
RSP Markup Language - Reference Card
An RSP document consists of text with RSP-embedded markup. When compiled, independently of programming language, (i) comments are dropped, (ii) preprocessing directives are
processed, and (iii) text and code expressions are translated into a code script. The translated code script can then be (iv) evaluated, which generates the output document, which in
turn may be (v) postprocessed. [The R.rsp package knows how to postprocess output such as TeX, Markdown, Sweave, knitr etc.] Examples (in R): (1) main.tex.rsp → (main.tex.R)
→ main.tex → main.pdf. (2) main.md.rsp → (main.md.R) → main.md → main.html. (3) main.Rnw.rsp → (main.Rnw.R) → main.Rnw → main.tex → main.pdf.

Comments, Trimming & Escapes
Comments can be used to exclude text, code expressions and preprocessing directives.

Markup Description
<%--〈anything〉--%> Drops 〈anything〉. Number (≥ 2) of hyphens must match. Comments can be nested, if different number of hyphens.
<%-%>, <%--%>, . . . “Empty” comments. Like above comments, these ones force following white space and line break to be dropped.
<% . . . -%>, <% . . . +%> A hyphen (plus) attached to the end tag, forces following white space (including the line break) to be dropped (kept).
<%% and %%> Inserts <% and %>.

Preprocessing directives
Preprocessing directives are independent of programming language used. They are applied after dropping comments and before translating text and code expressions to a code script.
It is not possible to tell from the translated code script whether preprocessing directives have been used or not, nor are their variables accessible (except metadata).

Markup Description
<%@include file="〈file|URL〉"%> Inserts the content of file 〈file|URL〉 into the document before RSP-to-script translation.
<%@meta 〈name〉="〈content〉"%> Assigns 〈content〉 to metadata variable 〈name〉. Metadata may be used by preprocessors, e.g. including HTML title.
<%@meta name="〈name〉"%> Inserts the content of metadata variable 〈name〉.
<%@〈type〉 〈name〉="〈content〉"%> Assigns 〈content〉 to preprocessing variable 〈name〉 of type 〈type〉. Supported types are ‘string’, ‘numeric’, ‘integer’ and ‘logical’.
<%@〈type〉 name="〈name〉"%> Inserts the content of preprocessing variable 〈name〉.
<%@ifeq 〈name〉"="〈content〉"%>
〈incl〉 <%@else%> 〈excl〉 <%@endif%>

If preprocessing variable 〈name〉 equals 〈content〉, then 〈incl〉 is inserted otherwise 〈excl〉. <%@else%> is optional.
<%@ifneq ...%> negates the test.

Code expressions
Code expressions are evaluated after translation. They may be of any programming language as long as there is a code translator for it. Code expressions have no access to preprocessing
variables (except metadata). Output written to standard output is inserted into the final document.

Markup Description
<%〈code〉%> Inserts 〈code〉 (may be an incomplete expression) into the translated code script without including content in the output document.
<%=〈code chunk〉%> Inserts 〈code chunk〉 (must be a complete expression) into the translated code script and includes the returned value in the output document.

Example of text file with RSP-embedded R code
1. RSP document:

<%@meta title="Example"%>
Title: <%@meta name="title"%>
Counting:<% for (i in 1:3) { %><%-%>
<%=i-%>

<% } %>

2. Without comments and preprocessed:

Title: Example
Counting:<% for (i in 1:3) { %> <%=i-%>
<% } %>

3. Translated code script:

cat("Title: Example\nCounting:")
for (i in 1:3) {
cat(" ")
cat(i)
}

4. Output document:

Title: Example
Counting: 1 2 3

R.rsp commands
rcat(’Today is <%=Sys.Date()%>’)
rcat(file=’〈file|URL〉’)

s <- rstring(’Today is <%=Sys.Date()%>’)
s <- rstring(file=’〈file|URL〉’)

output <- rfile(’〈file|URL〉’)
output <- rfile(’〈file|URL〉’, postprocess=FALSE)

rsource(’〈file|URL〉’)

R.rsp v0.45.0 (NA) by Henrik Bengtsson

https://cran.r-project.org/package=R.rsp

	RSP Markup Language - Reference Card
	Comments, Trimming & Escapes
	Preprocessing directives
	Code expressions
	Example of text file with RSP-embedded R code
	R.rsp commands

