
RcppGSL: Easier GSL use from R via Rcpp
Dirk Eddelbuettela and Romain Françoisb

ahttps://dirk.eddelbuettel.com; bhttps://romain.rbind.io/

This version was compiled on November 29, 2020

The GNU Scientific Library, or GSL, is a collection of numerical routines

for scientific computing (Galassi et al., 2010). It is particularly useful for

C and C++ programs as it provides a standard C interface to a wide range

of mathematical routines such as special functions, permutations, combi-

nations, fast fourier transforms, eigensystems, random numbers, quadra-

ture, random distributions, quasi-random sequences, Monte Carlo inte-

gration, N-tuples, differential equations, simulated annealing, numerical

differentiation, interpolation, series acceleration, Chebyshev approxima-

tions, root-finding, discrete Hankel transforms physical constants, basis

splines and wavelets. There are over 1000 functions in total with an exten-

sive test suite. The RcppGSL package provides an easy-to-use interface

between GSL and R, with a particular focus on matrix and vector data

structures. RcppGSL relies on Rcpp (Eddelbuettel and François, 2011;

Eddelbuettel, 2013; Eddelbuettel et al., 2019a; Eddelbuettel and Balamuta,

2018) which is itself a package that eases the interfaces between R and

C++.}

1. Introduction

The GNU Scientific Library, or GSL, is a collection of numerical

routines for scientific computing (Galassi et al., 2010). It is a

rigourously developed and tested library providing support for

a wide range of scientific or numerical tasks. Among the topics

covered in the GSL are complex numbers, roots of polynomials,

special functions, vector and matrix data structures, permutations,

combinations, sorting, BLAS support, linear algebra, fast fourier

transforms, eigensystems, random numbers, quadrature, random

distributions, quasi-random sequences, Monte Carlo integration,

N-tuples, differential equations, simulated annealing, numerical dif-

ferentiation, interpolation, series acceleration, Chebyshev approx-

imations, root-finding, discrete Hankel transforms least-squares

fitting, minimization, physical constants, basis splines and wavelets.

Support for C programming with the GSL is available as the GSL

itself is written in C, and provides a C-language Application Pro-

gramming Interface (API). Access from C++ is possible, albeit not at

an abstraction level that could be offered by dedicated C++ imple-

mentations. Several C++ wrappers for the GSL have been written

over the years; none reached a state of completion comparable to

the GSL itself.

The GSL combines broad coverage of scientific topics, serious

implementation effort, and the use of the well-known GNU Gen-

eral Public License (GPL). This has lead to fairly wide usage of the

library. As a concrete example, we can consider the Comprehensive

R Archive Network (CRAN) repository network for the R language

and environment (R Core Team, 2018). CRAN contains over three

dozen packages interfacing the GSL. Of these more than half inter-

face the vector or matrix classes as shown in Table 1. This provides

empirical evidence indicating that the GSL is popular among pro-

grammers using either the C or C++ language for solving problems

applied science.

