8.5. Table 8.37. Page 344.
summary(g1 <- glm(DFREE ~ AGES + NDRGTXS + IVHX + RACE + TREAT,
    data=uis, family=binomial))
## H&L 2nd ed. Section 8.5. Page 345.
## results slightly different due to rounding
ss(g1, coeff="AGES", std=FALSE, OR=1.5)
ss(g1, coeff="TREATlong", std=FALSE, OR=1.5)
```

uis UMARU IMPACT Study data

Description

UMARU IMPACT Study data

Format

A data. frame with 575 observations (rows) and 9 variables (columns).

Details

A subset of data from the University of Massachusets Aids Research Unit (UMARU) IMPACT study.
This came from two concurrent randomized trials of residential treatement for durg abuse, in order to compare planned durations of admission.
Site A randomized 444 participants to compare 3 and 6 month stays in a therapeutic community. They were trained to recognize triggers for relapse and taught skills to cope without using drugs. Site B randomized 184 participants to receive either a 6 or 12 month stay in a highly structured communal therapeutic community.

This is a subset of the original dataset.

Columns are:
ID Identification code.
AGE Age (years).
BECK Beck Depression score on admission.
IVHX IV drug use history (a factor):
1 never
2 previous
3 current
NDRUGTX Number of prior drug treatments. Range 5 to 20.
RACE Race (a factor):
0 white
1 other
TREAT Treatment randomization. 'Short' is 3 months in site A, 6 months in site B. 'Long' is 6 months in site A, 12 months in site B. (a factor):
0 short
1 long
SITE Assignment treatment site (a factor):
0 A
1 B
DFREE Remained drug free for 12 months (factor):
0 no
1 yes

Source

Originally taken from H\&L 2nd ed. via their publishers site at ftp://ftp.wiley.com/public/sci_tech_med/logistic

References

H\&L 2nd ed. Page 26. Section 1.6.4.
McCusker J, Vickers-Lahti M, Stoddard A, Hindin R, Bigelow C, Zorn M, Garfield F, Frost R, Love C, Lewis B 1995. Fischer DB, Goldenberg IS 1983. The effectiveness of alternative planned durations of residential drug abuse treatment. American Journal of Public Health 85(10):14261429. doi: 10.2105/AJPH.85.10.1426

McCusker J, Bigelow C, Frost R, Garfield F, Hindin R, Vickers-Lahti M, Lewis B 1997. \#' The effects of planned duration of residential drug abuse treatment on recovery and HIV risk behavior. American Journal of Public Health 87(10):1637-1644. doi: 10.2105/AJPH.87.10.1637

McCusker J, Bigelow C, Vickers-Lahti M, Spotts D, Garfield F, Frost R 1997. Planned duration of residential drug abuse treatment: efficacy versus effectiveness. Addiction 92(11):1467-1478. doi: 10.1111/j.13600443.1997.tb02868.x

See Also
dx plot.glm

Index

```
* datagen
    genBinom, }
* datasets
    ageChd, }
    bbdm, 4
    icu, 16
    lbw, }1
    llbw, 19
    mes, }2
    mlbw, 22
    nhanes3, 23
    pcs,28
    uis, }3
* diagnostics
    logisticDx-package, 2
* hplot
    plot.glm, 29
* htest
    gof, 11
    ss,34
* package
    logisticDx-package, 2
ageChd, 3
bbdm, 4
dx, 2, 5, 11, 31, 38
genBinom, }
genBinomDf (genBinom), }
genBinomDt (genBinom), }
gof, 2, 11
icu,16
lbw, 18, }2
llbw, 19
logisticDx(logisticDx-package), 2
logisticDx-package,2
```

