
Package ‘VGAM’
July 6, 2022

Version 1.1-7

Date 2022-07-04

Title Vector Generalized Linear and Additive Models

Author Thomas Yee [aut, cre] (<https://orcid.org/0000-0002-9970-3907>),
Cleve Moler [ctb] (author of several LINPACK routines)

Maintainer Thomas Yee <t.yee@auckland.ac.nz>

Depends R (>= 3.5.0), methods, stats, stats4, splines

Suggests VGAMextra, MASS, mgcv

Enhances VGAMdata

Description An implementation of about 6 major classes of
statistical regression models. The central algorithm is
Fisher scoring and iterative reweighted least squares.
At the heart of this package are the vector generalized linear
and additive model (VGLM/VGAM) classes. VGLMs can be loosely
thought of as multivariate GLMs. VGAMs are data-driven
VGLMs that use smoothing. The book ``Vector Generalized
Linear and Additive Models: With an Implementation in R''
(Yee, 2015) <DOI:10.1007/978-1-4939-2818-7> gives details of
the statistical framework and the package. Currently only
fixed-effects models are implemented. Many (100+) models and
distributions are estimated by maximum likelihood estimation
(MLE) or penalized MLE. The other classes are RR-VGLMs
(reduced-rank VGLMs), quadratic RR-VGLMs, reduced-rank VGAMs,
RCIMs (row-column interaction models)---these classes perform
constrained and unconstrained quadratic ordination (CQO/UQO)
models in ecology, as well as constrained additive ordination
(CAO). Hauck-Donner effect detection is implemented.
Note that these functions are subject to change;
see the NEWS and ChangeLog files for latest changes.

License GPL-3

URL https://www.stat.auckland.ac.nz/~yee/VGAM/

NeedsCompilation yes

1

https://orcid.org/0000-0002-9970-3907
https://doi.org/10.1007/978-1-4939-2818-7
https://www.stat.auckland.ac.nz/~yee/VGAM/

2 R topics documented:

BuildVignettes yes

LazyLoad yes

LazyData yes

Repository CRAN

Date/Publication 2022-07-06 09:50:02 UTC

R topics documented:
VGAM-package . 13
A1A2A3 . 16
AA.Aa.aa . 18
AB.Ab.aB.ab . 19
ABO . 20
acat . 21
add1.vglm . 23
AICvlm . 24
alaplace . 26
alaplaceUC . 31
altered . 32
amlbinomial . 34
amlexponential . 36
amlnormal . 38
amlpoisson . 40
anova.vglm . 43
AR1 . 45
AR1EIM . 48
auuc . 52
aux.posbernoulli.t . 53
backPain . 54
beggs . 55
bell . 56
Benford . 57
Benini . 58
benini1 . 60
Betabinom . 61
betabinomial . 65
betabinomialff . 68
betaff . 71
Betageom . 73
betageometric . 74
betaII . 76
Betanorm . 77
betaprime . 79
betaR . 80
Biamhcop . 82
biamhcop . 83

R topics documented: 3

Biclaytoncop . 85
biclaytoncop . 86
BICvlm . 88
Bifgmcop . 89
bifgmcop . 90
bifgmexp . 91
bifrankcop . 93
bigamma.mckay . 94
bigumbelIexp . 96
bilogis . 97
bilogistic . 99
Binom2.or . 100
binom2.or . 102
Binom2.rho . 105
binom2.rho . 107
binomialff . 110
Binorm . 112
binormal . 114
binormalcop . 116
Binormcop . 117
Biplackett . 119
biplackettcop . 120
biplot-methods . 122
Bisa . 122
bisa . 123
Bistudentt . 125
bistudentt . 126
bmi.nz . 128
borel.tanner . 129
Bort . 130
Brat . 131
brat . 133
bratt . 135
calibrate . 137
calibrate-methods . 138
calibrate.qrrvglm . 139
calibrate.qrrvglm.control . 142
calibrate.rrvglm . 144
calibrate.rrvglm.control . 146
cao . 147
cao.control . 151
Card . 154
cardioid . 156
cauchitlink . 157
cauchy . 159
cdf.lmscreg . 161
cens.gumbel . 163
cens.normal . 165

4 R topics documented:

cens.poisson . 166
cfibrosis . 169
cgo . 170
chest.nz . 171
chinese.nz . 172
chisq . 173
clo . 174
clogloglink . 175
coalminers . 177
Coef . 178
Coef.qrrvglm . 179
Coef.qrrvglm-class . 181
Coef.rrvglm . 183
Coef.rrvglm-class . 184
Coef.vlm . 185
coefvgam . 186
coefvlm . 187
CommonVGAMffArguments . 188
concoef . 196
concoef-methods . 197
confintvglm . 198
constraints . 200
corbet . 202
cqo . 203
crashes . 210
cratio . 211
cumulative . 213
Dagum . 216
dagum . 218
dAR1 . 220
deermice . 221
deplot.lmscreg . 222
depvar . 224
dextlogF . 225
df.residual . 226
dgaitdplot . 227
dhuber . 230
Diffzeta . 232
diffzeta . 233
dirichlet . 235
dirmul.old . 236
dirmultinomial . 238
dlogF . 241
double.cens.normal . 242
double.expbinomial . 243
ducklings . 246
eCDF . 247
enzyme . 248

R topics documented: 5

erf . 249
erlang . 250
Expectiles-Exponential . 251
Expectiles-Normal . 253
Expectiles-sc.t2 . 254
Expectiles-Uniform . 256
expexpff . 258
expexpff1 . 260
expgeom . 262
expgeometric . 263
expint . 265
explink . 266
explog . 268
explogff . 269
exponential . 270
exppois . 272
exppoisson . 274
extlogF1 . 275
familyname . 278
Felix . 279
felix . 280
fff . 281
fill1 . 282
finney44 . 285
fisherzlink . 286
Fisk . 288
fisk . 289
fittedvlm . 291
fix.crossing . 292
flourbeetle . 294
Foldnorm . 295
foldnormal . 296
foldsqrtlink . 298
formulavlm . 300
Frank . 301
Frechet . 303
frechet . 304
freund61 . 306
Gaitdbinom . 308
Gaitdlog . 311
gaitdlog . 313
Gaitdnbinom . 316
gaitdnbinomial . 318
Gaitdpois . 322
gaitdpoisson . 325
Gaitdzeta . 332
gaitdzeta . 334
gamma1 . 337

6 R topics documented:

gamma2 . 338
gammahyperbola . 340
gammaR . 341
garma . 343
GenbetaII . 345
genbetaII . 346
gengamma.stacy . 349
gengammaUC . 351
Genpois0 . 352
Genpois1 . 354
genpoisson0 . 356
genpoisson1 . 358
genpoisson2 . 360
genray . 361
genrayleigh . 363
geometric . 364
get.smart . 366
get.smart.prediction . 367
gev . 368
gevUC . 371
gew . 373
goffset . 374
Gompertz . 375
gompertz . 377
gordlink . 378
gpd . 380
gpdUC . 384
grain.us . 385
grc . 386
gumbel . 391
Gumbel-II . 394
gumbelII . 396
gumbelUC . 398
guplot . 399
has.interceptvlm . 401
hatvalues . 402
hdeff . 404
hdeffsev . 407
hormone . 409
hspider . 411
huber2 . 413
Huggins89.t1 . 414
hunua . 416
hyperg . 418
hypersecant . 419
Hzeta . 421
hzeta . 422
iam . 423

R topics documented: 7

identitylink . 425
Influence . 426
inv.binomial . 427
Inv.gaussian . 429
inv.gaussianff . 430
Inv.lomax . 432
inv.lomax . 433
Inv.paralogistic . 435
inv.paralogistic . 436
is.buggy . 438
is.crossing . 439
is.parallel . 440
is.smart . 441
is.zero . 442
kendall.tau . 443
KLD . 444
Kumar . 446
kumar . 447
lakeO . 448
lambertW . 450
laplace . 451
laplaceUC . 453
latvar . 454
leipnik . 456
lerch . 457
leukemia . 459
levy . 459
lgamma1 . 461
lgammaUC . 463
Lindley . 464
lindley . 465
linkfun . 467
Links . 468
Lino . 471
lino . 473
lirat . 475
lms.bcg . 476
lms.bcn . 478
lms.yjn . 481
Log . 484
log1mexp . 485
logclink . 486
logF . 487
logff . 489
logistic . 490
logitlink . 492
logitoffsetlink . 495
loglaplace . 496

8 R topics documented:

loglapUC . 500
logLik.vlm . 501
loglinb2 . 503
loglinb3 . 504
loglink . 506
logloglink . 507
lognormal . 509
logofflink . 510
Lomax . 511
lomax . 513
lpossums . 514
lqnorm . 515
lrt.stat . 517
lrtest . 519
lvplot . 520
lvplot.qrrvglm . 522
lvplot.rrvglm . 526
machinists . 529
Makeham . 530
makeham . 531
margeff . 533
marital.nz . 535
Max . 536
Maxwell . 538
maxwell . 539
mccullagh89 . 540
meangaitd . 542
melbmaxtemp . 543
meplot . 544
micmen . 546
mills.ratio . 548
mix2exp . 549
mix2normal . 551
mix2poisson . 553
MNSs . 555
model.framevlm . 557
model.matrixqrrvglm . 558
model.matrixvlm . 559
moffset . 561
multilogitlink . 563
multinomial . 564
Nakagami . 568
nakagami . 570
nbcanlink . 572
nbordlink . 574
negbinomial . 576
negbinomial.size . 582
normal.vcm . 584

R topics documented: 9

nparam.vlm . 588
olympics . 589
Opt . 590
ordpoisson . 592
ordsup . 594
oxtemp . 596
Paralogistic . 596
paralogistic . 598
Pareto . 599
paretoff . 601
ParetoIV . 603
paretoIV . 605
Perks . 607
perks . 608
perspqrrvglm . 610
pgamma.deriv . 613
pgamma.deriv.unscaled . 614
plotdeplot.lmscreg . 616
plotdgaitd.vglm . 617
plotqrrvglm . 618
plotqtplot.lmscreg . 620
plotrcim0 . 622
plotvgam . 624
plotvgam.control . 626
plotvglm . 628
pneumo . 629
poisson.points . 630
poissonff . 632
PoissonPoints . 634
Polono . 635
pordlink . 637
posbernoulli.b . 639
posbernoulli.t . 642
posbernoulli.tb . 645
posbernUC . 648
posbinomial . 649
Posgeom . 651
posnegbinomial . 653
Posnorm . 656
posnormal . 657
pospoisson . 659
powerlink . 661
prats . 662
predictqrrvglm . 663
predictvglm . 665
prentice74 . 667
prinia . 669
probitlink . 670

10 R topics documented:

profilevglm . 671
propodds . 673
prplot . 674
put.smart . 675
qrrvglm.control . 676
qtplot.gumbel . 681
qtplot.lmscreg . 683
Qvar . 685
qvar . 688
R2latvar . 689
Rank . 690
Rayleigh . 691
rayleigh . 693
Rcim . 695
rcqo . 696
rdiric . 700
rec.exp1 . 701
rec.normal . 703
reciprocallink . 704
residualsvglm . 705
rhobitlink . 708
Rice . 709
riceff . 710
rigff . 712
rlplot.gevff . 713
rootogram4 . 715
round2 . 717
rrar . 718
rrvglm . 720
rrvglm-class . 723
rrvglm.control . 726
rrvglm.optim.control . 729
ruge . 730
s . 731
sc.studentt2 . 733
score.stat . 734
seglines . 736
Select . 737
seq2binomial . 740
setup.smart . 741
Simplex . 743
simplex . 744
simulate.vlm . 745
Sinmad . 747
sinmad . 748
Skellam . 750
skellam . 751
skewnorm . 753

R topics documented: 11

skewnormal . 754
Slash . 756
slash . 757
sm.os . 759
sm.ps . 763
smart.expression . 765
smart.mode.is . 766
smartpred . 767
specials . 769
spikeplot . 770
sratio . 772
step4 . 774
studentt . 775
summarypvgam . 777
summaryvgam . 778
summaryvglm . 779
SURff . 782
SurvS4 . 784
SurvS4-class . 786
TIC . 787
Tobit . 788
tobit . 790
Tol . 794
Topple . 796
topple . 797
toxop . 798
Triangle . 799
triangle . 801
trim.constraints . 803
Trinorm . 805
trinormal . 806
trplot . 808
trplot.qrrvglm . 809
Trunc . 812
Truncpareto . 813
truncweibull . 815
ucberk . 817
uninormal . 818
UtilitiesVGAM . 820
V1 . 821
V2 . 822
vcovvlm . 823
venice . 825
vgam . 827
vgam-class . 831
vgam.control . 834
vglm . 836
vglm-class . 842

12 R topics documented:

vglm.control . 845
vglmff-class . 849
vonmises . 851
vplot.profile . 853
vsmooth.spline . 854
waitakere . 857
wald.stat . 858
waldff . 861
weibull.mean . 862
weibullR . 863
weightsvglm . 866
wine . 868
wrapup.smart . 869
yeo.johnson . 869
Yules . 871
yulesimon . 872
Zabinom . 873
zabinomial . 874
Zageom . 876
zageometric . 878
Zanegbin . 880
zanegbinomial . 881
Zapois . 884
zapoisson . 885
zero . 888
Zeta . 889
zeta . 890
zetaff . 893
Zibinom . 894
zibinomial . 896
Zigeom . 898
zigeometric . 900
Zinegbin . 902
zinegbinomial . 903
zipebcom . 906
Zipf . 909
zipf . 911
Zipfmb . 912
Zipois . 914
zipoisson . 916
Zoabeta . 920
zoabetaR . 921

Index 923

VGAM-package 13

VGAM-package Vector Generalized Linear and Additive Models and Associated Mod-
els

Description

VGAM provides functions for fitting vector generalized linear and additive models (VGLMs and
VGAMs), and associated models (Reduced-rank VGLMs, Quadratic RR-VGLMs, Reduced-rank
VGAMs). This package fits many models and distributions by maximum likelihood estimation
(MLE) or penalized MLE. Also fits constrained ordination models in ecology such as constrained
quadratic ordination (CQO).

Details

This package centers on the iteratively reweighted least squares (IRLS) algorithm. Other key words
include Fisher scoring, additive models, reduced-rank regression, penalized likelihood, and con-
strained ordination. The central modelling functions are vglm, vgam, rrvglm, rcim, cqo, cao.
Function vglm operates very similarly to glm but is much more general, and many methods func-
tions such as coef and predict are available. The package uses S4 (see methods-package).

Some companion packages: (1) VGAMdata contains data sets useful for illustrating VGAM. Some
of the big ones were initially from VGAM. Recently, some older VGAM family functions have
been shifted into VGAMdata too. (2) VGAMextra written by Victor Miranda has some additional
VGAM family and link functions, with a bent towards time series models. (3) svyVGAM provides
design-based inference, e.g., to survey sampling settings. This is because the weights argument of
vglm can be assigned any positive values including survey weights.

Compared to other similar packages, such as gamlss and mgcv, VGAM has more models imple-
mented (150+ of them) and they are not restricted to a location-scale-shape framework or (largely)
the 1-parameter exponential family. There is a general statistical framework behind it all, that once
grasped, makes regression modelling quite unified. Some features of the package are: (i) most
family functions handle multiple responses; (ii) reduced-rank regression is available by operating
on latent variables (optimal linear combinations of the explanatory variables); (iii) basic automatic
smoothing parameter selection is implemented for VGAMs, although it has to be refined; (iv) smart
prediction allows correct prediction of nested terms in the formula provided smart functions are
used.

The GLM and GAM classes are special cases of VGLMs and VGAMs. The VGLM/VGAM frame-
work is intended to be very general so that it encompasses as many distributions and models as
possible. VGLMs are limited only by the assumption that the regression coefficients enter through
a set of linear predictors. The VGLM class is very large and encompasses a wide range of multivari-
ate response types and models, e.g., it includes univariate and multivariate distributions, categorical
data analysis, extreme values, correlated binary data, quantile and expectile regression, time series
problems. Potentially, it can handle generalized estimating equations, survival analysis, bioassay
data and nonlinear least-squares problems.