At the same time, the Rcpp package (Eddelbuettel and François,

2011; Eddelbuettel, 2013; Eddelbuettel et al., 2019a; Eddelbuettel

and Balamuta, 2018) offers a higher-level interface between R and

Package Any gsl header gsl_vector.h gsl_matrix.h

abn ⋆ ⋆ ⋆

BayesLogit ⋆

BayesSAE ⋆ ⋆ ⋆

BayesVarSel ⋆ ⋆ ⋆

BH ⋆ ⋆

bnpmr ⋆

BNSP ⋆ ⋆ ⋆

cghseg ⋆ ⋆ ⋆

cit ⋆

diversitree ⋆ ⋆

eco ⋆

geoCount ⋆

graphscan ⋆

gsl ⋆ ⋆

gstat ⋆

hgm ⋆

HiCseg ⋆ ⋆

igraph ⋆

KFKSDS ⋆ ⋆ ⋆

libamtrack ⋆

mixcat ⋆ ⋆ ⋆

mvabund ⋆ ⋆ ⋆

outbreaker ⋆ ⋆ ⋆

R2GUESS ⋆ ⋆ ⋆

RCA ⋆

RcppGSL ⋆ ⋆ ⋆

RcppSMC ⋆

RcppZiggurat ⋆

RDieHarder ⋆ ⋆ ⋆

ridge ⋆ ⋆ ⋆

Rlibeemd ⋆ ⋆

Runuran ⋆

SemiCompRisks ⋆ ⋆

simplexreg ⋆ ⋆ ⋆

stsm ⋆ ⋆ ⋆

survSNP ⋆

TKF ⋆ ⋆ ⋆

topicmodels ⋆ ⋆ ⋆

VBLPCM ⋆ ⋆

VBmix ⋆ ⋆ ⋆

Table 1. CRAN Package Usage of GSL outright, for vectors and for matri-

ces.

Note: Data gathered in late July 2015 by use of grep searching (recursively) for
inclusion of any GSL header, or the vector and matrix headers specifically, within the
src/ or inst/include/ directories of expanded source code archives of the CRAN
network. Convenient (temporary) shell access to such an expanded code archive via
WU Vienna is gratefully acknowledged.

https://cran.r-project.org/package=RcppGSL RcppGSL Vignette | November 29, 2020 | 1–8

C++. Rcpp permits R objects like vectors, matrices, lists, functions,

environments, . . ., to be manipulated directly at the C++ level, and

alleviates the needs for complicated and error-prone parameter

passing and memory allocation. It also allows compact vectorised

expressions similar to what can be written in R directly at the C++

level.

The RcppGSL package discussed here aims to close the gap.

It offers access to GSL functions, in particular via the vector and

matrix data structures used throughout the GSL, while staying

closer to the ‘whole object model’ familar to the R programmer.

The rest of paper is organised as follows. The next section shows

a motivating example of a fast linear model fit routine using GSL

functions. The following section discusses support for GSL vector

types, which is followed by a section on matrices. The following

two section discusses error handling, and then use of RcppGSL in

your own package. This is followed by short discussions of how to

use RcppGSL with inline and Rcpp Attributes, respectively, before

a short concluding summary.

2. Motivation: fastLm

Fitting linear models is a key building block of analysing and mod-

eling data. R has a very complete and feature-rich function in

lm() which provides a model fit as well as a number of diagnostic

measure, either directly or via the summary() method for linear

model fits. The lm.fit() function provides a faster alternative

(which is however recommend only for for advanced users) which

provides estimates only and fewer statistics for inference. This may

lead to user requests for a routine which is both fast and featureful

enough. The fastLm routine shown here provides such an imple-

mentation as part of the RcppGSL package. It uses the GSL for the

least-squares fitting functions and provides a nice example for GSL

integration with R.

#include <RcppGSL.h>

#include <gsl/gsl_multifit.h>

#include <cmath>

// declare a dependency on the RcppGSL package;

// also activates plugin (but not needed when

// 'LinkingTo: RcppGSL' is used with a package)

//

// [[Rcpp::depends(RcppGSL)]]

// tell Rcpp to turn this into a callable

// function called 'fastLm'

//

// [[Rcpp::export]]

Rcpp::List fastLm(const RcppGSL::Matrix & X,

const RcppGSL::Vector & y) {

// row and column dimension

int n = X.nrow(), k = X.ncol();

double chisq;

// to hold the coefficient vector

RcppGSL::Vector coef(k);

// and the covariance matrix

RcppGSL::Matrix cov(k,k);

// the actual fit requires working memory

// which we allocate and then free

gsl_multifit_linear_workspace *work =

gsl_multifit_linear_alloc (n, k);

gsl_multifit_linear (X, y, coef, cov,

&chisq, work);

gsl_multifit_linear_free (work);

// assign diagonal to a vector, then take

// square roots to get std.error

Rcpp::NumericVector std_err;

// need two step decl. and assignment

std_err = gsl_matrix_diagonal(cov);

// sqrt() is an Rcpp sugar function

std_err = Rcpp::sqrt(std_err);

return Rcpp::List::create(

Rcpp::Named("coefficients") = coef,

Rcpp::Named("stderr") = std_err,

Rcpp::Named("df.residual") = n - k);

