Rdta: Data Transforming Augmentation for Linear Mixed Models
We provide a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyper-parameters) via an EM algorithm or posterior samples of those parameters via a Markov chain Monte Carlo method. Also see Tak, You, Ghosh, Su, and Kelly (2019+) <doi:10.1080/10618600.2019.1704295> <arXiv:1911.02748>.
Version: |
1.0.0 |
Depends: |
R (≥ 2.2.0) |
Imports: |
MCMCpack (≥ 1.4-4), mvtnorm (≥ 1.0-11), Rdpack, stats |
Published: |
2020-01-24 |
Author: |
Hyungsuk Tak, Kisung You, Sujit K. Ghosh, and Bingyue Su |
Maintainer: |
Hyungsuk Tak <hyungsuk.tak at gmail.com> |
License: |
GPL-2 |
NeedsCompilation: |
no |
CRAN checks: |
Rdta results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=Rdta
to link to this page.