Beginner Point-Transect Analysis in Rdistance
Michael Kleinsasser, Jason D. Carlisle and Trent L. McDonald
August 6, 2018

Introduction

This tutorial is a beginner’s guide to doing point transect distance-sampling analysis using Rdistance. Topics
covered include input data requirements, fitting a detection function, estimating abundance (or density), and
selecting the best fit detection function using AICc. We use the internal datasets thrasherDetectionData
and thrasherSiteData (point transect surveys of brown thrashers). This tutorial is current as of version
2.1.3 of Rdistance.

1: Install and load Rdistance

If you haven’t already done so, install the latest version of Rdistance. In the R console, issue
install.packages("Rdistance"). After the package is installed, it can be loaded into the current session
as follows:

require(Rdistance)

2: Read in the input data

For this tutorial, we use two datasets collected by J. Carlisle on brown thrashers in central Wyoming that are
included with Rdistance.

The first dataset, thrasherDetectionData, is a detection data.frame with one row for each detected object.
Columuns in the data frame are:

o siteID = Factor, the site (point) and transect surveyed. Levels are five character codes like ‘TTXPP’
where TT is transect number and PP is the point within the transect.

e groupsize = Numeric, the number of individuals within the detected group.

e dist = Numeric, the radial distance from the point to the detected group. Obtain access to the example
dataset of thrasher detections and observed distances (thrasherDetectionData) using the following
commands:

data("thrasherDetectionData")
head (thrasherDetectionData)

siteID groupsize dist

1 C1X01 1 11
2 C1X01 1 183
3 C1X02 1 58
4 C1X04 1 89
5 C1X05 1 83
6 C1X06 1 95

The second required dataset, thrasherSiteData, is a transect data.frame, with one row for each transect
surveyed, and the following required columns:

o siteID = Factor, the site (point) and transect surveyed.

e ... = Any additional transect-level covariate columns (these will not be used in this tutorial).

Load the example dataset of thrasher transects (thrasherSiteData) using the following commands:

data("thrasherSiteData")
head (thrasherSiteData)

siteID observer bare herb shrub height

1 C1X01 obsb5 45.8 19.5 18.7 23.7
2 C1X02 obsb 43.4 20.2 20.0 23.6
3 C1X03 obs5 44.1 18.8 19.4 23.7
4 C1X04 obsb 38.3 22.5 23.5 34.3
5 C1X05 obsb5 41.5 20.5 20.6 26.8
6 C1X06 obsb5 43.7 18.6 20.0 23.8

3: Fit a detection function

Once the data are imported, the first step is to fit a detection function. Before we do so, explore the
distribution of the distances:

hist(thrasherDetectionData$dist, n=40, col="grey", main="", xlab="distance (m)")
o _
H —
-~ |
o
S A] i
. __
: — — p—
O o
(D)
S
LL N I_II_"L_H
o - O I_I_I_I_FI I_I_I_I 11 [
[[

I I I I
0 50 100 150 200 250

distance (m)

summary (thrasherDetectionData$dist)

Min. 1st Qu. Median Mean 3rd Qu. Max.
11.00 63.00 86.00 97.16 123.00 265.00

Next, we fit a detection function using dfuncEstim to the radial distances collected from the point transects
and plot it. We specify point transects using option PointSurvey = TRUE in the call to dfuncEstim and
specify the the half-normal distance function using option likelihood = "halfnorm". In section 5, we
demonstrate an automated process to fit multiple detection functions and compare them using AICc.

dfunc <- dfuncEstim(formula = dist ~ 1,
detectionData = thrasherDetectionData,
pointSurvey = TRUE,
likelihood = "halfnorm")

plot(dfunc)
halfnorm, O expansions
o
S _
> |
5 o
c
3 © |
c o
Eg =~
(] <t
> o] v
(D]
EIN
O o 7 ~
o | s
° | I I I I |
0 50 100 150 200 250
Distance
dfunc

Call: dfuncEstim(formula = dist ~ 1, detectionData =
thrasherDetectionData, likelihood = "halfnorm", pointSurvey =

#i#t TRUE)

Coefficients:

#it Estimate SE z pClz)

Sigma 76.88767 2.906298 26.45553 3.151399e-154
#it

Convergence: Success

Function: HALFNORM

Strip: O to 265

Effective detection radius (EDR): 108.5909
Probability of detection: 0.1679172

Scaling: g(0) =1

Log likelihood: 1004.254

AICc: 2010.53

The effective detection radius (EDR) is the essential information from the detection function that will be
used to estimate abundance in section 4. The EDR is calculated by integrating the detection function to
compute area under the detection function. See the help documentation for EDR for details.

4: Estimate abundance given the detection function

Estimating abundance requires the additional information contained in the the thrasher site dataset, described
in section 2, where each row represents one transect. Load the example dataset of surveyed thrasher transects
from the package.