}

The function interface defines two RcppGSL variables: a ma-

trix and a vector. Both use the standard numeric type double as

discussed below. The GSL supports other types ranging from lower

precision floating point to signed and unsigned integers as well as

complex numbers. The vector and matrix classes are templated

for use with all these C / C++ types—though R uses only double

and int. For these latter two, we offer a shorthand definition

via a typedef which allows a shorter non-template use. Having

extracted the row and column dimentions, we then reserve another

vector and matrix to hold the resulting coefficient estimates as

well as the estimate of the covariance matrix. Next, we allocate

workspace using a GSL routine, fit the linear model and free the

just-allocated workspace. The next step involves extracting the di-

agonal element from the covariance matrix, and taking the square

root (using a vectorised function from Rcpp). Finally we create a

named list with the return values.

In earlier version of the RcppGSL package, we also explicitly

called free() to return temporary memory allocation to the oper-

ating system. This step had to be done as the underlying objects

are managed as C objects. They conform to the GSL interface,

and work without any automatic memory management. But as we

provide a C++ data structure for matrix and vector objects, we can

manage them using C++ facilities. In particular, the destructor can

free the memory when the object goes out of scope. Explicit free()

calls are still permitted as we keep track the object status so that

memory cannot accidentally be released more than once. Another

more recent addition permits use of const & in the interface. This

instructs the compiler that values of the corresponding variable

will not be altered, and are passed into the function by reference

rather than by value.

We note that RcppArmadillo (Eddelbuettel et al., 2019b; Ed-

delbuettel and Sanderson, 2014) implements a matching fastLm

function using the Armadillo library by Sanderson (2010), and can

do so with even more compact code due to C++ features. Moreover,

RcppEigen (Bates et al., 2018; Bates and Eddelbuettel, 2013) pro-

vides a fastLm implementation with a comprehensive comparison

of matrix decomposition methods.

2 | https://cran.r-project.org/package=RcppGSL Eddelbuettel and François

3. Vectors

This section details the different vector represenations, starting

with their definition inside the GSL. We then discuss our layering

before showing how the two types map. A discussion of read-only

‘vector view’ classes concludes the section.

3.1. GSL Vectors. GSL defines various vector types to manipu-

late one-dimensionnal data, similar to R arrays. For example the

gsl_vector and gsl_vector_int structs are defined as:

typedef struct{

size_t size;

size_t stride;

double * data;

gsl_block * block;

int owner;

} gsl_vector;

typedef struct {

size_t size;

size_t stride;

int * data;

gsl_block_int * block;

int owner;

} gsl_vector_int;

A typical use of the gsl_vector struct is given below:

int i;

// allocate a gsl_vector of size 3

gsl_vector *v = gsl_vector_alloc(3);

// fill the vector

for (i = 0; i < 3; i++) {

gsl_vector_set(v, i, 1.23 + i);

}

// access elements

double sum = 0.0;

for (i = 0; i < 3; i++) {

sum += gsl_vector_set(v, i);

}

// free the memory

gsl_vector_free(v);

Note that we have to explicitly free the allocated memory at the

end. With C-style programming, this step is always the responsibil-

ity of the programmer.

3.2. RcppGSL::vector. RcppGSL defines the template

RcppGSL::vector<T> to manipulate gsl_vector pointers

taking advantage of C++ templates. Using this template type, the

previous example now becomes:

int i;

// allocate a gsl_vector of size 3

RcppGSL::vector<double> v(3);

// fill the vector

for (i = 0; i < 3; i++) {

v[i] = 1.23 + i;

}

// access elements

double sum = 0.0;

for (i = 0; i < 3; i++) {

sum += v[i];

}

// (optionally) free the memory

// also automatic when out of scope

v.free();

The class RcppGSL::vector<double> is a smart pointer which

can be deployed anywhere where a raw pointer gsl_vector can

be used, such as the gsl_vector_set and gsl_vector_get func-

tions above.

