Package ‘Rdistance’

January 3, 2019
Type Package
Title Distance-Sampling Analyses for Density and Abundance Estimation
Version 2.1.3
Date 2019-01-02
Maintainer Trent McDonald <tmcdonald@west-inc.com>

Description Distance-sampling is a popular method for estimating density and
abundance of organisms in ecology. Rdistance contains routines that
assist with analysis of
distance-sampling data collected on point or line transects.

Distance models are specified using regression-like formula (similar
to Im, glm, etc.). Abundance routines

perform automated bootstrapping and automated detection-function
selection. Overall (study area) and site-level (transect or point)
abundance estimates are available. A large suite of classical,
parametric detection functions are

included along with some uncommon parametric

functions (e.g., Gamma, negative exponential) and non-parametric
smoothed distance functions. Custom (user-defined) detection functions
are easily implemented (see vignette).

The help files and vignettes have been

vetted by multiple authors and tested in workshop

settings.

License GNU General Public License
URL https://github.com/tmcd82070/Rdistance/wiki

BugReports https://github.com/tmcd82070/Rdistance/issues
Suggests knitr, rmarkdown

VignetteBuilder knitr

Imports graphics, stats, utils

RoxygenNote 6.1.1

NeedsCompilation no

https://github.com/tmcd82070/Rdistance/wiki
https://github.com/tmcd82070/Rdistance/issues

2 R topics documented:

Author Trent McDonald [cre, aut],
Jason Carlisle [aut],
Aidan McDonald [aut] (point transect methods),
Ryan Nielson [ctb] (smoothed likelihood),
Ben Augustine [ctb] (maximization method),
James Griswald [ctb] (maximization method),
Patrick McKann [ctb] (maximization method),
Lacey Jeroue [ctb] (vignettes),
Hoffman Abigail [ctb] (vignettes),
Kleinsausser Michael [ctb] (vignettes),
Joel Reynolds [ctb] (Gamma likelihood),
Pham Quang [ctb] (Gamma likelihood),
Earl Becker [ctb] (Gamma likelihood),
Aaron Christ [ctb] (Gamma likelihood),
Brook Russelland [ctb] (Gamma likelihood)

Repository CRAN
Date/Publication 2019-01-03 00:10:03 UTC

R topics documented:

Rdistance-package 3
abundEstim e e e 5
AICdfunc e 8
autoDistSamp 10
coefdfunc 13
COSINE.EXPANSION . . .+« o v v vt it e e e e e e e e e 14
dfuncEstim e 15
dfuncSmu L e e e 20
EDR . . e 26
effectiveDistance e e e 27
estimateN e e 28
ESW . o e 30
Fdouble.obs.prob 31
Fgxestim e 33
Fmaximize.g 35
FEnLL e 36
Fstartlimits 37
Gammaldike L 38
getDfuncModelFrame L 41
halfnorm.like 41
hazratelike L 44
hermite.expansion L e 46
INtegration.ConStanto e e e e 47
likeParamNames 49
negexp.ike 49
PerpDIiSts . . oL L e e e 51

plotdfunc 52

Rdistance-package 3

predict.dfunc L e 55
printabund L e e e e 56
print.dfunc.o e e e e 57
RdistanceControls e 58
secondDeriv e 59
SIMPIE.EXPANSION v it e e e e e 61
smudike . ..o 62
sparrowDetectionData 64
sparrowSiteData 65
thrasherDetectionData 67
thrasherSiteData 68
uniform.dike oL 70
Index 73
Rdistance-package Rdistance - Distance Sampling Analyses for Abundance Estimation

Rdistance contains functions and associated routines to analyze
distance-sampling data collected on point or line transects. Some of
Rdistance’s features include:

e Accommodation of both point and line transect analyses in one
routine (dfuncEstim).

e Regression-like formula for inclusion of covariate in distance
functions (dfuncEstim).

e Automatic bootstrap confidence intervals (abundEstim).

e Availability of both study-area and site-level abundance esti-
mates (abundEstim).

e Classical, parametric distance functions (halfnorm.like,
hazrate.like), and expansion functions (cosine.expansion,
hermite.expansion, simple.expansion).

e Non-classic distance functions (Gamma.like, negexp.like,
uniform.like) and a non-parametric smoother dfuncSmu).

e User defined distance functions.
* Automated distance function fits and selection autoDistSamp.
e Extended vignettes.

e print, plot, predict, coef, and summary methods for distance
function objects and abundance classes.

Description

Rdistance - Distance Sampling Analyses for Abundance Estimation

Rdistance contains functions and associated routines to analyze distance-sampling data collected
on point or line transects. Some of Rdistance’s features include:

4 Rdistance-package

¢ Accommodation of both point and line transect analyses in one routine (dfuncEstim).
» Regression-like formula for inclusion of covariate in distance functions (dfuncEstim).
* Automatic bootstrap confidence intervals (abundEstim).

* Availability of both study-area and site-level abundance estimates (abundEstim).

* Classical, parametric distance functions (halfnorm.like, hazrate.like), and expansion
functions (cosine.expansion, hermite.expansion, simple.expansion).

* Non-classic distance functions (Gamma. 1ike, negexp.like, uniform.like) and a non-parametric
smoother dfuncSmu).

* User defined distance functions.
¢ Automated distance function fits and selection autoDistSamp.
* Extended vignettes.

* print, plot, predict, coef, and summary methods for distance function objects and abun-
dance classes.

Background

Distance-sampling is a popular method for abundance estimation in ecology. Line transect surveys
are conducted by traversing randomly placed transects in a study area with the objective of sighting
animals and estimating density or abundance. Data collected during line transect surveys consists of
sighting records for fargets, usually either individuals or groups of individuals. Among the collected
data, off-transect distances are recorded or computed from other information (see perpDists). Off-
transect distances are the perpendicular distances from the transect to the location of the initial
sighting cue. The actual locations of sighted targets are often recorded or computed. When groups
are the target, the number of individuals in the group is recorded.

Point transect surveys are similar except that observers stop one or more times along the transect
to observe targets. This is a popular method for avian surveys where detections are often auditory
cues, but is also appropriate when automated detectors are placed along a route. Point transect
surveys collect distances from the observer to the target and are sometimes called radial distances.

A fundamental characteristic of both line and point-based distance sampling analyses is that prob-
ability of detecting a target declines as off-transect or radial distances increase. Targets far from
the observer are usually harder to detect than closer targets. In most classical line transect studies,
targets on the transect (off-transect distance = 0) are assume to be sighted with 100% probability.
This assumption allows estimation of the proportion of targets missed during the survey, and thus it
is possible to adjust the actual number of sighted targets for the proportion of targets missed. Some
studies utilize two observers searching the same areas to estimate the proportion of individuals
missed and thereby eliminating the assumption that all individuals on the line have been observed.

Relationship to other software

A detailed comparison of Rdistance to other options for distance sampling analysis (e.g., Program
DISTANCE, R package Distance, and R package unmarked) is forthcoming. While some of the
functionality in Rdistance is not unique, our aim is to provide an easy-to-use, rigorous, and flexible
analysis option for distance-sampling data. We understand that beginning users often need software
that is both easy to use and easy to understand, and that advanced users often require greater flexi-
bility and customization. Our aim is to meet the demands of both user groups. Rdistance is under
active development, so please contact us with issues, feature requests, etc. through the package’s
GitHub website (https://github.com/tmcd82070/Rdistance).

https://github.com/tmcd82070/Rdistance

abundEstim 5

Resources

The best place to start learning about Rdistance is at the package’s GitHub Wiki, which hosts
several tutorial vignettes and FAQs (https://github.com/tmcd82070/Rdistance/wiki). Addi-
tionally, the examples in the help files for dfuncEstim, abundEstim, and autoDistSamp highlight
the package’s primary functionality.

A list of routines can be obtained by loading Rdistance and issuing help(package="Rdistance").

Author(s)

Main author and maintainer: Trent McDonald <tmcdonald @ west-inc.com>
Coauthors: Ryan Nielson, Jason Carlisle, and Aidan McDonald

Contributors: Ben Augustine, James Griswald, Joel Reynolds, Pham Quang, Earl Becker, Aaron
Christ, Brook Russelland, Patrick McKann, Lacey Jeroue, Abigail Hoffman, and Michael Klein-
sasser.

abundEstim Estimate abundance from distance-sampling data

Description

Estimate abundance (or density) given an estimated detection function and supplemental infor-
mation on observed group sizes, transect lengths, area surveyed, etc. Also computes confidence
intervals of abundance (or density) using the bias corrected bootstrap method.

Usage

abundEstim(dfunc, detectionData, siteData, area = 1, ci = 0.95,
R = 500, plot.bs = FALSE, bySite = FALSE, showProgress = TRUE)

Arguments

dfunc An estimated ’dfunc’ object produced by dfuncEstim.

detectionData A data.frame with each row representing one detection (see example dataset,
sparrowDetectionData) and with at least the following three columns:
e sitelID =ID of the transect or point.
* groupsize = the number of individuals in the detected group.
» dist = the perpendicular, off-transect distance or radial off-point distance
to the detected group.

siteData A data.frame with each row representing one site (transect or point) (see ex-
ample dataset, sparrowSiteData). If the data in detectionData is from line
transects, siteData must have at least the following two columns:

* sitelID =ID of the transect or point. This vector is used during bootstrap-
ping to resample sites.

* length = the length of the transect.

https://github.com/tmcd82070/Rdistance/wiki

area

ci

plot.bs
bySite

showProgress

Details

abundEstim

If the data in detectionData is from point transects, siteData must have a
siteID column only. For both data types, siteID is used during bootstrapping
to resample sites.

Total study area size. If area = 1, density is estimated. Density has units (num-
ber of animals) per (squared units of the distance measurements). For example,
if distance values fitted in dfunc are meters, density is number of individuals per
square meter. If distances are miles, density is number of individuals per square
mile. If area > 1, total abundance on the study area is estimated and units are
(number of animals). This can also be used to convert units for density. For
example, if distance values fitted in dfunc are meters, and area is set to 10,000,
density is number of individuals per hectare (ha; 1 ha = 10,000 square meters).
square meter.

A scalar indicating the confidence level of confidence intervals. Confidence
intervals are computed using the bias corrected bootstrap method. If ci = NULL,
confidence intervals are not computed.

The number of bootstrap iterations to conduct when ci is not NULL.
A logical scalar indicating whether to plot individual bootstrap iterations.

A logical scalar indicating whether to compute site-level estimates of abun-
dance. The default (bySite=FALSE) returns only one overall abundance esti-
mate. This routine does not calculate confidence intervals for these site-level
abundance estimates, so ci is set to NULL if bySite = TRUE. See estimateN.

A logical indicating whether to show a text-based progress bar during boot-
strapping. Default is TRUE. It is handy to shut off the progress bar if running this
within another function. Otherwise, it is handy to see progress of the bootstrap
iterations.

The abundance estimate for line transect surveys (if no covariates are included in the detection

function) is

n.indiv(area)

N= 2(ESW)(tot.trans.len)

where n.indiv is either avg.group.size * nor sum(group.sizes), and ESW is the effective strip
width computed from the estimated distance function (i.e., ESW(dfunc)).

The confidence interval for abundance assumes that the fundamental units of replication (lines or
points, hereafter "sites") are independent. The bias corrected bootstrap method used here resamples
the units of replication (sites) and recalculates the model’s parameter estimates. If a double-observer
data frame is included in dfunc, rows of the double-observer data frame are re-sampled each boot-
strap iteration. No model selection is performed. By default, R = 500 iterations are performed, after
which the bias corrected confidence intervals are computed using the method given in Manly (1997,

section 3.4).

Setting plot.bs=FALSE and showProgress=FALSE suppresses all intermediate output. This is good
when calling abundEstim from within other functions or during simulations.

abundEstim 7

Value

If bySite is FALSE, an ’abundance estimate’ object, a list of class c("abund”, "dfunc"), con-
taining all the components of a "dfunc" object (see dfuncEstim), plus the following:

abundance Estimated abundance in the study area (if area > 1) or estimated density in the
study area (if area =1).

n The number of detections (not individuals, unless all group sizes = 1) used in
the estimate of abundance.

area Total area of inference. Study area size

esw Effective strip width for line-transects, effective radius for point-transects. Both

derived from dfunc. See ESW

or EDR for formulas.

n.sites Total number of transects for line-transects, total number of points for point-
transects.
tran.len Total transect length. NULL for point-transects.

avg.group.size Average group size
ci The bias corrected bootstrap confidence interval for n.hat. The names of this

component give the quantiles of the bootstrap distribution used to compute the
bias corrected interval.

B A vector or length R containing all bootstrap estimated population sizes. If a
particular iteration did not converge, the corresponding entry in B will be NA.
The bootstrap distribution of n.hat can be plotted with hist(x$B), where x is
an ’abundance estimate’ object. The confidence interval in ci can be reproduced
with quantile(x$B[!is.na(x$B)], p=names(x$ci)).

alpha The (scalar) confidence level of the confidence interval for n. hat.

If bySite is TRUE, a data frame containing site-level estimated abundance. The data frame is an
exact copy of siteData with the following columns tacked onto the end:

effDist The effective sampling distance at the site. For line- transects, this is ESW at
the site. For points, this is EDR.

pDetection Average probability of detection at the site. If only site-level covariates appear in
the distance function, pDetection is constant within a site. When detection-level
covariates are present, pDetection is the average at the site.

observedCount The total number of individuals detected at a site.

abundance Estimated abundance at the site. This is the sum of inflated group sizes at the
site. i.e., each group size at the site is divided by its pDetection, and then
summed.

density Estimated density at the site. This is abundance at the site divided by the

sampled area at the site. E.g., for line transects, this is abundance divided by

2 x w * length. For points, this is abundance divided by pi * w?.

effArea The effective area sampled at the site. This could be used as an offset in a
subsequent linear model. For line transects, this is 2 x ESW * length. For
points, this is pi * EDRZ?.

8 AIC.dfunc

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>
Aidan McDonald, WEST Inc., <aidan@mcdcentral.org>
Jason Carlisle, University of Wyoming and WEST Inc., <jcarlisle@west-inc.com>

References

Manly, B.EJ. (1997) Randomization, bootstrap, and monte-carlo methods in biology, London:
Chapman and Hall.

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

See Also

dfuncEstim, autoDistSamp.

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Fit half-normal detection function

dfunc <- dfuncEstim(formula=dist~1,
detectionData=sparrowDetectionData,
likelihood="halfnorm”, w.hi=100, pointSurvey=FALSE)

Estimate abundance given a detection function
Note, area=10000 converts to density per hectare (for distances measured in meters)
Note, a person should do more than R=20 iterations
fit <- abundEstim(dfunc, detectionData=sparrowDetectionData,
siteData=sparrowSiteData, area=10000, R=20, ci=0.95,
plot.bs=TRUE, bySite=FALSE)

Print results
fit

AIC.dfunc AICc and related fit statistics for detection function objects

Description

Computes AICc, AIC, or BIC for estimated distance functions.

AIC.dfunc 9

Usage
S3 method for class 'dfunc'’
AIC(object, ..., criterion = "AICc")
Arguments
object An estimated detection function object. An estimated detection function object

has class ’dfunc’, and is usually produced by a call to dfuncEstim.

Required for compatibility with the general AIC method. Any extra arguments
to this function are ignored.

criterion String specifying the criterion to compute. Either "AICc", "AIC", or "BIC".

Details

Regular Akaike’s information criterion (http://en.wikipedia.org/wiki/Akaike_information_
criterion) (AIC)is
AIC = LL + 2p,

where LL is the maximized value of the log likelihood (the minimized value of the negative log
likelihood) and p is the number of coefficients estimated in the detection function. For dfunc
objects, AIC =obj$loglik + 2xlength(coef(obj)).

