SMARTAR package is for primary data analysis for sequential multiple assignment randomization trial (SMART) and are calibration tools for clinical trial planning purposes. This is a simple illustration of SMARTAR package. It only contains five main functions which are seqmeans
, atsmeans
, smartest
, smartsize
and getncp
. In addition, it also contains one dataset codiacs
.
The use of these functions and dataset is:
Exports treatment sequence, summarizes all the sequence-specific descriptive statistics and graphs, and provides design diagram of SMART.
seqmeans(data=codiacs ,family="gaussian",plot="d", digits = 2,xlab = "SMART design")
#> Each subject followed one of the below
#> treatment sequences during the trial.
#> A treatment sequence is defined
#> as a vector of values (A1,O2,A2).
#> SEQ A1 O2 A2 N MEAN VAR SD
#> 1 1 0 0 0 25 1.32 50.48 7.10
#> 2 2 0 0 1 2 10.50 0.50 0.71
#> 3 3 0 1 0 24 10.88 31.42 5.61
#> 4 4 0 1 1 5 5.20 18.70 4.32
#> 5 5 1 0 0 5 7.80 8.70 2.95
#> 6 6 1 0 1 19 5.16 45.47 6.74
#> 7 7 1 1 0 2 22.00 242.00 15.56
#> 8 8 1 1 1 26 10.88 55.07 7.42
seqmeans(data=codiacs ,plot="s",color = "lightblue",xlab = "SEQ",family="gaussian")
#> Each subject followed one of the below
#> treatment sequences during the trial.
#> A treatment sequence is defined
#> as a vector of values (A1,O2,A2).
#> SEQ A1 O2 A2 N MEAN VAR SD
#> 1 1 0 0 0 25 1.320000 50.47667 7.1046933
#> 2 2 0 0 1 2 10.500000 0.50000 0.7071068
#> 3 3 0 1 0 24 10.875000 31.41848 5.6052188
#> 4 4 0 1 1 5 5.200000 18.70000 4.3243497
#> 5 5 1 0 0 5 7.800000 8.70000 2.9495762
#> 6 6 1 0 1 19 5.157895 45.47368 6.7434178
#> 7 7 1 1 0 2 22.000000 242.00000 15.5563492
#> 8 8 1 1 1 26 10.884615 55.06615 7.4206572
Exports all the ATS embedded in SMART design and gives estimated strategy values and the variance-covariance matrix of estimated values.
atsmeans(data=codiacs,conf=TRUE, alpha=0.05,plot=TRUE,digits = 2,pch=18,xlab="Treatment sequence")
#> $value: estimated strategy values
#> (with confidence intervals)
#> $vmat: variance-covariance matrix
#> of estimated strategy values
#> A strategy is defined as a vector of
#> decision makings (d0;d00,d01) for 2 stages
#>
#> d0 is the stage-1 decision making for A1
#> d00 is the stage-2 decision making for A2,
#> conditioning on A1=d0 and O2=0
#> d01 is the stage-2 decision making for A2,
