Package ‘R6P’

August 3, 2021

Type Package
Title Design Patterns in R

URL https://tidylab.github.io/R6P/, https://github.com/tidylab/R6P

BugReports https://github.com/tidylab/R6P/issues
Version 0.2.2

Date 2021-08-01

Maintainer Harel Lustiger <tidylab@gmail.com>

Description Build robust and maintainable software with object-oriented design
patterns in R. Design patterns abstract and present in neat, well-defined
components and interfaces the experience of many software designers and
architects over many years of solving similar problems. These are solutions
that have withstood the test of time with respect to re-usability,
flexibility, and maintainability. 'R6P' provides abstract base classes with
examples for a few known design patterns. The patterns were selected by
their applicability to analytic projects in R. Using these patterns in R
projects have proven effective in dealing with the complexity that
data-driven applications possess.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Language en-GB

Depends R (>=3.5)

Suggests testthat, DBI, RSQLite, ggplot2

Imports collections, dplyr, purtr, stringr, R6, tibble, tidyr
Config/testthat/edition 3

NeedsCompilation no

Author Harel Lustiger [aut, cre] (<https://orcid.org/0000-0003-2953-9598>),
Tidylab [cph, fnd]

Repository CRAN
Date/Publication 2021-08-03 11:30:03 UTC

https://tidylab.github.io/R6P/
https://github.com/tidylab/R6P
https://github.com/tidylab/R6P/issues
https://orcid.org/0000-0003-2953-9598

2 NullObject

R topics documented:

NullObject. o o 2
Repository e 4
Singleton 7
ValueObject e 8
Index 13
NullObject Null Object Pattern
Description

Model a domain concept using natural lingo of the domain experts, such as “Passenger”, “Address”,
and “Money”.

Usage
NullObject()

Details

Caution: NullObject is designed for demonstration purposes. Instead of directly using the design
pattern as it appears in the package, you’d have to adjust the source code to the problem you are
trying to solve.

Null Object provides special behaviour for particular cases.

Note: The Null Object is not the same as the reserved word in R NULL (all caps).

How It Works:

When a function fails in R, some functions produce a run-time error while others return NULL
(and potentially prompt a warning). What the function evokes in case of a failure is subjected to
its programmer discretion. Usually, the programmer follows either a punitive or forgiving policy
regarding how run-time errors should be handled.

In other occasions, NULL is often the result of unavailable data. This could happened when query-
ing a data source matches no entries, or when the system is waiting for user input (mainly in
Shiny).

If it is possible for a function to return NULL rather than an error, then it is important to surround
it with null test code, e.g. if(is.null(...)) do_the_right_thing(). This way the software
would do the right thing if a null is present.

Often the right thing is the same in many contexts, so you end up writing similar code in lots of
places—committing the sin of code duplication.

Instead of returning NULL, or some odd value such as NaN or logical (@), return a Null Object that
has the same interface as what the caller expects. In R, this often means returning a data. frame
structure, i.e. column names and variables types, with no rows.

When to Use It:

NullObject 3

* In situations when a subroutine is likely to fail, such as loss of Internet or database connec-
tivity. Instead of prompting a run-time error, you could return the Null Object as part of
a gracefully failing strategy. A common strategy employs tryCatch that returns the Null
Object in the case of an error:

Simulate a database that is 5% likely to fail
read_mtcars <- function() if(runif(1) < 0.05) stop() else return(mtcars)

mtcars null object constructor
NullCar <- function() mtcars[Q,]

How does the null car object look like?