Crudely, VGAMs are to VGLMs what GAMs are to GLMs. Two types of VGAMs are implemented:
1st-generation VGAMs with s use vector backfitting, while 2nd-generation VGAMs with sm.os
and sm.ps use O-splines and P-splines, do not use the backfitting algorithm, and have automatic
smoothing parameter selection. The former is older and is based on Yee and Wild (1996). The

14 VGAM-package

latter is more modern (Yee, Somchit and Wild, 2022) but it requires a reasonably large number of
observations to work well.

This package is the first to check for the Hauck-Donner effect (HDE) in regression models; see
hdeff. This is an aberration of the Wald statistics when the parameter estimates are too close to
the boundary of the parameter space. When present the p-value of a regression coefficient is biased
upwards so that a highly significant variable might be deemed nonsignificant. Thus the HDE can
create havoc for variable selection!

Somewhat related to the previous paragraph, hypothesis testing using the likelihood ratio test, Rao’s
score test (Lagrange multiplier test) and (modified) Wald’s test are all available; see summaryvglm.
For all regression coefficients of a model, taken one at a time, all three methods require further
IRLS iterations to obtain new values of the other regression coefficients after one of the coefficients
has had its value set (usually to 0). Hence the computation load is overall significant.

For a complete list of this package, use library(help = "VGAM"). New VGAM family functions
are continually being written and added to the package.

Warning

This package is undergoing continual development and improvement, therefore users should treat
everything as subject to change. This includes the family function names, argument names, many
of the internals, the use of link functions, and slot names. For example, all link functions may be
renamed so that they end in "link", e.g., loglink() instead of loglink(). Some future pain can
be avoided by using good programming techniques, e.g., using extractor/accessor functions such as
coef(), weights(), vcov(), predict(). Nevertheless, please expect changes in all aspects of the
package. See the NEWS file for a list of changes from version to version.

Author(s)

Thomas W. Yee, <t.yee@auckland.ac.nz>.
Maintainer: Thomas Yee <t.yee@auckland.ac.nz>.

References

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R.
New York, USA: Springer.

Yee, T. W. and Hastie, T. J. (2003) Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. and Stephenson, A. G. (2007) Vector generalized linear and additive extreme value
models. Extremes, 10, 1–19.

Yee, T. W. and Wild, C. J. (1996) Vector generalized additive models. Journal of the Royal Statisti-
cal Society, Series B, Methodological, 58, 481–493.

Yee, T. W. (2004) A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006) Constrained additive ordination. Ecology, 87, 203–213.

Yee, T. W. (2008) The VGAM Package. R News, 8, 28–39.

Yee, T. W. (2010) The VGAM package for categorical data analysis. Journal of Statistical Software,
32, 1–34. doi:10.18637/jss.v032.i10.

https://doi.org/10.18637/jss.v032.i10

VGAM-package 15

Yee, T. W. (2014) Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

Yee, T. W. and Ma, C. (2022) Generally–altered, –inflated, –truncated and –deflated regression,
with application to heaped and seeped data. In preparation.

Yee, T. W. (2022) On the Hauck-Donner effect in Wald tests: Detection, tipping points and param-
eter space characterization, Journal of the American Statistical Association, in press.

Yee, T. W. and Somchit, C. and Wild, C. J. (2022) Penalized vector generalized additive models.
Manuscript in preparation.

My website for the VGAM package and book is at https://www.stat.auckland.ac.nz/~yee/.
There are some resources there, especially as relating to my book and new features added to VGAM.

See Also

vglm, vgam, rrvglm, rcim, cqo, TypicalVGAMfamilyFunction, CommonVGAMffArguments, Links,
hdeff, https://CRAN.R-project.org/package=VGAM.

Examples

Example 1; proportional odds model
pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo))
depvar(fit1) # Better than using fit1@y; dependent variable (response)
weights(fit1, type = "prior") # Number of observations
coef(fit1, matrix = TRUE) # p.179, in McCullagh and Nelder (1989)
constraints(fit1) # Constraint matrices
summary(fit1) # HDE could affect these results
summary(fit1, lrt0 = TRUE, score0 = TRUE, wald0 = TRUE) # No HDE
hdeff(fit1) # Check for any Hauck-Donner effect

Example 2; zero-inflated Poisson model
zdata <- data.frame(x2 = runif(nn <- 2000))
zdata <- transform(zdata, pstr0 = logitlink(-0.5 + 1*x2, inverse = TRUE),

lambda = loglink(0.5 + 2*x2, inverse = TRUE))
zdata <- transform(zdata, y = rzipois(nn, lambda, pstr0 = pstr0))
with(zdata, table(y))
fit2 <- vglm(y ~ x2, zipoisson, data = zdata, trace = TRUE)
coef(fit2, matrix = TRUE) # These should agree with the above values

Example 3; fit a two species GAM simultaneously
fit3 <- vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(2, 3)),

binomialff(multiple.responses = TRUE), data = hunua)
coef(fit3, matrix = TRUE) # Not really interpretable
Not run: plot(fit3, se = TRUE, overlay = TRUE, lcol = 3:4, scol = 3:4)

ooo <- with(hunua, order(altitude))
with(hunua, matplot(altitude[ooo], fitted(fit3)[ooo,], type = "l",

lwd = 2, col = 3:4,
xlab = "Altitude (m)", ylab = "Probability of presence", las = 1,
main = "Two plant species' response curves", ylim = c(0, 0.8)))

https://www.stat.auckland.ac.nz/~yee/
https://CRAN.R-project.org/package=VGAM

16 A1A2A3

with(hunua, rug(altitude))
End(Not run)

Example 4; LMS quantile regression
fit4 <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero = 1),

data = bmi.nz, trace = TRUE)
head(predict(fit4))
head(fitted(fit4))
head(bmi.nz) # Person 1 is near the lower quartile among people his age
head(cdf(fit4))

Not run: par(mfrow = c(1,1), bty = "l", mar = c(5,4,4,3)+0.1, xpd=TRUE)
qtplot(fit4, percentiles = c(5,50,90,99), main = "Quantiles", las = 1,

xlim = c(15, 90), ylab = "BMI", lwd=2, lcol=4) # Quantile plot

ygrid <- seq(15, 43, len = 100) # BMI ranges
par(mfrow = c(1, 1), lwd = 2) # Density plot
aa <- deplot(fit4, x0 = 20, y = ygrid, xlab = "BMI", col = "black",

main = "Density functions at Age=20 (black), 42 (red) and 55 (blue)")
aa
aa <- deplot(fit4, x0 = 42, y = ygrid, add = TRUE, llty = 2, col = "red")
aa <- deplot(fit4, x0 = 55, y = ygrid, add = TRUE, llty = 4, col = "blue",

Attach = TRUE)
aa@post$deplot # Contains density function values

End(Not run)

Example 5; GEV distribution for extremes
(fit5 <- vglm(maxtemp ~ 1, gevff, data = oxtemp, trace = TRUE))
head(fitted(fit5))
coef(fit5, matrix = TRUE)
Coef(fit5)
vcov(fit5)
vcov(fit5, untransform = TRUE)
sqrt(diag(vcov(fit5))) # Approximate standard errors
Not run: rlplot(fit5)

A1A2A3 The A1A2A3 Blood Group System

Description

Estimates the three independent parameters of the the A1A2A3 blood group system.

Usage

A1A2A3(link = "logitlink", inbreeding = FALSE, ip1 = NULL, ip2 = NULL, iF = NULL)

A1A2A3 17

Arguments

link Link function applied to p1, p2 and f. See Links for more choices.

inbreeding Logical. Is there inbreeding?

ip1, ip2, iF Optional initial value for p1, p2 and f.

Details

The parameters p1 and p2 are probabilities, so that p3=1-p1-p2 is the third probability. The param-
eter f is the third independent parameter if inbreeding = TRUE. If inbreeding = FALSE then f = 0
and Hardy-Weinberg Equilibrium (HWE) is assumed.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The input can be a 6-column matrix of counts, with columns corresponding to A1A1, A1A2, A1A3,
A2A2, A2A3, A3A3 (in order). Alternatively, the input can be a 6-column matrix of proportions (so
each row adds to 1) and the weights argument is used to specify the total number of counts for each
row.

Author(s)

T. W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, AB.Ab.aB.ab, ABO, MNSs.

Examples

ymat <- cbind(108, 196, 429, 143, 513, 559)
fit <- vglm(ymat ~ 1, A1A2A3(link = probitlink), trace = TRUE, crit = "coef")
fit <- vglm(ymat ~ 1, A1A2A3(link = logitlink, ip1 = 0.3, ip2 = 0.3, iF = 0.02),

trace = TRUE, crit = "coef")
Coef(fit) # Estimated p1 and p2
rbind(ymat, sum(ymat) * fitted(fit))
sqrt(diag(vcov(fit)))

18 AA.Aa.aa

AA.Aa.aa The AA-Aa-aa Blood Group System

Description

Estimates the parameter of the AA-Aa-aa blood group system, with or without Hardy Weinberg
equilibrium.

Usage

AA.Aa.aa(linkp = "logitlink", linkf = "logitlink", inbreeding = FALSE,
ipA = NULL, ifp = NULL, zero = NULL)

Arguments

linkp, linkf Link functions applied to pA and f. See Links for more choices.

ipA, ifp Optional initial values for pA and f.

inbreeding Logical. Is there inbreeding?

zero See CommonVGAMffArguments for information.

Details

This one or two parameter model involves a probability called pA. The probability of getting a
count in the first column of the input (an AA) is pA*pA. When inbreeding = TRUE, an additional
parameter f is used. If inbreeding = FALSE then f = 0 and Hardy-Weinberg Equilibrium (HWE)
is assumed. The EIM is used if inbreeding = FALSE.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Setting inbreeding = FALSE makes estimation difficult with non-intercept-only models. Currently,
this code seems to work with intercept-only models.

Note

The input can be a 3-column matrix of counts, where the columns are AA, Ab and aa (in order).
Alternatively, the input can be a 3-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.

Author(s)

T. W. Yee

AB.Ab.aB.ab 19

References

Weir, B. S. (1996). Genetic Data Analysis II: Methods for Discrete Population Genetic Data,
Sunderland, MA: Sinauer Associates, Inc.

See Also

AB.Ab.aB.ab, ABO, A1A2A3, MNSs.

Examples

y <- cbind(53, 95, 38)
fit1 <- vglm(y ~ 1, AA.Aa.aa, trace = TRUE)
fit2 <- vglm(y ~ 1, AA.Aa.aa(inbreeding = TRUE), trace = TRUE)
rbind(y, sum(y) * fitted(fit1))
Coef(fit1) # Estimated pA
Coef(fit2) # Estimated pA and f
summary(fit1)

AB.Ab.aB.ab The AB-Ab-aB-ab Blood Group System

Description

Estimates the parameter of the AB-Ab-aB-ab blood group system.

Usage

AB.Ab.aB.ab(link = "logitlink", init.p = NULL)

Arguments

link Link function applied to p. See Links for more choices.

init.p Optional initial value for p.

Details

This one parameter model involves a probability called p.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The input can be a 4-column matrix of counts, where the columns are AB, Ab, aB and ab (in order).
Alternatively, the input can be a 4-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.

20 ABO

Author(s)

T. W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, ABO, A1A2A3, MNSs.

Examples

ymat <- cbind(AB=1997, Ab=906, aB=904, ab=32) # Data from Fisher (1925)
fit <- vglm(ymat ~ 1, AB.Ab.aB.ab(link = "identitylink"), trace = TRUE)
fit <- vglm(ymat ~ 1, AB.Ab.aB.ab, trace = TRUE)
rbind(ymat, sum(ymat)*fitted(fit))
Coef(fit) # Estimated p
p <- sqrt(4*(fitted(fit)[, 4]))
p*p
summary(fit)

ABO The ABO Blood Group System

Description

Estimates the two independent parameters of the the ABO blood group system.

Usage

ABO(link.pA = "logitlink", link.pB = "logitlink", ipA = NULL, ipB = NULL,
ipO = NULL, zero = NULL)

Arguments

link.pA, link.pB

Link functions applied to pA and pB. See Links for more choices.
ipA, ipB, ipO Optional initial value for pA and pB and pO. A NULL value means values are

computed internally.
zero Details at CommonVGAMffArguments.

Details

The parameters pA and pB are probabilities, so that pO=1-pA-pB is the third probability. The proba-
bilities pA and pB correspond to A and B respectively, so that pO is the probability for O. It is easier
to make use of initial values for pO than for pB. In documentation elsewhere I sometimes use pA=p,
pB=q, pO=r.

acat 21

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The input can be a 4-column matrix of counts, where the columns are A, B, AB, O (in order).
Alternatively, the input can be a 4-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.

Author(s)

T. W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, AB.Ab.aB.ab, A1A2A3, MNSs.

Examples

ymat <- cbind(A = 725, B = 258, AB = 72, O = 1073) # Order matters, not the name
fit <- vglm(ymat ~ 1, ABO(link.pA = "identitylink",

link.pB = "identitylink"), trace = TRUE,
crit = "coef")

coef(fit, matrix = TRUE)
Coef(fit) # Estimated pA and pB
rbind(ymat, sum(ymat) * fitted(fit))
sqrt(diag(vcov(fit)))

acat Ordinal Regression with Adjacent Categories Probabilities

Description

Fits an adjacent categories regression model to an ordered (preferably) factor response.

Usage

acat(link = "loglink", parallel = FALSE, reverse = FALSE,
zero = NULL, whitespace = FALSE)

22 acat

Arguments

link Link function applied to the ratios of the adjacent categories probabilities. See
Links for more choices.

parallel A logical, or formula specifying which terms have equal/unequal coefficients.

reverse Logical. By default, the linear/additive predictors used are ηj = log(P [Y =
j + 1]/P [Y = j]) for j = 1, . . . ,M . If reverse is TRUE then ηj = log(P [Y =
j]/P [Y = j + 1]) will be used.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The values must be from the set {1,2,. . . ,M}.

whitespace See CommonVGAMffArguments for information.

Details

In this help file the response Y is assumed to be a factor with ordered values 1, 2, . . . ,M + 1, so
that M is the number of linear/additive predictors ηj .

By default, the log link is used because the ratio of two probabilities is positive.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

No check is made to verify that the response is ordinal if the response is a matrix; see ordered.

Note

The response should be either a matrix of counts (with row sums that are all positive), or an ordered
factor. In both cases, the y slot returned by vglm/vgam/rrvglm is the matrix of counts.

For a nominal (unordered) factor response, the multinomial logit model (multinomial) is more
appropriate.

Here is an example of the usage of the parallel argument. If there are covariates x1, x2 and
x3, then parallel = TRUE ~ x1 + x2 -1 and parallel = FALSE ~ x3 are equivalent. This would
constrain the regression coefficients for x1 and x2 to be equal; those of the intercepts and x3 would
be different.

Author(s)

Thomas W. Yee

References

Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Hoboken, NJ, USA: Wiley.
Tutz, G. (2012). Regression for Categorical Data, Cambridge: Cambridge University Press.
Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1–34. doi:10.18637/jss.v032.i10.

https://doi.org/10.18637/jss.v032.i10

add1.vglm 23

See Also

cumulative, cratio, sratio, multinomial, margeff, pneumo.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let, acat, data = pneumo))
coef(fit, matrix = TRUE)
constraints(fit)
model.matrix(fit)

add1.vglm Add or Drop All Possible Single Terms to/from a Model

Description

Compute all the single terms in the scope argument that can be added to or dropped from the model,
fit those models and compute a table of the changes in fit.

Usage

S3 method for class 'vglm'
add1(object, scope, test = c("none", "LRT"), k = 2, ...)
S3 method for class 'vglm'
drop1(object, scope, test = c("none", "LRT"), k = 2, ...)

Arguments

object a fitted vglm model object.

scope, k See drop1.glm.

test Same as drop1.glm but with fewer choices.

... further arguments passed to or from other methods.

Details

These functions are a direct adaptation of add1.glm and drop1.glm for vglm-class objects. For
drop1 methods, a missing scope is taken to be all terms in the model. The hierarchy is respected
when considering terms to be added or dropped: all main effects contained in a second-order inter-
action must remain, and so on. In a scope formula . means ‘what is already there’.