#> conditioning on A1=d0 and O2=0
#> $value
#> ATS d0 d00 d01 N value se lower upper
#> 1 1 0 0 0 49 6.27 1.11 4.10 8.44
#> 2 2 0 0 1 30 3.33 1.24 0.90 5.76
#> 3 3 0 1 0 26 10.69 0.64 9.44 11.95
#> 4 4 0 1 1 7 7.76 1.09 5.62 9.89
#> 5 5 1 0 0 7 15.45 6.03 3.62 27.27
#> 6 6 1 0 1 31 9.46 1.01 7.47 11.45
#> 7 7 1 1 0 21 14.23 6.08 2.31 26.14
#> 8 8 1 1 1 45 8.24 1.13 6.02 10.46
#>
#> $vmat
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] 1.23 0.63 0.37 -0.23 0.00 0.00 0.00 0.00
#> [2,] 0.63 1.54 0.01 0.91 0.00 0.00 0.00 0.00
#> [3,] 0.37 0.01 0.41 0.05 0.00 0.00 0.00 0.00
#> [4,] -0.23 0.91 0.05 1.19 0.00 0.00 0.00 0.00
#> [5,] 0.00 0.00 0.00 0.00 36.42 0.58 36.23 0.39
#> [6,] 0.00 0.00 0.00 0.00 0.58 1.03 0.25 0.70
#> [7,] 0.00 0.00 0.00 0.00 36.23 0.25 36.95 0.97
#> [8,] 0.00 0.00 0.00 0.00 0.39 0.70 0.97 1.28
#>
#> attr(,"class")
#> [1] "myclass" "list"
atsmeans(data=codiacs,conf=TRUE, alpha=0.05,digits = 2,pch=18,xlab="abc")
#> $value: estimated strategy values
#> (with confidence intervals)
#> $vmat: variance-covariance matrix
#> of estimated strategy values
#>
#> A strategy is defined as a vector of
#> decision makings (d0;d00,d01) for 2 stages
#>
#> d0 is the stage-1 decision making for A1
#> d00 is the stage-2 decision making for A2,
#> conditioning on A1=d0 and O2=0
#> d01 is the stage-2 decision making for A2,
#> conditioning on A1=d0 and O2=0
#> $value
#> ATS d0 d00 d01 N value se lower upper
#> 1 1 0 0 0 49 6.27 1.11 4.10 8.44
#> 2 2 0 0 1 30 3.33 1.24 0.90 5.76
#> 3 3 0 1 0 26 10.69 0.64 9.44 11.95
#> 4 4 0 1 1 7 7.76 1.09 5.62 9.89
#> 5 5 1 0 0 7 15.45 6.03 3.62 27.27
#> 6 6 1 0 1 31 9.46 1.01 7.47 11.45
#> 7 7 1 1 0 21 14.23 6.08 2.31 26.14
#> 8 8 1 1 1 45 8.24 1.13 6.02 10.46
#>
#> $vmat
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] 1.23 0.63 0.37 -0.23 0.00 0.00 0.00 0.00
#> [2,] 0.63 1.54 0.01 0.91 0.00 0.00 0.00 0.00
#> [3,] 0.37 0.01 0.41 0.05 0.00 0.00 0.00 0.00
#> [4,] -0.23 0.91 0.05 1.19 0.00 0.00 0.00 0.00
#> [5,] 0.00 0.00 0.00 0.00 36.42 0.58 36.23 0.39
#> [6,] 0.00 0.00 0.00 0.00 0.58 1.03 0.25 0.70
#> [7,] 0.00 0.00 0.00 0.00 36.23 0.25 36.95 0.97
#> [8,] 0.00 0.00 0.00 0.00 0.39 0.70 0.97 1.28
#>
#> attr(,"class")
#> [1] "myclass" "list"
Exports results of statistical tests of comparing adaptive treatment strategies based on both global and pairwise tests.