NullCar()

#> [1] mpg cyl disp hp drat wt gsec vs am gear carb
#> <@ rows> (or 0-length row.names)

Subroutine with gracefully failing strategy
set.seed(1814)
cars <- tryCatch(
Try reading the mtcars dataset
read_mtcars(),
If there is an error, return the Null Car object
error = function(e) return(NullCar())

)

Notice: Whether the subroutine fails or succeeds, it returns a tibble with
the same structure.

colnames(cars)

#> [1] "mpg" "cyl” "disp” "hp" "drat” "wt” "gsec" "vs" "am" "gear"
#> [11] "carb”

* In Shiny dashboards

geom_null <- function(...){
ggplot2::ggplot() + ggplot2::geom_blank() + ggplot2::theme_void()
}

if(exists("user_input”)){

ggplot2: :ggplot(user_input, ggplot::aes(x =mpg, y = hp)) + ggplot2::geom_point()
} else {

geom_null() + geom_text(aes(0,0), label = "choose an entry from the list")

}

¢ In unit-tests

classes <- function(x) sapply(x, class)

test_that("mtcars follows a certain table structure”, {
Compare column names
expect_identical(colnames(mtcars), colnames(NullCar()))
Compare variable types

https://en.wikipedia.org/wiki/Graceful_exit

4 Repository

expect_identical(classes(mtcars), classes(NullCar()))

D

See Also

Other base design patterns: Singleton, ValueObject()
Examples
See more examples at <https://tidylab.github.io/R6P/articles>

colnames(NullObject())
nrow(NullObject())

Repository Repository Pattern

Description

Mediates between the domain and data mapping layers using a collection-like interface for access-
ing domain objects.

Details

With Repository, in-memory objects do not need to know whether there is a database present or
absent, they need no SQL interface code, and certainly no knowledge of the database schema.

How It Works:

* Repository isolates domain objects from details of the database access code;

* Repository concentrates code of query construction; and

* Repository helps to minimize duplicate query logic.
In R, the simplest form of Repository encapsulates data. frame entries persisted in a data store
and the operations performed over them, providing a more object-oriented view of the persistence

layer. From the caller point of view, the location (locally or remotely), the technology and the
interface of the data store are obscured.

When to Use It:

¢ In situations with multiple data sources.

* In situations where the real data store, the one that is used in production, is remote. This
allows you to implement a Repository mock with identical queries that runs locally. Then,
the mock could be used during development and testing. The mock itself may comprise a
sample of the real data store or just fake data.

* In situations where the real data store doesn’t exist. Implementing a mock Repository allows
you to defer immature decisions about the database technology and/or defer its deployment.
In this way, the temporary solution allows you to focus the development effort on the core
functionality of the application.

* Insituations where using SQL queries can be represented by meaningful names. For example
Repository$get_efficient_cars() = SELECT * FROM mtcars WHERE mpg > 20

* When building stateless microservices.

https://www.oreilly.com/library/view/software-architects-handbook/9781788624060/c47a09b6-91f9-4322-a6d4-9bc1604b1bdf.xhtml

Repository

Super class

R6P: :Singleton -> Repository

Methods

Public methods:

* AbstractRepository$new()
* AbstractRepository$add()
e AbstractRepository$del ()
e AbstractRepository$get()

Method new(): Instantiate an object
Usage:
AbstractRepository$new()
Method add(): Add an element to the Repository.

Usage:
AbstractRepository$add(key, value)

Arguments:
key (character) Name of the element.
value (?7) Value of the element. Note: The values in the Repository are not necessarily of the
same type. That depends on the implementation of AbstractRepository.
Method del(): Delete an element from the Repository.

Usage:
AbstractRepository$del (key)

Arguments:
key (character) Name of the element.

Method get(): Retrieve an element from the Repository.

Usage:
AbstractRepository$get(key)

Arguments:
key (character) Name of the element.

Examples

See more examples at <https://tidylab.github.io/R6P/articles>

The following implementation is a Repository of car models with their
specifications.

First, we define the class constructor, initialize, to establish a
transient data storage.

Repository

In this case we use a dictionary from the collections package
<https://randy3k.github.io/collections/reference/dict.html>

Second, we define the add, del and get functions that operate on the dictionary.

As an optional step, we define the NULL object. In this case, rather then
the reserved word NULL, the NULL object is a data.frame with @ rows and
predefined column.

