Metrics: Evaluation Metrics for Machine Learning

An implementation of evaluation metrics in R that are commonly used in supervised machine learning. It implements metrics for regression, time series, binary classification, classification, and information retrieval problems. It has zero dependencies and a consistent, simple interface for all functions.

Version: 0.1.4
Suggests: testthat
Published: 2018-07-09
Author: Ben Hamner [aut, cph], Michael Frasco [aut, cre], Erin LeDell [ctb]
Maintainer: Michael Frasco <mfrasco6 at gmail.com>
BugReports: https://github.com/mfrasco/Metrics/issues
License: BSD_3_clause + file LICENSE
URL: https://github.com/mfrasco/Metrics
NeedsCompilation: no
CRAN checks: Metrics results

Documentation:

Reference manual: Metrics.pdf

Downloads:

Package source: Metrics_0.1.4.tar.gz
Windows binaries: r-devel: Metrics_0.1.4.zip, r-release: Metrics_0.1.4.zip, r-oldrel: Metrics_0.1.4.zip
macOS binaries: r-release (arm64): Metrics_0.1.4.tgz, r-oldrel (arm64): Metrics_0.1.4.tgz, r-release (x86_64): Metrics_0.1.4.tgz, r-oldrel (x86_64): Metrics_0.1.4.tgz
Old sources: Metrics archive

Reverse dependencies:

Reverse depends: manymodelr
Reverse imports: audrex, ConsReg, dblr, deepregression, iml, immuneSIM, kssa, lilikoi, MetaIntegrator, populR, predtoolsTS, previsionio, PUPAIM, PUPAK, PUPMSI, RSCAT, sense, sjSDM, SPOTMisc, superml, VARMER, WaveletANN, workboots
Reverse suggests: featurefinder, luz, s2net, tfdatasets

Linking:

Please use the canonical form https://CRAN.R-project.org/package=Metrics to link to this page.