A correction for small sample size, AIC., is

2 1
AICCZLL—FQ])-FM,
n—p—1

where n is sample size or number of detected groups for distance analyses. By default, this function
computes AIC.. AIC, converges quickly to AIC' as n increases.

The Bayesian Information Criterion (BIC) is

BIC = LL + log(n)p,

Value

A scalar. By default, the value of AICc for the estimated distance function obj.

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

References

Burnham, K. P., and D. R. Anderson, 2002. Model selection and multi-model inference: A practical
information-theoretic approach, Second ed. Springer-Verlag. ISBN 0-387-95364-7.

McQuarrie, A. D. R., and Tsai, C.-L., 1998. Regression and time series model selection. World
Scientific. ISBN 981023242X

http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Akaike_information_criterion

10 autoDistSamp

See Also

coef, dfuncEstim

Examples

Load the example dataset of sparrow detections from package
data(sparrowDetectionData)

Fit detection function to perpendicular, off-transect distances
dfunc <- dfuncEstim(dist~1,

detectionData=sparrowDetectionData,

w.hi=150)

Compute fit statistics
AIC(dfunc) # AICc

AIC(dfunc, criterion="AIC") # AIC
AIC(dfunc, criterion="BIC") # BIC

autoDistSamp Automated classical distance analysis

Description

Perform automated classical detection function selection and estimation of abundance.

Usage
autoDistSamp(formula, detectionData, siteData, w.lo = @, w.hi = NULL,
likelihoods = c("halfnorm”, "hazrate”, "uniform”, "negexp"”, "Gamma"),
series = c("cosine”, "hermite"”, "simple”), expansions = 0:3,

pointSurvey = FALSE, warn = TRUE, area = 1, ci = 0.95, R = 500,
bySite = FALSE, plot.bs = FALSE, showProgress = TRUE,

plot = TRUE, criterion = "AICc", ...)
Arguments
formula This parameter is passed to dfuncEstim. See dfuncEstim documentation for
definition.

detectionData This parameter is passed to dfuncEstim and abundEstim. See abundEstim
documentation for definition.

siteData This parameter is passed to abundEstim. See abundEstim documentation for
definition.

w.lo This parameter is passed to dfuncEstim. See dfuncEstim documentation for
definition.

w.hi This parameter is passed to dfuncEstim. See dfuncEstim documentation for

definition.

autoDistSamp 11

likelihoods Vector of strings specifying the likelihoods to consider during model selec-
tion. Valid values at present are "uniform”, "halfnorm", "hazrate", "negexp",
and "Gamma". See Details for the models this routine considers.

series Vector of series types to consider during model selection. Valid values are ’sim-
ple’, "hermite’, and ’cosine’. See Details for the models this routine considers.

expansions Vector of the number of expansion terms to consider during model selection.
Valid values are 0 through 3. See Details for the models this routine considers.
Note, expansion terms are not currently allowed in models with covariates.

pointSurvey This parameter is passed to dfuncEstim. See dfuncEstim documentation for
definition.

warn This parameter is passed to dfuncEstim. dfuncEstim documentation for defi-
nition.

area This parameter is passed to abundEstim. See abundEstim documentation for
definition.

ci This parameter is passed to abundEstim. See abundEstim documentation for
definition.

R This parameter is passed to abundEstim. See abundEstim documentation for
definition.

bySite This parameter is passed to abundEstim. See abundEstim documentation for
definition.

plot.bs Logical for whether to plot bootstrap iterations after the top model has been

selected and during final estimation of confidence intervals. This parameter is
passed unchanged to abundEstim. See abundEstim help for additional infor-
mation.

showProgress Logical for whether to suppress intermediate output. If showProgress=TRUE, a
table of model fitting results appears in the console as they are estimated, and
a progress bar shows progress through the bootstrap iterations at the end. If
showProgress=FALSE, all intermediate output is suppressed which is handy for
programming and simulations.

plot Logical scalar specifying whether to plot models during model selection. If
TRUE, a histogram with fitted distance function is plotted for every fitted model.
The function pauses between each plot and prompts the user for whether they
want to continue or not. For completely automated estimation, set plot = FALSE.

criterion A string specifying the criterion to use when assessing model fit. The best fit-
ting model from this routine is the one with lowest value of this fit criterion.
This must be one of "AICc" (the default), "AIC", or "BIC". See AIC.dfunc for
formulas.

Additional parameters passed to dfuncEstim, which in turn are passed to F . gx.estim.
These include x.scl, g.x.scl, and observer for estimating double observer
probabilities.

Details

During model selection, each series and number of expansions is crossed with each of the like-
lihoods. For example, if likelihoods has 3 elements, series has 2 elements, and expansions

12 autoDistSamp

has 4 elements, the total number of models fitted is 3 (likelihoods) * 2 (series) * 4 (expansions)
= 24 models. The default specification fits 41 detection functions from the "halfnorm", "hazrate",
"uniform", "negexp”, and "Gamma" likelihoods (note that Gamma does not currently implement
expansions, see Gamma. like). Note, expansion terms are not currently allowed in models with co-
variates. The model with lowest AIC is selected as “best’, and estimation of abundance proceeds

using that model.

Suppress all intermediate output using plot.bs=FALSE, showProgress=FALSE, and plot=FALSE.

Value

If bySite==FALSE, an ’abundance estimate’ object is returned. See abundEstim and dfuncEstim
for an explanation of components. Returned abundance estimates are based on the best fitting dis-
tance function among those fitted. A fit table, sorted by the criterion, is returned as component
$fitTable. The fit table component contains columns like (likelihood), series, expansions,
converge (O=converged,1=not), scale (1=passed scale check,0=did not pass), and aic (the crite-
rion used).

If bySite==TRUE, a data frame containing site-level abundance based on the best-fitting detection
function is returned. See abundEstim for description of columns in the data frame. The best-fitting
likelihood form, series, and number of expansions are returned as attributes of the data frame (e.g.,
best-fitting likelihood is attr(out, "1like.form")).

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>
Aidan McDonald, WEST Inc., <aidan@mcdcentral.org>
Jason Carlisle, University of Wyoming and WEST Inc., <jcarlisle@west-inc.com>

See Also

dfuncEstim, abundEstim.

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Automate fitting multiple detection functions, and estimate abundance
(density per ha in this case), given the 'best' detection function
Note, area=10000 converts to density per ha (for distances measured in m)
Note, users should do more than R=20 iterations of the bootstrap
autoDistSamp(formula=dist ~ 1,
detectionData=sparrowDetectionData, siteData=sparrowSiteData,
likelihood=c("halfnorm”, "hazrate"), w.hi=100,
series=c("cosine”, "simple"”), expansions=c(0, 1),
area=10000, R=20, ci=0.95, bySite=FALSE,
plot.bs=TRUE, plot=FALSE, pointSurvey=FALSE)

coef.dfunc 13

coef.dfunc Coefficients of an estimated detection function

Description

Extract the coefficients and estimated parameters (if any) from a estimated detection function object.

Usage
S3 method for class 'dfunc'
coef(object, ...)
Arguments
object An estimated distance function object. An estimated distance function object

has class ’dfunc’, and is usually produced by a call to dfuncEstim.

Required for compatibility with the general coef method. Any extra arguments
to this function are ignored.
Details
This is an extractor function for the parameters of an estimated detection function. This function is
equivalent to obj$parameters for classical detection functions.
Value
The estimated parameter vector for the detection function. Length and interpretation of values in
this vector vary depending on the form of the detection function and expansion terms.
Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

See Also

AIC, dfuncEstim

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)

Fit half-normal detection function

dfunc <- dfuncEstim(formula=dist~1,
detectionData=sparrowDetectionData,
likelihood="halfnorm”, w.hi=100, pointSurvey=FALSE)

Print results

14 cosine.expansion

dfunc

Extract the coefficient(s)
coef (dfunc)

cosine.expansion calculation of cosine expansion for detection function likelihoods

Description
Computes the cosine expansion terms used in the likelihood of a distance analysis. More generally,
will compute a cosine expansion of any numeric vector.

Usage

cosine.expansion(x, expansions)

Arguments
X In a distance analysis, x is a numeric vector of the proportion of a strip transect’s
half-width at which a group of individuals were sighted. If w is the strip transect
half-width or maximum sighting distance, and d is the perpendicular off-transect
distance to a sighted group (d < w), x is usually d/w. More generally, x is a
vector of numeric values
expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, 4, or 5.
Details

There are, in general, several expansions that can be called cosine. The cosine expansion used here
is:

* First term:
hi(z) = cos(2mx),

¢ Second term:
hao(z) = cos(3mx),

* Third term:
hs(x) = cos(4mz),

¢ Fourth term:
ha(z) = cos(bmx),

* Fifth term:
hs(x) = cos(6mx),

The maximum number of expansion terms computed is 5.

dfuncEstim 15

Value

A matrix of size length(x) X expansions. The columns of this matrix are the cosine expansions
of x. Column 1 is the first expansion term of x, column 2 is the second expansion term of x, and so
on up to expansions.

Author(s)

Trent McDonald, WEST, Inc. <tmcdonald@west-inc.com> Aidan McDonald, WEST, Inc. <aidan@mcdcentral.org>

See Also

dfuncEstim, hermite.expansion, simple.expansion, and the discussion of user defined likeli-
hoods in dfuncEstim.

Examples

set.seed(33328)
X <= rnorm(1000) * 100
Xx <-x[0 <x & x <100]
cos.expn <- cosine.expansion(x, 5)

dfuncEstim Estimate a detection function from distance-sampling data

Description

Fit a specific detection function off-transect or off-point (radial) distances.

Usage
dfuncEstim(formula, detectionData, siteData, likelihood = "halfnorm”,
pointSurvey = FALSE, w.lo = @, w.hi = NULL, expansions = 0,
series = "cosine”, x.scl = @, g.x.scl = 1, observer = "both”,

warn = TRUE, transectID = NULL, pointID = "point",
length = "length”, control = RdistanceControls())

Arguments

formula A standard formula object (e.g., dist ~ 1, dist ~ covarl + covar2). The
left-hand side (before ~) is the name of the vector containing distances (off-
transect or radial). The right-hand side (after ~) contains the names of covariate
vectors to fit in the detection function. If covariates do not appear in data, they
must be found in the parent frame (similar to 1m, glm, etc.)

detectionData A dataframe containing detection distances (either perpendicular for line-transect
or radial for point-transect designs), with one row per detected object or group.
This data frame must contain at least the following information:

16

siteData

likelihood

pointSurvey

w.lo

w.hi

expansions

series

dfuncEstim

* Detection Distances: A single column containing detection distances must
be specified on the left-hand side of formula.

« Site IDs: The ID of the transect or point (i.e., the ’site’) where each object
or group was detected. The site ID column(s) (see arguments transectID
and pointID) must specify the site (transect or point) so that this data frame
can be merged with siteData.

Optionally, this data frame can contain the following variables:

* Group Sizes: The number of individuals in the group associated with each
detection. If unspecified, Rdistance assumes all detections are of single
individuals (i.e., all group sizes are 1).

* When Rdistance allows detection-level covariates, detection-level covari-
ates will appear in this data frame.

See example data set sparrowDetectionData). See also Input data frames
below for information on when detectionData and siteData are required in-
puts.

A data.frame containing site (transect or point) IDs and any site level covariates
to include in the detection function. Every unique surveyed site (transect or
point) is represented on one row of this data set, whether or not targets were
sighted at the site. See arguments transectID and pointID for an explanation
of site and transect ID’s.

If sites are transects, this data frame must also contain transect length. By de-
fault, transect length is assumed to be in column ’length’ but can be specified
using argument length.

The total number of sites surveyed is nrow(siteData). Duplicate site-level IDs
are not allowed in siteData.

See Input data frames for when detectionData and siteData are required
inputs.
String specifying the likelihood to fit. Built-in likelihoods at present are "uni-

form", "halfnorm", "hazrate", "negexp", and "Gamma". See vignette for a way
to use user-define likelihoods.

A logical scalar specifying whether input data come from point-transect surveys
(TRUE), or line-transect surveys (FALSE).

Lower or left-truncation limit of the distances in distance data. This is the mini-
mum possible off-transect distance. Default is 0.

Upper or right-truncation limit of the distances in dist. This is the maximum
off-transect distance that could be observed. If left unspecified (i.e., at the de-
fault of NULL), right-truncation is set to the maximum of the observed dis-
tances.

A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type. No expansion terms are allowed (i.e., expansions is forced
to 0) if covariates are present in the detection function (i.e., right-hand side of
formula includes something other than 1).

If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are "simple’, "hermite’, and ’cosine’.

dfuncEstim 17

x.scl This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

g.x.scl This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

observer This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

warn A logical scalar specifying whether to issue an R warning if the estimation did

not converge or if one or more parameter estimates are at their boundaries. For
estimation, warn should generally be left at its default value of TRUE. When
computing bootstrap confidence intervals, setting warn = FALSE turns off an-
noying warnings when an iteration does not converge. Regardless of warn, mes-
sages about convergence and boundary conditions are printed by print.dfunc,
print.abund, and plot.dfunc, so there should be little harm in setting warn = FALSE.

transectID A character vector naming the transect ID column(s) in detectionData and
siteData. Rdistance accommodates two kinds of transects: continuous and
point. When continuous transects are used, detections can occur at any point
along the route and these are generally called line-transects. When point tran-
sects are used, detections can only occur at a series of stops (points) along the
route and are generally called point-transects. Transects themselves are the ba-
sic sampling unit when pointSurvey=FALSE and are synonymous with sites in
this case. Transects may contain multiple sampling units (i.e., points) when
pointSurvey=TRUE. For line-transects, the transectID column(s) alone is
sufficient to specify unique sample sites. For point-transects, the amalgamation
of transectID and pointID specify unique sampling sites. See Input data
frames below.

pointID When point-transects are used, this is the ID of points on a transect. When
pointSurvey=TRUE, the amalgamation of transectID and pointID specify
unique sampling sites. See Input data frames.

If single points are surveyed, meaning surveyed points were not grouped into
transects, each ’transect’ consists of one point. In this case, set transectID
equal to the point’s ID and set pointID equal to 1 for all points.

length Character string specifying the (single) column in siteData that contains tran-
sect length. This is ignored if pointSurvey = TRUE.

control A list containing optimization control parameters such as the maximum number
of iterations, tolerance, the optimizer to use, etc. See the RdistanceControls
function for explanation of each value, the defaults, and the requirements for
this list. See examples below for how to change controls.

Value

An object of class *dfunc’. Objects of class ’dfunc’ are lists containing the following components:

parameters The vector of estimated parameter values. Length of this vector for built-in
likelihoods is one (for the function’s parameter) plus the number of expansion
terms plus one if the likelihood is either "hazrate’ or 'uniform’ (hazrate and
uniform have two parameters).

18

varcovar

loglik
convergence

like.form
w.lo

w.hi

dist
covars
expansions
series
call

call.x.scl
call.g.x.scl
call.observer
fit
factor.names
pointSurvey

formula

Input data frames

dfuncEstim

The variance-covariance matrix for coefficients of the distance function, esti-
mated by the inverse of the Hessian of the fit evaluated at the estimates. There is
no guarantee this matrix is positive-definite and should be viewed with caution.
Error estimates derived from bootstrapping are generally more reliable.

The maximized value of the log likelihood (more specifically, the minimized
value of the negative log likelihood).

The convergence code. This code is returned by optim. Values other than 0
indicate suspect convergence.

The name of the likelihood. This is the value of the argument 1ikelihood.
Left-truncation value used during the fit.

Right-truncation value used during the fit.

The input vector of observed distances.

A model.matrix containing the covariates used in the fit.

The number of expansion terms used during estimation.

The type of expansion used during estimation.

The original call of this function.

