An R Package to read and analyze MetIDQ™ output
The package provides methods to read output files from the MetIDQ™ software into R. Metabolomics data is read and reformatted into an S4 object for convenient data handling, statistics and downstream analysis.
There is a version available on CRAN.
The package takes metabolomic measurements and the quantification status (e.g. “Valid”, “LOQ”, “LOD”) as “.xlsx” files generated from the MetIDQ™ software. Additionally, meta data for each sample can be provided for further analysis.
fpath <- system.file("extdata", "example_data.xlsx", package = "MetAlyzer")
mpath <- system.file("extdata", "example_meta_data.rds", package = "MetAlyzer")
show(obj)
-------------------------------------
File name: example_data.xlsx
Sheet: 1
File path: /Library/Frameworks/R.framework/Versions/4.0/Resources/library/MetAlyzer/extdata
Metabolites: 862
Classes: 24
Including metabolism indicators: TRUE
Number of samples: 74
Columns meta data: "Plate Bar Code"; "Sample Bar Code"; "Sample Type"; "Group"; "Tissue"; "Sample Volume"; "Measurement Time"
Ploting data created: FALSE
obj <- filterMetabolites(obj, class_name = "Metabolism Indicators")
232 metabolites were filtered!
obj <- filterMetaData(obj, column = Group, keep = c(1:6))
summariseQuantData(obj)
-------------------------------------
Valid: 21951 (48.39%)
LOQ: 2832 (6.24%)
LOD: 20577 (45.36%)
NAs: 0 (0%)
For further filtering and plotting, the data can be reformatted into a data frame.
obj <- createPlottingData(obj, Group, Tissue, ungrouped = Replicate)
gg_df <- plottingData(obj)
head(gg_df)
# A tibble: 6 × 12
# Groups: Group, Tissue, Metabolite [2]
Group Tissue Replicate Metabolite Class Concentration Mean SD CV CV_thresh Status
<fct> <fct> <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 1 Drosophila R1 C0 Acylcarnitin… 203 179. 82.4 0.461 more30 Valid
2 1 Drosophila R2 C0 Acylcarnitin… 86.8 179. 82.4 0.461 more30 Valid
3 1 Drosophila R3 C0 Acylcarnitin… 246 179. 82.4 0.461 more30 Valid
4 1 Drosophila R1 C2 Acylcarnitin… 29.5 26.6 9.72 0.365 more30 Valid
5 1 Drosophila R2 C2 Acylcarnitin… 15.8 26.6 9.72 0.365 more30 Valid
6 1 Drosophila R3 C2 Acylcarnitin… 34.6 26.6 9.72 0.365 more30 Valid
# … with 1 more variable: valid_replicates <lgl>
glu_gg_df <- filter(gg_df, Metabolite == "Glu")
ggplot(glu_gg_df, aes(Group, Concentration, color = Status)) +
geom_point() +
scale_color_manual(values = c("Valid" = "#00CD66",
"LOQ" = "#87CEEB",
"LOD" = "#6A5ACD")) +
facet_grid(~ Tissue)
For a comprehensive tutorial, please check out the vignette.