Beyond the convenience of a nicer syntax for allocation (and

of course the managed release of memory either via free() or

when going out of scope), the RcppGSL::vector template facili-

ates interchange of GSL vectors with Rcpp objects, and hence R ob-

jects. The following example defines a .Call compatible function

called sum_gsl_vector_int that operates on a gsl_vector_int

through the RcppGSL::vector<int> template specialization:

// [[Rcpp::export]]

int sum_gsl_vector_int(const

RcppGSL::vector<int> &

vec) {

int res = std::accumulate(vec.begin(),

vec.end(), 0);

return res;

}

Here we no longer need to call free() explicitly as the vec

allocation is returned automatically at the end of the function body

when the variable goes out of scope.

Once the function has created via sourceCpp() or

cppFunction() from Rcpp Attributes (see section 7 for

more on this), it can then be called from R :

fx <- Rcpp::cppFunction("

int sum_gsl_vector_int(RcppGSL::vector<int> vec) {

int res = std::accumulate(vec.begin(),

vec.end(), 0);

return res;

}", depends="RcppGSL")

sum_gsl_vector_int(1:10)

[1] 55

A second example shows a simple function that grabs elements

of an R list as gsl_vector objects using implicit conversion mech-

anisms of Rcpp

// [[Rcpp::export]]

double gsl_vector_sum_2(const Rcpp::List & data) {

// grab "x" as a gsl_vector through the

// RcppGSL::vector<double> class

const RcppGSL::vector<double> x = data["x"];

// grab "y" as a gsl_vector through the

// RcppGSL::vector<int> class

const RcppGSL::vector<int> y = data["y"];

double res = 0.0;

Eddelbuettel and François RcppGSL Vignette | November 29, 2020 | 3

for (size_t i=0; i< x->size; i++) {

res += x[i] * y[i];

}

// return result, memory freed automatically

return res;

}

called from R:

Rcpp::cppFunction("

double gsl_vector_sum_2(Rcpp::List data) {

RcppGSL::vector<double> x = data[\"x\"];

RcppGSL::vector<int> y = data[\"y\"];

double res = 0.0;

for (size_t i=0; i< x->size; i++) {

res += x[i] * y[i];

}

return res;

}", depends= "RcppGSL")

data <- list(x = seq(0,1,length=10), y = 1:10)

gsl_vector_sum_2(data)

[1] 36.6667

3.3. Mapping. Table 2 shows the mapping between types defined

by the GSL and their corresponding types in the RcppGSL package.

As shown, we also define two convenient shortcuts for the very

common case of double and int vectors. First, RcppGSL::Vector

is a short-hand for the RcppGSL::vector<double> template in-

stantiation. Second, RcppGSL::IntVector does the same for

integer-valued vectors. Other types still require explicit templates.

3.4. Vector Views. Several GSL algorithms return GSL vector

views as their result type. RcppGSL defines the template class

RcppGSL::vector_view to handle vector views using C++ syntax.

// [[Rcpp::export]]

Rcpp::List test_gsl_vector_view() {

int n = 10;

RcppGSL::vector<double> v(n);

for (int i=0 ; i<n; i++) {

v[i] = i;

}

const RcppGSL::vector_view<double> v_even =

gsl_vector_subvector_with_stride(v,0,2,n/2);

const RcppGSL::vector_view<double> v_odd =

gsl_vector_subvector_with_stride(v,1,2,n/2);

return Rcpp::List::create(

Rcpp::Named("even") = v_even,

Rcpp::Named("odd") = v_odd);

}

As with vectors, C++ objects of type RcppGSL::vector_view

can be converted implicitly to their associated GSL view type. Table

3 displays the pairwise correspondance so that the C++ objects can

be passed to compatible GSL algorithms.

The vector view class also contains a conversion operator to

automatically transform the data of the view object to a GSL vec-

tor object. This enables use of vector views where GSL would

expect a vector. And as before, double and int types can be

accessed via the typedef variants RcppGSL::VectorView and

RcppGSL::IntVectorView, respectively.

Lastly, in order to support const & behaviour, all

gsl_vector_XXX_const_view variants are also supported

(where XXX stands for any of the atomistic C and C++ data types).

4. Matrices

The GSL also defines a set of matrix data types : gsl_matrix,

gsl_matrix_int etc . . . for which RcppGSL defines a correspond-

ing convenience C++ wrapper generated by the RcppGSL::matrix

template.