We estimate abundance (or density in this case) using abundEstim. If area = 1, density is given in the
squared units of the distance measurements — in this case, thrashers per square meter. If we set area
= 10000, we convert to thrashers per hectare (1 ha == 10,000 m?). The equation used to calculate the
abundance estimate is detailed in the help documentation for abundEstim.

Confidence intervals for abundance are calculated using a bias-corrected bootstrapping method (see
abundEstim). Note that, as with all bootstrapping procedures, there may be slight differences in the
confidence intervals between runs. Increasing the number of bootstrap iterations (R = 100 used here for
brevity) may be necessary to stabilize CI estimates.

Estimate Abundance - Density; fatalities per m2
fit <- abundEstim(dfunc = dfunc,
detectionData = thrasherDetectionData,

siteData = thrasherSiteData,

area = 10000, # denstity per hectare
R = 100,

ci = 0.95)

fit

Call: dfuncEstim(formula = dist ~ 1, detectionData =
thrasherDetectionData, likelihood = "halfnorm", pointSurvey =

TRUE)

Coefficients:

Estimate SE z pClzl)

Sigma 76.88767 2.906298 26.45553 3.151399e-154
##

Convergence: Success

Function: HALFNORM

Strip: O to 265

Effective detection radius (EDR): 108.5909

Probability of detection: 0.1679172

Scaling: g(0) =1

Log likelihood: 1004.254

AICc: 2010.53

##

Abundance estimate: 0.4408978 ; 95} CI=(0.3520647 to 0.5176698)

The abundance estimate can be extracted from the fit object.

fit$n.hat

[1] 0.4408978

The confidence interval (in this case 95%) can be extracted from the fit object.

fit$ci

1.968631% 96.8533%
0.3520647 0.5176698

5: Use AICc to select a detection function and estimate abundance

Fitting several detection functions, choosing the best fitting, and estimating abundance (sections 3 and 4) can
be automated using the function autoDistSamp. The function attempts to fit multiple detection functions,
uses AICc (by default, but see help documentation for autoDistSamp under criterion for other options) to
find the ‘best’ detection function, then proceeds to estimate abundance using the best fit detection function
(the distance function with lowest AICc). By default, autoDistSamp tries a large subset of Rdistance’s
built-in detection functions, but you can control exactly which detection functions are attempted (see help
documentation for autoDistSamp). Specifying plot=TRUE produces a plot of each detection function as it
is estimated. Specifying, plot.bs=TRUE plots the selected distance function each iteration of the bootstrap
procedure. In this example, we fit the half-normal, hazard rate, exponential, and uniform likelihoods with no
expansion terms, we do not plot all fitted functions (plot=FALSE), but we plot the best distance function

fitted during each bootstrap iteration.

Automated Fit - fit several models, choose the best model based on AIC

autoDS <- autoDistSamp(formula
detectionData
siteData
pointSurvey
expansions
likelihoods
plot
area
R
ci
plot.bs

autoDS

= thrasherDetectionData$dist ~ 1,
thrasherDetectionData,

= thrasherSiteData,

TRUE,
c(0),
c("halfnorm", "hazrate", '"negexp", "uniform"),

= FALSE,
= 10000,

100,
0.95,
FALSE)

Call: dfuncEstim(formula = formula, detectionData = detectionData,
siteData = siteData, likelihood = fit.table$like[1], pointSurvey

= pointSurvey, w.lo = w.lo, w.hi = w.hi, expansions =
#it fit.table$expansions[1], series = fit.table$series[1])
Coefficients:

Estimate SE z pClzl)

Sigma 93.729520 5.8722732 15.96137 2.374641e-57

Beta 4.199511 0.3971426 10.57431 3.920392e-26

#it

Convergence: Success
Function: HAZRATE
Strip: 0 to 265

Effective detection radius (EDR):

118.6222

Probability of detection: 0.2003736

Scaling: g(0) =1
Log likelihood: 999.0199
AICc: 2002.103

#

Abundance estimate:

0.3694816 ;

95% CI=(0.3468602 to 0.3949777)

The detection function with the lowest AICc value (and thus selected as the ‘best’) is the hazard rate

likelihood with 0 cosine expansion terms.

Conclusion

In sections 3 and 4, we fitted a half-normal detection function and used that function to estimate thrasher
density. Our estimate was 0.44 thrashers per ha (95% CI = 0.35 to 0.52). In section 5, we used AICc to
estimate a better fitting detection function and used it to estimate thrasher density. The thrasher density
estimated by the better-fitting model was 0.37 thrashers per ha (95% CI = 0.35 to 0.39). (Note, CI estimates
may vary slightly from these due to minor ‘simulation slop’ inherent in bootstrapping methods).

	Introduction
	1: Install and load Rdistance
	2: Read in the input data
	3: Fit a detection function
	4: Estimate abundance given the detection function
	5: Use AICc to select a detection function and estimate abundance
	Conclusion

