This vignette introduces the following functions from the PHEindicatormethods package and provides basic sample code to demonstrate their execution. The code included is based on the code provided within the ‘examples’ section of the function documentation. This vignette does not explain the methods applied in detail but these can (optionally) be output alongside the statistics or for a more detailed explanation, please see the references section of the function documentation.
library(PHEindicatormethods)
library(dplyr)
This vignette covers the following functions available within the first release of the package (v1.0.8) but has been updated to apply to these functions in their latest release versions. If further functions are added to the package in future releases these will be explained elsewhere.
Function | Type | Description |
---|---|---|
phe_proportion | Non-aggregate | Performs a calculation on each row of data (unless data is grouped) |
phe_rate | Non-aggregate | Performs a calculation on each row of data (unless data is grouped) |
phe_mean | Aggregate | Performs a calculation on each grouping set |
phe_dsr | Aggregate, standardised | Performs a calculation on each grouping set and requires additional reference inputs |
calculate_ISRatio | Aggregate, standardised | Performs a calculation on each grouping set and requires additional reference inputs |
calculate_ISRate | Aggregate, standardised | Performs a calculation on each grouping set and requires additional reference inputs |
The following code chunk creates a data frame containing observed number of events and populations for 4 geographical areas over 2 time periods that is used later to demonstrate the PHEindicatormethods package functions:
<- data.frame(
df area = rep(c("Area1","Area2","Area3","Area4"), 2),
year = rep(2015:2016, each = 4),
obs = sample(100, 2 * 4, replace = TRUE),
pop = sample(100:200, 2 * 4, replace = TRUE))
df#> area year obs pop
#> 1 Area1 2015 95 159
#> 2 Area2 2015 47 179
#> 3 Area3 2015 31 122
#> 4 Area4 2015 23 199
#> 5 Area1 2016 57 183
#> 6 Area2 2016 60 185
#> 7 Area3 2016 52 134
#> 8 Area4 2016 27 188
INPUT: The phe_proportion and phe_rate functions take a single data frame as input with columns representing the numerators and denominators for the statistic. Any other columns present will be retained in the output.
OUTPUT: The functions output the original data frame with additional columns appended. By default the additional columns are the proportion or rate, the lower 95% confidence limit, the upper 95% confidence limit, the confidence level, the statistic name and the method.
OPTIONS: The functions also accept additional arguments to specify the level of confidence, the multiplier and a reduced level of detail to be output.
Here are some example code chunks to demonstrate these two functions and the arguments that can optionally be specified
# default proportion
phe_proportion(df, obs, pop)
#> area year obs pop value lowercl uppercl confidence statistic
#> 1 Area1 2015 95 159 0.5974843 0.51982778 0.6705414 95% proportion of 1
#> 2 Area2 2015 47 179 0.2625698 0.20358208 0.3315343 95% proportion of 1
#> 3 Area3 2015 31 122 0.2540984 0.18517152 0.3380381 95% proportion of 1
#> 4 Area4 2015 23 199 0.1155779 0.07826151 0.1674548 95% proportion of 1
#> 5 Area1 2016 57 183 0.3114754 0.24883615 0.3818668 95% proportion of 1
#> 6 Area2 2016 60 185 0.3243243 0.26103594 0.3947600 95% proportion of 1
#> 7 Area3 2016 52 134 0.3880597 0.30976871 0.4725899 95% proportion of 1
#> 8 Area4 2016 27 188 0.1436170 0.10061629 0.2008903 95% proportion of 1
#> method
#> 1 Wilson
#> 2 Wilson
#> 3 Wilson
#> 4 Wilson
#> 5 Wilson
#> 6 Wilson
#> 7 Wilson
#> 8 Wilson
# specify confidence level for proportion
phe_proportion(df, obs, pop, confidence=99.8)
#> area year obs pop value lowercl uppercl confidence statistic
#> 1 Area1 2015 95 159 0.5974843 0.47510063 0.7088216 99.8% proportion of 1