4.1. Creating matrices. The RcppGSL::matrix template exposes

three constructors.

// convert an R matrix to a GSL matrix

matrix(SEXP x)

// encapsulate a GSL matrix pointer

matrix(gsl_matrix* x)

// create a new matrix with the given

// number of rows and columns

matrix(int nrow, int ncol)

4.2. Implicit conversion. RcppGSL::matrix defines an implicit

conversion to a pointer to the associated GSL matrix type, as well as

dereferencing operators. This makes the class RcppGSL::matrix

look and feel like a pointer to a GSL matrix type.

gsltype* data;

operator gsltype*() { return data; }

gsltype* operator->() const { return data; }

gsltype& operator*() const { return *data; }

4.3. Indexing. Indexing of GSL matrices is usually the task of

the functions gsl_matrix_get, gsl_matrix_int_get, . . . and

gsl_matrix_set, gsl_matrix_int_set, . . .

RcppGSL takes advantage of both operator overloading and

templates to make indexing a GSL matrix much more convenient.

// create a matrix of size 10x10

RcppGSL::matrix<int> mat(10,10);

// fill the diagonal, no need for setter function

for (int i=0; i<10: i++) {

mat(i,i) = i;

}

4.4. Methods. The RcppGSL::matrix type also defines the follow-

ing member functions:

nrow extracts the number of rows

ncol extract the number of columns

size extracts the number of elements

free releases the memory (also called via destructor)

4.5. Matrix views. Similar to the vector views discussed above, the

RcppGSL also provides an implicit conversion operator which re-

turns the underlying matrix stored in the matrix view class.

4 | https://cran.r-project.org/package=RcppGSL Eddelbuettel and François

GSL vector RcppGSL

gsl_vector RcppGSL::vector<double> as well as RcppGSL::Vector

gsl_vector_int RcppGSL::vector<int> as well as RcppGSL::IntVector

gsl_vector_float RcppGSL::vector<float>

gsl_vector_long RcppGSL::vector<long>

gsl_vector_char RcppGSL::vector<char>

gsl_vector_complex RcppGSL::vector<gsl_complex>

gsl_vector_complex_float RcppGSL::vector<gsl_complex_float>

gsl_vector_complex_long_double RcppGSL::vector<gsl_complex_long_double>

gsl_vector_long_double RcppGSL::vector<long double>

gsl_vector_short RcppGSL::vector<short>

gsl_vector_uchar RcppGSL::vector<unsigned char>

gsl_vector_uint RcppGSL::vector<unsigned int>

gsl_vector_ushort RcppGSL::vector<insigned short>

gsl_vector_ulong RcppGSL::vector<unsigned long>

Table 2. Correspondance between GSL vector types and templates defined in RcppGSL.

gsl vector views RcppGSL

gsl_vector_view RcppGSL::vector_view<double>; RcppGSL::VectorView

gsl_vector_view_int RcppGSL::vector_view<int>; RcppGSL::IntVectorView

gsl_vector_view_float RcppGSL::vector_view<float>

gsl_vector_view_long RcppGSL::vector_view<long>

gsl_vector_view_char RcppGSL::vector_view<char>

gsl_vector_view_complex RcppGSL::vector_view<gsl_complex>

gsl_vector_view_complex_float RcppGSL::vector_view<gsl_complex_float>

gsl_vector_view_complex_long_double RcppGSL::vector_view<gsl_complex_long_double>

gsl_vector_view_long_double RcppGSL::vector_view<long double>

gsl_vector_view_short RcppGSL::vector_view<short>

gsl_vector_view_uchar RcppGSL::vector_view<unsigned char>

gsl_vector_view_uint RcppGSL::vector_view<unsigned int>

gsl_vector_view_ushort RcppGSL::vector_view<insigned short>

gsl_vector_view_ulong RcppGSL::vector_view<unsigned long>

Table 3. Correspondance between GSL vector view types and templates defined in RcppGSL.

4.6. Error handler. When input values for GSL functions are in-

valid, the default error handler will abort the program after

printing an error message. This leads R to an abortion error.