Compared to add1.glm and drop1.glm these functions are simpler, e.g., there is no Cp, F and Rao
(score) tests, x and scale arguments. Most models do not have a deviance, however twice the
log-likelihood differences are used to test the significance of terms.

The default output table gives AIC, defined as minus twice log likelihood plus 2pwhere p is the rank
of the model (the number of effective parameters). This is only defined up to an additive constant
(like log-likelihoods).

24 AICvlm

Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

In general, the same warnings in add1.glm and drop1.glm apply here. Furthermore, these functions
have not been rigorously tested for all models, so treat the results cautiously and please report any
bugs.

Care is needed to check that the constraint matrices of added terms are correct. Also, if object is of
the form vglm(..., constraints = list(x1 = cm1, x2 = cm2)) then add1.vglm may fail because
the constraints argument needs to have the constaint matrices for all terms.

Note

Most VGAM family functions do not compute a deviance, but instead the likelihood function is
evaluated at the MLE. Hence a column name "Deviance" only appears for a few models; and
almost always there is a column labelled "logLik".

See Also

step4vglm, vglm, extractAIC.vglm, trim.constraints, anova.vglm, backPain2, update.

Examples

data("backPain2", package = "VGAM")
summary(backPain2)
fit1 <- vglm(pain ~ x2 + x3 + x4, propodds, data = backPain2)
coef(fit1)
add1(fit1, scope = ~ x2 * x3 * x4, test = "LRT")
drop1(fit1, test = "LRT")
fit2 <- vglm(pain ~ x2 * x3 * x4, propodds, data = backPain2)
drop1(fit2)

AICvlm Akaike’s Information Criterion

Description

Calculates the Akaike information criterion for a fitted model object for which a log-likelihood
value has been obtained.

Usage

AICvlm(object, ..., corrected = FALSE, k = 2)
AICvgam(object, ..., k = 2)

AICrrvglm(object, ..., k = 2)
AICqrrvglm(object, ..., k = 2)
AICrrvgam(object, ..., k = 2)

AICvlm 25

Arguments

object Some VGAM object, for example, having class vglm-class.

... Other possible arguments fed into logLik in order to compute the log-likelihood.

corrected Logical, perform the finite sample correction?

k Numeric, the penalty per parameter to be used; the default is the classical AIC.

Details

The following formula is used for VGLMs: −2log-likelihood + knpar, where npar represents the
number of parameters in the fitted model, and k = 2 for the usual AIC. One could assign k = log(n)
(n the number of observations) for the so-called BIC or SBC (Schwarz’s Bayesian criterion). This
is the function AICvlm().

This code relies on the log-likelihood being defined, and computed, for the object. When comparing
fitted objects, the smaller the AIC, the better the fit. The log-likelihood and hence the AIC is only
defined up to an additive constant.

Any estimated scale parameter (in GLM parlance) is used as one parameter.

For VGAMs and CAO the nonlinear effective degrees of freedom for each smoothed component is
used. This formula is heuristic. These are the functions AICvgam() and AICcao().

The finite sample correction is usually recommended when the sample size is small or when the
number of parameters is large. When the sample size is large their difference tends to be negligible.
The correction is described in Hurvich and Tsai (1989), and is based on a (univariate) linear model
with normally distributed errors.

Value

Returns a numeric value with the corresponding AIC (or BIC, or . . . , depending on k).

Warning

This code has not been double-checked. The general applicability of AIC for the VGLM/VGAM
classes has not been developed fully. In particular, AIC should not be run on some VGAM family
functions because of violation of certain regularity conditions, etc.

Note

AIC has not been defined for QRR-VGLMs, yet.

Using AIC to compare posbinomial models with, e.g., posbernoulli.tb models, requires posbinomial(omit.constant
= TRUE). See posbinomial for an example. A warning is given if it suspects a wrong omit.constant
value was used.

Where defined, AICc(...) is the same as AIC(..., corrected = TRUE).

Author(s)

T. W. Yee.

26 alaplace

References

Hurvich, C. M. and Tsai, C.-L. (1989). Regression and time series model selection in small samples,
Biometrika, 76, 297–307.

See Also

VGLMs are described in vglm-class; VGAMs are described in vgam-class; RR-VGLMs are
described in rrvglm-class; AIC, BICvlm, TICvlm, drop1.vglm, extractAIC.vglm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = TRUE, reverse = TRUE), data = pneumo))
coef(fit1, matrix = TRUE)
AIC(fit1)
AICc(fit1) # Quick way
AIC(fit1, corrected = TRUE) # Slow way
(fit2 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = FALSE, reverse = TRUE), data = pneumo))
coef(fit2, matrix = TRUE)
AIC(fit2)
AICc(fit2)
AIC(fit2, corrected = TRUE)

alaplace Asymmetric Laplace Distribution Family Functions

Description

Maximum likelihood estimation of the 1, 2 and 3-parameter asymmetric Laplace distributions
(ALDs). The 2-parameter ALD may, with trepidation and lots of skill, sometimes be used as an
approximation of quantile regression.

Usage

alaplace1(tau = NULL, llocation = "identitylink",
ilocation = NULL, kappa = sqrt(tau/(1 - tau)), Scale.arg = 1,
ishrinkage = 0.95, parallel.locat = TRUE ~ 0, digt = 4,
idf.mu = 3, zero = NULL, imethod = 1)

alaplace2(tau = NULL, llocation = "identitylink", lscale = "loglink",
ilocation = NULL, iscale = NULL, kappa = sqrt(tau/(1 - tau)),
ishrinkage = 0.95,
parallel.locat = TRUE ~ 0,
parallel.scale = FALSE ~ 0,
digt = 4, idf.mu = 3, imethod = 1, zero = "scale")

alaplace 27

alaplace3(llocation = "identitylink", lscale = "loglink",
lkappa = "loglink", ilocation = NULL, iscale = NULL,
ikappa = 1, imethod = 1, zero = c("scale", "kappa"))

Arguments

tau, kappa Numeric vectors with 0 < τ < 1 and κ > 0. Most users will only specify
tau since the estimated location parameter corresponds to the τ th regression
quantile, which is easier to understand. See below for details.

llocation, lscale, lkappa

Character. Parameter link functions for location parameter ξ, scale parameter
σ, asymmetry parameter κ. See Links for more choices. For example, the
argument llocation can help handle count data by restricting the quantiles to
be positive (use llocation = "loglink"). However, llocation is best left
alone since the theory only works properly with the identity link.

ilocation, iscale, ikappa

Optional initial values. If given, it must be numeric and values are recycled to
the appropriate length. The default is to choose the value internally.

parallel.locat, parallel.scale

See the parallel argument of CommonVGAMffArguments. These arguments ap-
ply to the location and scale parameters. It generally only makes sense for the
scale parameters to be equal, hence set parallel.scale = TRUE. Note that as-
signing parallel.locat the value TRUE circumvents the seriously embarrass-
ing quantile crossing problem because all constraint matrices except for the in-
tercept correspond to a parallelism assumption.

imethod Initialization method. Either the value 1, 2, 3 or 4.

idf.mu Degrees of freedom for the cubic smoothing spline fit applied to get an initial
estimate of the location parameter. See vsmooth.spline. Used only when
imethod = 3.

ishrinkage How much shrinkage is used when initializing ξ. The value must be between 0
and 1 inclusive, and a value of 0 means the individual response values are used,
and a value of 1 means the median or mean is used. This argument is used only
when imethod = 4. See CommonVGAMffArguments for more information.

Scale.arg The value of the scale parameter σ. This argument may be used to compute
quantiles at different τ values from an existing fitted alaplace2() model (prac-
tical only if it has a single value). If the model has parallel.locat = TRUE then
only the intercept need be estimated; use an offset. See below for an example.

digt Passed into Round as the digits argument for the tau values; used cosmetically
for labelling.

zero See CommonVGAMffArguments for more information. Where possible, the de-
fault is to model all the σ and κ as an intercept-only term.

28 alaplace

Details

These VGAM family functions implement one variant of asymmetric Laplace distributions (ALDs)
suitable for quantile regression. Kotz et al. (2001) call it the ALD. Its density function is

f(y; ξ, σ, κ) =

√
2

σ

κ

1 + κ2
exp

(
−
√

2

σ κ
|y − ξ|

)
for y ≤ ξ, and

f(y; ξ, σ, κ) =

√
2

σ

κ

1 + κ2
exp

(
−
√

2κ

σ
|y − ξ|

)
for y > ξ. Here, the ranges are for all real y and ξ, positive σ and positive κ. The special case
κ = 1 corresponds to the (symmetric) Laplace distribution of Kotz et al. (2001). The mean is
ξ + σ(1/κ− κ)/

√
2 and the variance is σ2(1 + κ4)/(2κ2). The enumeration of the linear/additive

predictors used for alaplace2() is the first location parameter followed by the first scale parameter,
then the second location parameter followed by the second scale parameter, etc. For alaplace3(),
only a vector response is handled and the last (third) linear/additive predictor is for the asymmetry
parameter.

It is known that the maximum likelihood estimate of the location parameter ξ corresponds to the
regression quantile estimate of the classical quantile regression approach of Koenker and Bassett
(1978). An important property of the ALD is that P (Y ≤ ξ) = τ where τ = κ2/(1 + κ2) so
that κ =

√
τ/(1− τ). Thus alaplace2() might be used as an alternative to rq in the quantreg

package, although scoring is really an unsuitable algorithm for estimation here.

Both alaplace1() and alaplace2() can handle multiple responses, and the number of linear/additive
predictors is dictated by the length of tau or kappa. The functions alaplace1() and alaplace2()
can also handle multiple responses (i.e., a matrix response) but only with a single-valued tau or
kappa.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

In the extra slot of the fitted object are some list components which are useful, e.g., the sample
proportion of values which are less than the fitted quantile curves.

Warning

These functions are experimental and especially subject to change or withdrawal. The usual MLE
regularity conditions do not hold for this distribution so that misleading inferences may result, e.g.,
in the summary and vcov of the object. The 1-parameter ALD can be approximated by extlogF1
which has continuous derivatives and is recommended over alaplace1.

Care is needed with tau values which are too small, e.g., for count data with llocation = "loglink"
and if the sample proportion of zeros is greater than tau.

Note

These VGAM family functions use Fisher scoring. Convergence may be slow and half-stepping is
usual (although one can use trace = TRUE to see which is the best model and then use maxit to

alaplace 29

choose that model) due to the regularity conditions not holding. Often the iterations slowly crawl
towards the solution so monitoring the convergence (set trace = TRUE) is highly recommended.
Instead, extlogF1 is recommended.

For large data sets it is a very good idea to keep the length of tau/kappa low to avoid large memory
requirements. Then for parallel.locat = FALSE one can repeatedly fit a model with alaplace1()
with one τ at a time; and for parallel.locat = TRUE one can refit a model with alaplace1() with
one τ at a time but using offsets and an intercept-only model.

A second method for solving the noncrossing quantile problem is illustrated below in Example 3.
This is called the accumulative quantile method (AQM) and details are in Yee (2015). It does not
make the strong parallelism assumption.

The functions alaplace2() and laplace differ slightly in terms of the parameterizations.

Author(s)

Thomas W. Yee

References

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.

Kotz, S., Kozubowski, T. J. and Podgorski, K. (2001). The Laplace distribution and generaliza-
tions: a revisit with applications to communications, economics, engineering, and finance, Boston:
Birkhauser.

See Also

ralap, laplace, extlogF1, CommonVGAMffArguments, lms.bcn, amlnormal, sc.studentt2, simulate.vlm.

Examples

Not run:
Example 1: quantile regression with smoothing splines
set.seed(123); adata <- data.frame(x2 = sort(runif(n <- 500)))
mymu <- function(x) exp(-2 + 6*sin(2*x-0.2) / (x+0.5)^2)
adata <- transform(adata, y = rpois(n, lambda = mymu(x2)))
mytau <- c(0.25, 0.75); mydof <- 4

fit <- vgam(y ~ s(x2, df = mydof), data=adata, trace=TRUE, maxit = 900,
alaplace2(tau = mytau, llocat = "loglink",

parallel.locat = FALSE))
fitp <- vgam(y ~ s(x2, df = mydof), data = adata, trace=TRUE, maxit=900,

alaplace2(tau = mytau, llocat = "loglink", parallel.locat = TRUE))

par(las = 1); mylwd <- 1.5
with(adata, plot(x2, jitter(y, factor = 0.5), col = "orange",

main = "Example 1; green: parallel.locat = TRUE",
ylab = "y", pch = "o", cex = 0.75))

with(adata, matlines(x2, fitted(fit), col = "blue",
lty = "solid", lwd = mylwd))

with(adata, matlines(x2, fitted(fitp), col = "green",
lty = "solid", lwd = mylwd))

30 alaplace

finexgrid <- seq(0, 1, len = 1001)
for (ii in 1:length(mytau))

lines(finexgrid, qpois(p = mytau[ii], lambda = mymu(finexgrid)),
col = "blue", lwd = mylwd)

fit@extra # Contains useful information

Example 2: regression quantile at a new tau value from an existing fit
Nb. regression splines are used here since it is easier.
fitp2 <- vglm(y ~ sm.bs(x2, df = mydof), data = adata, trace = TRUE,

alaplace1(tau = mytau, llocation = "loglink",
parallel.locat = TRUE))

newtau <- 0.5 # Want to refit the model with this tau value
fitp3 <- vglm(y ~ 1 + offset(predict(fitp2)[, 1]),

alaplace1(tau = newtau, llocation = "loglink"), adata)
with(adata, plot(x2, jitter(y, factor = 0.5), col = "orange",

pch = "o", cex = 0.75, ylab = "y",
main = "Example 2; parallel.locat = TRUE"))

with(adata, matlines(x2, fitted(fitp2), col = "blue",
lty = 1, lwd = mylwd))

with(adata, matlines(x2, fitted(fitp3), col = "black",
lty = 1, lwd = mylwd))

Example 3: noncrossing regression quantiles using a trick: obtain
successive solutions which are added to previous solutions; use a log
link to ensure an increasing quantiles at any value of x.

mytau <- seq(0.2, 0.9, by = 0.1)
answer <- matrix(0, nrow(adata), length(mytau)) # Stores the quantiles
adata <- transform(adata, offsety = y*0)
usetau <- mytau
for (ii in 1:length(mytau)) {
cat("\n\nii = ", ii, "\n")

adata <- transform(adata, usey = y-offsety)
iloc <- ifelse(ii == 1, with(adata, median(y)), 1.0) # Well-chosen!
mydf <- ifelse(ii == 1, 5, 3) # Maybe less smoothing will help
fit3 <- vglm(usey ~ sm.ns(x2, df = mydf), data = adata, trace = TRUE,

alaplace2(tau = usetau[ii], lloc = "loglink", iloc = iloc))
answer[, ii] <- (if(ii == 1) 0 else answer[, ii-1]) + fitted(fit3)
adata <- transform(adata, offsety = answer[, ii])

}

Plot the results.
with(adata, plot(x2, y, col = "blue",

main = paste("Noncrossing and nonparallel; tau = ",
paste(mytau, collapse = ", "))))

with(adata, matlines(x2, answer, col = "orange", lty = 1))

Zoom in near the origin.
with(adata, plot(x2, y, col = "blue", xlim = c(0, 0.2), ylim = 0:1,

main = paste("Noncrossing and nonparallel; tau = ",

alaplaceUC 31

paste(mytau, collapse = ", "))))
with(adata, matlines(x2, answer, col = "orange", lty = 1))

End(Not run)

alaplaceUC The Laplace Distribution

Description

Density, distribution function, quantile function and random generation for the 3-parameter asym-
metric Laplace distribution with location parameter location, scale parameter scale, and asym-
metry parameter kappa.