The distance at which the distance function is scaled. This is the x at which g(x)
=g.x.scl. Normally, call.x.scl =0.

The value of the distance function at distance call.x.scl. Normally, call.g.x.

=1

The value of input parameter observer.

The fitted object returned by optim. See documentation for optim.
The names of any factors in formula

The input value of pointSurvey. This is TRUE if distances are radial from a
point. FALSE if distances are perpendicular off-transect.

The formula specified for the detection function.

To save space and to easily specify sites without detections, all site ID’s, regardless of whether a
detection occurred there, and site level covariates are stored in the siteData data frame. Detection
distances and group sizes are measured at the defection level and are stored in the detectionData

data frame.

Data frame requirements: The following explains conditions under which various combina-
tions of the input data frames are required.

1. Detection data and site data both required:
Both detectionData and siteData are required if site level covariates are specified on the
right-hand side of formula. Detection level covariates are not currently allowed.

2. Detection data only required:
The detectionData data frame alone can be specified if no covariates are included in the dis-
tance function (i.e., right-hand side of formula is "~1"). Note that this routine (dfuncEstim)
does not need to know about sites where zero targets were detected, hence siteData can be
missing when no covariates are involved.

scl

dfuncEstim 19

3. Neither detection data nor site data required
Neither detectionData nor siteData are required if all variables specified in formula are
within the scope of this routine (e.g., in the global working environment). Scoping rules here
work the same as for other modeling routines in R such as 1m and glm. Like other modeling
routines, it is possible to mix and match the location of variables in the model. Some variables
can be in the . GlobalEnv while others are in either detectionData or siteData.

Relationship between data frames (transect and point ID’s): The input data frames, detectionData

and siteData, must be merge-able on unique sites. For line-transects, site ID’s specify transects

or routes and are unique values of the transectID column in siteData. In this case, the follow-

ing merge must work: merge(detectionData,siteData,by=transectID).

For point-transects, site ID’s specify individual points are unique values of the combination
paste(transectID,pointID). In this case, the following merge must work: merge (detectionData, siteData,by=c(tr:
By default,transectID and pointID are NULL and the merge is done on all common columns.

That is, when transectID is NULL, this routine assumes unique transects are specified by unique

combinations of the common variables (i.e., unique values of intersect (names(detectionData), names(siteData))).
An error occurs if there are no common column names between detectionData and siteData.

Duplicate site IDs are not allowed in siteData. If the same site is surveyed in multiple years,

specify another transect ID column (e.g., transectID = c("year”,"transectID")). Duplicate

site ID’s are allowed in detectionData.

To help envision the relationship between data frames, bear in mind that during bootstrap estima-

tion of variance in abundEstim, unique transects (i.e., unique values of the transect ID column(s)),

not detections or points, are resampled with replacement.

Likelihood functions

Given a specified sighting function (e.g., "halfnorm"), maximum likelihood is used to estimate the
parameter(s) of the function (e.g., standard error) that best fit the distance data.

When plotted (see Examples), histogram bins are plotted behind the detection function for visual-
ization; however, the function is fit to the actual data, not to the bins.

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>
Jason Carlisle, University of Wyoming and WEST Inc., <jcarlisle@west-inc.com>
Aidan McDonald, WEST Inc., <aidan@mcdcentral.org>

References

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

See Also

abundEstim, autoDistSamp. See likelihood-specific help files (e.g., halfnorm. like) for details on
each built-in likelihood. See package vignettes for information on custom, user-defined likelihoods.

20 dfuncSmu

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Fit half-normal detection function

dfunc <- dfuncEstim(formula=dist~1,
detectionData=sparrowDetectionData,
likelihood="halfnorm”, w.hi=100)

Fit a second half-normal detection function, now including

a categorical covariate for observer who surveyed the site (factor, 5 levels)

Increase maximum iterations

dfuncObs <- dfuncEstim(formula=dist~observer,
detectionData=sparrowDetectionData,
siteData=sparrowSiteData,
likelihood="halfnorm”, w.hi=100, pointSurvey=FALSE,
control=RdistanceControls(maxIter=1000))

Print results

And plot the detection function for each observer

dfuncObs

plot(dfuncObs,
newdata=data.frame(observer=levels(sparrowSiteData$observer)))

Show some plotting options

plot(dfuncObs,
newdata=data.frame(observer=levels(sparrowSiteData$observer)),
vertLines = FALSE, 1lty=c(1,1),
col.dfunc=heat.colors(length(levels(sparrowSiteData$observer))),
col=c("grey”,"lightgrey"”), border=NA,
xlab="Distance (m)",
main="Showing plot options")

dfuncSmu Estimate a non-parametric smooth detection function from distance-
sampling data

Description
Estimates a smooth detection function for line-transect perpendicular distances or point-transect
radial distances.

Usage

dfuncSmu(formula, detectionData, siteData, bw = "SJ-dpi”, adjust =1,

dfuncSmu

21

kernel = "gaussian”, pointSurvey = FALSE, w.lo = @, w.hi = NULL,
x.scl = "max", g.x.scl = 1, observer = "both”, warn = TRUE,
transectID = NULL, pointID = "point"”, length = "length")

Arguments

formula

detectionData

siteData

bw

A formula object (e.g., dist ~ 1). The left-hand side (before ~) is the name
of the vector containing distances (perpendicular or radial). The right-hand side
(after ~) must be the intercept-only model as Rdistance does not currently allow
covariates in smoothed distance functions. If names in formula do not appear
in detectionData, the normal scoping rules for model fitting routines (e.g., 1m
and glm) apply.

A data frame containing detection distances (either perpendicular for line-transect
or radial for point-transect designs), with one row per detected object or group.
This data frame must contain at least the following information:

* Detection Distances: A single column containing detection distances must
be specified on the left-hand side of formula.

« Site IDs: The ID of the transect or point (i.e., the ’site’) where each object
or group was detected. The site ID column(s) (see argument siteID) must
specify the site (transect or point) so that this data frame can be merged
with siteData.

Optionally, this data frame can contain the following variables:

* Group Sizes: The number of individuals in the group associated with each
detection. If unspecified, Rdistance assumes all detections are of single
individuals (i.e., all group sizes are 1).

* When Rdistance allows detection-level covariates in some version after
2.1.1, detection-level covariates will appear in this data frame.

See example data set sparrowDetectionData). See also Input data frames
below for information on when detectionData and siteData are required in-
puts.

A data.frame containing site (transect or point) IDs and any site level covariates
to include in the detection function. Every unique surveyed site (transect or
point) is represented on one row of this data set, whether or not targets were
sighted at the site. See arguments transectID and pointID for an explanation
of site and transect ID’s.

If sites are transects, this data frame must also contain transect length. By de-
fault, transect length is assumed to be in column ’length’ but can be specified
using argument length.

The total number of sites surveyed is nrow(siteData). Duplicate site-level IDs
are not allowed in siteData.

See Input data frames for when detectionData and siteData are required
inputs.

Bandwidth of the smooth, which controls smoothness. Smoothing is done by
stats::density, and bw is passed straight to it’s bw argument. bw can be nu-
meric, in which case it is the standard deviation of the Gaussian smoothing ker-
nel. Or, bw can be a character string specifying the bandwidth selection rule.
Valid character string values of bw are the following:

22

adjust

kernel

pointSurvey

w.lo

w.hi

x.scl

g.x.scl

observer

dfuncSmu

* "nrd0" : Silverman’s "rule-of-thumb’ equal to 157255, where s is the min-
imum of standard deviation of the distances and the interquartile range. See
bw.nrdo.

* "nrd" : The more common ‘rule-of-thumb’ variation given by Scott (1992).
This rule uses 1.06 in the denominator of the "nrd0" bandwidth. See bw.nrd

¢ "bcev" : The biased cross-validation method. See bcv.

e "ucv" : The unbiased cross-validation method. See ucv.

* "SJ" or "SJ-ste" : The ’solve-the-equation’ bandwidth of Sheather & Jones
(1991). See bw.SJ or width.SJ.

e "SJ-dpi" (default) : The ’direct-plug-in’ bandwidth of Sheather & Jones
(1991). See bw.SJ or width.SJ.

Bandwidth adjustment for the amount of smooth. Smoothing is done by density,
and this parameter is passed straight to it’s adjust argument. In stats: :density,
the bandwidth used is actually adjust*bw, and inclusion of this parameters
makes it easier to specify values like “half the default’ bandwidth.

Character string specifying the smoothing kernel function. This parameters is
passed unmodified to stats: :density. Valid values are:

 "gaussian" : Gaussian (normal) kernel, the default

* "rectangular" : Uniform or flat kernel

* "triangular" : Equilateral triangular kernel

* "epanechnikov" : the Epanechnikov kernel

* "biweight" : the biweight kernel

* "cosine" : the S version of the cosine kernel

* "optcosine" : the optimal cosine kernel which is the usual one reported in

the literature

Values of kernel may be abbreviated to the first letter of each string. The nu-
meric value of bw used in the smooth is stored in the $fit component of the
returned object (i.e., in returnedfitbw).

A logical scalar specifying whether input data come from point-transect surveys
(TRUE), or line-transect surveys (FALSE). Point surveys (TRUE) have not been
implemented yet.

Lower or left-truncation limit of the distances in distance data. This is the mini-
mum possible off-transect distance. Default is 0.

Upper or right-truncation limit of the distances in dist. This is the maximum
off-transect distance that could be observed. If left unspecified (i.e., at the de-
fault of NULL), right-truncation is set to the maximum of the observed dis-
tances.

This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

dfuncSmu 23

warn A logical scalar specifying whether to issue an R warning if the estimation did
not converge or if one or more parameter estimates are at their boundaries. For
estimation, warn should generally be left at its default value of TRUE. When
computing bootstrap confidence intervals, setting warn = FALSE turns off an-
noying warnings when an iteration does not converge. Regardless of warn, mes-
sages about convergence and boundary conditions are printed by print.dfunc,
print.abund, and plot.dfunc, so there should be little harm in setting warn = FALSE.

transectID A character vector naming the transect ID column(s) in detectionData and
siteData. Transects can be the basic sampling unit (when pointSurvey=FALSE)
or contain multiple sampling units (e.g., when pointSurvey=TRUE). For line-
transects, the transectID column(s) alone is sufficient to specify unique sample
sites. For point-transects, the amalgamation of transectID and pointID spec-
ify unique sampling sites. See Input data frames.

pointID When point-transects are used, this is the ID of points on a transect. When
pointSurvey=TRUE, the amalgamation of transectID and pointID specify
unique sampling sites. See Input data frames.

If single points are surveyed, meaning surveyed points were not grouped into
transects, each ’transect’ consists of one point. In this case, set transectID
equal to the point’s ID and set pointID equal to 1 for all points.

length Character string specifying the (single) column in siteData that contains tran-
sect length. This is ignored if pointSurvey = TRUE.
Details

Distances are reflected about w. 1o before being passed to density. Distances exactly equal tow. 1o
are not reflected. Reflection around w. 1o greatly improves performance of the kernel methods near
the w. 1o boundary where substantial non-zero probability of sighting typically exists.

Value

An object of class *dfunc’. Objects of class ’dfunc’ are lists containing the following components:

parameters A data frame containing the $x and $y components of the smooth. $x is a vector
of length 512 (default for density) evenly spaced points between w.lo and
w.hi.

loglik The value of the log likelihood. Specifically, the sum of the negative log heights

of the smooth at observed distances, after the smoothed function has been scaled
to integrate to one.

w.lo Left-truncation value used during the fit.

w.hi Right-truncation value used during the fit.

dist The input vector of observed distances.

covars NULL. Covariates are not allowed in the smoothed distance function (yet).
call The original call of this function.

call.x.scl The distance at which the distance function is scaled. This is the x at which g(x)

=g.x.scl. Normally, call.x.scl =0.

24 dfuncSmu

call.g.x.scl The value of the distance function at distance call.x.scl. Normally, call.g.x.scl
=1.

call.observer The value of input parameter observer.

fit The smoothed object returned by stats::density. All information returned
by stats::density is preserved, and in particular the numeric value of the
bandwidth used during the smooth is returned in fit$bw

pointSurvey The input value of pointSurvey. This is TRUE if distances are radial from a
point. FALSE if distances are perpendicular off-transect.

formula The formula specified for the detection function.

Input data frames

To save space and to easily specify sites without detections, all site ID’s, regardless whether a
detection occurred there, and site level covariates are stored in the siteData data frame. Detection
distances and group sizes are measured at the detection level and are stored in the detectionData
data frame.

Data frame requirements: The following explains conditions under which various combina-
tions of the input data frames are required.

1. Detection data and site data both required:
Both detectionData and siteData are required if sife level covariates are specified on the
right-hand side of formula. Detection level covariates are not currently allowed.

2. Detection data only required:
The detectionData data frame alone can be specified if no covariates are included in the dis-
tance function (i.e., right-hand side of formulais "~1"). Note that this routine (dfuncEstim)
does not need to know about sites where zero targets were detected, hence siteData can be
missing when no covariates are involved.

3. Neither detection data nor site data required
Neither detectionData nor siteData are required if all variables specified in formula are
within the scope of this routine (e.g., in the global working environment). Scoping rules here
work the same as for other modeling routines in R such as 1m and glm. Like other modeling
routines, it is possible to mix and match the location of variables in the model. Some variables
can be in the . GlobalEnv while others are in either detectionData or siteData.

Relationship between data frames (transect and point ID’s): The input data frames, detectionData

and siteData, must be merge-able on unique sites. For line-transects, site ID’s (i.e., transect ID’s)

are unique values of the transectID column in siteData. In this case, the following merge must

work: merge(detectionData,siteData,by=transectID). For point-transects, site ID’s (i.e.,

point ID’s) are unique values of the combination paste(transectID,pointID). In this case, the

following merge must work: merge(detectionData,siteData,by=c(transectID, pointID).

By default,transectID and pointID are NULL and the merge is done on all common columns.

That is, when transectID is NULL, this routine assumes unique transects are specified by unique

combinations of the common variables (i.e., unique values of intersect(names(detectionData), names(siteData))).

An error occurs if there are no common column names between detectionData and siteData.
Duplicate site IDs are not allowed in siteData. If the same site is surveyed in multiple years,
specify another transect ID column (e.g., transectID = c("year”,"transectID")). Duplicate
site ID’s are allowed in detectionData.

dfuncSmu 25

To help explain the relationship between data frames, bear in mind that during bootstrap estima-
tion of variance in abundEstim, unique transects (i.e., unique values of the transect ID column(s)),
not detections or points, are resampled with replacement.

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

References

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical Society series B, 53, 683-690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

See Also

abundEstim, autoDistSamp, dfuncEstim for the parametric version.

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Compare smoothed and half-normal detection function
dfuncSmu <- dfuncSmu(dist~1, sparrowDetectionData, w.hi=150)
dfuncHn <- dfuncEstim(formula=dist~1,sparrowDetectionData,w.hi=150)

Print and plot results
dfuncSmu

dfuncHn
plot(dfuncSmu,main="",6nbins=50)

x <- seq(@,150,length=200)

y <- dnorm(x, @, predict(dfuncHn)[11])

y <= y/y[1]

lines(x,y, col="orange"”, lwd=2)

legend("topright”, legend=c("Smooth"”,"Halfnorm"),
col=c("red"”,"orange"), lwd=2)

26 EDR

EDR Effective Detection Radius (EDR) for estimated detection functions
with point transects

Description

Computes Effective Detection Radius (EDR) for estimated detection functions with point transects.
The point-transect equivalent to Effective Strip Width (ESW).