smartest(data=codiacs,method="IPW",adjust="Bon")
#> $Strategy provides the details
#> of decision makings under strategy labels (ATS)
#> $Global.test assesses the
#> null hypothesis of no difference
#> across all the strategy values
#> $Pairwise.test compares
#> all the pairs of strategies,
#> of which the labels are shown in $Strategy
#> The P values
#> should compare to the critical
#> value adjusted for the
#> Bonferroni correction
#> $Strategy
#> ATS d0 d00 d10 N
#> 1 1 0 0 0 49
#> 2 2 0 0 1 30
#> 3 3 0 1 0 26
#> 4 4 0 1 1 7
#> 5 5 1 0 0 7
#> 6 6 1 0 1 31
#> 7 7 1 1 0 21
#> 8 8 1 1 1 45
#>
#> $Global.test
#> size nATS df chisq Pvalue
#> 1 108 8 5 36.02528 9.388153e-07
#>
#> $Pairwise.comparisons
#> label diff lower.CI upper.CI Z Pvalue
#> 1 1 vs. 2 2.9388393 -0.8839281 6.7616066 2.4014420 1.633060e-02
#> 2 1 vs. 3 -4.4260714 -7.3947821 -1.4573608 -4.6571978 3.205425e-06
#> 3 1 vs. 4 -1.4872321 -6.7749330 3.8004687 -0.8785895 3.796239e-01
#> 4 1 vs. 5 -9.1780288 -28.3437801 9.9877224 -1.4958833 1.346841e-01
#> 5 1 vs. 6 -3.1928217 -7.8864191 1.5007756 -2.1249219 3.359313e-02
#> 6 1 vs. 7 -7.9585956 -27.2590842 11.3418929 -1.2880783 1.977187e-01
#> 7 1 vs. 8 -1.9733885 -6.9204650 2.9736879 -1.2460576 2.127433e-01
#> 8 2 vs. 1 -2.9388393 -6.7616066 0.8839281 -2.4014420 1.633060e-02
#> 9 2 vs. 3 -7.3649107 -11.7116113 -3.0182101 -5.2927562 1.204865e-07
#> 10 2 vs. 4 -4.4260714 -7.3947821 -1.4573608 -4.6571978 3.205425e-06
#> 11 2 vs. 5 -12.1168681 -31.3618708 7.1281345 -1.9667381 4.921341e-02
#> 12 2 vs. 6 -6.1316610 -11.1390517 -1.1242703 -3.8250824 1.307284e-04
#> 13 2 vs. 7 -10.8974349 -30.2766238 8.4817540 -1.7565593 7.899295e-02
#> 14 2 vs. 8 -4.9122278 -10.1579567 0.3335010 -2.9251409 3.443003e-03
#> 15 3 vs. 1 4.4260714 1.4573608 7.3947821 4.6571978 3.205425e-06
#> 16 3 vs. 2 7.3649107 3.0182101 11.7116113 5.2927562 1.204865e-07
#> 17 3 vs. 4 2.9388393 -0.8839281 6.7616066 2.4014420 1.633060e-02
#> 18 3 vs. 5 -4.7519574 -23.7084178 14.2045029 -0.7830499 4.335978e-01
#> 19 3 vs. 6 1.2332497 -2.5152466 4.9817460 1.0277040 3.040891e-01
#> 20 3 vs. 7 -3.5325242 -22.6251989 15.5601504 -0.5779530 5.632959e-01
#> 21 3 vs. 8 2.4526829 -1.6087127 6.5140784 1.8864280 5.923730e-02
#> 22 4 vs. 1 1.4872321 -3.8004687 6.7749330 0.8785895 3.796239e-01
#> 23 4 vs. 2 4.4260714 1.4573608 7.3947821 4.6571978 3.205425e-06
#> 24 4 vs. 3 -2.9388393 -6.7616066 0.8839281 -2.4014420 1.633060e-02
#> 25 4 vs. 5 -7.6907967 -26.8460697 11.4644763 -1.2541721 2.097795e-01
#> 26 4 vs. 6 -1.7055896 -6.3562151 2.9450359 -1.1456113 2.519560e-01
#> 27 4 vs. 7 -6.4713635 -25.7614469 12.8187199 -1.0479386 2.946669e-01
#> 28 4 vs. 8 -0.4861564 -5.3924816 4.4201688 -0.3095236 7.569232e-01
#> 29 5 vs. 1 9.1780288 -9.9877224 28.3437801 1.4958833 1.346841e-01