Usage

dalap(x, location = 0, scale = 1, tau = 0.5, kappa = sqrt(tau/(1-tau)),
log = FALSE)

palap(q, location = 0, scale = 1, tau = 0.5, kappa = sqrt(tau/(1-tau)),
lower.tail = TRUE, log.p = FALSE)

qalap(p, location = 0, scale = 1, tau = 0.5, kappa = sqrt(tau/(1-tau)),
lower.tail = TRUE, log.p = FALSE)

ralap(n, location = 0, scale = 1, tau = 0.5, kappa = sqrt(tau/(1-tau)))

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

location the location parameter ξ.

scale the scale parameter σ. Must consist of positive values.

tau the quantile parameter τ . Must consist of values in (0, 1). This argument is used
to specify kappa and is ignored if kappa is assigned.

kappa the asymmetry parameter κ. Must consist of positive values.

log if TRUE, probabilities p are given as log(p).
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

There are many variants of asymmetric Laplace distributions (ALDs) and this one is known as the
ALD by Kotz et al. (2001). See alaplace3, the VGAM family function for estimating the three
parameters by maximum likelihood estimation, for formulae and details. The ALD density may be
approximated by dextlogF.

32 altered

Value

dalap gives the density, palap gives the distribution function, qalap gives the quantile function,
and ralap generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Kotz, S., Kozubowski, T. J. and Podgorski, K. (2001). The Laplace distribution and generaliza-
tions: a revisit with applications to communications, economics, engineering, and finance, Boston:
Birkhauser.

See Also

alaplace3, dextlogF, extlogF1.

Examples

x <- seq(-5, 5, by = 0.01)
loc <- 0; sigma <- 1.5; kappa <- 2
Not run: plot(x, dalap(x, loc, sigma, kappa = kappa), type = "l",

main = "Blue is density, orange is the CDF",
ylim = c(0, 1), sub = "Purple are 5, 10, ..., 95 percentiles",
las = 1, ylab = "", cex.main = 0.5, col = "blue")

abline(h = 0, col = "blue", lty = 2)
lines(qalap(seq(0.05, 0.95, by = 0.05), loc, sigma, kappa = kappa),

dalap(qalap(seq(0.05, 0.95, by = 0.05), loc, sigma, kappa = kappa),
loc, sigma, kappa = kappa), col="purple", lty=3, type = "h")

lines(x, palap(x, loc, sigma, kappa = kappa), type = "l", col = "orange")
abline(h = 0, lty = 2)
End(Not run)

pp <- seq(0.05, 0.95, by = 0.05) # Test two functions
max(abs(palap(qalap(pp, loc, sigma, kappa = kappa),

loc, sigma, kappa = kappa) - pp)) # Should be 0

altered Altered, Inflated, Truncated and Deflated Values in GAITD Regression

Description

Return the altered, inflated, truncated and deflated values in a GAITD regression object, else test
whether the model is altered, inflated, truncated or deflated.

altered 33

Usage

altered(object, ...)
inflated(object, ...)
truncated(object, ...)
is.altered(object, ...)
is.deflated(object, ...)
is.inflated(object, ...)
is.truncated(object, ...)

Arguments

object an object of class "vglm". Currently only a GAITD regression object returns
valid results of these functions.

... any additional arguments, to future-proof this function.

Details

Yee and Ma (2021) propose GAITD regression where values from four (or seven since there are
parametric and nonparametric forms) disjoint sets are referred to as special. These extractor func-
tions return one set each; they are the alter, inflate, truncate, deflate (and sometimes max.support)
arguments from the family function.

Value

Returns one type of ‘special’ sets associated with GAITD regression. This is a vector, else a list for
truncation. All three sets are returned by specialsvglm.

Warning

Some of these functions are subject to change. Only family functions beginning with "gaitd" will
work with these functions, hence zipoisson fits will return FALSE or empty values.

References

Yee, T. W. and Ma, C. (2022). Generally–altered, –inflated, –truncated and –deflated regression,
with application to heaped and seeped data. In preparation.

See Also

vglm, vglm-class, specialsvglm, gaitdpoisson, gaitdlog, gaitdzeta, Gaitdpois.

Examples

abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, 0, 0, 1))
fit1 <- vglm(y ~ 1, gaitdpoisson(a.mix = 0),

data = abdata, weight = w, subset = w > 0)
specials(fit1) # All three sets
altered(fit1) # Subject to change
inflated(fit1) # Subject to change
truncated(fit1) # Subject to change

34 amlbinomial

is.altered(fit1)
is.inflated(fit1)
is.truncated(fit1)

amlbinomial Binomial Logistic Regression by Asymmetric Maximum Likelihood
Estimation

Description

Binomial quantile regression estimated by maximizing an asymmetric likelihood function.

Usage

amlbinomial(w.aml = 1, parallel = FALSE, digw = 4, link = "logitlink")

Arguments

w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
the “w-regression plane”). The default value of unity results in the ordinary
maximum likelihood (MLE) solution.

parallel If w.aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.

link See binomialff.

Details

The general methodology behind this VGAM family function is given in Efron (1992) and full
details can be obtained there. This model is essentially a logistic regression model (see binomialff)
but the usual deviance is replaced by an asymmetric squared error loss function; it is multiplied by
w.aml for positive residuals. The solution is the set of regression coefficients that minimize the
sum of these deviance-type values over the data set, weighted by the weights argument (so that it
can contain frequencies). Newton-Raphson estimation is used here.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

amlbinomial 35

Note

On fitting, the extra slot has list components "w.aml" and "percentile". The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w.aml is stored in the extra slot.

For amlbinomial objects, methods functions for the generic functions qtplot and cdf have not
been written yet.

See amlpoisson about comments on the jargon, e.g., expectiles etc.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)

Thomas W. Yee

References

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98–107.

See Also

amlpoisson, amlexponential, amlnormal, extlogF1, alaplace1, denorm.

Examples

Example: binomial data with lots of trials per observation
set.seed(1234)
sizevec <- rep(100, length = (nn <- 200))
mydat <- data.frame(x = sort(runif(nn)))
mydat <- transform(mydat,

prob = logitlink(-0 + 2.5*x + x^2, inverse = TRUE))
mydat <- transform(mydat, y = rbinom(nn, size = sizevec, prob = prob))
(fit <- vgam(cbind(y, sizevec - y) ~ s(x, df = 3),

amlbinomial(w = c(0.01, 0.2, 1, 5, 60)),
mydat, trace = TRUE))

fit@extra

Not run:
par(mfrow = c(1,2))
Quantile plot
with(mydat, plot(x, jitter(y), col = "blue", las = 1, main =

paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile-expectile curves")))

with(mydat, matlines(x, 100 * fitted(fit), lwd = 2, col = "blue", lty=1))

Compare the fitted expectiles with the quantiles
with(mydat, plot(x, jitter(y), col = "blue", las = 1, main =

paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile curves are red")))

with(mydat, matlines(x, 100 * fitted(fit), lwd = 2, col = "blue", lty = 1))

36 amlexponential

for (ii in fit@extra$percentile)
with(mydat, matlines(x, 100 *

qbinom(p = ii/100, size = sizevec, prob = prob) / sizevec,
col = "red", lwd = 2, lty = 1))

End(Not run)

amlexponential Exponential Regression by Asymmetric Maximum Likelihood Estima-
tion

Description

Exponential expectile regression estimated by maximizing an asymmetric likelihood function.

Usage

amlexponential(w.aml = 1, parallel = FALSE, imethod = 1, digw = 4,
link = "loglink")

Arguments

w.aml Numeric, a vector of positive constants controlling the expectiles. The larger the
value the larger the fitted expectile value (the proportion of points below the “w-
regression plane”). The default value of unity results in the ordinary maximum
likelihood (MLE) solution.

parallel If w.aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.

digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.

link See exponential and the warning below.

Details

The general methodology behind this VGAM family function is given in Efron (1992) and full
details can be obtained there.

This model is essentially an exponential regression model (see exponential) but the usual deviance
is replaced by an asymmetric squared error loss function; it is multiplied by w.aml for positive
residuals. The solution is the set of regression coefficients that minimize the sum of these deviance-
type values over the data set, weighted by the weights argument (so that it can contain frequencies).
Newton-Raphson estimation is used here.

amlexponential 37

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Note that the link argument of exponential and amlexponential are currently different: one is
the rate parameter and the other is the mean (expectile) parameter.

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

Note

On fitting, the extra slot has list components "w.aml" and "percentile". The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w.aml is stored in the extra slot.

For amlexponential objects, methods functions for the generic functions qtplot and cdf have not
been written yet.

See amlpoisson about comments on the jargon, e.g., expectiles etc.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)

Thomas W. Yee

References

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98–107.

See Also

exponential, amlbinomial, amlpoisson, amlnormal, extlogF1, alaplace1, lms.bcg, deexp.

Examples

nn <- 2000
mydat <- data.frame(x = seq(0, 1, length = nn))
mydat <- transform(mydat,

mu = loglink(-0 + 1.5*x + 0.2*x^2, inverse = TRUE))
mydat <- transform(mydat, mu = loglink(0 - sin(8*x), inverse = TRUE))
mydat <- transform(mydat, y = rexp(nn, rate = 1/mu))
(fit <- vgam(y ~ s(x, df=5), amlexponential(w=c(0.001, 0.1, 0.5, 5, 60)),

mydat, trace = TRUE))
fit@extra

Not run: # These plots are against the sqrt scale (to increase clarity)
par(mfrow = c(1,2))

38 amlnormal

Quantile plot
with(mydat, plot(x, sqrt(y), col = "blue", las = 1, main =

paste(paste(round(fit@extra$percentile, digits = 1), collapse=", "),
"percentile-expectile curves")))

with(mydat, matlines(x, sqrt(fitted(fit)), lwd = 2, col = "blue", lty=1))

Compare the fitted expectiles with the quantiles
with(mydat, plot(x, sqrt(y), col = "blue", las = 1, main =

paste(paste(round(fit@extra$percentile, digits = 1), collapse=", "),
"percentile curves are orange")))

with(mydat, matlines(x, sqrt(fitted(fit)), lwd = 2, col = "blue", lty=1))

for (ii in fit@extra$percentile)
with(mydat, matlines(x, sqrt(qexp(p = ii/100, rate = 1/mu)),

col = "orange"))
End(Not run)

amlnormal Asymmetric Least Squares Quantile Regression

Description

Asymmetric least squares, a special case of maximizing an asymmetric likelihood function of a
normal distribution. This allows for expectile/quantile regression using asymmetric least squares
error loss.

Usage

amlnormal(w.aml = 1, parallel = FALSE, lexpectile = "identitylink",
iexpectile = NULL, imethod = 1, digw = 4)

Arguments

w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
the “w-regression plane”). The default value of unity results in the ordinary
least squares (OLS) solution.

parallel If w.aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

lexpectile, iexpectile

See CommonVGAMffArguments for more information.

imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.

digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.

amlnormal 39

Details

This is an implementation of Efron (1991) and full details can be obtained there. Equation numbers
below refer to that article. The model is essentially a linear model (see lm), however, the asymmetric
squared error loss function for a residual r is r2 if r ≤ 0 and wr2 if r > 0. The solution is the set of
regression coefficients that minimize the sum of these over the data set, weighted by the weights
argument (so that it can contain frequencies). Newton-Raphson estimation is used here.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

On fitting, the extra slot has list components "w.aml" and "percentile". The latter is the percent
of observations below the “w-regression plane”, which is the fitted values.

One difficulty is finding the w.aml value giving a specified percentile. One solution is to fit the
model within a root finding function such as uniroot; see the example below.

For amlnormal objects, methods functions for the generic functions qtplot and cdf have not been
written yet.

See the note in amlpoisson on the jargon, including expectiles and regression quantiles.

The deviance slot computes the total asymmetric squared error loss (2.5). If w.aml has more than
one value then the value returned by the slot is the sum taken over all the w.aml values.

This VGAM family function could well be renamed amlnormal() instead, given the other function
names amlpoisson, amlbinomial, etc.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)

Thomas W. Yee

References

Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1,
93–125.

See Also

amlpoisson, amlbinomial, amlexponential, bmi.nz, extlogF1, alaplace1, denorm, lms.bcn
and similar variants are alternative methods for quantile regression.

Examples

Not run:
Example 1
ooo <- with(bmi.nz, order(age))
bmi.nz <- bmi.nz[ooo,] # Sort by age

40 amlpoisson

(fit <- vglm(BMI ~ sm.bs(age), amlnormal(w.aml = 0.1), data = bmi.nz))
fit@extra # Gives the w value and the percentile
coef(fit, matrix = TRUE)

Quantile plot
with(bmi.nz, plot(age, BMI, col = "blue", main =

paste(round(fit@extra$percentile, digits = 1),
"expectile-percentile curve")))

with(bmi.nz, lines(age, c(fitted(fit)), col = "black"))

Example 2
Find the w values that give the 25, 50 and 75 percentiles
find.w <- function(w, percentile = 50) {

fit2 <- vglm(BMI ~ sm.bs(age), amlnormal(w = w), data = bmi.nz)
fit2@extra$percentile - percentile

}
Quantile plot
with(bmi.nz, plot(age, BMI, col = "blue", las = 1, main =

"25, 50 and 75 expectile-percentile curves"))
for (myp in c(25, 50, 75)) {
Note: uniroot() can only find one root at a time

bestw <- uniroot(f = find.w, interval = c(1/10^4, 10^4), percentile = myp)
fit2 <- vglm(BMI ~ sm.bs(age), amlnormal(w = bestw$root), data = bmi.nz)
with(bmi.nz, lines(age, c(fitted(fit2)), col = "orange"))

}

Example 3; this is Example 1 but with smoothing splines and
a vector w and a parallelism assumption.
ooo <- with(bmi.nz, order(age))
bmi.nz <- bmi.nz[ooo,] # Sort by age
fit3 <- vgam(BMI ~ s(age, df = 4), data = bmi.nz, trace = TRUE,

amlnormal(w = c(0.1, 1, 10), parallel = TRUE))
fit3@extra # The w values, percentiles and weighted deviances

The linear components of the fit; not for human consumption:
coef(fit3, matrix = TRUE)

Quantile plot
with(bmi.nz, plot(age, BMI, col="blue", main =

paste(paste(round(fit3@extra$percentile, digits = 1), collapse = ", "),
"expectile-percentile curves")))

with(bmi.nz, matlines(age, fitted(fit3), col = 1:fit3@extra$M, lwd = 2))
with(bmi.nz, lines(age, c(fitted(fit)), col = "black")) # For comparison

End(Not run)

amlpoisson Poisson Regression by Asymmetric Maximum Likelihood Estimation

Description

Poisson quantile regression estimated by maximizing an asymmetric likelihood function.

amlpoisson 41

Usage

amlpoisson(w.aml = 1, parallel = FALSE, imethod = 1, digw = 4,
link = "loglink")

Arguments

w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
the “w-regression plane”). The default value of unity results in the ordinary
maximum likelihood (MLE) solution.

parallel If w.aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.

digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.

link See poissonff.

Details

This method was proposed by Efron (1992) and full details can be obtained there.

The model is essentially a Poisson regression model (see poissonff) but the usual deviance is
replaced by an asymmetric squared error loss function; it is multiplied by w.aml for positive resid-
uals. The solution is the set of regression coefficients that minimize the sum of these deviance-type
values over the data set, weighted by the weights argument (so that it can contain frequencies).
Newton-Raphson estimation is used here.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

Note

On fitting, the extra slot has list components "w.aml" and "percentile". The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w.aml is stored in the extra slot.

For amlpoisson objects, methods functions for the generic functions qtplot and cdf have not been
written yet.

42 amlpoisson

About the jargon, Newey and Powell (1987) used the name expectiles for regression surfaces ob-
tained by asymmetric least squares. This was deliberate so as to distinguish them from the original
regression quantiles of Koenker and Bassett (1978). Efron (1991) and Efron (1992) use the general
name regression percentile to apply to all forms of asymmetric fitting. Although the asymmetric
maximum likelihood method very nearly gives regression percentiles in the strictest sense for the
normal and Poisson cases, the phrase quantile regression is used loosely in this VGAM documen-
tation.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)

Thomas W. Yee

References

Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1,
93–125.

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98–107.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.

Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econo-
metrica, 55, 819–847.

See Also

amlnormal, amlbinomial, extlogF1, alaplace1.