#> 2 Area2 2015 47 179 0.2625698 0.17483885 0.3743512 99.8% proportion of 1
#> 3 Area3 2015 31 122 0.2540984 0.15330117 0.3905969 99.8% proportion of 1
#> 4 Area4 2015 23 199 0.1155779 0.06253705 0.2038243 99.8% proportion of 1
#> 5 Area1 2016 57 183 0.3114754 0.21727082 0.4243798 99.8% proportion of 1
#> 6 Area2 2016 60 185 0.3243243 0.22887615 0.4370187 99.8% proportion of 1
#> 7 Area3 2016 52 134 0.3880597 0.26959798 0.5214149 99.8% proportion of 1
#> 8 Area4 2016 27 188 0.1436170 0.08183712 0.2398520 99.8% proportion of 1
#> method
#> 1 Wilson
#> 2 Wilson
#> 3 Wilson
#> 4 Wilson
#> 5 Wilson
#> 6 Wilson
#> 7 Wilson
#> 8 Wilson
# specify to output proportions as percentages
phe_proportion(df, obs, pop, multiplier=100)
#> area year obs pop value lowercl uppercl confidence statistic method
#> 1 Area1 2015 95 159 59.74843 51.982778 67.05414 95% percentage Wilson
#> 2 Area2 2015 47 179 26.25698 20.358208 33.15343 95% percentage Wilson
#> 3 Area3 2015 31 122 25.40984 18.517152 33.80381 95% percentage Wilson
#> 4 Area4 2015 23 199 11.55779 7.826151 16.74548 95% percentage Wilson
#> 5 Area1 2016 57 183 31.14754 24.883615 38.18668 95% percentage Wilson
#> 6 Area2 2016 60 185 32.43243 26.103594 39.47600 95% percentage Wilson
#> 7 Area3 2016 52 134 38.80597 30.976871 47.25899 95% percentage Wilson
#> 8 Area4 2016 27 188 14.36170 10.061629 20.08903 95% percentage Wilson
# specify level of detail to output for proportion
phe_proportion(df, obs, pop, confidence=99.8, multiplier=100)
#> area year obs pop value lowercl uppercl confidence statistic method
#> 1 Area1 2015 95 159 59.74843 47.510063 70.88216 99.8% percentage Wilson
#> 2 Area2 2015 47 179 26.25698 17.483885 37.43512 99.8% percentage Wilson
#> 3 Area3 2015 31 122 25.40984 15.330117 39.05969 99.8% percentage Wilson
#> 4 Area4 2015 23 199 11.55779 6.253705 20.38243 99.8% percentage Wilson
#> 5 Area1 2016 57 183 31.14754 21.727082 42.43798 99.8% percentage Wilson
#> 6 Area2 2016 60 185 32.43243 22.887615 43.70187 99.8% percentage Wilson
#> 7 Area3 2016 52 134 38.80597 26.959798 52.14149 99.8% percentage Wilson
#> 8 Area4 2016 27 188 14.36170 8.183712 23.98520 99.8% percentage Wilson
# specify level of detail to output for proportion and remove metadata columns
phe_proportion(df, obs, pop, confidence=99.8, multiplier=100, type="standard")
#> area year obs pop value lowercl uppercl
#> 1 Area1 2015 95 159 59.74843 47.510063 70.88216
#> 2 Area2 2015 47 179 26.25698 17.483885 37.43512
#> 3 Area3 2015 31 122 25.40984 15.330117 39.05969
#> 4 Area4 2015 23 199 11.55779 6.253705 20.38243
#> 5 Area1 2016 57 183 31.14754 21.727082 42.43798
#> 6 Area2 2016 60 185 32.43243 22.887615 43.70187
#> 7 Area3 2016 52 134 38.80597 26.959798 52.14149
#> 8 Area4 2016 27 188 14.36170 8.183712 23.98520
# default rate
phe_rate(df, obs, pop)
#> area year obs pop value lowercl uppercl confidence statistic
#> 1 Area1 2015 95 159 59748.43 48338.823 73040.09 95% rate per 100000
#> 2 Area2 2015 47 179 26256.98 19290.982 34917.01 95% rate per 100000
#> 3 Area3 2015 31 122 25409.84 17261.591 36068.47 95% rate per 100000
#> 4 Area4 2015 23 199 11557.79 7324.307 17343.12 95% rate per 100000
#> 5 Area1 2016 57 183 31147.54 23589.399 40355.99 95% rate per 100000
#> 6 Area2 2016 60 185 32432.43 24747.978 41747.69 95% rate per 100000
#> 7 Area3 2016 52 134 38805.97 28980.069 50889.90 95% rate per 100000
#> 8 Area4 2016 27 188 14361.70 9462.215 20896.33 95% rate per 100000
#> method
#> 1 Byars
#> 2 Byars
#> 3 Byars
#> 4 Byars
#> 5 Byars
#> 6 Byars
#> 7 Byars
#> 8 Byars
# specify rate parameters
phe_rate(df, obs, pop, confidence=99.8, multiplier=100)
#> area year obs pop value lowercl uppercl confidence statistic method
#> 1 Area1 2015 95 159 59.74843 42.569139 81.23649 99.8% rate per 100 Byars
#> 2 Area2 2015 47 179 26.25698 15.976629 40.39763 99.8% rate per 100 Byars
#> 3 Area3 2015 31 122 25.40984 13.574391 42.94506 99.8% rate per 100 Byars
#> 4 Area4 2015 23 199 11.55779 5.492857 21.13512 99.8% rate per 100 Byars