TransientRepository <- R6::R6Class(
classname = "Repository”, inherit = R6P::AbstractRepository, public = list(
initialize = function() {private$cars <- collections::dict()},
add = function(key, value){private$cars$set(key, value); invisible(self)},
del = function(key){private$cars$remove(key); invisible(self)},
get = function(key){return(private$cars$get(key, default = private$NULL_car))?}
), private = list(
NULL_car = cbind(uid = NA_character_, datasets::mtcars)[0,],
cars = NULL
))

Adding customised operations is also possible via the R6 set function.
The following example, adds a query that returns all the objects in the database

TransientRepository$set("public”, "get_all_cars”, overwrite = TRUE, function(){
result <- private$cars$values() %>% dplyr::bind_rows()
if(nrow(result) == @) return(private$NULL_car) else return(result)

»

In this example, we use the mtcars dataset with a uid column that uniquely
identifies the different cars in the Repository:

mtcars <- datasets::mtcars %>% tibble::rownames_to_column("uid")
head(mtcars, 2)

Here is how the caller uses the Repository:

Instantiate a repository object
repository <- TransientRepository$new()

Add two different cars specification to the repository
repository$add(key = "Mazda RX4", value = dplyr::filter(mtcars, uid == "Mazda RX4"))
repository$add(key = "Mazda RX4 Wag", value = dplyr::filter(mtcars, uid == "Mazda RX4 Wag"))

Get "Mazda RX4" specification
repository$get(key = "Mazda RX4")

Get all the specifications in the repository
repository$get_all_cars()

Delete "Mazda RX4" specification
repository$del(key = "Mazda RX4")

Get "Mazda RX4" specification
repository$get(key = "Mazda RX4")

Singleton 7

Singleton Singleton Pattern

Description

Ensure a class only has one instance, and provide a global point of access to it.

Details

Singleton ensures a class only has one instance, and provide a global point of access to it.

How It Works:

1. Create only one instance of the Singleton class; and

2. If an instance exists, then serve the same object again.
The main features of Singleton are:

 Ensuring that one and only one object of the class gets created;
* Providing an access point for an object that is global to the program; and

* Controlling concurrent access to resources that are shared.

When to Use It:

* In situations that require exactly one instance of a class, that must be accessible to clients
from a well-known access point. See the Counter example.

Caution: Singletons can be a problem in multi-threaded applications, especially when they ma-
nipulate mutable data.

Tip: Singletons work well for immutable data, such as reading from some data source, since
anything that can’t change isn’t going to run into thread clash problems.

Methods

Public methods:

e Singleton$new()

Method new(): Create or retrieve an object

Usage:
Singleton$new()

See Also

Other base design patterns: NullObject(), ValueObject()

8 ValueObject

Examples

See more examples at <https://tidylab.github.io/R6P/articles>
address <- function(x) sub('<environment: (.*)>', '\\1', capture.output(x))

In this example we implement a ‘Counter® that inherits the qualities of
Singleton
Counter <- R6::R6Class(”"Counter”, inherit = R6P::Singleton, public = list(
count = 0,
add_1 function(){self$count = self$count + 1; invisible(self)}

)

Whenever we call the constructor on ‘Counter‘, we always get the exact same
instance:

counter_A <- Counter$new()

counter_B <- Counter$new()

identical(counter_A, counter_B, ignore.environment = FALSE)

The two objects are equal and located at the same address; thus, they are
the same object.

When we make a change in any of the class instances, the rest of the
instances are changed as well.

How many times has the counter been increased?
counter_A$count

Increase the counter by 1
counter_A$add_1()

How many times have the counters been increased?
counter_A$count
counter_B$count

ValueObject Value Object Pattern

Description
Model a domain concept using natural lingo of the domain experts, such as “Passenger”, “Address”,
and “Money”’.

Usage

ValueObject(given = NA_character_, family = NA_character_)

Arguments

given (character) A character vector with the given name.

family (character) A character vector with the family name.

ValueObject 9

Details

Caution: ValueObject is designed for demonstration purposes. Instead of directly using the design
pattern as it appears in the package, you’d have to adjust the source code to the problem you are
trying to solve.

A Value Object models a domain concept using natural lingo of the domain experts, such as “Pas-
senger”, “Address”, and “Money”.

Any Value Object is created by a function that receives input, applies some transformations, and
outputs the results in some data structure such as a vector, a list or a data.frame.