Usage

EDR(obj, newdata)

Arguments
obj An estimated detection function object. An estimated detection function object
has class ’dfunc’, and is usually produced by a call to dfuncEstim. The esti-
mated detection function may optionally contain a g(0) component. If no g(0)
component is found, g(0) = 1 is assumed.
newdata A data frame containing new values of the covariates at which EDR’s are sought.
If NULL or missing and obj contains covariates, the covariates stored in obj are
used. See Value section.
Details

The point-transect equivalent to Effective Strip Width (ESW).

Value

If newdata is not missing and not NULL and covariates are present in obj, returned value is a
vector with length equal to the number of rows in newdata. If newdata is missing or NULL and
covariates are present in obj, returned value is a vector with length equal to the number of detections
in obj$dist. In either of the above cases, elements in the returned vector are the effective detection
radii for the corresponding set of covariates.

If obj does not contain covariates, newdata is ignored and a scalar equal to the (constant) effective
detection radius for all detections is returned.
Author(s)
Aidan McDonald, WEST Inc., <aidan@mcdcentral.org>
Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>
See Also

dfuncEstim, ESW, effectiveDistance

effectiveDistance 27

Examples

Load example thrasher data (point transect survey type)
data(thrasherDetectionData)

Fit half-normal detection function

dfunc <- dfuncEstim(formula=dist~1,
detectionData=thrasherDetectionData,
likelihood="halfnorm”, w.hi=175, pointSurvey=TRUE)

Compute effective detection radius (EDR)
EDR(dfunc)

EDR only applies to point transect surveys

ESW is the line transect equivalent

The effectiveDistance function tests whether the dfunc was

fit to line or point data, and returns either ESW or EDR accordingly
effectiveDistance(dfunc)

effectiveDistance Calculates the effective sampling distance for estimated detection
functions

Description

Computes Effective Strip Width (ESW) for line-transect detection functions, or the analogous Ef-
fective Detection Radius (EDR) for point-transect detection functions.

Usage

effectiveDistance(obj, newdata = NULL)

Arguments
obj An estimated detection function object. An estimated detection function object
has class ’dfunc’, and is usually produced by a call to dfuncEstim. The esti-
mated detection function may optionally contain a g(0) component. If no g(0)
component is found, g(0) = 1 is assumed.
newdata A data frame containing new values of the covariates at which ESW’s or EDR’s
are sought. If NULL or missing and obj contains covariates, the covariates
stored in obj are used. See Value section.
Details

Serves as a wrapper for ESW and EDR.

28 estimateN

Value

If newdata is not missing or NULL and covariates are present in obj, returned value is a vector with
length equal to the number of rows in newdata. If newdata is missing or NULL and covariates are
present in obj, returned value is a vector with length equal to the number of detections in obj$dist.
In either of the above cases, elements in the returned vector are the effective sampling distances for
the corresponding set of covariates.

If obj does not contain covariates, newdata is ignored and a scalar equal to the (constant) effective
sampling distance for all detections is returned.

See Also
dfuncEstim ESW EDR

estimateN Abundance point estimates

Description

Estimate abundance given a distance function, detection data, site data, and area. This is called
internally by abundEstim. Users should use abundEstim to estimate abundance.

Usage

estimateN(dfunc, detectionData, siteData, area = 1, bySite = FALSE)

Arguments

dfunc An estimate distance function (see dfuncEstim).

detectionData A data frame containing information on detections. The minimum amount of
information is the detection distances and transect or point ID where each de-
tection occurred. (see Input data frames in help for dfuncEstim).

siteData A data frame containing information on the transects or points surveyed (see
dfuncEstim).

area Total area of inference, study area size, or unit conversion. See abundEstim.

bySite A logical scalar indicating whether to compute site-level estimates of abun-

dance. The default (bySite=FALSE) returns only one overall abundance esti-
mate. See Value and Details.

Details

If x is the data frame returned when bySite = TRUE, the following is true:

1. For line transects, sum(x$abundance)*area/ (2*xwxsum(x$length)) is the estimate of abun-
dance on the study area or the abundance estimate when bySite = FALSE.

2. area*sum(x$density)/nrow(x) is the estimate of abundance on the study area or the abun-
dance estimate when bySite = FALSE.

estimateN

Value

29

If bySite is FALSE, a list containing the following components:

dfunc

abundance

area

esw

n.sites

tran.len

The input distance function.

Estimated abundance in the study area (if area > 1) or estimated density in the
study area (if area =1).

The number of detections (not individuals, unless all group sizes = 1) used in
the estimate of abundance.

Total area of inference. Study area size

Effective strip width for line-transects, effective radius for point-transects. Both
derived from dfunc

Total number of transects for line-transects, total number of points for point-
transects.

Total transect length. NULL for point-transects.

avg.group.size Average group size

If bySite is TRUE, a data frame containing site-level estimated abundance. The data frame is an
exact copy of siteData with the following columns tacked onto the end:

effDist

pDetection

observedCount

abundance

density

effArea

Author(s)

The effective sampling distance at the site. For line- transects, this is ESW at
the site. For points, this is EDR.

Average probability of detection at the site. If only site-level covariates appear in
the distance function, pDetection is constant within a site. When detection-level
covariates are present, pDetection is the average at the site.

The total number of individuals detected at a site.

Estimated abundance at the site. This is the sum of inflated group sizes at the
site. i.e., each group size at the site is divided by its pDetection, and then
summed.

Estimated density at the site. This is abundance at the site divided by the
sampled area at the site. E.g., for line transects, this is abundance divided by

2 x w * length. For points, this is abundance divided by pi * w?.

The effective area sampled at the site. This could be used as an offset in a
subsequent linear model. For line transects, this is 2 x ESW * length. For
points, this is pi * EDRZ?.

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>
Jason Carlisle, University of Wyoming and WEST Inc, <jcarlisle@west-inc.com>
Aidan McDonald, WEST Inc., <aidan@mcdcentral.org>

See Also

dfuncEstim, abundEstim

30 ESW

ESW Effective Strip Width for line transect data

Description

Computes effective strip width (ESW) for estimated detection functions from line transect data

Usage

ESW(obj, newdata)

Arguments
obj An estimated detection function object. An estimated detection function object
has class ’dfunc’, and is usually produced by a call to dfuncEstim. The esti-
mated detection function may optionally contain a g(0) component. If no g(0)
component is found, g(0) = 1 is assumed.
newdata A data frame containing new values of the covariates at which ESW’s are sought.
If NULL or missing and obj contains covariates, the covariates stored in obj are
used. See Value section.
Details

Effective strip width (ESW) of a distance function is its integral. That is, ESW is the area under the
distance function from its left-truncation limit (obj$w. 1o) to its right-truncation limit (obj$w.hi).

In mathematical notation,
w.hi

ESW = g(x)dz,
w.lo

where g(z) is the height of the distance function at distance x, and w.lo and w.hi are the lower and
upper truncation limits used during the survey.

Under perfect detection, area under the detection function is the entire half-width of the strip tran-
sect (from obj$w.lo to obj$w.hi). Under perfect detection, density is the number sighted targets
divided by area surveyed, where area surveyed is obj$w.hi-obj$w. 1o times total length of tran-
sects.

When detection is not perfect, less than the total half-width is effectively covered. Buckland et
al. (1993) show that the denominator of the density estimator in this case involves total length of
surveyed transects times area under the detection function (i.e., this integral). By analogy with the
perfect detection case, this integral can be viewed as the transect half-width that observers effectively
cover. In other words, a survey with imperfect detection and ESW equal to X effectively covers the
same area as a study with perfect detection out to a distance of X.

The trapezoid rule is used to numerically integrate under the distance function in obj from obj$w. 1o
to obj$w.hi. Two-hundred trapezoids are used in the approximation to speed calculations. In some
rare cases, two hundred trapezoids may not be enough. In these cases, the code for this function
can be sink-ed to a file, inspected in a text editor, modified to bump the number of trapezoids, and
source-d back in.

Edouble.obs.prob 31

Value

If newdata is not missing and not NULL and covariates are present in obj, returned value is a vector
with length equal to the number of rows in newdata. If newdata is missing or NULL and covariates
are present in obj, returned value is a vector with length equal to the number of detections in
obj$dist. In either of the above cases, elements in the returned vector are the effective strip widths
for the corresponding set of covariates.

If obj does not contain covariates, newdata is ignored and a scalar equal to the (constant) effective
strip width for all detections is returned.

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

References

Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L.. 1993. Distance Sampling: Esti-
mating Abundance of Biological Populations. Chapman and Hall, London.

See Also

dfuncEstim, EDR

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)

Fit half-normal detection function

dfunc <- dfuncEstim(formula=dist~1,
detectionData=sparrowDetectionData,
likelihood="halfnorm”, w.hi=100, pointSurvey=FALSE)

Compute effective strip width (ESW)
ESW(dfunc)

ESW only applies to line transect surveys

EDR is the point transect equivalent

The effectiveDistance function tests whether the dfunc was

fit to line or point data, and returns either ESW or EDR accordingly
effectiveDistance(dfunc)

F.double.obs.prob Compute double observer probability of detection (No external covari-
ates allowed)

Description

Estimates the probability of detection in a two-observer system when observations are independent.

32

Usage

Edouble.obs.prob

F.double.obs.prob(df, observer = "both")

Arguments

df

observer

Details

A data frame containing the components $obsby.1 and $obsby.2. These com-
ponents are either 0/1 (0 = missed, 1 = seen) or TRUE/FALSE (logical) vectors
indicating whether observer 1 (obsby. 1) or observer 2 (obsby.2) spotted the
target. There is no flexibility on naming these columns of df. They must be
named $obsby.1 and $obsby. 2.

A number of text string indicating the primary observer. Primary observers can
be observer 1, or observer 2, or "both". If, for example, observer 2 was a data
recorder and part-time observer, or if observer 2 was the pilot, set observer =
1. This dictates which set of observations form the denominator of the double
observer system. For example, if observer = 1, observations by observer 1
that were not seen by observer 2 are ignored. The estimate in this case uses
targets seen by both observers and those seen by observer 2 but not observer
1. If observer = "both", the denominator is computed twice, once assuming
observer 1 was the primary, once assuming observer 2 was the primary, and then
computes the probability of one or more observers sighting a target.

When observer = "both", the observers are assumed to be independent. In this case the estimate of

detection is

p=p1+p2—pip2

where p; is the proportion of targets seen by observer 2 that were also seen by observer 1, p is the
proportion of targets seen by observer 1 that were also seen by observer 2. This estimator is very
close to unbiased when observers are actually independent.

Value

A single scalar, the probability of detection estimate.

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

See Also

dfuncEstim, abundEstim

Examples

Fake observers
set.seed(538392)
obsrv <- data.frame(obsby.1=rbinom(100,1,.75), obsby.2=rbinom(100,1,.5))

F.double.obs.prob(obsrv, observer=1)

Fgx.estim 33

F.double.obs.prob(obsrv, observer=2)
F.double.obs.prob(obsrv, observer="both")

F.gx.estim Estimate g(0) or g(x)

Description

Estimate g(0) or g(x) for a specified distance function.

Usage

F.gx.estim(fit, x.scl = NULL, g.x.scl = NULL, observer = NULL)

Arguments
fit An estimated dfunc object. See dfuncEstim.
x.scl The x coordinate (a distance) at which to scale the distance function to g. x.scl.
See Details.
g.x.scl Height of the distance function at coordinate x. i.e., the distance function will
be scaled so that g(x.scl) = g.x.scl. See Details.
observer A numeric scalar or text string specifying whether observer 1 or observer 2 or
both were full-time observers. This parameter dictates which set of observations
form the denominator of a double observer system. If, for example, observer 2
was a data recorder and part-time observer, or if observer 2 was the pilot, set
observer = 1. If observer = 1, observations by observer 1 not seen by observer
2 are ignored. The estimate of detection in this case is the ratio of number of
targets seen by both observers to the number seen by both plus the number seen
by just observer 2. If observer = "both", the computation goes both directions.
Details

There are several estimation cases covered by the inputs x.scl and g.x.scl:

(1) g(0) = 1 (the default): Inputs are x.scl =0, g.x.scl = 1. Note that x.scl will be set to w. 1o,
which is not necessarily 0.

(2) User specified g(x.scl) = g.x.scl: Inputs are x. scl = a number greater than or equal to w. 1o,
g.x.scl = anumber between 0 and 1.

(3) Maximum g() specified: Inputs are x.scl="max", g.x.scl = a number between 0 and 1. In
this case, g() is scaled such that g(x.max) = g.x.scl, where x.max is the distance that maximizes
g. x.max is computed and returned.

(4) Maximum g() estimated by double observer system: Inputs are x.scl="max", g.x.scl =adata
frame. In this case, g(x.max) = h, where x.max is the distance that maximizes g and h is the height
of g() at x.max. h is computed from the double observer data frame (see below for structure of the
double observer data frame).

34 FEgx.estim

(5) Distance of independence specified, height computed from double observer system: Inputs are
x.scl = a number greater than or equal to w.1o g.x.scl = a data frame. In this case, g(x.scl) =
h, where h is computed from the double observer data frame (see below for structure of the double
observer data frame).

When x.scl, g.x.scl, orobserver are NULL, the routine will look for $call.x.scl,or $call.g.x.scl,
or $call.observer components of the fit object. This means the 3 parameters to be specified dur-

ing the original call to dfuncEstim. Later, different values can be specified in a call to F.gx.estim
without having to re-estimate the distance function. Because of this feature, the default values of
x.scl=0and g.x.scl =1 and observer = "both" are specified in the call to dfuncEstim.

Structure of the double observer data frame: When g.x.scl is a data frame, it is assumed to con-
tain the components $obsby.1 and $obsby.2 (no flexibility on names). These components are
TRUE/FALSE (logical) vectors indicating whether observer 1 (obsby. 1) or observer 2 (obsby. 2)
spotted the target.

Value

A list comprised of the following components:

x.scl The value of x (distance) at which g() is evaluated.
comp?2 The estimated value of g() when evaluated at x.scl.
Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

See Also

dfuncEstim

Examples

Not run:
NOTE, this example is out of date as of version 2.0.x
Non-double observer example
set.seed(555574)
X <- rnorm(1000) * 100
x <= x[@ <x &x <100]
un.dfunc <- dfuncEstim(x, likelihood="uniform”, w.hi = 100)
F.gx.estim(un.dfunc)
gam.dfunc <- dfuncEstim(x, likelihood="Gamma"”, w.hi = 100)
F.gx.estim(gam.dfunc)

Double observer example

dbl.obs <- data.frame(obsby.1=rbinom(50,1,0.8), obsby.2=rbinom(50,1,0.7))
F.gx.estim(un.dfunc, x.scl=0, g.x.scl=dbl.obs, observer="both")

a warning about x.scl < $w.lo is issued.

F.gx.estim(un.dfunc, x.scl="max", g.x.scl=dbl.obs, observer="both")
F.gx.estim(un.dfunc, x.scl="max", g.x.scl=dbl.obs, observer=1)

End(Not run)

FEmaximize.g 35

F.maximize.g Find the coordinate of the maximum of a distance function

Description

Find the x coordinate that maximizes g(x).

Usage

F.maximize.g(fit, covars = NULL)

Arguments
fit An estimated "dfunc’ object produced by dfuncEstim.
covars Covariate values to calculate maximum for.

Value

The value of x that maximizes g(x) in fit.

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

See Also

dfuncEstim

Examples

Not run:

Fake data
set.seed(22223333)

x <- rgamma(100, 10, 1)

fit <- dfuncEstim(x, likelihood="Gamma", x.scl="max")

F.maximize.g(fit) # should be near 10.
fit$x.scl # same thing

End(Not run)

36 FnLL

F.nLL Return the negative log likelihood for a set of distance values

Description

Return value of the negative log likelihood for a vector of observed distances given a specified
likelihood, number of expansion terms, and estimated parameters.