Examples

set.seed(1234)
mydat <- data.frame(x = sort(runif(nn <- 200)))
mydat <- transform(mydat, y = rpois(nn, exp(0 - sin(8*x))))
(fit <- vgam(y ~ s(x), fam = amlpoisson(w.aml = c(0.02, 0.2, 1, 5, 50)),

mydat, trace = TRUE))
fit@extra

Not run:
Quantile plot
with(mydat, plot(x, jitter(y), col = "blue", las = 1, main =

paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile-expectile curves")))

with(mydat, matlines(x, fitted(fit), lwd = 2))
End(Not run)

anova.vglm 43

anova.vglm Analysis of Deviance for Vector Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more vector generalized linear model fits.

Usage

S3 method for class 'vglm'
anova(object, ..., type = c("II", "I", "III", 2, 1, 3),

test = c("LRT", "none"), trydev = TRUE, silent = TRUE)

Arguments

object, ... objects of class vglm, typically the result of a call to vglm, or a list of objects
for the "vglmlist" method. Each model must have an intercept term. If
"vglmlist" is used then type = 1 or type = "I" must be specified.

type character or numeric; any one of the (effectively three) choices given. Note that
anova.glm has 1 or "I" as its default; and that Anova.glm() in car (that is, the
car package) has 2 or "II" as its default (and allows for type = "III"), so one
can think of this function as a combination of anova.glm and Anova.glm() in
car, but with the default of the latter. See Details below for more information.

test a character string, (partially) matching one of "LRT" and "none". In the future
it is hoped that "Rao" be also supported, to conduct score tests. The first value
is the default.

trydev logical; if TRUE then the deviance is used if possible. Note that only a few
VGAM family functions have a deviance that is defined and implemented. Set-
ting it FALSE means the log-likelihood will be used.

silent logical; if TRUE then any warnings will be suppressed. These may arise by IRLS
iterations not converging during the fitting of submodels. Setting it FALSE means
that any warnings are given.

Details

anova.vglm is intended to be similar to anova.glm so specifying a single object and type = 1 gives
a sequential analysis of deviance table for that fit. By analysis of deviance, it is meant loosely that
if the deviance of the model is not defined or implemented, then twice the difference between the
log-likelihoods of two nested models remains asymptotically chi-squared distributed with degrees
of freedom equal to the difference in the number of parameters of the two models. Of course, the
usual regularity conditions are assumed to hold. For Type I, the analysis of deviance table has the
reductions in the residual deviance as each term of the formula is added in turn are given in as the
rows of a table, plus the residual deviances themselves. Type I or sequential tests (as in anova.glm).
are computationally the easiest of the three methods. For this, the order of the terms is important,
and the each term is added sequentially from first to last.

44 anova.vglm

The Anova() function in car allows for testing Type II and Type III (SAS jargon) hypothesis tests,
although the definitions used are not precisely that of SAS. As car notes, Type I rarely test interest-
ing hypotheses in unbalanced designs. Type III enter each term last, keeping all the other terms in
the model.

Type II tests, according to SAS, add the term after all other terms have been added to the model
except terms that contain the effect being tested; an effect is contained in another effect if it can be
derived by deleting variables from the latter effect. Type II tests are currently the default.

As in anova.glm, but not as Anova.glm() in car, if more than one object is specified, then the
table has a row for the residual degrees of freedom and deviance for each model. For all but the first
model, the change in degrees of freedom and deviance is also given. (This only makes statistical
sense if the models are nested.) It is conventional to list the models from smallest to largest, but this
is up to the user. It is necessary to have type = 1 with more than one objects are specified.

See anova.glm for more details and warnings. The VGAM package now implements full likelihood
models only, therefore no dispersion parameters are estimated.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

See anova.glm. Several VGAM family functions implement distributions which do not satisfying
the usual regularity conditions needed for the LRT to work. No checking or warning is given for
these.

As car says, be careful of Type III tests because they violate marginality. Type II tests (the default)
do not have this problem.

Note

It is possible for this function to stop when type = 2 or 3, e.g., anova(vglm(cans ~ myfactor,
poissonff, data = boxcar)) where myfactor is a factor.

The code was adapted directly from anova.glm and Anova.glm() in car by T. W. Yee. Hence the
Type II and Type III tests do not correspond precisely with the SAS definition.

See Also

anova.glm, stat.anova, stats:::print.anova, Anova.glm() in car if car is installed, vglm,
lrtest, add1.vglm, drop1.vglm, lrt.stat.vlm, score.stat.vlm, wald.stat.vlm, backPain2,
update.

Examples

Example 1: a proportional odds model fitted to pneumo.
set.seed(1)
pneumo <- transform(pneumo, let = log(exposure.time), x3 = runif(8))
fit1 <- vglm(cbind(normal, mild, severe) ~ let , propodds, pneumo)
fit2 <- vglm(cbind(normal, mild, severe) ~ let + x3, propodds, pneumo)
fit3 <- vglm(cbind(normal, mild, severe) ~ let + x3, cumulative, pneumo)
anova(fit1, fit2, fit3, type = 1) # Remember to specify 'type'!!

AR1 45

anova(fit2)
anova(fit2, type = "I")
anova(fit2, type = "III")

Example 2: a proportional odds model fitted to backPain2.
data("backPain2", package = "VGAM")
summary(backPain2)
fitlogit <- vglm(pain ~ x2 * x3 * x4, propodds, data = backPain2)
coef(fitlogit)
anova(fitlogit)
anova(fitlogit, type = "I")
anova(fitlogit, type = "III")

AR1 Autoregressive Process with Order-1 Family Function

Description

Maximum likelihood estimation of the three-parameter AR-1 model

Usage

AR1(ldrift = "identitylink", lsd = "loglink", lvar = "loglink", lrho = "rhobitlink",
idrift = NULL, isd = NULL, ivar = NULL, irho = NULL, imethod = 1,
ishrinkage = 0.95, type.likelihood = c("exact", "conditional"),
type.EIM = c("exact", "approximate"), var.arg = FALSE, nodrift = FALSE,
print.EIM = FALSE, zero = c(if (var.arg) "var" else "sd", "rho"))

Arguments

ldrift, lsd, lvar, lrho

Link functions applied to the scaled mean, standard deviation or variance, and
correlation parameters. The parameter drift is known as the drift, and it is a
scaled mean. See Links for more choices.

idrift, isd, ivar, irho

Optional initial values for the parameters. If failure to converge occurs then
try different values and monitor convergence by using trace = TRUE. For a S-
column response, these arguments can be of length S, and they are recycled
by the columns first. A value NULL means an initial value for each response is
computed internally.

ishrinkage, imethod, zero

See CommonVGAMffArguments for more information. The default for zero as-
sumes there is a drift parameter to be estimated (the default for that argument),
so if a drift parameter is suppressed and there are covariates, then zero will need
to be assigned the value 1 or 2 or NULL.

var.arg Same meaning as uninormal.

46 AR1

nodrift Logical, for determining whether to estimate the drift parameter. The default is
to estimate it. If TRUE, the drift parameter is set to 0 and not estimated.

type.EIM What type of expected information matrix (EIM) is used in Fisher scoring. By
default, this family function calls AR1EIM, which recursively computes the exact
EIM for the AR process with Gaussian white noise. See Porat and Friedlander
(1986) for further details on the exact EIM.
If type.EIM = "approximate" then approximate expression for the EIM of Au-
toregressive processes is used; this approach holds when the number of observa-
tions is large enough. Succinct details about the approximate EIM are delineated
at Porat and Friedlander (1987).

print.EIM Logical. If TRUE, then the first few EIMs are printed. Here, the result shown is
the sum of each EIM.

type.likelihood

What type of likelihood function is maximized. The first choice (default) is
the sum of the marginal likelihood and the conditional likelihood. Choosing
the conditional likelihood means that the first observation is effectively ignored
(this is handled internally by setting the value of the first prior weight to be some
small positive number, e.g., 1.0e-6). See the note below.

Details

The AR-1 model implemented here has

Y1 ∼ N(µ, σ2/(1− ρ2)),

and
Yi = µ∗ + ρYi−1 + ei,

where the ei are i.i.d. Normal(0, sd = σ) random variates.

Here are a few notes: (1). A test for weak stationarity might be to verify whether 1/ρ lies outside the
unit circle. (2). The mean of all the Yi is µ∗/(1− ρ) and these are returned as the fitted values. (3).
The correlation of all the Yi with Yi−1 is ρ. (4). The default link function ensures that −1 < ρ < 1.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

Monitoring convergence is urged, i.e., set trace = TRUE.

Moreover, if the exact EIMs are used, set print.EIM = TRUE to compare the computed exact to the
approximate EIM.

Under the VGLM/VGAM approach, parameters can be modelled in terms of covariates. Particu-
larly, if the standard deviation of the white noise is modelled in this way, then type.EIM = "exact"
may certainly lead to unstable results. The reason is that white noise is a stationary process, and
consequently, its variance must remain as a constant. Consequently, the use of variates to model
this parameter contradicts the assumption of stationary random components to compute the exact
EIMs proposed by Porat and Friedlander (1987).

AR1 47

To prevent convergence issues in such cases, this family function internally verifies whether the
variance of the white noise remains as a constant at each Fisher scoring iteration. If this as-
sumption is violated and type.EIM = "exact" is set, then AR1 automatically shifts to type.EIM
= "approximate". Also, a warning is accordingly displayed.

Note

Multiple responses are handled. The mean is returned as the fitted values.

Author(s)

Victor Miranda (exact method) and Thomas W. Yee (approximate method).

References

Porat, B. and Friedlander, B. (1987). The Exact Cramer-Rao Bond for Gaussian Autoregressive
Processes. IEEE Transactions on Aerospace and Electronic Systems, AES-23(4), 537–542.

See Also

AR1EIM, vglm.control, dAR1, arima.sim.

Examples

Example 1: using arima.sim() to generate a 0-mean stationary time series.
nn <- 500
tsdata <- data.frame(x2 = runif(nn))
ar.coef.1 <- rhobitlink(-1.55, inverse = TRUE) # Approx -0.65
ar.coef.2 <- rhobitlink(1.0, inverse = TRUE) # Approx 0.50
set.seed(1)
tsdata <- transform(tsdata,

index = 1:nn,
TS1 = arima.sim(nn, model = list(ar = ar.coef.1),

sd = exp(1.5)),
TS2 = arima.sim(nn, model = list(ar = ar.coef.2),

sd = exp(1.0 + 1.5 * x2)))

An autoregressive intercept--only model.
Using the exact EIM, and "nodrift = TRUE"
fit1a <- vglm(TS1 ~ 1, data = tsdata, trace = TRUE,

AR1(var.arg = FALSE, nodrift = TRUE,
type.EIM = "exact",
print.EIM = FALSE),

crit = "coefficients")
Coef(fit1a)
summary(fit1a)

Not run:
Two responses. Here, the white noise standard deviation of TS2
is modelled in terms of 'x2'. Also, 'type.EIM = exact'.
fit1b <- vglm(cbind(TS1, TS2) ~ x2,

AR1(zero = NULL, nodrift = TRUE,

48 AR1EIM

var.arg = FALSE,
type.EIM = "exact"),

constraints = list("(Intercept)" = diag(4),
"x2" = rbind(0, 0, 1, 0)),

data = tsdata, trace = TRUE, crit = "coefficients")
coef(fit1b, matrix = TRUE)
summary(fit1b)

Example 2: another stationary time series
nn <- 500
my.rho <- rhobitlink(1.0, inverse = TRUE)
my.mu <- 1.0
my.sd <- exp(1)
tsdata <- data.frame(index = 1:nn, TS3 = runif(nn))

set.seed(2)
for (ii in 2:nn)

tsdata$TS3[ii] <- my.mu/(1 - my.rho) +
my.rho * tsdata$TS3[ii-1] + rnorm(1, sd = my.sd)

tsdata <- tsdata[-(1:ceiling(nn/5)),] # Remove the burn-in data:

Fitting an AR(1). The exact EIMs are used.
fit2a <- vglm(TS3 ~ 1, AR1(type.likelihood = "exact", # "conditional",

type.EIM = "exact"),
data = tsdata, trace = TRUE, crit = "coefficients")

Coef(fit2a)
summary(fit2a) # SEs are useful to know

Coef(fit2a)["rho"] # Estimate of rho, for intercept-only models
my.rho # The 'truth' (rho)
Coef(fit2a)["drift"] # Estimate of drift, for intercept-only models
my.mu /(1 - my.rho) # The 'truth' (drift)

End(Not run)

AR1EIM Computation of the Exact EIM of an Order-1 Autoregressive Process

Description

Computation of the exact Expected Information Matrix of the Autoregressive process of order-1
(AR(1)) with Gaussian white noise and stationary random components.

Usage

AR1EIM(x = NULL, var.arg = NULL, p.drift = NULL,
WNsd = NULL, ARcoeff1 = NULL, eps.porat = 1e-2)

AR1EIM 49

Arguments

x A vector of quantiles. The gaussian time series for which the EIMs are com-
puted.
If multiple time series are being analyzed, then x must be a matrix where each
column allocates a response. That is, the number of columns (denoted as NOS)
must match the number of responses.

var.arg Logical. Same as with AR1.

p.drift A numeric vector with the scaled mean(s) (commonly referred as drift) of the
AR process(es) in turn. Its length matches the number of responses.

WNsd, ARcoeff1 Matrices. The standard deviation of the white noise, and the correlation (coeffi-
cient) of the AR(1) model, for each observation.
That is, the dimension for each matrix is N ×NOS, where N is the number of
observations and NOS is the number of responses. Else, these arguments are
recycled.

eps.porat A very small positive number to test whether the standar deviation (WNsd) is
close enough to its value estimated in this function.
See below for further details.

Details

This function implements the algorithm of Porat and Friedlander (1986) to recursively compute the
exact expected information matrix (EIM) of Gaussian time series with stationary random compo-
nents.

By default, when the VGLM/VGAM family function AR1 is used to fit an AR(1) model via vglm,
Fisher scoring is executed using the approximate EIM for the AR process. However, this model
can also be fitted using the exact EIMs computed by AR1EIM.

Given N consecutive data points, y0, y1, . . . , yN−1 with probability density f(y), the Porat and
Friedlander algorithm calculates the EIMs [Jn−1(θ)], for all 1 ≤ n ≤ N . This is done based on
the Levinson-Durbin algorithm for computing the orthogonal polynomials of a Toeplitz matrix. In
particular, for the AR(1) model, the vector of parameters to be estimated under the VGAM/VGLM
approach is

η = (µ∗, log(σ2), rhobit(ρ)),

where σ2 is the variance of the white noise and mu∗ is the drift parameter (See AR1 for further
details on this).

Consequently, for each observation n = 1, . . . , N , the EIM, Jn(θ), has dimension 3× 3, where the
diagonal elements are:

J[n,1,1] = E[−∂2 log f(y)/∂(µ∗)2],

J[n,2,2] = E[−∂2 log f(y)/∂(σ2)2],

and

50 AR1EIM

J[n,3,3] = E[−∂2 log f(y)/∂(ρ)2].

As for the off-diagonal elements, one has the usual entries, i.e.,

J[n,1,2] = J[n,2,1] = E[−∂2 log f(y)/∂σ2∂ρ],

etc.

If var.arg = FALSE, then σ instead of σ2 is estimated. Therefore, J[n,2,2], J[n,1,2], etc., are corre-
spondingly replaced.

Once these expected values are internally computed, they are returned in an array of dimension
N × 1× 6, of the form

J [, 1,] = [J[,1,1], J[,2,2], J[,3,3], J[,1,2], J[,2,3], J[,1,3]].

AR1EIM handles multiple time series, sayNOS. If this happens, then it accordingly returns an array
of dimension N ×NOS × 6. Here, J [, k,], for k = 1, . . . , NOS, is a matrix of dimension N × 6,
which stores the EIMs for the kthth response, as above, i.e.,

J [, k,] = [J[,1,1], J[,2,2], J[,3,3], . . .],

the bandwith form, as per required by AR1.

Value

An array of dimension N ×NOS × 6, as above.

This array stores the EIMs calculated from the joint density as a function of

θ = (µ∗, σ2, ρ).

Nevertheless, note that, under the VGAM/VGLM approach, the EIMs must be correspondingly
calculated in terms of the linear predictors, η.