To avoid this behaviour, one needs to avoid it first by using

gsl_set_error_handler_off(), and then detect error condi-

tions by checking whether the result is NAN or not.

// close the GSL error handler

gsl_set_error_handler_off();

// call GSL function with some invalid values

double res = gsl_sf_hyperg_2F1(1, 1, 1.1467003, 1);

// detect the result is NAN or not

if (ISNAN(res)) {

Rcpp::Rcout << "Invalid input found!"

<< std::endl;

}

See http://thread.gmane.org/gmane.comp.lang.r.rcpp/7905 for a

longer discussion of the related issues.

Starting with release 0.2.4, two new functions are available:

gslSetErrorHandlerOff() and gslResetErrorHandler()

which allow to turn off the error handler (as discussed above),

and to reset to the prior (default) value. In addition, the package

now also calls gslSetErrorHandlerOff() when being attached,

ensuring that the GSL error handler is turned off by default.

5. Using RcppGSL in your package

The RcppGSL package contains a complete example package pro-

viding a single function colNorm which computes a norm for each

column of a supplied matrix. This example adapts a matrix ex-

ample from the GSL manual that has been chosen primarily as a

means to showing how to set up a package to use RcppGSL.

Needless to say, we could compute such a matrix norm eas-

ily in R using existing facilities. One such possibility is a simple

apply(M, 2, function(x) sqrt(sum(x^2))) as shown on the

corresponding help page in the example package inside RcppGSL.

One point in favour of using the GSL code is that it employs a BLAS

function so on sufficiently large matrices, and with suitable BLAS

libraries installed, this variant could be faster due to the optimised

code in high-performance BLAS libraries and/or the inherent par-

allelism a multi-core BLAS variant which compute compute the

vector norm in parallel. On all ‘reasonable’ matrix sizes, however,

the performance difference should be neglible.

5.1. The configure script.

5.1.1. Using autoconf. Using RcppGSL means employing both the

GSL and R. We may need to find the location of the GSL headers

Eddelbuettel and François RcppGSL Vignette | November 29, 2020 | 5

and library, and this done easily from a configure source script

which autoconf generates from a configure.in source file such

as the following:

AC_INIT([RcppGSLExample], 0.1.0)

Use gsl-config to find arguments for

compiler and linker flags

##

Check for non-standard programs: gsl-config(1)

AC_PATH_PROG([GSL_CONFIG], [gsl-config])

If gsl-config was found, let's use it

if test "${GSL_CONFIG}" != ""; then

Use gsl-config for header and linker args

(without BLAS which we get from R)

GSL_CFLAGS=`${GSL_CONFIG} --cflags`

GSL_LIBS=`${GSL_CONFIG} --libs-without-cblas`

else

AC_MSG_ERROR([gsl-config not found, is

GSL installed?])

fi

Now substitute these variables in src/Makevars.in to create src/Makevars

AC_SUBST(GSL_CFLAGS)

AC_SUBST(GSL_LIBS)

AC_OUTPUT(src/Makevars)

A source file such as this configure.in gets converted into a

script configure by invoking the autoconf program.

We note that many other libraries use a similar (but some-

what newer and by-now fairly standard) scripting frontend called

pkg-config which be deployed in a very similar by other packages.

Calls such as the following two can be used from configure in a

very similar manner:

pkg-config --cflags libpng

pkg-config --libs libpng

where libpng (for the png image format) is used just for illus-

tration.

5.1.2. Using functions provided by RcppGSL. RcppGSL provides R

functions (in the file R/inline.R) that allow us to retrieve the

same information. Therefore the configure script can also be writ-

ten as:

#!/bin/sh

GSL_CFLAGS=`${R_HOME}/bin/Rscript -e \

"RcppGSL:::CFlags()"`

GSL_LIBS=`${R_HOME}/bin/Rscript -e \

"RcppGSL:::LdFlags()"`

sed -e "s|@GSL_LIBS@|${GSL_LIBS}|" \

-e "s|@GSL_CFLAGS@|${GSL_CFLAGS}|" \

src/Makevars.in > src/Makevars

Similarly, the configure.win for windows can be written as:

GSL_CFLAGS=`${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe\

-e "RcppGSL:::CFlags()"`

GSL_LIBS=`${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe \

-e "RcppGSL:::LdFlags()"`

sed -e "s|@GSL_LIBS@|${GSL_LIBS}|" \

-e "s|@GSL_CFLAGS@|${GSL_CFLAGS}|" \

src/Makevars.in > src/Makevars.win

This allows for a simpler and more direct way to just set the com-

pile and link options, taking advantage of the installed RcppGSL

package. See the RcppZiggurat package for an example.