#> 5 Area1 2016 57 183 31.14754 19.923305 46.13788 99.8% rate per 100 Byars
#> 6 Area2 2016 60 185 32.43243 21.002812 47.58499 99.8% rate per 100 Byars
#> 7 Area3 2016 52 134 38.80597 24.256219 58.50523 99.8% rate per 100 Byars
#> 8 Area4 2016 27 188 14.36170 7.288480 25.14231 99.8% rate per 100 Byars
# specify rate parameters and reduce columns output and remove metadata columns
phe_rate(df, obs, pop, type="standard", confidence=99.8, multiplier=100)
#> area year obs pop value lowercl uppercl
#> 1 Area1 2015 95 159 59.74843 42.569139 81.23649
#> 2 Area2 2015 47 179 26.25698 15.976629 40.39763
#> 3 Area3 2015 31 122 25.40984 13.574391 42.94506
#> 4 Area4 2015 23 199 11.55779 5.492857 21.13512
#> 5 Area1 2016 57 183 31.14754 19.923305 46.13788
#> 6 Area2 2016 60 185 32.43243 21.002812 47.58499
#> 7 Area3 2016 52 134 38.80597 24.256219 58.50523
#> 8 Area4 2016 27 188 14.36170 7.288480 25.14231
These functions can also return aggregate data if the input dataframes are grouped:
# default proportion - grouped
%>%
df group_by(year) %>%
phe_proportion(obs, pop)
#> # A tibble: 2 x 9
#> # Groups: year [2]
#> year obs pop value lowercl uppercl confidence statistic method
#> <int> <int> <int> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 2015 196 659 0.297 0.264 0.333 95% proportion of 1 Wilson
#> 2 2016 196 690 0.284 0.252 0.319 95% proportion of 1 Wilson
# default rate - grouped
%>%
df group_by(year) %>%
phe_rate(obs, pop)
#> # A tibble: 2 x 9
#> # Groups: year [2]
#> year obs pop value lowercl uppercl confidence statistic method
#> <int> <int> <int> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 2015 196 659 29742. 25724. 34210. 95% rate per 100000 Byars
#> 2 2016 196 690 28406. 24568. 32673. 95% rate per 100000 Byars
The remaining functions aggregate the rows in the input data frame to produce a single statistic. It is also possible to calculate multiple statistics in a single execution of these functions if the input data frame is grouped - for example by indicator ID, geographic area or time period (or all three). The output contains only the grouping variables and the values calculated by the function - any additional unused columns provided in the input data frame will not be retained in the output.
The df test data generated earlier can be used to demonstrate phe_mean:
INPUT: The phe_mean function take a single data frame as input with a column representing the numbers to be averaged.
OUTPUT: By default, the function outputs one row per grouping set containing the grouping variable values (if applicable), the mean, the lower 95% confidence limit, the upper 95% confidence limit, the confidence level, the statistic name and the method.
OPTIONS: The function also accepts additional arguments to specify the level of confidence and a reduced level of detail to be output.
Here are some example code chunks to demonstrate the phe_mean function and the arguments that can optionally be specified
# default mean
phe_mean(df,obs)
#> value_sum value_count stdev value lowercl uppercl confidence statistic
#> 1 392 8 23.29316 49 29.52643 68.47357 95% mean
#> method
#> 1 Student's t-distribution
# multiple means in a single execution with 99.8% confidence
%>%
df group_by(year) %>%
phe_mean(obs, confidence=0.998)
#> # A tibble: 2 x 10
#> # Groups: year [2]
#> year value_sum value_count stdev value lowercl uppercl confi~1 stati~2 method
#> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 2015 196 4 32.2 49 -116. 214. 99.8% mean Stude~
#> 2 2016 196 4 15.0 49 -27.8 126. 99.8% mean Stude~
#> # ... with abbreviated variable names 1: confidence, 2: statistic
# multiple means in a single execution with 99.8% confidence and data-only output
%>%
df group_by(year) %>%
phe_mean(obs, type = "standard", confidence=0.998)
#> # A tibble: 2 x 7
#> # Groups: year [2]
#> year value_sum value_count stdev value lowercl uppercl
#> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 2015 196 4 32.2 49 -116. 214.
