Package 'TRexSelector' August 17, 2022 ``` Title T-Rex Selector: High-Dimensional Variable Selection & FDR Control Version 0.0.1 Date 2022-08-15 Description Performs fast variable selection in high-dimensional settings while controlling the false discovery rate (FDR) at a user-defined target level. The package is based on the paper Machkour, Muma, and Palomar (2021) <arXiv:2110.06048>. Maintainer Jasin Machkour < jasin.machkour@tu-darmstadt.de> URL https://github.com/jasinmachkour/trex, https://arxiv.org/abs/2110.06048 BugReports https://github.com/jasinmachkour/trex/issues License GPL (>= 3) Encoding UTF-8 LazyData true RoxygenNote 7.2.0 Suggests knitr, rmarkdown, ggplot2, patchwork, testthat (>= 3.0.0) Config/testthat/edition 3 Imports MASS, stats, tlars, parallel, doParallel, foreach, doRNG, methods, glmnet Depends R (>= 2.10) VignetteBuilder knitr NeedsCompilation no Author Jasin Machkour [aut, cre], Simon Tien [aut], Daniel P. Palomar [aut], Michael Muma [aut] Repository CRAN Date/Publication 2022-08-17 06:50:06 UTC ``` 2 add_dummies # **R** topics documented: | add_dummies | | |--------------------|---| | add_dummies_GVS | 3 | | FDP | 3 | | fdp_hat | 4 | | Gauss_data | 4 | | lm_dummy | | | Phi_prime_fun | | | random_experiments | 8 | | select_var_fun | 9 | | TPP 1 | (| | trex | 1 | | | | Index 13 add_dummies Add dummy predictors to the original predictor matrix # Description Sample num_dummies dummy predictors from the univariate standard normal distribution and append them to the predictor matrix X. # Usage ``` add_dummies(X, num_dummies) ``` #### **Arguments** X Real valued predictor matrix. #### Value Enlarged predictor matrix. # Examples ``` set.seed(123) n <- 50 p <- 100 X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p) add_dummies(X = X, num_dummies = p)</pre> ``` $add_dummies_GVS$ 3 | the T-Rex+GVS selector | add_dummies_GVS | Add dummy predictors to the original predictor matrix, as required by the T-Rex+GVS selector | |------------------------|-----------------|--| |------------------------|-----------------|--| # Description Generate num_dummies dummy predictors as required for the T-Rex+GVS selector and append them to the predictor matrix X. # Usage ``` add_dummies_GVS(X, num_dummies, corr_max = 0.5) ``` #### **Arguments** corr_max Χ Real valued predictor matrix. num_dummies Number of dummies that are appended to the predictor matrix. Has to be a multiple of the number of original variables. Maximum allowed correlation between any two predictors from different clus- ters. #### Value Enlarged predictor matrix for the T-Rex+GVS selector. #### **Examples** ``` set.seed(123) n <- 50 p <- 100 X \leftarrow matrix(stats::rnorm(n * p), nrow = n, ncol = p) add_dummies_GVS(X = X, num_dummies = p) ``` **FDP** False discovery proportion (FDP) #### **Description** Computes the FDP based on the estimated and the true regression coefficient vectors. #### Usage ``` FDP(beta_hat, beta, eps = .Machine$double.eps) ``` 4 fdp_hat #### **Arguments** beta_hat Estimated regression coefficient vector. beta True regression coefficient vector. eps Numerical zero. #### Value False discovery proportion (FDP). # **Examples** ``` data("Gauss_data") X <- Gauss_data$X y <- c(Gauss_data$y) beta <- Gauss_data$beta set.seed(1234) res <- trex(X, y) beta_hat <- res$selected_var FDP(beta_hat = beta_hat, beta = beta)</pre> ``` fdp_hat Computes the conservative FDP estimate of the T-Rex selector #### Description Computes the conservative FDP estimate of the T-Rex selector #### Usage ``` fdp_hat(V, Phi, Phi_prime, T_stop, num_dummies, eps = .Machine$double.eps) ``` # **Arguments** V Voting level grid. Phi Vector of relative occurrences. Phi_prime Vector of deflated relative occurrences. T_stop Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped. num_dummies Number of dummies. eps Numerical zero. #### Value Vector of conservative FDP estimates for each value of the voting level grid. Gauss_data 5 Gauss_data Toy data generated from a Gaussian linear model #### **Description** A data set containing a predictor matrix X with n = 50 observations and p = 100 variables (predictors), and a sparse parameter vector beta with associated support vector. #### Usage ``` Gauss_data ``` #### **Format** A list containing a matrix X and vectors y, beta, and support: ``` X Predictor matrix, n = 50, p = 100. ``` y Response vector. beta Parameter vector. support Support vector. #### **Examples** ``` # Generated as follows: set.seed(789) n <- 50 p <- 100 X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p) beta <- c(rep(5, times = 3), rep(0, times = 97)) support <- beta > 0 y <- X %*% beta + stats::rnorm(n) Gauss_data <- list(X = X, y = y, beta = beta, support = support)</pre> ``` 1m_dummy Perform one random experiment # Description Run one random experiment of the T-Rex selector, i.e., generates dummies, appends them to the predictor matrix, and runs the forward selection algorithm until it is terminated after T_stop dummies have been selected. 