5.2. The src directory. The C++ source file takes the matrix sup-

plied from R and applies the GSL function to each column.

#include <RcppGSL.h>

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

// [[Rcpp::export]]

Rcpp::NumericVector

colNorm(const RcppGSL::Matrix & G) {

int k = G.ncol();

Rcpp::NumericVector n(k); // results

for (int j = 0; j < k; j++) {

RcppGSL::vector_view<double> colview =

gsl_matrix_const_column(G, j);

n[j] = gsl_blas_dnrm2(colview);

}

return n; // return

}

The Makevars.in file governs the compilation and uses the values

supplied by configure during build-time:

set by configure

GSL_CFLAGS = @GSL_CFLAGS@

GSL_LIBS = @GSL_LIBS@

combine with standard arguments for R

PKG_CPPFLAGS = $(GSL_CFLAGS)

PKG_LIBS = $(GSL_LIBS)

The variables surrounded by @ will be filled by configure

during package build-time. As discussed above, this can either rely

on autoconf or a possibly-simpler Rscript.

5.3. The R directory. The R source is very simply: it contains a

single file created by the Rcpp::compileAttributes() function

implementing the wrapper to the colNorm() function.

5.4. Input and Output. Because RcppGSL vectors are really C vec-

tors, a little care is needed when using C++ iostream output. Vec-

tor elements needs to be accessed explicitly via accessors as e.g.

gsl_vector_get(x, 0) to display the initial element of a vector

x.

6. Using RcppGSL with inline

The inline package (Sklyar et al., 2018) is very helpful for prototyp-

ing code in C, C++ or Fortran as it takes care of code compilation,

linking and dynamic loading directly from R. It has been used

extensively by Rcpp, for example in the numerous unit tests.

The example below shows how inline can be deployed with

RcppGSL. We implement the same column norm example, but this

6 | https://cran.r-project.org/package=RcppGSL Eddelbuettel and François

time as an R script which is compiled, linked and loaded on-the-fly.

Compared to standard use of inline, we have to make sure to add

a short section declaring which header files from GSL we need to

use; the RcppGSL then communicates with inline to tell it about

the location and names of libraries used to build code against GSL.

require(inline)

inctxt='

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

'

bodytxt='

// create data structures from SEXP

RcppGSL::matrix<double> M = sM;

int k = M.ncol();

// to store results

Rcpp::NumericVector n(k);

for (int j = 0; j < k; j++) {

RcppGSL::vector_view<double> colview =

gsl_matrix_column (M, j);

n[j] = gsl_blas_dnrm2(colview);

}

return n;

'

foo <- cxxfunction(

signature(sM="numeric"),

body=bodytxt, inc=inctxt, plugin="RcppGSL")

see Section 8.4.13 of the GSL manual:

create M as a sum of two outer products

M <- outer(sin(0:9), rep(1,10), "*") +

outer(rep(1, 10), cos(0:9), "*")

foo(M)

The RcppGSL inline plugin supports creation of a package skele-

ton based on the inline function.

package.skeleton("mypackage", foo)

7. Using RcppGSL with Rcpp Attributes

Rcpp Attributes (Allaire et al., 2018) builds on the features of the

inline package described in previous section, and streamlines the

compilation, loading and linking process even further. It lever-

ages the existing plugins for inline. We already showed the corre-

sponding function in the previous section. Here, we show it again

as a self-contained example used via sourceCpp(). We stress

that usage is sourceCpp() is meant for interactive work at the

R command-prompt, but is not the recommended practice in a

package.