#> 2 2016 196 4 15.0 49 -27.8 126.
The following code chunk creates a data frame containing observed number of events and populations by age band for 4 areas, 5 time periods and 2 sexes:
<- data.frame(
df_std area = rep(c("Area1", "Area2", "Area3", "Area4"), each = 19 * 2 * 5),
year = rep(2006:2010, each = 19 * 2),
sex = rep(rep(c("Male", "Female"), each = 19), 5),
ageband = rep(c(0, 5,10,15,20,25,30,35,40,45,
50,55,60,65,70,75,80,85,90), times = 10),
obs = sample(200, 19 * 2 * 5 * 4, replace = TRUE),
pop = sample(10000:20000, 19 * 2 * 5 * 4, replace = TRUE))
head(df_std)
#> area year sex ageband obs pop
#> 1 Area1 2006 Male 0 159 13270
#> 2 Area1 2006 Male 5 25 15465
#> 3 Area1 2006 Male 10 21 14248
#> 4 Area1 2006 Male 15 7 18390
#> 5 Area1 2006 Male 20 91 16672
#> 6 Area1 2006 Male 25 173 12172
INPUT: The minimum input requirement for the phe_dsr function is a single data frame with columns representing the numerators and denominators for each standardisation category. This is sufficient if the data is:
The 2013 European Standard Population is provided within the package in vector form (esp2013) and is used by default by this function. Alternative standard populations can be used but must be provided by the user. When the function joins a standard population vector to the input data frame it does this by position so it is important that the data is sorted accordingly. This is a user responsibility.
The function can also accept standard populations provided as a column within the input data frame.
standard populations provided as a vector - the vector and the input data frame must both contain rows for the same standardisation categories, and both must be sorted, within each grouping set, by these standardisation categories in the same order
standard populations provided as a column within the input data frame - the standard populations can be appended to the input data frame by the user prior to execution of the function - if the data is grouped to generate multiple dsrs then the standard populations will need to be repeated and appended to the data rows for every grouping set.
OUTPUT: By default, the function outputs one row per grouping set containing the grouping variable values, the total count, the total population, the dsr, the lower 95% confidence limit, the upper 95% confidence limit, the confidence level, the statistic name and the method.
OPTIONS: If standard populations are being provided as a column within the input data frame then the user must specify this using the stdpoptype argument as the function expects a vector by default. The function also accepts additional arguments to specify the standard populations, the level of confidence, the multiplier and a reduced level of detail to be output.
Here are some example code chunks to demonstrate the phe_dsr function and the arguments that can optionally be specified
# calculate separate dsrs for each area, year and sex
%>%
df_std group_by(area, year, sex) %>%
phe_dsr(obs, pop)
#> # A tibble: 40 x 11
#> # Groups: area, year, sex [40]
#> area year sex total_count total_~1 value lowercl uppercl confi~2 stati~3
#> <chr> <int> <chr> <int> <int> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 Area1 2006 Female 1686 291400 676. 643. 711. 95% dsr pe~
#> 2 Area1 2006 Male 1482 286337 485. 457. 513. 95% dsr pe~
#> 3 Area1 2007 Female 2255 268154 842. 805. 880. 95% dsr pe~
#> 4 Area1 2007 Male 2332 277961 881. 844. 920. 95% dsr pe~
#> 5 Area1 2008 Female 2346 279399 917. 877. 958. 95% dsr pe~
#> 6 Area1 2008 Male 1989 287406 736. 702. 772. 95% dsr pe~
#> 7 Area1 2009 Female 1977 289207 722. 689. 756. 95% dsr pe~
#> 8 Area1 2009 Male 1901 289622 668. 636. 701. 95% dsr pe~
#> 9 Area1 2010 Female 2241 298418 806. 771. 843. 95% dsr pe~
#> 10 Area1 2010 Male 2034 293566 668. 638. 700. 95% dsr pe~
#> # ... with 30 more rows, 1 more variable: method <chr>, and abbreviated
#> # variable names 1: total_pop, 2: confidence, 3: statistic
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# calculate separate dsrs for each area, year and sex and drop metadata fields from output
%>%
df_std group_by(area, year, sex) %>%
phe_dsr(obs, pop, type="standard")
#> # A tibble: 40 x 8
#> # Groups: area, year, sex [40]
#> area year sex total_count total_pop value lowercl uppercl
#> <chr> <int> <chr> <int> <int> <dbl> <dbl> <dbl>
#> 1 Area1 2006 Female 1686 291400 676. 643. 711.