6 lm_dummy #### Usage ``` lm_dummy(X, y, model_tlars, T_stop = 1, num_dummies = ncol(X), method = "trex", type = "lar", corr_max = 0.5, lambda_2_lars = NULL, early_stop = TRUE, verbose = TRUE, intercept = FALSE, standardize = TRUE) ``` #### **Arguments** | Χ | Real | valued | predictor | matrix. | |---|------|--------|-----------|---------| | | | | | | y Response vector. model_tlars Object of the class tlars_cpp. It contains all state variables of the previous T- LARS step (necessary for warm-starts, i.e., restarting the forward selection pro- cess exactly where it was previously terminated). T_stop Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped. method 'trex' for the T-Rex selector and 'trex+GVS' for the T-Rex+GVS selector type 'lar' for 'LARS' and 'lasso' for Lasso. corr_max Maximum allowed correlation between any two predictors from different clus- ters. lambda_2_lars lambda_2-value for LARS-based Elastic Net. early_stop Logical. If TRUE, then the forward selection process is stopped after T_stop dummies have been included. Otherwise the entire solution path is computed. verbose Logical. If TRUE progress in computations is shown when performing T-LARS steps on the created model. intercept Logical. If TRUE an intercept is included. standardize Logical. If TRUE the predictors are standardized and the response is centered. #### Value Object of the class tlars_cpp. Phi_prime_fun 7 #### **Examples** ``` set.seed(123) eps <- .Machine$double.eps n <- 75 p <- 100 X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p) beta <- c(rep(3, times = 3), rep(0, times = 97)) y <- X %*% beta + rnorm(n) res <- lm_dummy(X = X, y = y, T_stop = 1, num_dummies = 5 * p) beta_hat <- res$get_beta()[seq(p)] support <- abs(beta_hat) > eps support ``` Phi_prime_fun Computes the Deflated Relative Occurrences #### Description Computes the matrix of deflated relative occurrences for all variables (i.e., j = 1,..., p) and for $T = 1,..., T_stop$. #### Usage ``` Phi_prime_fun(p, T_stop, num_dummies, phi_T_mat, Phi, eps = .Machine$double.eps) ``` # Arguments p Number of candidate variables.T_stop Number of included dummies after Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped. num_dummies Number of dummies phi_T_mat Matrix of relative occurrences for all variables (i.e., j = 1,..., p) and for T = 1,..., p T_stop. Phi Vector of relative occurrences for all variables (i.e., j = 1,..., p) at $T = T_stop$. eps Numerical zero. #### Value Matrix of deflated relative occurrences for all variables (i.e., j = 1,..., p) and for $T = 1,..., T_stop$. 8 random_experiments random_experiments Run K random experiments Description Run K random experiments and compute the matrix of relative occurrences for all variables and all numbers of included variables before stopping. ### Usage ``` random_experiments(Χ, у, K = 20, T_{stop} = 1, num_dummies = ncol(X), method = "trex", type = "lar", corr_max = 0.5, lambda_2_lars = NULL, early_stop = TRUE, lars_state_list, verbose = TRUE, intercept = FALSE, standardize = TRUE, parallel_process = FALSE, parallel_max_cores = min(K, max(1, parallel::detectCores(logical = FALSE))), seed = NULL, eps = .Machine$double.eps) ``` # Arguments X | | · · · · · · · · · · · · · · · · · · · | |---------------|--| | у | Response vector. | | K | Number of random experiments. | | T_stop | Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped. | | num_dummies | Number of dummies that are appended to the predictor matrix. | | method | 'trex' for the T-Rex selector and 'trex+GVS' for the T-Rex+GVS selector | | type | 'lar' for 'LARS' and 'lasso' for Lasso. | | corr_max | Maximum allowed correlation between any two predictors from different clusters. | | lambda_2_lars | lambda_2-value for LARS-based Elastic Net. | Real valued predictor matrix. select_var_fun 9 early_stop verbose Logical. If TRUE, then the forward selection process is stopped after T_stop dummies have been included. Otherwise the entire solution path is computed. lars_state_list If parallel_process = TRUE: List of state variables of the previous T-LARS steps of the K random experiments (necessary for warm-starts, i.e., restarting the