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

#include <RcppGSL.h>

// declare a dependency on the RcppGSL package;

// also activates plugin

//

// [[Rcpp::depends(RcppGSL)]]

// declare the function to be 'exported' to R

//

// [[Rcpp::export]]

Rcpp::NumericVector

colNorm(const RcppGSL::Matrix & M) {

int k = M.ncol();

Rcpp::NumericVector n(k); // results

for (int j = 0; j < k; j++) {

RcppGSL::VectorView colview =

gsl_matrix_const_column (M, j);

n[j] = gsl_blas_dnrm2(colview);

}

return n; // return

}

/*** R

see Section 8.4.13 of the GSL manual:

create M as a sum of two outer products

M <- outer(sin(0:9), rep(1,10), "*") +

outer(rep(1, 10), cos(0:9), "*")

colNorm(M)

*/

With the code above stored in a file, say, “gslNorm.cpp’ ’ one

can simply call sourceCpp() to have the wrapper code added, and

all of the compilation, linking and loading done — including the

execution of the short R segment at the end:

sourceCpp("gslNorm.cpp")

The function cppFunction() is also available to convert a sim-

ple character string argument containing a valid C++ function into

a eponymous R function. And like sourceCpp(), it can also use

plugins. See the vignette “Rcpp-attributes’ ’ (Allaire et al., 2018) of

the Rcpp package (Eddelbuettel et al., 2019a) for full details.

8. Summary

The GNU Scientific Library (GSL) by Galassi et al. (2010) offers a

very comprehensive collection of rigorously developed and tested

functions for applied scientific computing under a widely-used and

well-understood Open Source license. This has lead to widespread

deployment of GSL among a number of disciplines.

Using the automatic wrapping and converters offered by the

RcppGSL package presented here, R users and programmers can

now deploy algorithmns provided by the GSL with greater ease.

Eddelbuettel and François RcppGSL Vignette | November 29, 2020 | 7

References

Allaire JJ, Eddelbuettel D, François R (2018). Rcpp Attributes. Vignette included

in R package Rcpp, URL http://CRAN.R-Project.org/package=Rcpp.

Bates D, Eddelbuettel D (2013). “Fast and Elegant Numerical Linear Algebra

Using the RcppEigen Package.” Journal of Statistical Software, 52(5), 1–24.

URL http://www.jstatsoft.org/v52/i05/.

Bates D, Eddelbuettel D, François R, Qiu Y (2018). RcppEigen: Rcpp integration

for the Eigen templated linear algebra library. R package version 0.3.3.5.0,

URL http://CRAN.R-Project.org/package=RcppEigen.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!

Springer, New York. ISBN 978-1-4614-6867-7.

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief

Introduction to Rcpp.” The American Statistician, 72(1). doi:

10.1080/00031305.2017.1375990.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.”

Journal of Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/

i08/.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,

Bates D (2019a). Rcpp: Seamless R and C++ Integration. R package version

1.0.2, URL http://CRAN.R-Project.org/package=Rcpp.

Eddelbuettel D, François R, Bates D, Ni B (2019b). RcppArmadillo: Rcpp

integration for Armadillo templated linear algebra library. R package version

0.9.600.4.0, URL http://CRAN.R-Project.org/package=RcppArmadillo.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with

High-Performance C++ Linear Algebra.” Computational Statistics and Data

Analysis, 71, 1054–1063. doi:10.1016/j.csda.2013.02.005. URL

http://dx.doi.org/10.1016/j.csda.2013.02.005.

Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, Booth M, Rossi F

(2010). GNU Scientific Library Reference Manual, 3rd edition. Version 1.14.

ISBN 0954612078, URL http://www.gnu.org/software/gsl.

R Core Team (2018). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria. URL https://www.

R-project.org/.

Sanderson C (2010). “Armadillo: An open source C++ Algebra Library for Fast

Prototyping and Computationally Intensive Experiments.” Technical report,

NICTA. URL http://arma.sf.net.

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, François R (2018). inline: Inline

C, C++, Fortran function calls from R. R package version 0.3.15, URL

http://CRAN.R-Project.org/package=inline.

8 | https://cran.r-project.org/package=RcppGSL Eddelbuettel and François