#> 2 Area1 2006 Male 1482 286337 485. 457. 513.
#> 3 Area1 2007 Female 2255 268154 842. 805. 880.
#> 4 Area1 2007 Male 2332 277961 881. 844. 920.
#> 5 Area1 2008 Female 2346 279399 917. 877. 958.
#> 6 Area1 2008 Male 1989 287406 736. 702. 772.
#> 7 Area1 2009 Female 1977 289207 722. 689. 756.
#> 8 Area1 2009 Male 1901 289622 668. 636. 701.
#> 9 Area1 2010 Female 2241 298418 806. 771. 843.
#> 10 Area1 2010 Male 2034 293566 668. 638. 700.
#> # ... with 30 more rows
#> # i Use `print(n = ...)` to see more rows
# calculate same specifying standard population in vector form
%>%
df_std group_by(area, year, sex) %>%
phe_dsr(obs, pop, stdpop = esp2013)
#> # A tibble: 40 x 11
#> # Groups: area, year, sex [40]
#> area year sex total_count total_~1 value lowercl uppercl confi~2 stati~3
#> <chr> <int> <chr> <int> <int> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 Area1 2006 Female 1686 291400 676. 643. 711. 95% dsr pe~
#> 2 Area1 2006 Male 1482 286337 485. 457. 513. 95% dsr pe~
#> 3 Area1 2007 Female 2255 268154 842. 805. 880. 95% dsr pe~
#> 4 Area1 2007 Male 2332 277961 881. 844. 920. 95% dsr pe~
#> 5 Area1 2008 Female 2346 279399 917. 877. 958. 95% dsr pe~
#> 6 Area1 2008 Male 1989 287406 736. 702. 772. 95% dsr pe~
#> 7 Area1 2009 Female 1977 289207 722. 689. 756. 95% dsr pe~
#> 8 Area1 2009 Male 1901 289622 668. 636. 701. 95% dsr pe~
#> 9 Area1 2010 Female 2241 298418 806. 771. 843. 95% dsr pe~
#> 10 Area1 2010 Male 2034 293566 668. 638. 700. 95% dsr pe~
#> # ... with 30 more rows, 1 more variable: method <chr>, and abbreviated
#> # variable names 1: total_pop, 2: confidence, 3: statistic
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# calculate the same dsrs by appending the standard populations to the data frame
%>%
df_std mutate(refpop = rep(esp2013,40)) %>%
group_by(area, year, sex) %>%
phe_dsr(obs,pop, stdpop=refpop, stdpoptype="field")
#> # A tibble: 40 x 11
#> # Groups: area, year, sex [40]
#> area year sex total_count total_~1 value lowercl uppercl confi~2 stati~3
#> <chr> <int> <chr> <int> <int> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 Area1 2006 Female 1686 291400 676. 643. 711. 95% dsr pe~
#> 2 Area1 2006 Male 1482 286337 485. 457. 513. 95% dsr pe~
#> 3 Area1 2007 Female 2255 268154 842. 805. 880. 95% dsr pe~
#> 4 Area1 2007 Male 2332 277961 881. 844. 920. 95% dsr pe~
#> 5 Area1 2008 Female 2346 279399 917. 877. 958. 95% dsr pe~
#> 6 Area1 2008 Male 1989 287406 736. 702. 772. 95% dsr pe~
#> 7 Area1 2009 Female 1977 289207 722. 689. 756. 95% dsr pe~
#> 8 Area1 2009 Male 1901 289622 668. 636. 701. 95% dsr pe~
#> 9 Area1 2010 Female 2241 298418 806. 771. 843. 95% dsr pe~
#> 10 Area1 2010 Male 2034 293566 668. 638. 700. 95% dsr pe~
#> # ... with 30 more rows, 1 more variable: method <chr>, and abbreviated
#> # variable names 1: total_pop, 2: confidence, 3: statistic
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# calculate for under 75s by filtering out records for 75+ from input data frame and standard population
%>%
df_std filter(ageband <= 70) %>%
group_by(area, year, sex) %>%
phe_dsr(obs, pop, stdpop = esp2013[1:15])
#> # A tibble: 40 x 11
#> # Groups: area, year, sex [40]
#> area year sex total_count total_~1 value lowercl uppercl confi~2 stati~3
#> <chr> <int> <chr> <int> <int> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 Area1 2006 Female 1510 236874 696. 660. 734. 95% dsr pe~
#> 2 Area1 2006 Male 973 218799 461. 432. 492. 95% dsr pe~
#> 3 Area1 2007 Female 1833 214629 862. 822. 903. 95% dsr pe~