forward selection process exactly where it was previously terminated). If parallel_process = FALSE: List of objects of the class tlars_cpp associated with the K random experiments (necessary for warm-starts, i.e., restarting the forward selection process exactly where it was previously terminated). Logical. If TRUE progress in computations is shown. intercept Logical. If TRUE an intercept is included. standardize Logical. If TRUE the predictors are standardized and the response is centered. parallel_process Logical. If TRUE random experiments are executed in parallel. parallel_max_cores Maximum number of cores to be used for parallel processing (default: mini- mumNumber of random experiments K, number of physical cores). seed Seed for random number generator (ignored if parallel_process = FALSE). eps Numerical zero. #### Value List containing the results of the K random experiments. #### **Examples** ``` set.seed(123) data("Gauss_data") X <- Gauss_data$X y <- c(Gauss_data$y) res <- random_experiments(X = X, y = y) relative_occurrences_matrix <- res$phi_T_mat relative_occurrences_matrix</pre> ``` select_var_fun Compute set of selected variables #### **Description** Computes the set of selected variables and returns the estimated support vector for the T-Rex selector. #### Usage ``` select_var_fun(p, tFDR, T_stop, FDP_hat_mat, Phi_mat, V) ``` 10 TPP #### **Arguments** p Number of candidate variables. tFDR Target FDR level (between 0 and 1, i.e., 0% and 100%). T_stop Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped. FDP_hat_mat Matrix whose rows are the vectors of conservative FDP estimates for each value of the voting level grid. Phi_mat Matrix of relative occurrences as determined by the T-Rex calibration algorithm. V Voting level grid. #### Value Estimated support vector. TPP True positive proportion (TPP) #### **Description** Computes the TPP based on the estimated and the true regression coefficient vectors. #### Usage ``` TPP(beta_hat, beta, eps = .Machine$double.eps) ``` #### **Arguments** beta_hat Estimated regression coefficient vector. beta True regression coefficient vector. eps Numerical zero. #### Value True positive proportion (TPP). #### **Examples** ``` data("Gauss_data") X <- Gauss_data$X y <- c(Gauss_data$y) beta <- Gauss_data$beta set.seed(1234) res <- trex(X, y) beta_hat <- res$selected_var TPP(beta_hat = beta_hat, beta = beta)</pre> ``` trex 11 trex Run the T-Rex selector #### **Description** Run the T-Rex selector The T-Rex selector performs fast variable selection in high-dimensional settings while controlling the false discovery rate (FDR) at a user-defined target level. #### Usage ``` trex(Χ, у, tFDR = 0.2, K = 20, max_num_dummies = 10, max_T_stop = TRUE, method = "trex", type = "lar", corr_max = 0.5, lambda_2_lars = NULL, parallel_process = FALSE, parallel_max_cores = min(K, max(1, parallel::detectCores(logical = FALSE))), seed = NULL, eps = .Machine$double.eps, verbose = TRUE) ``` #### **Arguments** | X Real valued predictor ma | ıtrix. | |----------------------------|--------| |----------------------------|--------| y Response vector. tFDR Target FDR level (between 0 and 1, i.e., 0% and 100%). K Number of random experiments. max_num_dummies Integer factor determining the maximum number of dummies as a multiple of the number of original variables p (i.e., num_dummies = max_num_dummies * p). max_T_stop If TRUE the maximum number of dummies that can be included before stopping is set to ceiling(n/2), where n is the number of data points/observations. method 'trex' for the T-Rex selector and 'trex+GVS' for the T-Rex+GVS selector. type 'lar' for 'LARS' and 'lasso' for Lasso. corr_max Maximum allowed correlation between any two predictors from different clus- ters. 12 trex ``` lambda_2_lars lambda_2-value for LARS-based Elastic Net. parallel_process Logical. If TRUE random experiments are executed in parallel. parallel_max_cores ``` Maximum number of cores to be used for parallel processing (default: mini- mumNumber of random experiments K, number of physical cores). seed Seed for random number generator (ignored if parallel_process = FALSE). eps Numerical zero. verbose Logical. If TRUE progress in computations is shown. #### Value A list containing the estimated support vector and additional information, including the number of used dummies and the number of included dummies before stopping. # **Examples** ``` data("Gauss_data") X <- Gauss_data$X y <- c(Gauss_data$y) set.seed(1234) res <- trex(X = X, y = y) selected_var <- res$selected_var selected_var</pre> ``` # **Index**