Asymptotic behaviour of the algorithm

For large enough n, the EIMs, Jn(θ), become approximately linear in n. That is, for some n0,

Jn(θ) ≡ Jn0(θ) + (n− n0)J̄(θ), (∗∗)

where J̄(θ) is a constant matrix.

This relationsihip is internally considered if a proper value of n0 is determined. Different ways can
be adopted to find n0. In AR1EIM, this is done by checking the difference between the internally
estimated variances and the entered ones at WNsd. If this difference is less than eps.porat at some
iteration, say at iteration n0, then AR1EIM takes J̄(θ) as the last computed increment of Jn(θ), and
extraplotates Jk(θ), for all k ≥ n0 using (∗). Else, the algorithm will complete the iterations for
1 ≤ n ≤ N .

Finally, note that the rate of convergence reasonably decreases if the asymptotic relationship (∗) is
used to compute Jk(θ), k ≥ n0. Normally, the number of operations involved on this algorithm is
proportional to N2.

See Porat and Friedlander (1986) for full details on the asymptotic behaviour of the algorithm.

AR1EIM 51

Warning

Arguments WNsd, and ARcoeff1 are matrices of dimension N × NOS. Else, these arguments are
accordingly recycled.

Note

For simplicity, one can assume that the time series analyzed has a 0-mean. Consequently, where the
family function AR1 calls AR1EIM to compute the EIMs, the argument p.drift is internally set to
zero-vector, whereas x is centered by subtracting its mean value.

Author(s)

V. Miranda and T. W. Yee.

References

Porat, B. and Friedlander, B. (1986). Computation of the Exact Information Matrix of Gaussian
Time Series with Stationary Random Components. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 54(1), 118–130.

See Also

AR1.

Examples

set.seed(1)
nn <- 500
ARcoeff1 <- c(0.3, 0.25) # Will be recycled.
WNsd <- c(exp(1), exp(1.5)) # Will be recycled.
p.drift <- c(0, 0) # Zero-mean gaussian time series.

Generate two (zero-mean) AR(1) processes
ts1 <- p.drift[1]/(1 - ARcoeff1[1]) +

arima.sim(model = list(ar = ARcoeff1[1]), n = nn,
sd = WNsd[1])

ts2 <- p.drift[2]/(1 - ARcoeff1[2]) +
arima.sim(model = list(ar = ARcoeff1[2]), n = nn,
sd = WNsd[2])

ARdata <- matrix(cbind(ts1, ts2), ncol = 2)

Compute the exact EIMs: TWO responses.
ExactEIM <- AR1EIM(x = ARdata, var.arg = FALSE, p.drift = p.drift,

WNsd = WNsd, ARcoeff1 = ARcoeff1)

For response 1:
head(ExactEIM[, 1 ,]) # NOTICE THAT THIS IS A (nn x 6) MATRIX!

For response 2:

52 auuc

head(ExactEIM[, 2 ,]) # NOTICE THAT THIS IS A (nn x 6) MATRIX!

auuc Auckland University Undergraduate Counts Data

Description

Undergraduate student enrolments at the University of Auckland in 1990.

Usage

data(auuc)

Format

A data frame with 4 observations on the following 5 variables.

Commerce a numeric vector of counts.

Arts a numeric vector of counts.

SciEng a numeric vector of counts.

Law a numeric vector of counts.

Medicine a numeric vector of counts.

Details

Each student is cross-classified by their colleges (Science and Engineering have been combined)
and the socio-economic status (SES) of their fathers (1 = highest, down to 4 = lowest).

Source

Dr Tony Morrison.

References

Wild, C. J. and Seber, G. A. F. (2000). Chance Encounters: A First Course in Data Analysis and
Inference, New York: Wiley.

Examples

auuc
Not run:
round(fitted(grc(auuc)))
round(fitted(grc(auuc, Rank = 2)))

End(Not run)

aux.posbernoulli.t 53

aux.posbernoulli.t Auxiliary Function for the Positive Bernoulli Family Function with
Time Effects

Description

Returns behavioural effects indicator variables from a capture history matrix.

Usage

aux.posbernoulli.t(y, check.y = FALSE, rename = TRUE, name = "bei")

Arguments

y Capture history matrix. Rows are animals, columns are sampling occasions, and
values should be 0s and 1s only.

check.y Logical, if TRUE then some basic checking is performed.

rename, name If rename = TRUE then the behavioural effects indicator are named using the
value of name as the prefix. If FALSE then use the same column names as y.

Details

This function can help fit certain capture–recapture models (commonly known as Mtb or Mtbh (no
prefix h means it is an intercept-only model) in the literature). See posbernoulli.t for details.

Value

A list with the following components.

cap.hist1 A matrix the same dimension as y. In any particular row there are 0s up to the first
capture. Then there are 1s thereafter.

cap1 A vector specifying which time occasion the animal was first captured.

y0i Number of noncaptures before the first capture.

yr0i Number of noncaptures after the first capture.

yr1i Number of recaptures after the first capture.

See Also

posbernoulli.t, deermice.

54 backPain

Examples

Fit a M_tbh model to the deermice data:
(pdata <- aux.posbernoulli.t(with(deermice, cbind(y1, y2, y3, y4, y5, y6))))

deermice <- data.frame(deermice,
bei = 0, # Add this
pdata$cap.hist1) # Incorporate these

head(deermice) # Augmented with behavioural effect indicator variables
tail(deermice)

backPain Data on Back Pain Prognosis, from Anderson (1984)

Description

Data from a study of patients suffering from back pain. Prognostic variables were recorded at
presentation and progress was categorised three weeks after treatment.

Usage

data(backPain)

Format

A data frame with 101 observations on the following 4 variables.

x2 length of previous attack.

x3 pain change.

x4 lordosis.

pain an ordered factor describing the progress of each patient with levels worse < same < slight.improvement
< moderate.improvement < marked.improvement < complete.relief.

Source

http://ideas.repec.org/c/boc/bocode/s419001.html

The data set and this help file was copied from gnm so that a vignette in VGAM could be run; the
analysis is described in Yee (2010).

The data frame backPain2 is a modification of backPain where the variables have been renamed
(x1 becomes x2, x2 becomes x3, x3 becomes x4) and converted into factors.

References

Anderson, J. A. (1984). Regression and Ordered Categorical Variables. J. R. Statist. Soc. B, 46(1),
1-30.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1–34. doi:10.18637/jss.v032.i10.

https://doi.org/10.18637/jss.v032.i10

beggs 55

Examples

summary(backPain)
summary(backPain2)

beggs Bacon and Eggs Data

Description

Purchasing of bacon and eggs.

Usage

data(beggs)

Format

Data frame of a two way table.

b0, b1, b2, b3, b4 The b refers to bacon. The number of times bacon was purchased was 0, 1, 2, 3,
or 4.

e0, e1, e2, e3, e4 The e refers to eggs. The number of times eggs was purchased was 0, 1, 2, 3, or
4.

Details

The data is from Information Resources, Inc., a consumer panel based in a large US city [see
Bell and Lattin (1998) for further details]. Starting in June 1991, the purchases in the bacon and
fresh eggs product categories for a sample of 548 households over four consecutive store trips was
tracked. Only those grocery shopping trips with a total basket value of at least five dollars was
considered. For each household, the total number of bacon purchases in their four eligible shopping
trips and the total number of egg purchases (usually a package of eggs) for the same trips, were
counted.

Source

Bell, D. R. and Lattin, J. M. (1998) Shopping Behavior and Consumer Preference for Store Price
Format: Why ‘Large Basket’ Shoppers Prefer EDLP. Marketing Science, 17, 66–88.

References

Danaher, P. J. and Hardie, B. G. S. (2005). Bacon with Your Eggs? Applications of a New Bivariate
Beta-Binomial Distribution. American Statistician, 59(4), 282–286.

See Also

rrvglm, rcim, grc.

56 bell

Examples

beggs
colSums(beggs)
rowSums(beggs)

bell The Bell Series of Integers

Description

Returns the values of the Bell series.

Usage

bell(n)

Arguments

n Vector of non-negative integers. Values greater than 218 return an Inf. Non-
integers or negative values return a NaN.

Details

The Bell numbers emerge from a series expansion of exp(ex − 1) for real x. The first few values
are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15. The series increases quickly so that overflow
occurs when its argument is more than 218.

Value

This function returns Bn.

Author(s)

T. W. Yee

References

Bell, E. T. (1934). Exponential polynomials. Ann. Math., 35, 258–277.

Bell, E. T. (1934). Exponential numbers. Amer. Math. Monthly, 41, 411–419.

See Also

bellff, rbell.

Benford 57

Examples

Not run:
plot(0:10, bell(0:10), log = "y", type = "h", col = "blue")

End(Not run)

Benford Benford’s Distribution

Description

Density, distribution function, quantile function, and random generation for Benford’s distribution.

Usage

dbenf(x, ndigits = 1, log = FALSE)
pbenf(q, ndigits = 1, lower.tail = TRUE, log.p = FALSE)
qbenf(p, ndigits = 1, lower.tail = TRUE, log.p = FALSE)
rbenf(n, ndigits = 1)

Arguments

x, q Vector of quantiles. See ndigits.

p vector of probabilities.

n number of observations. A single positive integer. Else if length(n) > 1 then
the length is taken to be the number required.

ndigits Number of leading digits, either 1 or 2. If 1 then the support of the distribution
is {1,. . . ,9}, else {10,. . . ,99}.

log, log.p Logical. If log.p = TRUE then all probabilities p are given as log(p).

lower.tail Same meaning as in pnorm or qnorm.

Details

Benford’s Law (aka the significant-digit law) is the empirical observation that in many naturally
occuring tables of numerical data, the leading significant (nonzero) digit is not uniformly distributed
in {1, 2, . . . , 9}. Instead, the leading significant digit (= D, say) obeys the law

P (D = d) = log10

(
1 +

1

d

)
for d = 1, . . . , 9. This means the probability the first significant digit is 1 is approximately 0.301,
etc.

Benford’s Law was apparently first discovered in 1881 by astronomer/mathematician S. Newcombe.
It started by the observation that the pages of a book of logarithms were dirtiest at the beginning
and progressively cleaner throughout. In 1938, a General Electric physicist called F. Benford re-
discovered the law on this same observation. Over several years he collected data from different

58 Benini

sources as different as atomic weights, baseball statistics, numerical data from Reader’s Digest, and
drainage areas of rivers.

Applications of Benford’s Law has been as diverse as to the area of fraud detection in accounting
and the design computers.

Benford’s distribution has been called “a” logarithmic distribution; see logff.

Value

dbenf gives the density, pbenf gives the distribution function, and qbenf gives the quantile func-
tion, and rbenf generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Benford, F. (1938). The Law of Anomalous Numbers. Proceedings of the American Philosophical
Society, 78, 551–572.

Newcomb, S. (1881). Note on the Frequency of Use of the Different Digits in Natural Numbers.
American Journal of Mathematics, 4, 39–40.

Examples

dbenf(x <- c(0:10, NA, NaN, -Inf, Inf))
pbenf(x)

Not run:
xx <- 1:9
barplot(dbenf(xx), col = "lightblue", xlab = "Leading digit",

ylab = "Probability", names.arg = as.character(xx),
main = "Benford's distribution", las = 1)

hist(rbenf(1000), border = "blue", prob = TRUE,
main = "1000 random variates from Benford's distribution",
xlab = "Leading digit", sub="Red is the true probability",
breaks = 0:9 + 0.5, ylim = c(0, 0.35), xlim = c(0, 10.0))

lines(xx, dbenf(xx), col = "red", type = "h")
points(xx, dbenf(xx), col = "red")

End(Not run)

Benini The Benini Distribution

Description

Density, distribution function, quantile function and random generation for the Benini distribution
with parameter shape.

Benini 59

Usage

dbenini(x, y0, shape, log = FALSE)
pbenini(q, y0, shape, lower.tail = TRUE, log.p = FALSE)
qbenini(p, y0, shape, lower.tail = TRUE, log.p = FALSE)
rbenini(n, y0, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as runif.

y0 the scale parameter y0.

shape the positive shape parameter b.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See benini1, the VGAM family function for estimating the parameter s by maximum likelihood
estimation, for the formula of the probability density function and other details.

Value

dbenini gives the density, pbenini gives the distribution function, qbenini gives the quantile
function, and rbenini generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

benini1.

Examples

Not run:
y0 <- 1; shape <- exp(1)
xx <- seq(0.0, 4, len = 101)
plot(xx, dbenini(xx, y0 = y0, shape = shape), col = "blue",

main = "Blue is density, orange is the CDF", type = "l",
sub = "Purple lines are the 10,20,...,90 percentiles",

60 benini1

ylim = 0:1, las = 1, ylab = "", xlab = "x")
abline(h = 0, col = "blue", lty = 2)
lines(xx, pbenini(xx, y0 = y0, shape = shape), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qbenini(probs, y0 = y0, shape = shape)
lines(Q, dbenini(Q, y0 = y0, shape = shape),

col = "purple", lty = 3, type = "h")
pbenini(Q, y0 = y0, shape = shape) - probs # Should be all zero

End(Not run)

benini1 Benini Distribution Family Function

Description

Estimating the 1-parameter Benini distribution by maximum likelihood estimation.

Usage

benini1(y0 = stop("argument 'y0' must be specified"),
lshape = "loglink", ishape = NULL, imethod = 1,
zero = NULL, parallel = FALSE,
type.fitted = c("percentiles", "Qlink"),
percentiles = 50)

Arguments

y0 Positive scale parameter.

lshape Parameter link function and extra argument of the parameter b, which is the
shape parameter. See Links for more choices. A log link is the default because
b is positive.

ishape Optional initial value for the shape parameter. The default is to compute the
value internally.

imethod, zero, parallel

Details at CommonVGAMffArguments.
type.fitted, percentiles

See CommonVGAMffArguments for information. Using "Qlink" is for quantile-
links in VGAMextra.

Details

The Benini distribution has a probability density function that can be written

f(y) = 2s exp(−s[(log(y/y0))2]) log(y/y0)/y

for 0 < y0 < y, and shape s > 0. The cumulative distribution function for Y is

F (y) = 1− exp(−s[(log(y/y0))2]).

Betabinom 61

Here, Newton-Raphson and Fisher scoring coincide. The median of Y is now returned as the fitted
values, by default. This VGAM family function can handle a multiple responses, which is inputted
as a matrix.

On fitting, the extra slot has a component called y0 which contains the value of the y0 argument.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

Yet to do: the 2-parameter Benini distribution estimates another shape parameter a too. Hence, the
code may change in the future.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Benini.

Examples

y0 <- 1; nn <- 3000
bdata <- data.frame(y = rbenini(nn, y0 = y0, shape = exp(2)))
fit <- vglm(y ~ 1, benini1(y0 = y0), data = bdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
fit@extra$y0
c(head(fitted(fit), 1), with(bdata, median(y))) # Should be equal

Betabinom The Beta-Binomial Distribution

Description

Density, distribution function, and random generation for the beta-binomial distribution and the
inflated beta-binomial distribution.

62 Betabinom

Usage

dbetabinom(x, size, prob, rho = 0, log = FALSE)
pbetabinom(q, size, prob, rho = 0, log.p = FALSE)
rbetabinom(n, size, prob, rho = 0)
dbetabinom.ab(x, size, shape1, shape2, log = FALSE,

Inf.shape = exp(20), limit.prob = 0.5)
pbetabinom.ab(q, size, shape1, shape2, limit.prob = 0.5,

log.p = FALSE)
rbetabinom.ab(n, size, shape1, shape2, limit.prob = 0.5,

.dontuse.prob = NULL)
dzoibetabinom(x, size, prob, rho = 0, pstr0 = 0, pstrsize = 0,

log = FALSE)
pzoibetabinom(q, size, prob, rho, pstr0 = 0, pstrsize = 0,

lower.tail = TRUE, log.p = FALSE)
rzoibetabinom(n, size, prob, rho = 0, pstr0 = 0, pstrsize = 0)
dzoibetabinom.ab(x, size, shape1, shape2, pstr0 = 0, pstrsize = 0,

log = FALSE)
pzoibetabinom.ab(q, size, shape1, shape2, pstr0 = 0, pstrsize = 0,

lower.tail = TRUE, log.p = FALSE)
rzoibetabinom.ab(n, size, shape1, shape2, pstr0 = 0, pstrsize = 0)

Arguments

x, q vector of quantiles.

size number of trials.

n number of observations. Same as runif.

prob the probability of success µ. Must be in the unit closed interval [0, 1].

rho the correlation parameter ρ, which should be in the interval [0, 1). The default
value of 0 corresponds to the usual binomial distribution with probability prob.
Setting rho = 1 would set both shape parameters equal to 0, and the ratio 0/0,
which is actually NaN, is interpreted by Beta as 0.5. See the warning below.

shape1, shape2 the two (positive) shape parameters of the standard beta distribution. They are
called a and b in beta respectively. Note that shape1 = prob*(1-rho)/rho
and shape2 = (1-prob)*(1-rho)/rho is an important relationship between the
parameters, so that the shape parameters are infinite by default because rho = 0;
hence limit.prob = prob is used to obtain the behaviour of the usual binomial
distribution.

log, log.p, lower.tail

Same meaning as runif.