How It Works:
In R, a good option for creating a Value Object is to follow two instructions:

* A Value Object is created by a function, rather than a class method; and
¢ A Value Object returns a tibble, rather than a list or a vector.

In essence, a Value Object is a data type, like integer, logical, Date or data. frame data types
to name a few. While the built-in data types in R fit any application, Value Objects are domain
specific and as such, they fit only to a specific application. This is because, integer is an abstract
that represent whole numbers. This abstract is useful in any application. However, a Value Object
represent a high-level abstraction that appears in a particular domain.

An example of a Value Object is the notion of a “Person”. Any person in the world has a name.
Needless to say, a person name is spelt by letters, rather than numbers. A Value Object captures
these attribute as tibble columns and type checks:

Person <- function(given = NA_character_, family = NA_character_){
stopifnot(is.character(given), is.character(family))
stopifnot(length(given) == length(family))

return(
tibble::tibble(given = given, family = family)
%>% tidyr::drop_na(given)
)
}

Instantiating a person Value Object is done by calling the Person constructor function:
person <- Person(given = "Bilbo", family = "Baggins")

Getting to know the advantages of a Value Object, we should consider the typical alternative —
constructing a Person by using the tibble function directly:

person <- tibble::tibble(given = "Bilbo”, family = "Baggins")

Both implementations return objects with identical content and structure, that is, their column
names, column types and cell values are identical. Then, why would one prefer using a Value
Object and its constructor over the direct alternative?

There are four predominant qualities offered by the Value Object pattern which are not offered
by the alternative:

1. Readability. Each Value Object captures a concept belonging to the problem domain. Rather
than trying to infer what a tibble is by looking at its low-level details, the Value Object
constructor descries a context on a high-level.

10

ValueObject

2. Explicitness. Since the constructor of the Value Object is a function, its expected input

arguments and their type can be detailed in a helper file. Moreover, assigning input arguments
with default values of specific type, such as NA (logical NA), NA_integer_, NA_character_,
or NA_Date (see lubridate: :NA_Date), expresses clearly the variable types of the Value
Object.

. Coherence. The representation of a Value Object is concentrated in one place — its construc-

tor. Any change, mainly modifications and extensions, applied to the constructor promise
the change would propagate to all instances of the Value Objects. That means, no structure
discrepancies between instances that are supposed to represent the same concept.

Safety. The constructor may start with defensive programming to ensure the qualities of its
input. One important assertion is type checking. Type checking eliminated the risk of implicit
type coercing. Another important assertion is checking if the lengths of the input arguments
meet some criteria, say all inputs are of the same length, or more restrictively, all inputs are
scalars. Having a set of checks makes the code base more robust. This is because Value
Objects are regularly created with the output of other functions calls, having a set of checks
serves as pseudo-tests of these functions output throughout the code.

In addition to these qualities, there are two desirable behaviours which are not offered by directly
calling tibble:

1. Null Value Object. Calling the Value Object constructor with no input arguments returns the

structure of the tibble (column names and column types).

2. Default values for missing input arguments. In this manner, the Value Object has a well-

defined behaviour for a person without a family name, such as Madonna and Bono.

In addition to native R data types, a Value Object constructor can receive other Value Objects as
input arguments. Here are two examples that transmute Person to other Person-based concepts:

A Passenger is a Person with a flight booking reference
Passenger <- function(person = Person(), booking_reference = NA_character_){

stopifnot(all(colnames(person) %in% colnames(Person())))
stopifnot(is.character(booking_reference))

return(
person
%>% tibble::add_column(booking_reference = booking_reference)
%>% tidyr::drop_na(booking_reference)

)
3
person <- Person(given = "Bilbo", family = "Baggins")
passenger <- Passenger(person = person, booking_reference = "B662HR")
print(passenger)