#> 4 Area1 2007 Male 1827 229541 843. 804. 883. 95% dsr pe~
#> 5 Area1 2008 Female 1919 208495 959. 916. 1004. 95% dsr pe~
#> 6 Area1 2008 Male 1699 216630 777. 739. 815. 95% dsr pe~
#> 7 Area1 2009 Female 1675 232775 715. 681. 751. 95% dsr pe~
#> 8 Area1 2009 Male 1346 233860 606. 572. 640. 95% dsr pe~
#> 9 Area1 2010 Female 1848 231491 820. 782. 859. 95% dsr pe~
#> 10 Area1 2010 Male 1517 240194 637. 605. 671. 95% dsr pe~
#> # ... with 30 more rows, 1 more variable: method <chr>, and abbreviated
#> # variable names 1: total_pop, 2: confidence, 3: statistic
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# calculate separate dsrs for persons for each area and year)
%>%
df_std group_by(area, year, ageband) %>%
summarise(obs = sum(obs),
pop = sum(pop),
.groups = "drop_last") %>%
phe_dsr(obs,pop)
#> # A tibble: 20 x 10
#> # Groups: area, year [20]
#> area year total_count total_~1 value lowercl uppercl confi~2 stati~3 method
#> <chr> <int> <int> <int> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 Area1 2006 3168 577737 560. 539. 581. 95% dsr pe~ Dobson
#> 2 Area1 2007 4587 546115 841. 816. 867. 95% dsr pe~ Dobson
#> 3 Area1 2008 4335 566805 832. 806. 859. 95% dsr pe~ Dobson
#> 4 Area1 2009 3878 578829 681. 659. 704. 95% dsr pe~ Dobson
#> 5 Area1 2010 4275 591984 730. 707. 754. 95% dsr pe~ Dobson
#> 6 Area2 2006 4414 555817 823. 797. 849. 95% dsr pe~ Dobson
#> 7 Area2 2007 4444 552401 828. 801. 854. 95% dsr pe~ Dobson
#> 8 Area2 2008 3558 556367 640. 618. 663. 95% dsr pe~ Dobson
#> 9 Area2 2009 3880 568466 671. 648. 694. 95% dsr pe~ Dobson
#> 10 Area2 2010 4227 533701 768. 743. 793. 95% dsr pe~ Dobson
#> 11 Area3 2006 4306 609516 730. 707. 753. 95% dsr pe~ Dobson
#> 12 Area3 2007 3575 565038 677. 653. 701. 95% dsr pe~ Dobson
#> 13 Area3 2008 3803 582952 664. 642. 687. 95% dsr pe~ Dobson
#> 14 Area3 2009 3702 572392 712. 688. 737. 95% dsr pe~ Dobson
#> 15 Area3 2010 4012 563172 722. 698. 746. 95% dsr pe~ Dobson
#> 16 Area4 2006 3706 577029 692. 669. 716. 95% dsr pe~ Dobson
#> 17 Area4 2007 4248 580619 706. 684. 730. 95% dsr pe~ Dobson
#> 18 Area4 2008 3672 534298 765. 740. 791. 95% dsr pe~ Dobson
#> 19 Area4 2009 3690 588180 637. 616. 659. 95% dsr pe~ Dobson
#> 20 Area4 2010 3420 558149 625. 603. 648. 95% dsr pe~ Dobson
#> # ... with abbreviated variable names 1: total_pop, 2: confidence, 3: statistic
INPUT: Unlike the phe_dsr function, there is no default standard or reference data for the calculate_ISRatio and calculate_ISRate functions. These functions take a single data frame as input, with columns representing the numerators and denominators for each standardisation category, plus reference numerators and denominators for each standardisation category.
The reference data can either be provided in a separate data frame/vectors or as columns within the input data frame:
reference data provided as a data frame or as vectors - the data frame/vectors and the input data frame must both contain rows for the same standardisation categories, and both must be sorted, within each grouping set, by these standardisation categories in the same order.
reference data provided as columns within the input data frame - the reference numerators and denominators can be appended to the input data frame prior to execution of the function - if the data is grouped to generate multiple smrs/isrs then the reference data will need to be repeated and appended to the data rows for every grouping set.