#> 30 5 vs. 2 12.1168681 -7.1281345 31.3618708 1.9667381 4.921341e-02
#> 31 5 vs. 3 4.7519574 -14.2045029 23.7084178 0.7830499 4.335978e-01
#> 32 5 vs. 4 7.6907967 -11.4644763 26.8460697 1.2541721 2.097795e-01
#> 33 5 vs. 6 5.9852071 -12.8318650 24.8022792 0.9935764 3.204291e-01
#> 34 5 vs. 7 1.2194332 -1.7667001 4.2055665 1.2756248 2.020882e-01
#> 35 5 vs. 8 7.2046403 -11.7758778 26.1851584 1.1857097 2.357370e-01
#> 36 6 vs. 1 3.1928217 -1.5007756 7.8864191 2.1249219 3.359313e-02
#> 37 6 vs. 2 6.1316610 1.1242703 11.1390517 3.8250824 1.307284e-04
#> 38 6 vs. 3 -1.2332497 -4.9817460 2.5152466 -1.0277040 3.040891e-01
#> 39 6 vs. 4 1.7055896 -2.9450359 6.3562151 1.1456113 2.519560e-01
#> 40 6 vs. 5 -5.9852071 -24.8022792 12.8318650 -0.9935764 3.204291e-01
#> 41 6 vs. 7 -4.7657739 -23.8900601 14.3585123 -0.7784350 4.363126e-01
#> 42 6 vs. 8 1.2194332 -1.7667001 4.2055665 1.2756248 2.020882e-01
#> 43 7 vs. 1 7.9585956 -11.3418929 27.2590842 1.2880783 1.977187e-01
#> 44 7 vs. 2 10.8974349 -8.4817540 30.2766238 1.7565593 7.899295e-02
#> 45 7 vs. 3 3.5325242 -15.5601504 22.6251989 0.5779530 5.632959e-01
#> 46 7 vs. 4 6.4713635 -12.8187199 25.7614469 1.0479386 2.946669e-01
#> 47 7 vs. 5 -1.2194332 -4.2055665 1.7667001 -1.2756248 2.020882e-01
#> 48 7 vs. 6 4.7657739 -14.3585123 23.8900601 0.7784350 4.363126e-01
#> 49 7 vs. 8 5.9852071 -12.8318650 24.8022792 0.9935764 3.204291e-01
#> 50 8 vs. 1 1.9733885 -2.9736879 6.9204650 1.2460576 2.127433e-01
#> 51 8 vs. 2 4.9122278 -0.3335010 10.1579567 2.9251409 3.443003e-03
#> 52 8 vs. 3 -2.4526829 -6.5140784 1.6087127 -1.8864280 5.923730e-02
#> 53 8 vs. 4 0.4861564 -4.4201688 5.3924816 0.3095236 7.569232e-01
#> 54 8 vs. 5 -7.2046403 -26.1851584 11.7758778 -1.1857097 2.357370e-01
#> 55 8 vs. 6 -1.2194332 -4.2055665 1.7667001 -1.2756248 2.020882e-01
#> 56 8 vs. 7 -5.9852071 -24.8022792 12.8318650 -0.9935764 3.204291e-01
Return the value of non-centralized parameter for the chi-square distribution.
Exports estimated strategy-specified means and their confidence interval, as well as the asymptotic variance-covariance matrix for these estimates.
smartsize(delta=0.0435,df=5,global=TRUE,alpha=0.05,beta=0.20)
#> The sample size is for total subjects
#> registered in the trial.
#> NCP delta df N
#> 1 12.8249 0.0435 5 295
SEQ <- 1:8
A1 <- c(rep(0,4),rep(1,4))
PI1 <- rep(0.5,8)
O2 <- rep(c(0,0,1,1),2)
P2 <- c(0.7,0.7,0.3,0.3,0.6,0.6,0.4,0.4)
A2 <- rep(c(0,1),4)
PI2 <- rep(0.5,8)
MEAN <- 1:8
SD <- rep(10,8)
SIMatrix <- as.data.frame(cbind(SEQ,A1,PI1,O2,P2,A2,PI2,MEAN,SD))
smartsize(SIMatrix,global=TRUE,alpha=0.05,beta=0.20)
#> The sample size is for total subjects
#> registered in the trial.
#> NCP delta df N
#> 1 12.8249 0.04351961 5 295