Inf.shape Numeric. A large value such that, if shape1 or shape2 exceeds this, then special
measures are taken, e.g., calling dbinom. Also, if shape1 or shape2 is less than
its reciprocal, then special measures are also taken. This feature/approximation
is needed to avoid numerical problem with catastrophic cancellation of multiple
lbeta calls.

limit.prob Numerical vector; recycled if necessary. If either shape parameters are Inf then
the binomial limit is taken, with shape1 / (shape1 + shape2) as the probability

Betabinom 63

of success. In the case where both are Inf this probability will be a NaN =
Inf/Inf, however, the value limit.prob is used instead. Hence the default for
dbetabinom.ab() is to assume that both shape parameters are equal as the limit
is taken (indeed, Beta uses 0.5). Note that for [dpr]betabinom(), because rho
= 0 by default, then limit.prob = prob so that the beta-binomial distribution
behaves like the ordinary binomial distribution with respect to arguments size
and prob.

.dontuse.prob An argument that should be ignored and not used.

pstr0 Probability of a structual zero (i.e., ignoring the beta-binomial distribution). The
default value of pstr0 corresponds to the response having a beta-binomial dis-
tribuion inflated only at size.

pstrsize Probability of a structual maximum value size. The default value of pstrsize
corresponds to the response having a beta-binomial distribution inflated only at
0.

Details

The beta-binomial distribution is a binomial distribution whose probability of success is not a con-
stant but it is generated from a beta distribution with parameters shape1 and shape2. Note that the
mean of this beta distribution is mu = shape1/(shape1+shape2), which therefore is the mean or
the probability of success.

See betabinomial and betabinomialff, the VGAM family functions for estimating the parame-
ters, for the formula of the probability density function and other details.

For the inflated beta-binomial distribution, the probability mass function is

P (Y = y) = (1− pstr0− pstrsize)×BB(y) + pstr0× I[y = 0] + pstrsize× I[y = size]

whereBB(y) is the probability mass function of the beta-binomial distribution with the same shape
parameters (pbetabinom.ab), pstr0 is the inflated probability at 0 and pstrsize is the inflated
probability at 1. The default values of pstr0 and pstrsize mean that these functions behave like
the ordinary Betabinom when only the essential arguments are inputted.

Value

dbetabinom and dbetabinom.ab give the density, pbetabinom and pbetabinom.ab give the dis-
tribution function, and rbetabinom and rbetabinom.ab generate random deviates.

dzoibetabinom and dzoibetabinom.ab give the inflated density, pzoibetabinom and pzoibetabinom.ab
give the inflated distribution function, and rzoibetabinom and rzoibetabinom.ab generate ran-
dom inflated deviates.

Warning

Setting rho = 1 is not recommended, however the code may be modified in the future to handle this
special case.

64 Betabinom

Note

pzoibetabinom, pzoibetabinom.ab, pbetabinom and pbetabinom.ab can be particularly slow.
The functions here ending in .ab are called from those functions which don’t. The simple trans-
formations µ = α/(α + β) and ρ = 1/(1 + α + β) are used, where α and β are the two shape
parameters.

Author(s)

T. W. Yee and Xiangjie Xue

See Also

betabinomial, betabinomialff, Zoabeta, Beta.

Examples

set.seed(1); rbetabinom(10, 100, prob = 0.5)
set.seed(1); rbinom(10, 100, prob = 0.5) # The same as rho = 0

Not run: N <- 9; xx <- 0:N; s1 <- 2; s2 <- 3
dy <- dbetabinom.ab(xx, size = N, shape1 = s1, shape2 = s2)
barplot(rbind(dy, dbinom(xx, size = N, prob = s1 / (s1+s2))),

beside = TRUE, col = c("blue","green"), las = 1,
main = paste("Beta-binomial (size=",N,", shape1=", s1,

", shape2=", s2, ") (blue) vs\n",
" Binomial(size=", N, ", prob=", s1/(s1+s2), ") (green)",

sep = ""),
names.arg = as.character(xx), cex.main = 0.8)

sum(dy * xx) # Check expected values are equal
sum(dbinom(xx, size = N, prob = s1 / (s1+s2)) * xx)
Should be all 0:
cumsum(dy) - pbetabinom.ab(xx, N, shape1 = s1, shape2 = s2)

y <- rbetabinom.ab(n = 1e4, size = N, shape1 = s1, shape2 = s2)
ty <- table(y)
barplot(rbind(dy, ty / sum(ty)),

beside = TRUE, col = c("blue", "orange"), las = 1,
main = paste("Beta-binomial (size=", N, ", shape1=", s1,

", shape2=", s2, ") (blue) vs\n",
" Random generated beta-binomial(size=", N, ", prob=",
s1/(s1+s2), ") (orange)", sep = ""), cex.main = 0.8,
names.arg = as.character(xx))

N <- 1e5; size <- 20; pstr0 <- 0.2; pstrsize <- 0.2
kk <- rzoibetabinom.ab(N, size, s1, s2, pstr0, pstrsize)
hist(kk, probability = TRUE, border = "blue", ylim = c(0, 0.25),

main = "Blue/green = inflated; orange = ordinary beta-binomial",
breaks = -0.5 : (size + 0.5))

sum(kk == 0) / N # Proportion of 0
sum(kk == size) / N # Proportion of size
lines(0 : size,

dbetabinom.ab(0 : size, size, s1, s2), col = "orange")

betabinomial 65

lines(0 : size, col = "green", type = "b",
dzoibetabinom.ab(0 : size, size, s1, s2, pstr0, pstrsize))

End(Not run)

betabinomial Beta-binomial Distribution Family Function

Description

Fits a beta-binomial distribution by maximum likelihood estimation. The two parameters here are
the mean and correlation coefficient.

Usage

betabinomial(lmu = "logitlink", lrho = "logitlink",
irho = NULL, imethod = 1,
ishrinkage = 0.95, nsimEIM = NULL, zero = "rho")

Arguments

lmu, lrho Link functions applied to the two parameters. See Links for more choices. The
defaults ensure the parameters remain in (0, 1), however, see the warning below.

irho Optional initial value for the correlation parameter. If given, it must be in (0, 1),
and is recyled to the necessary length. Assign this argument a value if a con-
vergence failure occurs. Having irho = NULL means an initial value is obtained
internally, though this can give unsatisfactory results.

imethod An integer with value 1 or 2 or . . . , which specifies the initialization method for
µ. If failure to converge occurs try the another value and/or else specify a value
for irho.

zero Specifyies which linear/additive predictor is to be modelled as an intercept only.
If assigned, the single value can be either 1 or 2. The default is to have a single
correlation parameter. To model both parameters as functions of the covariates
assign zero = NULL. See CommonVGAMffArguments for more information.

ishrinkage, nsimEIM

See CommonVGAMffArguments for more information. The argument ishrinkage
is used only if imethod = 2. Using the argument nsimEIM may offer large ad-
vantages for large values of N and/or large data sets.

Details

There are several parameterizations of the beta-binomial distribution. This family function directly
models the mean and correlation parameter, i.e., the probability of success. The model can be
written T |P = p ∼ Binomial(N, p) where P has a beta distribution with shape parameters α and
β. Here, N is the number of trials (e.g., litter size), T = NY is the number of successes, and p is
the probability of a success (e.g., a malformation). That is, Y is the proportion of successes. Like

66 betabinomial

binomialff, the fitted values are the estimated probability of success (i.e., E[Y] and not E[T]) and
the prior weights N are attached separately on the object in a slot.

The probability function is

P (T = t) =

(
N

t

)
Be(α+ t, β +N − t)

Be(α, β)

where t = 0, 1, . . . , N , and Be is the beta function with shape parameters α and β. Recall Y =
T/N is the real response being modelled.

The default model is η1 = logit(µ) and η2 = logit(ρ) because both parameters lie between 0 and 1.
The mean (of Y) is p = µ = α/(α+β) and the variance (of Y) is µ(1−µ)(1+(N−1)ρ)/N . Here,
the correlation ρ is given by 1/(1+α+β) and is the correlation between theN individuals within a
litter. A litter effect is typically reflected by a positive value of ρ. It is known as the over-dispersion
parameter.

This family function uses Fisher scoring. Elements of the second-order expected derivatives with
respect to α and β are computed numerically, which may fail for large α, β, N or else take a long
time.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm.

Suppose fit is a fitted beta-binomial model. Then fit@y contains the sample proportions y,
fitted(fit) returns estimates of E(Y), and weights(fit, type="prior") returns the number
of trials N .

Warning

If the estimated rho parameter is close to 0 then it pays to try lrho = "rhobitlink". One day this
may become the default link function.

This family function is prone to numerical difficulties due to the expected information matrices
not being positive-definite or ill-conditioned over some regions of the parameter space. If problems
occur try setting irho to some numerical value, nsimEIM = 100, say, or else use etastart argument
of vglm, etc.

Note

This function processes the input in the same way as binomialff. But it does not handle the case
N = 1 very well because there are two parameters to estimate, not one, for each row of the input.
Cases where N = 1 can be omitted via the subset argument of vglm.

The extended beta-binomial distribution of Prentice (1986) is currently not implemented in the
VGAM package as it has range-restrictions for the correlation parameter that are currently too
difficult to handle in this package. However, try lrho = "rhobitlink".

Author(s)

T. W. Yee

betabinomial 67

References

Moore, D. F. and Tsiatis, A. (1991). Robust estimation of the variance in moment methods for
extra-binomial and extra-Poisson variation. Biometrics, 47, 383–401.

Prentice, R. L. (1986). Binary regression using an extended beta-binomial distribution, with discus-
sion of correlation induced by covariate measurement errors. Journal of the American Statistical
Association, 81, 321–327.

See Also

betabinomialff, Betabinom, binomialff, betaff, dirmultinomial, lirat, simulate.vlm.

Examples

Example 1
bdata <- data.frame(N = 10, mu = 0.5, rho = 0.8)
bdata <- transform(bdata,

y = rbetabinom(100, size = N, prob = mu, rho = rho))
fit <- vglm(cbind(y, N-y) ~ 1, betabinomial, bdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(cbind(depvar(fit), weights(fit, type = "prior")))

Example 2
fit <- vglm(cbind(R, N-R) ~ 1, betabinomial, lirat,

trace = TRUE, subset = N > 1)
coef(fit, matrix = TRUE)
Coef(fit)
t(fitted(fit))
t(depvar(fit))
t(weights(fit, type = "prior"))

Example 3, which is more complicated
lirat <- transform(lirat, fgrp = factor(grp))
summary(lirat) # Only 5 litters in group 3
fit2 <- vglm(cbind(R, N-R) ~ fgrp + hb, betabinomial(zero = 2),

data = lirat, trace = TRUE, subset = N > 1)
coef(fit2, matrix = TRUE)
Not run: with(lirat, plot(hb[N > 1], fit2@misc$rho,

xlab = "Hemoglobin", ylab = "Estimated rho",
pch = as.character(grp[N > 1]), col = grp[N > 1]))

End(Not run)
Not run: # cf. Figure 3 of Moore and Tsiatis (1991)
with(lirat, plot(hb, R / N, pch = as.character(grp), col = grp,

xlab = "Hemoglobin level", ylab = "Proportion Dead",
main = "Fitted values (lines)", las = 1))

smalldf <- with(lirat, lirat[N > 1,])
for (gp in 1:4) {

xx <- with(smalldf, hb[grp == gp])
yy <- with(smalldf, fitted(fit2)[grp == gp])

68 betabinomialff

ooo <- order(xx)
lines(xx[ooo], yy[ooo], col = gp)

}
End(Not run)

betabinomialff Beta-binomial Distribution Family Function

Description

Fits a beta-binomial distribution by maximum likelihood estimation. The two parameters here are
the shape parameters of the underlying beta distribution.

Usage

betabinomialff(lshape1 = "loglink", lshape2 = "loglink",
ishape1 = 1, ishape2 = NULL, imethod = 1, ishrinkage = 0.95,
nsimEIM = NULL, zero = NULL)

Arguments

lshape1, lshape2

Link functions for the two (positive) shape parameters of the beta distribution.
See Links for more choices.

ishape1, ishape2

Initial value for the shape parameters. The first must be positive, and is recyled
to the necessary length. The second is optional. If a failure to converge occurs,
try assigning a different value to ishape1 and/or using ishape2.

zero Can be an integer specifying which linear/additive predictor is to be modelled
as an intercept only. If assigned, the single value should be either 1 or 2. The
default is to model both shape parameters as functions of the covariates. If
a failure to converge occurs, try zero = 2. See CommonVGAMffArguments for
more information.

ishrinkage, nsimEIM, imethod

See CommonVGAMffArguments for more information. The argument ishrinkage
is used only if imethod = 2. Using the argument nsimEIM may offer large ad-
vantages for large values of N and/or large data sets.

Details

There are several parameterizations of the beta-binomial distribution. This family function directly
models the two shape parameters of the associated beta distribution rather than the probability of
success (however, see Note below). The model can be written T |P = p ∼ Binomial(N, p) where
P has a beta distribution with shape parameters α and β. Here, N is the number of trials (e.g.,
litter size), T = NY is the number of successes, and p is the probability of a success (e.g., a
malformation). That is, Y is the proportion of successes. Like binomialff, the fitted values are
the estimated probability of success (i.e., E[Y] and not E[T]) and the prior weights N are attached
separately on the object in a slot.

betabinomialff 69

The probability function is

P (T = t) =

(
N

t

)
B(α+ t, β +N − t)

B(α, β)

where t = 0, 1, . . . , N , andB is the beta function with shape parameters α and β. Recall Y = T/N
is the real response being modelled.

The default model is η1 = log(α) and η2 = log(β) because both parameters are positive. The mean
(of Y) is p = µ = α/(α + β) and the variance (of Y) is µ(1 − µ)(1 + (N − 1)ρ)/N . Here, the
correlation ρ is given by 1/(1 + α + β) and is the correlation between the N individuals within a
litter. A litter effect is typically reflected by a positive value of ρ. It is known as the over-dispersion
parameter.

This family function uses Fisher scoring. The two diagonal elements of the second-order expected
derivatives with respect to α and β are computed numerically, which may fail for large α, β, N or
else take a long time.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm.

Suppose fit is a fitted beta-binomial model. Then fit@y (better: depvar(fit)) contains the sam-
ple proportions y, fitted(fit) returns estimates of E(Y), and weights(fit, type = "prior")
returns the number of trials N .

Warning

This family function is prone to numerical difficulties due to the expected information matrices not
being positive-definite or ill-conditioned over some regions of the parameter space. If problems
occur try setting ishape1 to be some other positive value, using ishape2 and/or setting zero = 2.

This family function may be renamed in the future. See the warnings in betabinomial.

Note

This function processes the input in the same way as binomialff. But it does not handle the case
N = 1 very well because there are two parameters to estimate, not one, for each row of the input.
Cases where N = 1 can be omitted via the subset argument of vglm.

Although the two linear/additive predictors given above are in terms of α and β, basic algebra shows
that the default amounts to fitting a logit link to the probability of success; subtracting the second
linear/additive predictor from the first gives that logistic regression linear/additive predictor. That
is, logit(p) = η1 − η2. This is illustated in one of the examples below.