OUTPUT: By default, the functions output one row per grouping set containing the grouping variable values, the observed and expected counts, the reference rate (isr only), the smr or isr, the lower 95% confidence limit, and the upper 95% confidence limit, the confidence level, the statistic name and the method.
OPTIONS: If reference data are being provided as columns within the input data frame then the user must specify this as the function expects vectors by default. The function also accepts additional arguments to specify the level of confidence, the multiplier and a reduced level of detail to be output.
The following code chunk creates a data frame containing the reference data - this example uses the all area data for persons in the baseline year:
<- df_std %>%
df_ref filter(year == 2006) %>%
group_by(ageband) %>%
summarise(obs = sum(obs),
pop = sum(pop),
.groups = "drop_last")
head(df_ref)
#> # A tibble: 6 x 3
#> ageband obs pop
#> <dbl> <int> <int>
#> 1 0 1218 110863
#> 2 5 691 123609
#> 3 10 707 125770
#> 4 15 518 122501
#> 5 20 885 108969
#> 6 25 924 121251
Here are some example code chunks to demonstrate the calculate_ISRatio function and the arguments that can optionally be specified
# calculate separate smrs for each area, year and sex
%>%
df_std group_by(area, year, sex) %>%
calculate_ISRatio(obs, pop, df_ref$obs, df_ref$pop)
#> # A tibble: 40 x 11
#> # Groups: area, year, sex [40]
#> area year sex observed expected value lowercl uppercl confidence stati~1
#> <chr> <int> <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 Area1 2006 Female 1686 1957. 0.861 0.821 0.904 95% indire~
#> 2 Area1 2006 Male 1482 1929. 0.768 0.730 0.808 95% indire~
#> 3 Area1 2007 Female 2255 1823. 1.24 1.19 1.29 95% indire~
#> 4 Area1 2007 Male 2332 1875. 1.24 1.19 1.30 95% indire~
#> 5 Area1 2008 Female 2346 1874. 1.25 1.20 1.30 95% indire~
#> 6 Area1 2008 Male 1989 1967. 1.01 0.967 1.06 95% indire~
#> 7 Area1 2009 Female 1977 1957. 1.01 0.966 1.06 95% indire~
#> 8 Area1 2009 Male 1901 1969. 0.966 0.923 1.01 95% indire~
#> 9 Area1 2010 Female 2241 1998. 1.12 1.08 1.17 95% indire~
#> 10 Area1 2010 Male 2034 1987. 1.02 0.980 1.07 95% indire~
#> # ... with 30 more rows, 1 more variable: method <chr>, and abbreviated
#> # variable name 1: statistic
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# calculate the same smrs by appending the reference data to the data frame
%>%
df_std mutate(refobs = rep(df_ref$obs,40),
refpop = rep(df_ref$pop,40)) %>%
group_by(area, year, sex) %>%
calculate_ISRatio(obs, pop, refobs, refpop, refpoptype="field")
#> # A tibble: 40 x 11
#> # Groups: area, year, sex [40]
#> area year sex observed expected value lowercl uppercl confidence stati~1
#> <chr> <int> <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 Area1 2006 Female 1686 1957. 0.861 0.821 0.904 95% indire~
#> 2 Area1 2006 Male 1482 1929. 0.768 0.730 0.808 95% indire~
#> 3 Area1 2007 Female 2255 1823. 1.24 1.19 1.29 95% indire~
#> 4 Area1 2007 Male 2332 1875. 1.24 1.19 1.30 95% indire~
#> 5 Area1 2008 Female 2346 1874. 1.25 1.20 1.30 95% indire~
#> 6 Area1 2008 Male 1989 1967. 1.01 0.967 1.06 95% indire~
#> 7 Area1 2009 Female 1977 1957. 1.01 0.966 1.06 95% indire~
#> 8 Area1 2009 Male 1901 1969. 0.966 0.923 1.01 95% indire~
#> 9 Area1 2010 Female 2241 1998. 1.12 1.08 1.17 95% indire~
#> 10 Area1 2010 Male 2034 1987. 1.02 0.980 1.07 95% indire~
#> # ... with 30 more rows, 1 more variable: method <chr>, and abbreviated
#> # variable name 1: statistic
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# calculate separate smrs for each year and drop metadata columns from output
%>%