Usage

F.nLL(a, dist, covars = NULL, like, w.lo = @, w.hi = max(dist),
series, expansions = @, pointSurvey, for.optim = F)

Arguments

a A vector of parameter values for the likelihood. Length of this vector must be
expansions + 1 + 1x(like %in% c("hazrate”, "uniform™)).

dist A vector of observed distances. All values must be between w. 1o and w. hi (see
below).

covars Data frame containing values of covariates at each observation in dist.

like String specifying the form of the likelihood. Built-in distance functions at present
are "uniform", "halfnorm", "hazrate", "negexp", and "Gamma". To be valid, a
function named paste(like,".like") (e.g., "uniform.like") must exist some-
where in this routine’s scope. This routine finds the ".like" function and calls it
with the appropriate parameters. A user-defined likelihood can be implemented
by simply defining a function with the ".like" extension and giving the root name
here. For example, define a function named "myLike.like" in the .GlobalEnv

and set like="myLike" here. See the vignette on this topic.

w.lo Lower or left-truncation limit of the distances. This is the minimum possible
off-transect distance. Default is 0.

w.hi Upper or right-truncation limit of the distances. This is the maximum off-
transect distance that could be observed. Default is the maximum observed
distance.

series String specifying the type of expansion to use series if expansions > 0. Valid
values at present are “simple’, "hermite’, and ’cosine’.

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of O equates to no expansion
terms of any type.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

for.optim Boolean. If TRUE, values are multiplied by 10"9 to help optim converge more
consistently.

Value

A scalar, the negative of the log likelihood evaluated at parameters a, including expansion terms.

FEstart.limits 37

Author(s)
Trent McDonald, WEST, Inc. <tmcdonald@west-inc.com>
Aidan McDonald, WEST, Inc. <aidan@mcdcentral.org>
See Also

See uniform.like and links there; dfuncEstim

F.start.limits Set starting values and limits for parameters of Rdistance functions

Description

Return reasonable starting values and limits (boundaries) for the parameters of distance functions.
Starting values and limits are specified for all likelihoods and expansion terms. This function is
called by other routines in Rdistance, and is not intended to be called by the user.

Usage

F.start.limits(like, expan, w.lo, w.hi, dist, covars = NULL,
pointSurvey = FALSE)

Arguments

like String specifying the likelihood for the distance function. Possible values are
"hazrate" for hazard rate likelihood, "halfnorm" for the half normal likelihood,
"uniform" for the uniform likelihood, "negexp" for the negative exponential like-
lihood, and "Gamma" for the gamma likelihood.

expan Number of expansion terms to include. Valid values are O, 1, ..., 3.

w.lo Lower or left-truncation limit of the distances. Normally, 0.

w.hi Upper or right-truncation limit of the distances. This is the maximum off-
transect distance that could be observed.

dist The vector of observed off-transect distances being analyzed. This vector is only
required for 1ike = "Gamma" and "halfnorm".

covars Matrix of covariate values.

pointSurvey Boolean. TRUE if point transect data, FALSE if line transect data.

Details

The number of parameters to be fitted is expan + 1 + 1x(like %in% c("hazrate”, "uniform")).
This is the length of all vectors returned in the output list.

38

Value

A list containing the following components

start

lowlimit

uplimit

names

Author(s)

Gamma.like

Vector of reasonable starting values for parameters of the likelihood and expan-

sion terms.

Vector of lower limits for the likelihood parameters and expansion terms.

Vector of upper limits for the likelihood parameters and expansion terms.

Vector of names for the likelihood parameters and expansion terms.

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>
Aidan McDonald, WEST Inc., <aidan@mcdcentral.org>

See Also

dfuncEstim

Examples

F.start.limits("uniform”, @, @, 1000)

F.start.limits("uniform”, 1, @, 1000)
F.start.limits("uniform”, 2, @, 1000)
F.start.limits("uniform”, 3, @, 1000)
F.start.limits("halfnorm”, @, @, 1000, 500*runif(100))
F.start.limits("halfnorm”, 1, @, 1000, 500*runif(100))
F.start.limits("halfnorm”, 2, @, 1000, 500*runif(100))
F.start.limits("halfnorm”, 3, @, 1000, 500*runif(100))
F.start.limits("hazrate”, 0, @, 1000)
F.start.limits("hazrate”, 1, 0, 1000)
F.start.limits("hazrate”, 2, 0, 1000)
F.start.limits("hazrate”, 3, @, 1000)
F.start.limits("negexp”, @, 0, 1000)
F.start.limits("negexp”, 1, @, 1000)
F.start.limits("negexp”, 2, @, 1000)
F.start.limits("negexp”, 3, @, 1000)
F.start.limits("Gamma”, @, @, 1000, 1000*runif(100))
Gamma.like Gamma distance function for distance analyses
Description

Computes the gamma likelihood, scaled appropriately, for use as a likelihood in estimating a dis-
tance function.

Gamma.like

Usage

39

Gamma.like(a, dist, covars = NULL, w.lo = @, w.hi = max(dist),

series =

"cosine"”, expansions = @, scale = TRUE,

pointSurvey = FALSE)

Arguments

a

dist
covars

w.lo

w.hi

series

expansions

scale

pointSurvey

Details

A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions =),
the distance likelihoods contain one or two canonical parameters (see Details).
If one or more expansions are called for, coefficients for the expansion terms
follow coefficients for the canonical parameters. If p is the number of canonical
parameters, coefficients for the expansion terms are a[(p+1) :length(a)].

A numeric vector containing the observed distances.
Data frame containing values of covariates at each observation in dist.

Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

A string specifying the type of expansion to use. Currently, valid values are
’simple’, "hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

A scalar specifying the number of terms in series. Depending on the series,
this could be O through 5. The default of 0 equates to no expansion terms of any
type.

Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration. constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

Boolean. TRUE if dist is point transect data, FALSE if line transect data.

This function utilizes the built-in R function dgamma to evaluate the gamma density function. Using
the parameterization of dgamma, the gamma shape parameter is a[1] while the gamma scale param-
eteris (a[2]1/gamma(r)) * (((r - 1)/exp(1))*(r - 1)). Currently, this function implements
a non-covariate version of the gamma detection function used by Becker and Quang (2009). In
future, linear equations will relate covariate values to values of the gamma parameters. This future
implementation will fully replicate the distance functions of Becker and Quang (2009).

40 Gamma.like

Value

A numeric vector the same length and order as dist containing the likelihood contribution for
distances in dist. Assuming L=gamma.like(c(r,lam),dist), the full log likelihood of all the
data is -sum(log(L), na.rm=T). Note that the returned likelihood value for distances less than
w. lo or greater than w.hi is NA, and thus it is prudent to use na.rm=TRUE in the sum. If scale =
TRUE, the integral of the likelihood from w. 1o to w.hi is 1.0. If scale = FALSE, the integral of
the likelihood is an arbitrary constant.

Author(s)

Trent McDonald, WEST, Inc. <tmcdonald@west-inc.com> Aidan McDonald, WEST, Inc. <aidan@mcdcentral.org>

References

Becker, E. F.,, and P. X. Quang, 2009. A Gamma-Shaped Detection Function for Line-Transect
Surveys with Mark-Recapture and Covariate Data. Journal of Agricultural, Biological, and Envi-
ronmental Statistics 14(2):207-223.

See Also

dfuncEstim, halfnorm.like, hazrate.like, uniform.like, negexp.like

Examples

Not run:
set.seed(238642)
x <- seq(@, 100, length=100)

Plots showing effects of changes in shape
plot(x, Gamma.like(c(20,20), x), type="1", col="red")
plot(x, Gamma.like(c(40,20), x), type="1", col="blue")

Plots showing effects of changes in scale
plot(x, Gamma.like(c(20,20), x), type="1", col="red")
plot(x, Gamma.like(c(20,40), x), type="1", col="blue")

Estimate 'Gamma' distance function

r <-5

lam <- 10

b <- (1/gamma(r)) * (((r - 1)/exp(1))"(r - 1))

x <- rgamma(1000, shape=r, scale=bxlam)

dfunc <- dfuncEstim(x~1, likelihood="Gamma", x.scl="max")
plot(dfunc)

End(Not run)

getDfuncModelFrame 41

getDfuncModelFrame Return model frame for dfunc

Description
Returns the model frame from a formula and data set. This routine is intended to only be called
from within other Rdistance functions.

Usage

getDfuncModelFrame(formula, data)

Arguments

formula A dfunc formula object. See dfuncEstim.

data The data frame from which variables in formula (potentially) come.
Details

This routine is needed to get the scoping correct in dfuncEstim. In dfuncEstim, we first merge the
detection and site data frames, then call this routine.

Value

a model frame containing the response and covariates resulting from evaluating formula in data.

Author(s)

Trent McDonald, WEST, Inc. <tmcdonald@west-inc.com>

halfnorm.like Half-normal likelihood function for distance analyses

Description
This function computes the likelihood contributions for sighting distances, scaled appropriately, for
use as a distance likelihood.

Usage

@, w.hi = max(dist),
TRUE,

halfnorm.like(a, dist, covars = NULL, w.lo
series = "cosine”, expansions = @, scale
pointSurvey = FALSE)

42

Arguments

a

dist
covars

w.lo

w.hi

series

expansions

scale

pointSurvey

Details

halfnorm.like

A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions =),
the distance likelihoods contain one or two canonical parameters (see Details).
If one or more expansions are called for, coefficients for the expansion terms fol-
low coefficients for the canonical parameters. i.e., if p is the number of canonical
parameters, coefficients for the expansion terms are a[(p+1) :1length(a)].

A numeric vector containing the observed distances.
Data frame containing values of covariates at each observation in dist.

Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

A string specifying the type of expansion to use. Currently, valid values are
’simple’, "hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

A scalar specifying the number of terms in series. Depending on the series,
this could be O through 5. The default of 0 equates to no expansion terms of any

type.

Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration. constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

Boolean. TRUE if distances in dist are radial from point transects, FALSE if
distances are perpendicular off-transect distances.

The half-normal likelihood is

F(ala) = exp(—a?/(2 a?))

where a is the parameter to be estimated. Some half-normal distance functions in the literature do
not use a "2" in the denominator of the exponent. Rdistance uses a "2" in the denominator of
the exponent to make quantiles of this function agree with the standard normal which means a can
be interpreted as a normal standard error. e.g., approximately 95% of all observations will occur

between 0 and 2a.

Expansion Terms: If expansions =k (k > 0), the expansion function specified by series is called
(see for example cosine.expansion). Assuming h;;(x) is the 4t expansion term for the it"

halfnorm.like 43

distance and that cy, ca, . . ., crare (estimated) coefficients for the expansion terms, the likelihood
contribution for the i‘" distance is,

k

f(zla,b,e1,¢0,. .., c8) = f(x]a,b)(1 + Z cihij(z)).

Jj=1

f(xlab,c_1,c_2,....c_k) = f(xla,b)(1 + c(1) h_il(x) + ¢(2) h_i2(x) + ... + c(k) h_ik(x)).

Value

A numeric vector the same length and order as dist containing the likelihood contribution for
corresponding distances in dist. Assuming L is the returned vector from one of these functions, the
negative log likelihood of all the data is -~sum(log(L), na.rm=T). Note that the returned likelihood
value for distances less than w. 1o or greater than w. hi is NA, hence na. rm=TRUE in the sum. If scale
= TRUE, the integral of the likelihood from w.1o to w.hi is 1.0. If scale = FALSE, the integral of
the likelihood is something else.

Author(s)
Trent McDonald, WEST, Inc. <tmcdonald@west-inc.com> Aidan McDonald, WEST, Inc. <aidan@mcdcentral.org>

See Also

dfuncEstim, hazrate.like, uniform.like, negexp.like, Gamma.like

Examples

Not run:
set.seed(238642)
x <- seq(@, 100, length=100)

Plots showing effects of changes in parameter Sigma
plot(x, halfnorm.like(20, x), type="1", col="red")
plot(x, halfnorm.like(40, x), type="1", col="blue")

Estimate 'halfnorm' distance function

a<-5

X <- rnorm(1000, mean=0, sd=a)

x <= x[x >= @]

dfunc <- dfuncEstim(x~1, likelihood="halfnorm")
plot(dfunc)

evaluate the log Likelihood

L <- halfnorm.like(dfunc$parameters, dfunc$dist, covars=dfunc$covars,
w.lo=dfunc$w.lo, w.hi=dfunc$w.hi,
series=dfunc$series, expansions=dfunc$expansions,
scale=TRUE)

-sum(log(L), na.rm=TRUE) # the negative log likelihood

End(Not run)

44 hazrate.like

hazrate.like Hazard rate likelihood function for distance analyses

Description

This function computes likelihood contributions for off-transect sighting distances, scaled appro-
priately, for use as a distance likelihood.

Usage

hazrate.like(a, dist, covars = NULL, w.lo = @, w.hi = max(dist),
series = "cosine"”, expansions = 0, scale = TRUE,
pointSurvey = FALSE)

Arguments

a A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions = 0),
the distance likelihoods contain one or two canonical parameters (see Details).
If one or more expansions are called for, coefficients for the expansion terms
follow coefficients for the canonical parameters. If p is the number of canonical
parameters, coefficients for the expansion terms are a[(p+1) : length(a)].

dist A numeric vector containing the observed distances.
covars Data frame containing values of covariates at each observation in dist.

w.lo Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

w.hi Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

series A string specifying the type of expansion to use. Currently, valid values are
’simple’, "hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be O through 5. The default of 0 equates to no expansion terms of any
type.

scale Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration. constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

hazrate.like 45

Details

The hazard rate likelihood is

f(zla,b) =1 — exp(—(x/o) ")

where o is a variance parameter, and [is a slope parameter to be estimated.

Expansion Terms: If expansions =k (k > 0), the expansion function specified by series is called
(see for example cosine.expansion). Assuming h;;(z) is the jt" expansion term for the ‘"
distance and that ci, co, . . ., ¢ are (estimated) coefficients for the expansion terms, the likelihood

contribution for the 7t distance is,
k
f(:v|a, ba C1,C2y ..., Ck) = f(a:\a, b)(l + chhm(x))
j=1

Value

A numeric vector the same length and order as dist containing the likelihood contribution for corre-
sponding distances in dist. Assuming L is the returned vector from one of these functions, the full
log likelihood of all the data is -~sum(log(L), na.rm=T). Note that the returned likelihood value
for distances less than w.1lo or greater than w.hi is NA, and thus it is prudent to use na.rm=TRUE
in the sum. If scale = TRUE, the integral of the likelihood from w.1lo to w.hi is 1.0. If scale =
FALSE, the integral of the likelihood is arbitrary.

Author(s)
Trent McDonald, WEST, Inc. <tmcdonald@west-inc.com>
Aidan McDonald, WEST, Inc. <aidan@mcdcentral.org>

See Also

dfuncEstim, halfnorm.like, uniform.like, negexp.like, Gamma.like

Examples

Not run:
x <- seq(@, 100, length=100)

Plots showing effects of changes in sigma
plot(x, hazrate.like(c(20, 5), x), type="1", col="red")
plot(x, hazrate.like(c(40, 5), x), type="1", col="blue")

Plots showing effects of changes in beta
plot(x, hazrate.like(c(50, 20), x), type="1", col="red")
plot(x, hazrate.like(c(50@, 2), x), type="1", col="blue")

End(Not run)

46 hermite.expansion

hermite.expansion Calculation of Hermite expansion for detection function likelihoods

Description
Computes the Hermite expansion terms used in the likelihood of a distance analysis. More gener-
ally, will compute a Hermite expansion of any numeric vector.