#> # A tibble: 1 x 3

#> given family booking_reference
#> <chr> <chr> <chr>

#> 1 Bilbo Baggins B662HR

A Diner is a Person that may have dinner reservation
Diner <- function(person = Person(), reservation_time = NA_POSIXct_){
stopifnot(all(colnames(person) %in% colnames(Person())))

https://en.wikipedia.org/wiki/Defensive_programming

ValueObject 11

stopifnot(is.POSIXct(reservation_time))

return(
person
%>% tibble::add_column(reservation_time = reservation_time)
)
3
person <- Person(given = "Bilbo", family = "Baggins")

timestamp <- as.POSIXct("2021-01-23 18:00:00 NZDT")

diner <- Diner(person = person, reservation_time = timestamp)
print(diner)

#> # A tibble: 1 x 3

#> given family reservation_time

#> <chr> <chr> <dttm>

#> 1 Bilbo Baggins 2021-01-23 18:00:00

When to Use It:

* In situations where domain concepts are more important then the database schema. For
example, when you are modelling Passengers, your first instinct might be to think about the
different data sources you’d need for the analysis. You may envision “FlightDetails” and
“CustomerDetails”. Next you will define the relationship between them. Instead, let the
domain drive the design. Create a Passenger Value Object with the attributes you must have,
regardless of any particular database schema.

* In a function that runs within a specific context. Rather than having an input argument called
data of type data. frame, use the appropriate Value Object name and pass it its constructor.

Audience <- Person
Without a Value Object

clean_audience_data <- function(data)
dplyr::mutate(.data = data, given = stringr::str_to_title(given))

With a Value Object
clean_audience_data <- function(attendees = Audience())
dplyr::mutate(.data = attendees, given = stringr::str_to_title(given))

* In pipes and filters architecture.

Note: Value Objects do not need to have unit-tests. This is because of two reasons: (1) Value
Objects are often called by other functions that are being tested. That means, Value Objects are
implicitly tested. (2) Value Objects are data types similarly to ‘data.frame’ or ‘list’. As such,
they need no testing

See Also

Other base design patterns: NullObject (), Singleton

Examples

See more examples at <https://tidylab.github.io/R6P/articles>

https://en.wikipedia.org/wiki/Pipeline_(software)

12

ValueObject

In this example we are appointing elected officials to random ministries, just
like in real-life.

Person <- ValueObject

Person()

Create a test for objects of type Person

x Extract the column names of Person by using its Null Object (returned by Person())
* Check that the input argument has all the columns that a Person has

is.Person <- function(x) all(colnames(x) %in% colnames(Person()))

A 'Minister' is a 'Person' with a ministry title. We capture that information

in a new Value Object named 'Minister'.

The Minister constructor requires two inputs:

1. (“Person‘) Members of parliament

2. (‘character‘) Ministry titles

Minister <- function(member = Person(), title = NA_character_){
stopifnot(is.Person(member), is.character(title))
stopifnot(nrow(member) == length(title) | all(is.na(title)))

member %>% dplyr::mutate(title = title)

Given one or more parliament members

When appoint_random_ministries is called

Then the parliament members are appointed to an office.

appoint_random_ministries <- function(member = Person()){

positions <- c(

"Arts, Culture and Heritage", "Finance"”, "Corrections”,
"Racing”, "Sport and Recreation”, "Housing"”, "Energy and Resources”,
"Education”, "Public Service", "Disability Issues”, "Environment”,
"Justice”, "Immigration”, "Defence”, "Internal Affairs”, "Transport”

Minister (member = member, title = sample(positions, size = nrow(member)))

Listing New Zealand elected officials in 2020, we instantiate a Person Object,
appoint them to random offices and return a Member value object.
set.seed(2020)

parliament_members <- Person(
given = c("Jacinda", "Grant"”, "Kelvin”, "Megan"”, "Chris", "Carmel”),
family = c("Ardern”, "Robertson”, "Davis”, "Woods", "Hipkins”, "Sepuloni”)

parliament_members

appoint_random_ministries(member = parliament_members)

Index

* base design patterns
NullObject, 2
Singleton, 7
ValueObject, 8

* object-relational patterns
Repository, 4

AbstractRepository (Repository), 4
NullObject, 2,7, 11

R6P::Singleton, 5
Repository, 4

Singleton, 4,7, 11

ValueObject, 4, 7, 8

13

	NullObject
	Repository
	Singleton
	ValueObject
	Index