df_std group_by(year, ageband) %>%
summarise(obs = sum(obs),
pop = sum(pop),
.groups = "drop_last") %>%
calculate_ISRatio(obs, pop, df_ref$obs, df_ref$pop, type="standard")
#> # A tibble: 5 x 6
#> # Groups: year [5]
#> year observed expected value lowercl uppercl
#> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 2006 15594 15594 1 0.984 1.02
#> 2 2007 16854 15163. 1.11 1.09 1.13
#> 3 2008 15368 15108. 1.02 1.00 1.03
#> 4 2009 15150 15655. 0.968 0.952 0.983
#> 5 2010 15934 15267. 1.04 1.03 1.06
The calculate_ISRate function works exactly the same way but instead of expressing the result as a ratio of the observed and expected rates the result is expressed as a rate and the reference rate is also provided. Here are some examples:
# calculate separate isrs for each area, year and sex
%>%
df_std group_by(area, year, sex) %>%
calculate_ISRate(obs, pop, df_ref$obs, df_ref$pop)
#> # A tibble: 40 x 12
#> # Groups: area, year, sex [40]
#> area year sex observed expected ref_rate value lowercl uppercl confide~1
#> <chr> <int> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 Area1 2006 Female 1686 1957. 672. 579. 552. 607. 95%
#> 2 Area1 2006 Male 1482 1929. 672. 516. 490. 543. 95%
#> 3 Area1 2007 Female 2255 1823. 672. 832. 798. 867. 95%
#> 4 Area1 2007 Male 2332 1875. 672. 836. 802. 870. 95%
#> 5 Area1 2008 Female 2346 1874. 672. 841. 808. 876. 95%
#> 6 Area1 2008 Male 1989 1967. 672. 680. 650. 710. 95%
#> 7 Area1 2009 Female 1977 1957. 672. 679. 649. 710. 95%
#> 8 Area1 2009 Male 1901 1969. 672. 649. 620. 679. 95%
#> 9 Area1 2010 Female 2241 1998. 672. 754. 723. 786. 95%
#> 10 Area1 2010 Male 2034 1987. 672. 688. 659. 719. 95%
#> # ... with 30 more rows, 2 more variables: statistic <chr>, method <chr>, and
#> # abbreviated variable name 1: confidence
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# calculate the same isrs by appending the reference data to the data frame
%>%
df_std mutate(refobs = rep(df_ref$obs,40),
refpop = rep(df_ref$pop,40)) %>%
group_by(area, year, sex) %>%
calculate_ISRate(obs, pop, refobs, refpop, refpoptype="field")
#> # A tibble: 40 x 12
#> # Groups: area, year, sex [40]
#> area year sex observed expected ref_rate value lowercl uppercl confide~1
#> <chr> <int> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 Area1 2006 Female 1686 1957. 672. 579. 552. 607. 95%
#> 2 Area1 2006 Male 1482 1929. 672. 516. 490. 543. 95%
#> 3 Area1 2007 Female 2255 1823. 672. 832. 798. 867. 95%
#> 4 Area1 2007 Male 2332 1875. 672. 836. 802. 870. 95%
#> 5 Area1 2008 Female 2346 1874. 672. 841. 808. 876. 95%
#> 6 Area1 2008 Male 1989 1967. 672. 680. 650. 710. 95%
#> 7 Area1 2009 Female 1977 1957. 672. 679. 649. 710. 95%
#> 8 Area1 2009 Male 1901 1969. 672. 649. 620. 679. 95%
#> 9 Area1 2010 Female 2241 1998. 672. 754. 723. 786. 95%
#> 10 Area1 2010 Male 2034 1987. 672. 688. 659. 719. 95%
#> # ... with 30 more rows, 2 more variables: statistic <chr>, method <chr>, and
#> # abbreviated variable name 1: confidence
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# calculate separate isrs for each year and drop metadata columns from output
%>%
df_std group_by(year, ageband) %>%
summarise(obs = sum(obs),
pop = sum(pop),
.groups = "drop_last") %>%
calculate_ISRate(obs, pop, df_ref$obs, df_ref$pop, type="standard")
#> # A tibble: 5 x 7
#> # Groups: year [5]
#> year observed expected ref_rate value lowercl uppercl
#> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2006 15594 15594 672. 672. 662. 683.
#> 2 2007 16854 15163. 672. 747. 736. 758.
#> 3 2008 15368 15108. 672. 684. 673. 695.
#> 4 2009 15150 15655. 672. 650. 640. 661.
#> 5 2010 15934 15267. 672. 702. 691. 712.