Usage

hermite.expansion(x, expansions)

Arguments
X In a distance analysis, x is a numeric vector containing the proportion of a strip
transect’s half-width at which a group of individuals was sighted. If w is the
strip transect half-width or maximum sighting distance, and d is the perpendic-
ular off-transect distance to a sighted group (d < w), x is usually d/w. More
generally, x is a vector of numeric values.
expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, or 4.
Details

There are, in general, several expansions that can be called Hermite. The Hermite expansion used
here is:

¢ First term:
hi(z) = 2* — 622 + 3,

¢ Second term:
ho(x) = 2® — 152% 4 4522 — 15,

¢ Third term:
hz(x) = 2® — 282° 4 2102* — 42022 + 105,

¢ Fourth term:

ha(z) = 2'0 — 452% 4 6302° — 31502 + 472522 — 945,

The maximum number of expansion terms computed is 4.

Value

A matrix of size length(x) X expansions. The columns of this matrix are the Hermite polynomial
expansions of x. Column 1 is the first expansion term of x, column 2 is the second expansion term
of x, and so on up to expansions.

integration.constant 47

Author(s)

Trent McDonald, WEST Inc. <tmcdonald@west-inc.com> Aidan McDonald, WEST Inc. <aidan@mcdcentral.org>

See Also

dfuncEstim, cosine.expansion, simple.expansion, and the discussion of user defined likeli-
hoods in dfuncEstim.

Examples

set.seed(83828233)
X <= rnorm(1000) * 100
X <- x[0 < x & x < 100]
herm.expn <- hermite.expansion(x, 3)

integration.constant Compute the integration constant for distance density functions

Description

Using numerical integration, this function computes the area under a distance function between two
limits (w.1lo and w. hi).

Usage

integration.constant(dist, density, a, covars, w.lo, w.hi, series,
expansions, pointSurvey)

Arguments

dist Vector of detection distance values.

density A likelihood function for which the integration constant is sought. This func-

tion must be capable of evaluating values between w. 1o and w. hi and have the
following parameters:

e ‘a’ = Parameter vector.

* ‘dist’ = Vector of distances.

* ‘covars’ =If the density allows covariates, the covariate matrix.

* ‘w.lo’ = Lower limit or left truncation value.

e ‘w.hi’ = Upper limit or right truncation value.

* ‘series’ = Form of the series expansions, if any.

* ‘expansions’ = Number of expansion terms.

* ‘scale’ = Whether to scale function to integrate to 1.

a Vector of parameters to pass to density.

covars Matrix of covariate values.

48 integration.constant

w.lo The lower limit of integration, or the left truncation value for perpendicular dis-
tances.

w.hi The upper limit of integration, or the right truncation value for perpendicular
distances.

series The series to use for expansions. If expansions > 0, this string specifies the

type of expansion. Valid values at present are “simple’, "hermite’, and ’cosine’.
expansions Number of expansions in density.

pointSurvey Boolean. TRUE if point transect data, FALSE if line transect data.

Details

The trapezoid rule is used to numerically integrate density from w. 1o to w. hi. Two-hundred (200)
equal-sized trapezoids are used in the integration. The number of trapezoids to use is fixed and
cannot be changed without re-writing this routine.

Value

A scalar (or vector of scalars if covariates are present) that is the area under density between w. 1o
and w. hi. This scalar can be used as a divisor to scale density such that it integrates to 1.0. If x =
density(...), then x / integration.constant(density, ...) will integrate to 1.0.

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com> Aidan McDonald, WEST Inc., <aidan@mcdcentral.org>
Michael Kleinsasser, WEST Inc., <mkleinsa@uwyo.edu>

See Also

dfuncEstim, halfnorm.like

Examples

Can put any number for first argument (1 used here)

scl <- integration.constant(dist=1, density=uniform.like, covars = NULL,
pointSurvey = FALSE, w.lo=0, w.hi = 100,
expansions = 0, a=c(75,25))

print(scl) # Should be 75.1

x <- seq(0,100,length=200)

y <- uniform.like(¢(75,25), x, scale=FALSE) / scl

int.y <= (x[2]-x[1]) * sum(y[-length(y)1+y[-1]1) / 2 # the trapezoid rule, should be 1.0
print(int.y) # Should be 1

likeParamNames 49

likeParamNames Likelihood parameter names

Description

Returns names of the likelihood parameters. This is a helper function and is not necessary for
estimation. It is a nice to label some outputs in Rdistance with parameter names like "sigma" or
"knee", depending on the likelihood, and this routine provides a way to do that.

Usage

likeParamNames(like.form)

Arguments

like.form A text string naming the form of the likelihood.

Details

For user defined functions, ensure that the user defined start-limits function named <likelihood>.start.limits
can be evaluated on a distance of 1, can accept 0 expansions, a low limit of O a high limit of 1, and
that it returns the parameter names as the $names component of the result. That is, the code that re-
turns user-defined parameter names is, fn <- match. fun(paste@(like.form, ".start.limits"));
ans <- fn(1, @, @, 1); ans$names

Value

A vector of parameter names for that likelihood

Author(s)
Trent McDonald

negexp.like Negative exponential distance function for distance analyses

Description

Computes likelihood contributions for off-transect sighting distances, scaled appropriately, for use
as a distance likelihood.

Usage

negexp.like(a, dist, covars = NULL, w.lo = @, w.hi = max(dist),
series = "cosine”, expansions = @, scale = TRUE,
pointSurvey = FALSE)

50

Arguments

a

dist
covars

w.lo

w.hi

series

expansions

scale

pointSurvey

Details

negexp.like

A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions = 0),
the distance likelihoods contains only one canonical parameter, which is the first
element of a (see Details). If one or more expansions are called for, coefficients
for the expansion terms follow coefficients for the canonical parameter. Coeffi-
cients for the expansion terms, if present, are a[2:length(a)].

A numeric vector containing the observed distances.
Data frame containing values of covariates at each observation in dist.

Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

A string specifying the type of expansion to use. Currently, valid values are
’simple’, "hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

A scalar specifying the number of terms in series. Depending on the series,
this could be O through 5. The default of 0 equates to no expansion terms of any
type.

Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration. constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

Boolean. TRUE if dist is point transect data, FALSE if line transect data.

The negative exponential likelihood is

f(ala) = exp(—az)

where a is a slope parameter to be estimated. Expansion Terms: If expansions =k (k > 0),
the expansion function specified by series is called (see for example cosine.expansion). As-
suming h;;(z) is the jth expansion term for the i*" distance and that ¢1, co, . . . , cpare (estimated)
coefficients for the expansion terms, the likelihood contribution for the it distance is,

k
f(zla,b,e1,e0,. .., c1) = f(z|a,b)(1 + chhij(x)).
=1

f(xla,b,c_l,c_2,....,c_k) = f(xla,b)(1 + c(1) h_il(x) + ¢(2) h_i2(x) + ... + c(k) h_ik(x)).

perpDists 51

Value

A numeric vector the same length and order as dist containing the likelihood contribution for corre-
sponding distances in dist. Assuming L is the returned vector from one of these functions, the full
log likelihood of all the data is -sum(log(L), na.rm=T). Note that the returned likelihood value
for distances less than w.1lo or greater than w.hi is NA, and thus it is prudent to use na.rm=TRUE
in the sum. If scale = TRUE, the integral of the likelihood from w.1lo to w.hi is 1.0. If scale =
FALSE, the integral of the likelihood is arbitrary.

Author(s)

Trent McDonald, WEST Inc. <tmcdonald@west-inc.com> Aidan McDonald, WEST Inc. <aidan@mcdcentral .org>

See Also

dfuncEstim, halfnorm.like, uniform.like, hazrate.like, Gamma.like

Examples

Not run:
set.seed(238642)
x <- seq(@, 100, length=100)

Plots showing effects of changes in parameter Beta
plot(x, negexp.like(@.01, x), type="1", col="red")
plot(x, negexp.like(@.05, x), type="1", col="blue")

Estimate 'negexp' distance function

Beta <- 0.01

x <- rexp(1000, rate=Beta)

dfunc <- dfuncEstim(x~1, likelihood="negexp")
plot(dfunc)

End(Not run)

perpDists Compute off-transect distances from sighting distances and angles

Description
Computes off-transect (also called ’perpendicular’) distances from measures of sighting distance
and sighting angle.

Usage

perpDists(sightDist, sightAngle, data)

52 plot.dfunc
Arguments
sightDist Character, name of column in data that contains the observed or sighting dis-
tances from the observer to the detected objects.
sightAngle Character, name of column in data that contains the observed or sighting an-
gles from the line transect to the detected objects. Angles must be measured in
degrees.
data data.frame object containing sighting distance and sighting angle.
Details

If observers recorded sighting distance and sighting angle (as is often common in line transect sur-
veys), use this function to convert to off-transect distances, the required input data for F. dfunc.estim.

Value

A vector of off-transect (or perpendicular) distances. Units are the same as sightDist.

Author(s)

Jason Carlisle, University of Wyoming and WEST Inc., <jcarlisle@west-inc.com>

References

Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L.. 1993. Distance Sampling: Esti-
mating Abundance of Biological Populations. Chapman and Hall, London.

See Also

dfuncEstim

Examples

Load the example dataset of sparrow detections from package

data(sparrowDetectionData)

Compute perpendicular, off-transect distances from the observer's sight distance and angle

sparrowDetectionData$perpDist <- perpDists(sightDist="sightdist"”, sightAngle="sightangle"”,
data=sparrowDetectionData)

plot.dfunc Plot a distance (detection) function

Description

Plot method for an estimated distance function. Estimated distance functions are of class ’dfunc’

plot.dfunc 53

Usage

S3 method for class 'dfunc'’

plot(x, include.zero = FALSE, nbins = "Sturges”,
newdata = NULL, legend = TRUE, vertLines = TRUE, plotBars = TRUE,
density = NULL, xlab = "Distance”, ylab = if (x$pointSurvey)

"Observation density” else "Probability of detection”, border = "blue",
col = @, col.dfunc = "red"”, 1lty.dfunc = 1, lwd.dfunc = 2, ...)
Arguments
X An estimated distance function resulting from a call to dfuncEstim.

include.zero Boolean value specifying whether to include O in the plot. A value of TRUE will
include O on the left hand end of the x-axis regardless of the range of distances.
A value of FALSE will plot only the range on input distanced.

nbins Internally, this function uses hist to compute histogram bars for the plot. This
argument is the breaks argument to hist. This can be either a vector giving
the breakpoints between bars, a single number giving the suggested number of
bars, a string naming an algorithm to compute the number of bars, or a function
to compute the number of bars. See help(hist) for all options.

newdata Matrix containing values of covariates to plot. Each row is a set of covariate
values (i.e. each column contains all values of each covariate)

legend Logical scalar for whether to include legend. If TRUE, a legend will be included
on plot detailing covariate values plotted.

vertLines Logical scalar specifying whether to plot vertical lines at w. 1o and w. hi from 0
to the distance function.

plotBars Logical scalar for whether to plot the histogram of distances behind the distance
function. If FALSE, no histogram is plotted, only the distance function line(s).

density If plotBars=TRUE, a vector giving the density of shading lines, in lines per
inch, for the bars underneath the distance function. Values of NULL or a num-
ber strictly less than 0 mean solid fill using colors from parameter col. If
density =@ , bars are not filled with any color or lines.

xlab Label for the x-axis
ylab Label for the y-axis
border The color of bar borders when bars are plotted. A value of NA means no borders.

If there are shading lines (i.e., density>@), border = TRUE uses the same color
for the border as for the shading lines.

col A vector of bar fill colors or line colors when bars are drawn and density != 0,
replicated to the correct length. A value of 0 is the background color.

col.dfunc Color of the distance function(s), replicated to the required length. If covariates
or newdata is present and length(col.dfunc)==1, col.dfunc is expanded to
to number of plotted distance functions by setting it equal to graphics: :rainbow(n),
where n is the number of plotted distance functions. If you want to plot all dis-
tance functions in the same color, set col.dfunc to a constant vector having
length at least 2 (e.g., col.dfunc = c(1,1)) will plot all curves in black).

54 plot.dfunc

1ty.dfunc Line type of the distance function(s), replicated to the required length. If co-
variates or newdata is present and length(lty.dfunc)==1, 1ty.dfunc is ex-
panded to to number of plotted distance functions by setting it equal to 1ty.dfunc + @: (n-1),
where n is the number of plotted distance functions. If you want to plot all dis-
tance functions using the same line type, set 1ty.dfunc to a constant vector
having length at least 2 (e.g., 1ty.dfunc = c(1,1)) will plot all solid lines).

lwd.dfunc Line width of the distance function(s), replicated to the required length.

When bars are plotted, this routine uses graphics: :barplot for setting up the
plotting region and plotting bars. When bars are not plotted, this routine sets
up the plot with graphics: :plot. ...can be any other argument to barplot or
plot EXCEPT width, ylim, x1im, and space.

Details

If plotBars is TRUE, a scaled histogram is plotted and the estimated distance function is plotted
over the top of it. When bars are plotted, this routine uses graphics: :barplot for setting up the
initial plotting region and most parameters to graphics: :barplot can be specified (exceptions
noted above in description of ... ”).The form of the likelihood and any series expansions is printed
in the main title (overwrite this with main="<my title>"). Convergence of the distance function
is checked. If the distance function did not converge, a warning is printed over the top of the
histogram. If one or more parameter estimates are at their limits (likely indicating non-convergence
or poor fit), another warning is printed.

Value

The input distance function is returned, with two additional components related to the plot that may
be needed if additional lines or text is to added to the plot by the user. These additional components
are:

xscl.plot Scaling factor for horizontal coordinates. Due to the way barplot works, the
x-axis has been scaled. The internal coordinates of the bars are 1, 2, ..., nbars.
To plot something at a distance coordinate of x, x must be divided by this value.
For example, to draw a vertical line at a value of 10 on the x-axis, the correct
call is abline(v=10/0bj$xscl.plot).

yscl Scaling factor for vertical coordinates. The histogram and distance function
plotted by this routine are scaled so that height of the distance function at w. 1o
is g@. Usually, this means the distance curve is scaled so that the y-intercept is
1, or that g(0) = 1. To add a plot feature at a real coordinate of y, y must be
divided by this returned parameters. For example, to draw a horizontal line at
y-axis coordinate of 1.0, issue abline(h=1/0bj$yscl).

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>
Aidan McDonald, WEST Inc., <aidan@mcdcentral.org>

See Also

dfuncEstim, print.dfunc, print.abund

predict.dfunc 55

Examples

set.seed(87654)

X <= rnorm(1000, mean=0, sd=20)

x <= x[x >= 0]

dfunc <- dfuncEstim(x~1, likelihood="halfnorm™)
plot(dfunc)

plot(dfunc, nbins=25)

showing effects of plot params

plot(dfunc, col=c("red”,"blue”,"orange"),
border="black"”, xlab="Dist (m)", ylab="Prob",
vertLines = FALSE, main="Showing plot params")

plot(dfunc, col="wheat”, density=30, angle=c(-45,0,45),
cex.axis=1.5, cex.lab=2, ylab="Probability")

non

plot(dfunc, col=c("grey"”,"lightgrey"), border=NA)

plot(dfunc, col="grey"”, border=0, col.dfunc="blue",
lty.dfunc = 2, lwd.dfunc=4, vertLines=FALSE)

plot(dfunc, plotBars=FALSE, cex.axis=1.5, col.axis="blue")
rug(dfunc$dist)

predict.dfunc Predict method for dfunc objects

Description

Predict likelihood parameters or inflation factors for distance function objects

Usage
S3 method for class 'dfunc'
predict(object, newdata, type = c("parameters”"), ...)
Arguments
object An estimated dfunc object. See dfuncEstim.
newdata A data frame containing new values of the covariates at which predictions are to

be computed.

type The type of predictions desired. Currently, only type = "parameters” is imple-
mented and returns parameters of the likelihood function.

Included for compatibility with generic predict methods.

56 print.abund

Value

A matrix of predicted parameter for the distance function estimated in dfunc. Extent of the first
dimension (rows) in the returned matrix is equal to either the number of detection distances in
detectionData or number of rows in newdata. The returned matrix’s second dimension (columns)
is the number of canonical parameters in the likelihood plus the number of expansion terms. Without
expansion terms, the number of columns in the returned matrix is either 1 or 2 depending on the
likelihood (e.g., halfnorm has one parameter, hazrate has two).

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

print.abund Print abundance estimates

Description

Print an object of class c("abund”, "dfunc") that is output by abundEstim.

Usage
S3 method for class 'abund'
print(x, criterion = "AICc", ...)
Arguments
X An object output by abundEstim. This is a distance function object that also
contains abundance estimates, and has class c("abund”, "dfunc”).
criterion A string specifying the criterion to print. Must be one of "AICc" (the default),

"AIC", or "BIC". See AIC.dfunc for formulas.
Included for compatibility to other print methods. Ignored here.

Details

The default print method for class ’dfunc’ is called, then the abundance estimates contained in obj
are printed.

Value

No value is returned.

Author(s)

Trent McDonald, WEST Inc., <tmcdonald@west-inc.com>

See Also

dfuncEstim, abundEstim

print.dfunc 57

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Fit half-normal detection function

dfunc <- dfuncEstim(formula=dist~1,
detectionData=sparrowDetectionData,
likelihood="halfnorm”, w.hi=100, pointSurvey=FALSE)

Estimate abundance given a detection function
Note, area=10000 converts to density per hectare (for distances measured in meters)
Note, a person should do more than R=20 iterations
fit <- abundEstim(dfunc, detectionData=sparrowDetectionData,
siteData=sparrowSiteData, area=10000, R=20, ci=0.95,
plot.bs=TRUE, bySite=FALSE)

Print results
print(fit)
fit

print.dfunc Print a distance function object

Description

Print method for distance functions produced by dfuncEstim, which are of class dfunc.

Usage
S3 method for class 'dfunc'
print(x, criterion = "AICc", ...)
Arguments
X An estimated distance function resulting from a call to dfuncEstim.
criterion A string specifying the criterion to print. Must be one of "AICc" (the default),

"AIC", or "BIC". See AIC.dfunc for formulas.

Included for compatibility with other print methods. Ignored here.

Details

The call, coefficients of the distanced function, whether the estimation converged, the likelihood
and expansion function, and other statistics are printed. At the bottom of the output, the following
quantities are printed,

e ‘Strip’ : The left (w.lo) and right (w.hi) truncation values.

58 RdistanceControls

e ‘Effective strip width or detection radius’ : ESW or EDR as computed by
effectiveDistance.

e ‘Scaling’ : The horizontal and vertical coordinates used to scale the distance function. Usu-
ally, the horizontal coordinate is O and the vertical coordinate is 1 (i.e., g(0) = 1).

* ‘Log likelihood’ : Value of the maximized log likelihood.
e ‘Criterion’ : Value of the specified fit criterion (AIC, AICc, or BIC).

The number of digits printed is controlled by options()$digits.

Value

The input value of obj is invisibly returned.

Author(s)

Trent McDonald, WEST Inc. <tmcdonald@west-inc.com> Aidan McDonald, WEST Inc. <aidan@mcdcentral.org>

See Also

dfuncEstim, plot.dfunc, print.abund

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)

Fit half-normal detection function

dfunc <- dfuncEstim(formula=dist~1,
detectionData=sparrowDetectionData,
likelihood="halfnorm”, w.hi=100, pointSurvey=FALSE)

Print results
dfunc
print(dfunc, criterion="BIC")

RdistanceControls Control parameters for Rdistance optimization.

Description
Returns a list of optimization controls used in Rdistance and provides a way to change them if
needed.

Usage

RdistanceControls(optimizer = "nlminb”, evalMax = 2000,
maxIters = 1000, likeTol = 1e-08, coefTol = 1.5e-08,
hessEps = 1e-08)

secondDeriv

Arguments

optimizer

evalMax
maxIters
likeTol

coefTol

hessEps

Value

59

A string specifying the optimizer to use. Results vary between optimizers, so
switching algorithms sometimes makes a poorly behaved distance function con-
verge. The valid values are "optim" which uses optim: :optim, and "nlminb"
which uses stats:nlminb. The authors have had better luck with "nlminb"
than "optim" and "nlminb" runs noticeably faster. Problems with solutions near
parameter boundaries may require use of "optim".

The maximum number of objective function evaluations allowed.
The maximum number of optimization iterations allowed.

The maximum change in the likelihood (the objective) between iterations that is
tolerated during optimization. If the likelihood changes by less than this amount,
optimization stops and a solution is declared.

The maximum change in the model coefficients between iterations that is toler-
ated during optimization. If the sum of squared coefficient differences changes
by less than this amount between iterations, optimization stops and a solution is
declared.

A vector of parameter distances used during computation of numeric second
derivatives. Should have length 1 or the number of parameters in the model. See
function secondDeriv.

A list containing named components for each of the controls. This list has the same components as
this function has input parameters.

Author(s)

Trent McDonald <tmcdonald@west-inc.com>

Examples

increase number of iterations
RdistanceControls(maxIters=2000)

change optimizer and decrease tolerance
RdistanceControls(optimizer="optim”, likeTol=1e-6)

secondDeriv

Numeric second derivatives

Description

Computes numeric second derivatives (hessian) of an arbitrary multidimensional function at a par-

ticular location.

60

Usage

secondDeriv(x,

Arguments

X
FUN

eps

Details

secondDeriv

FUN, eps = 1e-08, ...)

The location (a vector) where the second derivatives of FUN are desired.

An R function for which the second derivatives are sought. This must be a
function of the form FUN <- function(x, ...)... where X is a vector of variable
parameters to FUN at which to evaluate the 2nd derivative, and ... are additional
parameters needed to evaluate the function. FUN must return a single value
(scalar), the height of the surface above x, i.e., FUN evaluated at x.

A vector of small relative distances to add to x when evaluating derivatives.
This determines the *dx’ of the numerical derivatives. That is, the function is
evaluated at x, x+dx, and x+2*dx, where dx = xxeps*0. 25, in order to compute
the second derivative. eps defaults to le-8 for all dimensions which equates to
setting dx to one percent of each x (i.e., by default the function is evaluate at x,
1.01*x and 1.02*x to compute the second derivative).

One might want to change eps if the scale of dimensions in x varies wildly (e.g.,
kilometers and millimeters), or if changes between FUN(x) and FUN(x*1.01)
are below machine precision. If length of eps is less than length of x, eps is
replicated to the length of x.

Any arguments passed to FUN.

This function uses the "5-point" numeric second derivative method advocated in numerous numeri-
cal recipe texts. During computation of the 2nd derivative, FUN must be capable of being evaluated
at numerous locations within a hyper-ellipsoid with cardinal radii 2*x*(eps)"0.25 = 0.02*x at the
default value of eps.

A handy way to use this function is to call an optimization routine like nlminb with FUN, then
call this function with the optimized values (solution) and FUN. This will yield the hessian at the
solution and this is can produce a better estimate of the variance-covariance matrix than using the
hessian returned by some optimization routines. Some optimization routines return the hessian
evaluated at the next-to-last step of optimization.

An estimate of the variance-covariance matrix, which is used in Rdistance, is solve(hessian)
where hessian is secondDeriv(<parameter estimates>, <likelihood>).

Author(s)
Trent McDonald

Examples

func <- function(x){-x*x} # second derivative should be -2
secondDeriv(@, func)
secondDeriv (3, func)

simple.expansion 61

func <- function(x){3 + 5%x*2 + 2%*x*3} # second derivative should be 10+12x
secondDeriv(@, func)
secondDeriv(2, func)

func <- function(x){x[1]*2 + 5xx[2]*2} # should be rbind(c(2,0),c(0,10))
secondDeriv(c(1,1),func)

simple.expansion Calculate simple polynomial expansion for detection function likeli-
hoods

Description
Computes simple polynomial expansion terms used in the likelihood of a distance analysis. More
generally, will compute polynomial expansions of any numeric vector.

Usage

simple.expansion(x, expansions)

Arguments
X In a distance analysis, x is a numeric vector of the proportion of a strip transect’s
half-width at which a group of individuals were sighted. If w is the strip transect
half-width or maximum sighting distance, and d is the perpendicular off-transect
distance to a sighted group (d < w), x is usually d/w. More generally, x is a
vector of numeric values
expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, or 4.
Details

The polynomials computed here are:

¢ First term:

hi(x) = z,
¢ Second term:

ho(x) = x5,
¢ Third term:

hs(z) = a8,
¢ Fourth term:

ha(z) = 210,

The maximum number of expansion terms computed is 4.

62 smu.like

Value

A matrix of size length(x) X expansions. The columns of this matrix are the Hermite polynomial
expansions of x. Column 1 is the first expansion term of x, column 2 is the second expansion term
of x, and so on up to expansions.

Author(s)

Trent McDonald, WEST Inc. <tmcdonald@west-inc.com> Aidan McDonald, WEST Inc. <aidan@mcdcentral.org>

See Also

dfuncEstim, cosine.expansion, hermite.expansion, and the discussion of user defined likeli-
hoods in dfuncEstim.

Examples

set.seed(883839)
X <= rnorm(1000) * 100
x <-x[0 <x & x <100]
simp.expn <- simple.expansion(x, 4)

smu.like Smoothed likelihood function for distance analyses

Description

Computes the likelihood of sighting distances given a kernel smooth of the histogram.

Usage

smu.like(a, dist, covars = NULL, w.lo = @, w.hi, scale = TRUE,
series = NULL, expansions = @, pointSurvey = FALSE)

Arguments

a A data frame containing the smooth. This data frame must contain at least an
$x and $y components. These components are generally the output of function
density.

dist A numeric vector containing the observed distances.

covars Not used in smoothed distance functions. Included for compatibility with other
distance likelihoods in Rdistance.

w.lo Scalar value of the lowest observable distance. This is the left truncation of

sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

smu.like

w.hi

scale

series

expansions

pointSurvey

Details

63

Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration. constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

Not used in smoothed distance functions. Included for compatibility with other
distance likelihoods in Rdistance.

Not used in smoothed distance functions. Included for compatibility with other
distance likelihoods in Rdistance.

Boolean. TRUE if distances in dist are radial from point transects, FALSE if
distances are perpendicular off-transect distances.

The approx function is used to evaluate the smooth function at all sighting distances.

Distances outside the range w. 1o to w. hi are set to NA and hence not included.

Value

A numeric vector the same length and order as dist containing the likelihood contribution (height
of the smoothed function) for all distances in dist. Assuming L is the vector returned by this
function, the negative log likelihood of the sighting distances is -sum(log(L), na.rm=T). Note
that the returned likelihood value for distances less than w.1lo or greater than w.hi is NA, hence
na.rm=TRUE in the sum. If scale = TRUE, the area under the smoothed curve between w. 1o and
w.hiis 1.0. If scale = FALSE, the integral of the smoothed curve is something else.

Author(s)

Trent McDonald, WEST, Inc. <tmcdonald@west-inc.com>

See Also

dfuncSmu, hazrate.like, uniform.like, negexp.like, halfnorm.1like

Examples

set.seed(238642)

d <- abs(rnorm(100))
dfunc <- dfuncSmu(d~1)

L <- smu.like(a=dfunc$parameters,
dist=dfunc$dist,

64

sparrowDetectionData

w.lo=dfunc$w.lo,
w.hi=dfunc$w.hi,
scale=TRUE)
-sum(log(L), na.rm=TRUE) # the negative log likelihood

sparrowDetectionData Brewer’s Sparrow detection data (line-transect survey) Rdistance
contains four example datasets: two collected using a line-transect
survey (i.e., sparrowDetectionData and sparrowSiteData) and two
collected using a point-transect (sometimes called a point count) sur-
vey (i.e., thrasherDetectionData and thrasherSiteData). These
datasets demonstrate the type and format of input data required by
Rdistance fo estimate a detection function and abundance from dis-
tance sampling data collected by surveying line transects or point
transects. They also allow the user to step through the tutorials de-
scribed in the package vignettes. Only the detection data is needed
to fit a detection function (if there are no covariates in the detection
function; see dfuncEstim), but both detection and the additional site
data are needed to estimate abundance (or to include site-level co-
variates in the detection function; see abundEstim). Line transect
(sparrow) data come from 72 transects, each 500 meters long, sur-
veyed for Brewer’s Sparrows by the Wyoming Cooperative Fish &
Wildlife Research Unit in 2012. Point transect (thrasher) data come
from 120 points surveyed for Sage Thrashers by the Wyoming Cooper-
ative Fish & Wildlife Research Unit in 2013. See the package vignettes
for Rdistance tutorials using these datasets.

Description

Brewer’s Sparrow detection data (line-transect survey)

Rdistance contains four example datasets: two collected using a line-transect survey (i.e., sparrowDetectionData

and sparrowSiteData) and two collected using a point-transect (sometimes called a point count)
survey (i.e., thrasherDetectionData and thrasherSiteData). These datasets demonstrate the
type and format of input data required by Rdistance to estimate a detection function and abun-
dance from distance sampling data collected by surveying line transects or point transects. They
also allow the user to step through the tutorials described in the package vignettes. Only the detec-
tion data is needed to fit a detection function (if there are no covariates in the detection function;
see dfuncEstim), but both detection and the additional site data are needed to estimate abundance
(or to include site-level covariates in the detection function; see abundEstim).

Line transect (sparrow) data come from 72 transects, each 500 meters long, surveyed for Brewer’s
Sparrows by the Wyoming Cooperative Fish & Wildlife Research Unit in 2012.

Point transect (thrasher) data come from 120 points surveyed for Sage Thrashers by the Wyoming
Cooperative Fish & Wildlife Research Unit in 2013.

See the package vignettes for Rdistance tutorials using these datasets.

sparrowSiteData 65

Format

A data.frame containing 356 rows and 5 columns. Each row represents a detected group of sparrows.
Column descriptions:

sitelID: Factor (72 levels), the site or transect where the detection was made.

groupsize: Number, the number of individuals within the detected group.

sightdist: Number, the distance (m) from the observer to the detected group.

sightangle: Number, the angle (degrees) from the transect line to the detected group.

vk v =

dist: Number, the perpendicular, off-transect distance (m) from the transect to the detected
group. This is the distance used in analysis. Calculated using perpDists.
Source

A subset of Jason Carlisle’s dissertation data, University of Wyoming.

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

See Also

sparrowSiteData

sparrowSiteData Brewer’s Sparrow site data (line-transect survey) Rdistance contains
four example datasets: two collected using a line-transect survey (i.e.,
sparrowDetectionData and sparrowSiteData) and two collected
using a point-transect (sometimes called a point count) survey (i.e.,
thrasherDetectionData and thrasherSiteData). These datasets
demonstrate the type and format of input data required by Rdistance
to estimate a detection function and abundance from distance sam-
pling data collected by surveying line transects or point transects.
They also allow the user to step through the tutorials described in
the package vignettes. Only the detection data is needed to fit a de-
tection function (if there are no covariates in the detection function;
see dfuncEstim), but both detection and the additional site data are
needed to estimate abundance (or to include site-level covariates in
the detection function; see abundEstim). Line transect (sparrow) data
come from 72 transects, each 500 meters long, surveyed for Brewer’s
Sparrows by the Wyoming Cooperative Fish & Wildlife Research Unit
in 2012. Point transect (thrasher) data come from 120 points surveyed
for Sage Thrashers by the Wyoming Cooperative Fish & Wildlife Re-
search Unit in 2013. See the package vignettes for Rdistance tutori-
als using these datasets.

66 sparrowSiteData

Description

Brewer’s Sparrow site data (line-transect survey)

Rdistance contains four example datasets: two collected using a line-transect survey (i.e., sparrowDetectionData
and sparrowSiteData) and two collected using a point-transect (sometimes called a point count)

survey (i.e., thrasherDetectionData and thrasherSiteData). These datasets demonstrate the

type and format of input data required by Rdistance to estimate a detection function and abun-

dance from distance sampling data collected by surveying line transects or point transects. They

also allow the user to step through the tutorials described in the package vignettes. Only the detec-

tion data is needed to fit a detection function (if there are no covariates in the detection function;

see dfuncEstim), but both detection and the additional site data are needed to estimate abundance

(or to include site-level covariates in the detection function; see abundEstim).

Line transect (sparrow) data come from 72 transects, each 500 meters long, surveyed for Brewer’s
Sparrows by the Wyoming Cooperative Fish & Wildlife Research Unit in 2012.

Point transect (thrasher) data come from 120 points surveyed for Sage Thrashers by the Wyoming
Cooperative Fish & Wildlife Research Unit in 2013.

See the package vignettes for Rdistance tutorials using these datasets.

Format

A data.frame containing 72 rows and 8 columns. Each row represents a site (transect) surveyed.
Column descriptions:

1. sitelD: Factor (72 levels), the site or transect surveyed.

[\

. length: Number, the length (m) of each transect. Use the same units for all distance mea-
surements.

. observer: Factor (five levels), identity of the observer who surveyed the transect.
. bare: Number, the mean bare ground cover (%) within 100 m of each transect.

. herb: Number, the mean herbaceous cover (%) within 100 m of each transect.

. shrub: Number, the mean shrub cover (%) within 100 m of each transect.

. height: Number, the mean shrub height (cm) within 100 m of each transect.

0 N N L AW

. shrubclass: Factor (two levels), class is "Low
wise.

when shrub cover is < 10%, "High" other-

Source

A subset of Jason Carlisle’s dissertation data, University of Wyoming.

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

See Also

sparrowDetectionData

thrasherDetectionData 67

thrasherDetectionData Sage Thrasher detection data (point-transect survey) Rdistance con-
tains four example datasets: two collected using a line-transect survey
(i.e., sparrowDetectionData and sparrowSiteData) and two col-
lected using a point-transect (sometimes called a point count) sur-
vey (i.e., thrasherDetectionData and thrasherSiteData). These
datasets demonstrate the type and format of input data required by
Rdistance fo estimate a detection function and abundance from dis-
tance sampling data collected by surveying line transects or point
transects. They also allow the user to step through the tutorials de-
scribed in the package vignettes. Only the detection data is needed
to fit a detection function (if there are no covariates in the detection
function; see dfuncEstim), but both detection and the additional site
data are needed to estimate abundance (or to include site-level co-
variates in the detection function; see abundEstim). Line transect
(sparrow) data come from 72 transects, each 500 meters long, sur-
veyed for Brewer’s Sparrows by the Wyoming Cooperative Fish &
Wildlife Research Unit in 2012. Point transect (thrasher) data come
from 120 points surveyed for Sage Thrashers by the Wyoming Cooper-
ative Fish & Wildlife Research Unit in 2013. See the package vignettes
for Rdistance tutorials using these datasets.

Description

Sage Thrasher detection data (point-transect survey)

Rdistance contains four example datasets: two collected using a line-transect survey (i.e., sparrowDetectionData
and sparrowSiteData) and two collected using a point-transect (sometimes called a point count)

survey (i.e., thrasherDetectionData and thrasherSiteData). These datasets demonstrate the

type and format of input data required by Rdistance to estimate a detection function and abun-

dance from distance sampling data collected by surveying line transects or point transects. They

also allow the user to step through the tutorials described in the package vignettes. Only the detec-

tion data is needed to fit a detection function (if there are no covariates in the detection function;

see dfuncEstim), but both detection and the additional site data are needed to estimate abundance

(or to include site-level covariates in the detection function; see abundEstim).

Line transect (sparrow) data come from 72 transects, each 500 meters long, surveyed for Brewer’s
Sparrows by the Wyoming Cooperative Fish & Wildlife Research Unit in 2012.

Point transect (thrasher) data come from 120 points surveyed for Sage Thrashers by the Wyoming
Cooperative Fish & Wildlife Research Unit in 2013.

See the package vignettes for Rdistance tutorials using these datasets.

Format

A data.frame containing 193 rows and 3 columns. Each row represents a detected group of thrash-
ers. Column descriptions:

1. siteID: Factor (120 levels), the site or point where the detection was made.

68 thrasherSiteData

2. groupsize: Number, the number of individuals within the detected group.

3. dist: Number, the radial distance (m) from the transect to the detected group. This is the
distance used in analysis.
Source

A subset of Jason Carlisle’s dissertation data, University of Wyoming.

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

See Also

thrasherSiteData

thrasherSiteData Sage Thrasher site data (point-transect survey) Rdistance contains
four example datasets: two collected using a line-transect survey (i.e.,
sparrowDetectionData and sparrowSiteData) and two collected
using a point-transect (sometimes called a point count) survey (i.e.,
thrasherDetectionData and thrasherSiteData). These datasets
demonstrate the type and format of input data required by Rdistance
to estimate a detection function and abundance from distance sam-
pling data collected by surveying line transects or point transects.
They also allow the user to step through the tutorials described in
the package vignettes. Only the detection data is needed to fit a de-
tection function (if there are no covariates in the detection function;
see dfuncEstim), but both detection and the additional site data are
needed to estimate abundance (or to include site-level covariates in
the detection function, see abundEstim). Line transect (sparrow) data
come from 72 transects, each 500 meters long, surveyed for Brewer’s
Sparrows by the Wyoming Cooperative Fish & Wildlife Research Unit
in 2012. Point transect (thrasher) data come from 120 points surveyed
for Sage Thrashers by the Wyoming Cooperative Fish & Wildlife Re-
search Unit in 2013. See the package vignettes for Rdistance tutori-
als using these datasets.

Description

Sage Thrasher site data (point-transect survey)

Rdistance contains four example datasets: two collected using a line-transect survey (i.e., sparrowDetectionData
and sparrowSiteData) and two collected using a point-transect (sometimes called a point count)
survey (i.e., thrasherDetectionData and thrasherSiteData). These datasets demonstrate the

thrasherSiteData 69

type and format of input data required by Rdistance to estimate a detection function and abun-
dance from distance sampling data collected by surveying line transects or point transects. They
also allow the user to step through the tutorials described in the package vignettes. Only the detec-
tion data is needed to fit a detection function (if there are no covariates in the detection function;
see dfuncEstim), but both detection and the additional site data are needed to estimate abundance
(or to include site-level covariates in the detection function; see abundEstim).

Line transect (sparrow) data come from 72 transects, each 500 meters long, surveyed for Brewer’s
Sparrows by the Wyoming Cooperative Fish & Wildlife Research Unit in 2012.

Point transect (thrasher) data come from 120 points surveyed for Sage Thrashers by the Wyoming
Cooperative Fish & Wildlife Research Unit in 2013.

See the package vignettes for Rdistance tutorials using these datasets.

Format

A data.frame containing 120 rows and 6 columns. Each row represents a site (point) surveyed.
Column descriptions:
1. sitelD: Factor (120 levels), the site or point surveyed.
observer: Factor (six levels), identity of the observer who surveyed the point.
bare: Number, the mean bare ground cover (%) within 100 m of each point.
herb: Number, the mean herbaceous cover (%) within 100 m of each point.

shrub: Number, the mean shrub cover (%) within 100 m of each point.

AN

height: Number, the mean shrub height (cm) within 100 m of each point.

Source

A subset of Jason Carlisle’s dissertation data, University of Wyoming.

References
Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-

tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

See Also

thrasherDetectionData

70 uniform.like

uniform.like Uniform likelihood function for distance analyses

Description

This function computes likelihood contributions for sighting distances, scaled appropriately, for use
as a distance likelihood.

Usage

uniform.like(a, dist, covars = NULL, w.lo = @, w.hi = max(dist),
series = "cosine"”, expansions = 0, scale = TRUE,
pointSurvey = FALSE)

Arguments

a A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions =),
the distance likelihoods contain one or two canonical parameters (see Details).
If one or more expansions are called for, coefficients for the expansion terms
follow coefficients for the canonical parameters. If p is the number of canonical
parameters, coefficients for the expansion terms are a[(p+1) : length(a)].

dist A numeric vector containing the observed distances.
covars Data frame containing values of covariates at each observation in dist.

w.lo Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

w.hi Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

series A string specifying the type of expansion to use. Currently, valid values are
’simple’, "hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be O through 5. The default of 0 equates to no expansion terms of any
type.

scale Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration. constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

uniform.like 71

Details

The uniform likelihood is not technically uniform. This function is continuous at its upper limit (a
true uniform is discontinuous at its upper limit) which allows better estimation of the upper limit.
The function has two parameters (the upper limit or "threshold’ and the ’knee’) and can look similar
to a uniform or a negative exponential.

The uniform likelihood used here is actually the heavy side or logistic function of the form,

1 __exp(=b(z —a))
1+exp(=b(z —a)) 1+ exp(—b(z —a))’

f(zla,b) =1 —

where a and b are the parameters to be estimated.

Parameter a, the "threshold", is the location of the approximate upper limit of a uniform distribu-
tion’s support. The inverse likelihood of 0.5 is a before scaling (i.e., uniform.like(c(a,b),a, scale=FALSE)
equals 9.5).

Parameter b, the "knee", is the sharpness of the bend at a and estimates the degree to which obser-
vations decline at the outer limit of sightability. Note that, prior to scaling for g. x. scl, the slope of
the likelihood at a is —b/4. After scaling for g. x. scl, the inverse of g.x.scl/2 is close to a/f (@).
If b is large, the "knee" is sharp and the likelihood looks uniform with support from w. 1o to a/ f(0).
If b is small, the "knee" is shallow and the density of observations declines in an elongated "S" shape
pivoting at a/f(@). As b grows large and assuming f(0) = 1, the effective strip width approaches a
from above.

See Examples for plots using large and small values of b.

Expansion Terms: If expansions =k (k > 0), the expansion function specified by series is called
(see for example cosine.expansion). Assuming h;;j(x) is the jth expansion term for the ‘"
distance and that ¢y, co, . . ., ¢ are (estimated) coefficients for the expansion terms, the likelihood

contribution for the ¢ distance is,
k
f(zla,b,c1,c9,. .. cx) = f(x]a,b)(1 + chhij(x)).
j=1

Value

A numeric vector the same length and order as dist containing the likelihood contribution for corre-
sponding distances in dist. Assuming L is the returned vector from one of these functions, the full
log likelihood of all the data is -sum(log(L), na.rm=T). Note that the returned likelihood value
for distances less than w. 1o or greater than w.hi is NA, and thus it is prudent to use na.rm=TRUE
in the sum. If scale = TRUE, the integral of the likelihood from w.1lo to w.hi is 1.0. If scale =
FALSE, the integral of the likelihood is arbitrary.

Author(s)

Trent McDonald, WEST, Inc. <tmcdonald@west-inc.com>
Aidan McDonald, WEST, Inc. <aidan@mcdcentral.org>

See Also

dfuncEstim, halfnorm.like, hazrate.like, negexp.like, Gamma.like

72

Examples

x <- seq(@, 100, length=100)

Plots
plot(x,
plot(x,

Plots
plot(x,
plot(x,

showing
uniform
uniform

showing
uniform
uniform

effects of changes in Threshold
.like(c(20, 20), x), type="1", col="red")
.like(c(40, 20), x), type="1", col="blue")

effects of changes in Knee
.like(c(50, 100), x), type="1", col="red")
.like(c(50, 1), x), type="1", col="blue")

uniform.like

Index

+Topic datasets
sparrowDetectionData, 64
sparrowSiteData, 65
thrasherDetectionData, 67
thrasherSiteData, 68

+Topic modeling
EDR, 26
effectiveDistance, 27
ESW, 30

*Topic models
cosine.expansion, 14
F.nLL, 36
F.start.limits, 37
Gamma. like, 38
halfnorm.like, 41
hazrate.like, 44
integration.constant, 47
negexp.like, 49
plot.dfunc, 52
print.abund, 56
print.dfunc, 57
simple.expansion, 61
smu.like, 62
uniform.like, 70

*Topic model
abundEstim, 5
AIC.dfunc, 8
autoDistSamp, 10
coef.dfunc, 13
dfuncEstim, 15
dfuncSmu, 20
estimateN, 28
F.double.obs.prob, 31
F.gx.estim, 33
F.maximize.g, 35
hermite.expansion, 46

+Topic package
Rdistance-package, 3

abundEstim, 3-5, 5, 12, 19, 25, 28, 29, 32, 56,

73

64-69
AIC, I3
AIC.dfunc, 8, 11, 56, 57
approx, 63
autoDistSamp, 3-5, 8, 10, 19, 25

bev, 22
bw.nrd, 22
bw.nrdo, 22
bw.SJ, 22

coef, 10

coef.dfunc, 13

cosine.expansion, 3, 4, 14, 42,45, 47, 50,
62,71

density, 22, 62

dfuncEstim, 3-5, 8, 10, 12, 13, 15, 15, 25, 26,
28, 29, 31, 32, 34, 35, 3740, 4245,
47, 48, 50-52, 54-56, 58, 62, 6471

dfuncSmu, 3, 4, 20, 63

distance (Rdistance-package), 3

EDR, 7, 26, 27, 28, 31
effectiveDistance, 26, 27
estimateN, 6, 28

ESW, 7, 26-28, 30

.double.obs.prob, 31
.gx.estim, 33
.maximize.g, 35
.nLL, 36
.start.limits, 37

M T M T om

Gamma.like, 3, 4, 12,38, 43,45,51,71
getDfuncModelFrame, 41

halfnorm.like, 3, 4, 19, 40, 41, 45, 48, 51,
63,71

hazrate.like, 3, 4,40, 43,44, 51, 63, 71

hermite.expansion, 3, 4, 15, 46, 62

74

integration.constant, 39, 42, 44, 47, 50,
63,70

likeParamNames, 49
line-transect (Rdistance-package), 3

negexp.like, 3, 4, 40, 43, 45,49, 63,71

perpDists, 4, 51, 65

plot.dfunc, 52, 58

point-transect (Rdistance-package), 3
predict.dfunc, 55
print.abund, 54, 56, 58
print.dfunc, 54, 57

Rdistance (Rdistance-package), 3
Rdistance-package, 3
RdistanceControls, 17, 58

secondDeriv, 59, 59
simple.expansion, 3, 4, 15,47, 61
smu.like, 62
sparrowDetectionData, 5, 16, 21, 64, 64,
65-68
sparrowSiteData, 5, 64, 65, 65, 66-68

thrasherDetectionData, 64—67, 67, 68, 69
thrasherSiteData, 64—68, 68

ucv, 22

uniform.like, 3, 4, 37,40, 43,45, 51, 63,70

width.S7J, 22

INDEX

	Rdistance-package
	abundEstim
	AIC.dfunc
	autoDistSamp
	coef.dfunc
	cosine.expansion
	dfuncEstim
	dfuncSmu
	EDR
	effectiveDistance
	estimateN
	ESW
	F.double.obs.prob
	F.gx.estim
	F.maximize.g
	F.nLL
	F.start.limits
	Gamma.like
	getDfuncModelFrame
	halfnorm.like
	hazrate.like
	hermite.expansion
	integration.constant
	likeParamNames
	negexp.like
	perpDists
	plot.dfunc
	predict.dfunc
	print.abund
	print.dfunc
	RdistanceControls
	secondDeriv
	simple.expansion
	smu.like
	sparrowDetectionData
	sparrowSiteData
	thrasherDetectionData
	thrasherSiteData
	uniform.like
	Index