The extended beta-binomial distribution of Prentice (1986) is currently not implemented in the
VGAM package as it has range-restrictions for the correlation parameter that are currently too
difficult to handle in this package.

Author(s)

T. W. Yee

70 betabinomialff

References

Moore, D. F. and Tsiatis, A. (1991). Robust estimation of the variance in moment methods for
extra-binomial and extra-Poisson variation. Biometrics, 47, 383–401.

Prentice, R. L. (1986). Binary regression using an extended beta-binomial distribution, with discus-
sion of correlation induced by covariate measurement errors. Journal of the American Statistical
Association, 81, 321–327.

See Also

betabinomial, Betabinom, binomialff, betaff, dirmultinomial, lirat, simulate.vlm.

Examples

Example 1
N <- 10; s1 <- exp(1); s2 <- exp(2)
y <- rbetabinom.ab(n = 100, size = N, shape1 = s1, shape2 = s2)
fit <- vglm(cbind(y, N-y) ~ 1, betabinomialff, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fit@misc$rho) # The correlation parameter
head(cbind(depvar(fit), weights(fit, type = "prior")))

Example 2
fit <- vglm(cbind(R, N-R) ~ 1, betabinomialff, data = lirat,

trace = TRUE, subset = N > 1)
coef(fit, matrix = TRUE)
Coef(fit)
fit@misc$rho # The correlation parameter
t(fitted(fit))
t(depvar(fit))
t(weights(fit, type = "prior"))
A "loglink" link for the 2 shape params is a logistic regression:
all.equal(c(fitted(fit)),

as.vector(logitlink(predict(fit)[, 1] -
predict(fit)[, 2], inverse = TRUE)))

Example 3, which is more complicated
lirat <- transform(lirat, fgrp = factor(grp))
summary(lirat) # Only 5 litters in group 3
fit2 <- vglm(cbind(R, N-R) ~ fgrp + hb, betabinomialff(zero = 2),

data = lirat, trace = TRUE, subset = N > 1)
coef(fit2, matrix = TRUE)
coef(fit2, matrix = TRUE)[, 1] -
coef(fit2, matrix = TRUE)[, 2] # logitlink(p)
Not run: with(lirat, plot(hb[N > 1], fit2@misc$rho,

xlab = "Hemoglobin", ylab = "Estimated rho",
pch = as.character(grp[N > 1]), col = grp[N > 1]))

End(Not run)
Not run: # cf. Figure 3 of Moore and Tsiatis (1991)

betaff 71

with(lirat, plot(hb, R / N, pch = as.character(grp), col = grp,
xlab = "Hemoglobin level", ylab = "Proportion Dead", las = 1,
main = "Fitted values (lines)"))

smalldf <- with(lirat, lirat[N > 1,])
for (gp in 1:4) {

xx <- with(smalldf, hb[grp == gp])
yy <- with(smalldf, fitted(fit2)[grp == gp])
ooo <- order(xx)
lines(xx[ooo], yy[ooo], col = gp)

}
End(Not run)

betaff The Two-parameter Beta Distribution Family Function

Description

Estimation of the mean and precision parameters of the beta distribution.

Usage

betaff(A = 0, B = 1, lmu = "logitlink", lphi = "loglink",
imu = NULL, iphi = NULL,
gprobs.y = ppoints(8), gphi = exp(-3:5)/4, zero = NULL)

Arguments

A, B Lower and upper limits of the distribution. The defaults correspond to the stan-
dard beta distribution where the response lies between 0 and 1.

lmu, lphi Link function for the mean and precision parameters. The values A and B are
extracted from the min and max arguments of extlogitlink. Consequently,
only extlogitlink is allowed.

imu, iphi Optional initial value for the mean and precision parameters respectively. A
NULL value means a value is obtained in the initialize slot.

gprobs.y, gphi, zero

See CommonVGAMffArguments for more information.

Details

The two-parameter beta distribution can be written f(y) =

(y −A)µ1φ−1 × (B − y)(1−µ1)φ−1/[beta(µ1φ, (1− µ1)φ)× (B −A)φ−1]

for A < y < B, and beta(., .) is the beta function (see beta). The parameter µ1 satisfies µ1 =
(µ−A)/(B−A) where µ is the mean of Y . That is, µ1 is the mean of of a standard beta distribution:
E(Y) = A + (B − A) × µ1, and these are the fitted values of the object. Also, φ is positive and
A < µ < B. Here, the limits A and B are known.

72 betaff

Another parameterization of the beta distribution involving the raw shape parameters is imple-
mented in betaR.

For general A and B, the variance of Y is (B − A)2 × µ1 × (1 − µ1)/(1 + φ). Then φ can be
interpreted as a precision parameter in the sense that, for fixed µ, the larger the value of φ, the
smaller the variance of Y . Also, µ1 = shape1/(shape1 + shape2) and φ = shape1 + shape2.
Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The response must have values in the interval (A, B). The user currently needs to manually choose
lmu to match the input of arguments A and B, e.g., with extlogitlink; see the example below.

Author(s)

Thomas W. Yee

References

Ferrari, S. L. P. and Francisco C.-N. (2004). Beta regression for modelling rates and proportions.
Journal of Applied Statistics, 31, 799–815.

See Also

betaR,

Beta, dzoabeta, genbetaII, betaII, betabinomialff, betageometric, betaprime, rbetageom,
rbetanorm, kumar, extlogitlink, simulate.vlm.

Examples

bdata <- data.frame(y = rbeta(nn <- 1000, shape1 = exp(0),
shape2 = exp(1)))

fit1 <- vglm(y ~ 1, betaff, data = bdata, trace = TRUE)
coef(fit1, matrix = TRUE)
Coef(fit1) # Useful for intercept-only models

General A and B, and with a covariate
bdata <- transform(bdata, x2 = runif(nn))
bdata <- transform(bdata, mu = logitlink(0.5 - x2, inverse = TRUE),

prec = exp(3.0 + x2)) # prec == phi
bdata <- transform(bdata, shape2 = prec * (1 - mu),

shape1 = mu * prec)
bdata <- transform(bdata,

y = rbeta(nn, shape1 = shape1, shape2 = shape2))
bdata <- transform(bdata, Y = 5 + 8 * y) # From 5--13, not 0--1
fit <- vglm(Y ~ x2, data = bdata, trace = TRUE,

betaff(A = 5, B = 13, lmu = extlogitlink(min = 5, max = 13)))

Betageom 73

coef(fit, matrix = TRUE)

Betageom The Beta-Geometric Distribution

Description

Density, distribution function, and random generation for the beta-geometric distribution.

Usage

dbetageom(x, shape1, shape2, log = FALSE)
pbetageom(q, shape1, shape2, log.p = FALSE)
rbetageom(n, shape1, shape2)

Arguments

x, q vector of quantiles.

n number of observations. Same as runif.

shape1, shape2 the two (positive) shape parameters of the standard beta distribution. They are
called a and b in beta respectively.

log, log.p Logical. If TRUE then all probabilities p are given as log(p).

Details

The beta-geometric distribution is a geometric distribution whose probability of success is not a
constant but it is generated from a beta distribution with parameters shape1 and shape2. Note that
the mean of this beta distribution is shape1/(shape1+shape2), which therefore is the mean of the
probability of success.

Value

dbetageom gives the density, pbetageom gives the distribution function, and rbetageom generates
random deviates.

Note

pbetageom can be particularly slow.

Author(s)

T. W. Yee

See Also

geometric, betaff, Beta.

74 betageometric

Examples

Not run:
shape1 <- 1; shape2 <- 2; y <- 0:30
proby <- dbetageom(y, shape1, shape2, log = FALSE)
plot(y, proby, type = "h", col = "blue", ylab = "P[Y=y]", main = paste0(

"Y ~ Beta-geometric(shape1=", shape1,", shape2=", shape2, ")"))
sum(proby)

End(Not run)

betageometric Beta-geometric Distribution Family Function

Description

Maximum likelihood estimation for the beta-geometric distribution.

Usage

betageometric(lprob = "logitlink", lshape = "loglink",
iprob = NULL, ishape = 0.1,
moreSummation = c(2, 100), tolerance = 1.0e-10, zero = NULL)

Arguments

lprob, lshape Parameter link functions applied to the parameters p and φ (called prob and
shape below). The former lies in the unit interval and the latter is positive. See
Links for more choices.

iprob, ishape Numeric. Initial values for the two parameters. A NULL means a value is com-
puted internally.

moreSummation Integer, of length 2. When computing the expected information matrix a se-
ries summation from 0 to moreSummation[1]*max(y)+moreSummation[2] is
made, in which the upper limit is an approximation to infinity. Here, y is the
response.

tolerance Positive numeric. When all terms are less than this then the series is deemed to
have converged.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. If used, the value must be from the set {1,2}.

Details

A random variable Y has a 2-parameter beta-geometric distribution if P (Y = y) = p(1 − p)y

for y = 0, 1, 2, . . . where p are generated from a standard beta distribution with shape param-
eters shape1 and shape2. The parameterization here is to focus on the parameters p and φ =
1/(shape1+shape2), where φ is shape. The default link functions for these ensure that the appro-
priate range of the parameters is maintained. The mean of Y is E(Y) = shape2/(shape1− 1) =
(1− p)/(p− φ) if shape1 > 1, and if so, then this is returned as the fitted values.

betageometric 75

The geometric distribution is a special case of the beta-geometric distribution with φ = 0 (see
geometric). However, fitting data from a geometric distribution may result in numerical problems
because the estimate of log(φ) will ’converge’ to -Inf.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The first iteration may be very slow; if practical, it is best for the weights argument of vglm etc.
to be used rather than inputting a very long vector as the response, i.e., vglm(y ~ 1, ..., weights
= wts) is to be preferred over vglm(rep(y, wts) ~ 1, ...). If convergence problems occur try
inputting some values of argument ishape.

If an intercept-only model is fitted then the misc slot of the fitted object has list components shape1
and shape2.

Author(s)

T. W. Yee

References

Paul, S. R. (2005). Testing goodness of fit of the geometric distribution: an application to human
fecundability data. Journal of Modern Applied Statistical Methods, 4, 425–433.

See Also

geometric, betaff, rbetageom.

Examples

bdata <- data.frame(y = 0:11,
wts = c(227,123,72,42,21,31,11,14,6,4,7,28))

fitb <- vglm(y ~ 1, betageometric, bdata, weight = wts, trace = TRUE)
fitg <- vglm(y ~ 1, geometric, bdata, weight = wts, trace = TRUE)
coef(fitb, matrix = TRUE)
Coef(fitb)
sqrt(diag(vcov(fitb, untransform = TRUE)))
fitb@misc$shape1
fitb@misc$shape2
Very strong evidence of a beta-geometric:
pchisq(2 * (logLik(fitb) - logLik(fitg)), df = 1, lower.tail = FALSE)

76 betaII

betaII Beta Distribution of the Second Kind

Description

Maximum likelihood estimation of the 3-parameter beta II distribution.

Usage

betaII(lscale = "loglink", lshape2.p = "loglink",
lshape3.q = "loglink", iscale = NULL, ishape2.p = NULL,
ishape3.q = NULL, imethod = 1,
gscale = exp(-5:5), gshape2.p = exp(-5:5),
gshape3.q = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")

Arguments

lscale, lshape2.p, lshape3.q

Parameter link functions applied to the (positive) parameters scale, p and q.
See Links for more choices.

iscale, ishape2.p, ishape3.q, imethod, zero

See CommonVGAMffArguments for information.
gscale, gshape2.p, gshape3.q

See CommonVGAMffArguments for information.
probs.y See CommonVGAMffArguments for information.

Details

The 3-parameter beta II is the 4-parameter generalized beta II distribution with shape parameter
a = 1. It is also known as the Pearson VI distribution. Other distributions which are special cases
of the 3-parameter beta II include the Lomax (p = 1) and inverse Lomax (q = 1). More details can
be found in Kleiber and Kotz (2003).

The beta II distribution has density

f(y) = yp−1/[bpB(p, q){1 + y/b}p+q]

for b > 0, p > 0, q > 0, y ≥ 0. Here, b is the scale parameter scale, and the others are shape
parameters. The mean is

E(Y) = bΓ(p+ 1) Γ(q − 1)/(Γ(p) Γ(q))

provided q > 1; these are returned as the fitted values. This family function handles multiple
responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Betanorm 77

Note

See the notes in genbetaII.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

betaff, genbetaII, dagum, sinmad, fisk, inv.lomax, lomax, paralogistic, inv.paralogistic.

Examples

bdata <- data.frame(y = rsinmad(2000, shape1.a = 1,
shape3.q = exp(2), scale = exp(1))) # Not genuine data!

fit <- vglm(y ~ 1, betaII, data = bdata, trace = TRUE)
fit <- vglm(y ~ 1, betaII(ishape2.p = 0.7, ishape3.q = 0.7),

data = bdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

Betanorm The Beta-Normal Distribution

Description

Density, distribution function, quantile function and random generation for the univariate beta-
normal distribution.

Usage

dbetanorm(x, shape1, shape2, mean = 0, sd = 1, log = FALSE)
pbetanorm(q, shape1, shape2, mean = 0, sd = 1,

lower.tail = TRUE, log.p = FALSE)
qbetanorm(p, shape1, shape2, mean = 0, sd = 1,

lower.tail = TRUE, log.p = FALSE)
rbetanorm(n, shape1, shape2, mean = 0, sd = 1)

78 Betanorm

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as runif.

shape1, shape2 the two (positive) shape parameters of the standard beta distribution. They are
called a and b respectively in beta.

mean, sd the mean and standard deviation of the univariate normal distribution (Normal).

log, log.p Logical. If TRUE then all probabilities p are given as log(p).

lower.tail Logical. If TRUE then the upper tail is returned, i.e., one minus the usual answer.

Details

The function betauninormal, the VGAM family function for estimating the parameters, has not
yet been written.

Value

dbetanorm gives the density, pbetanorm gives the distribution function, qbetanorm gives the quan-
tile function, and rbetanorm generates random deviates.

Author(s)

T. W. Yee

References

Gupta, A. K. and Nadarajah, S. (2004). Handbook of Beta Distribution and Its Applications,
pp.146–152. New York: Marcel Dekker.

Examples

Not run:
shape1 <- 0.1; shape2 <- 4; m <- 1
x <- seq(-10, 2, len = 501)
plot(x, dbetanorm(x, shape1, shape2, m = m), type = "l",

ylim = 0:1, las = 1,
ylab = paste0("betanorm(",shape1,", ",shape2,", m=",m, ", sd=1)"),
main = "Blue is density, orange is the CDF",
sub = "Gray lines are the 10,20,...,90 percentiles", col = "blue")

lines(x, pbetanorm(x, shape1, shape2, m = m), col = "orange")
abline(h = 0, col = "black")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qbetanorm(probs, shape1, shape2, m = m)
lines(Q, dbetanorm(Q, shape1, shape2, m = m),

col = "gray50", lty = 2, type = "h")
lines(Q, pbetanorm(Q, shape1, shape2, m = m),

col = "gray50", lty = 2, type = "h")
abline(h = probs, col = "gray50", lty = 2)
pbetanorm(Q, shape1, shape2, m = m) - probs # Should be all 0

betaprime 79

End(Not run)

betaprime The Beta-Prime Distribution

Description

Estimation of the two shape parameters of the beta-prime distribution by maximum likelihood esti-
mation.

Usage

betaprime(lshape = "loglink", ishape1 = 2, ishape2 = NULL,
zero = NULL)

Arguments

lshape Parameter link function applied to the two (positive) shape parameters. See
Links for more choices.

ishape1, ishape2, zero

See CommonVGAMffArguments.

Details

The beta-prime distribution is given by

f(y) = yshape1−1(1 + y)−shape1−shape2/B(shape1, shape2)

for y > 0. The shape parameters are positive, and here, B is the beta function. The mean of Y is
shape1/(shape2− 1) provided shape2 > 1; these are returned as the fitted values.

If Y has aBeta(shape1, shape2) distribution then Y/(1−Y) and (1−Y)/Y have aBetaprime(shape1, shape2)
andBetaprime(shape2, shape1) distribution respectively. Also, if Y1 has a gamma(shape1) dis-
tribution and Y2 has a gamma(shape2) distribution then Y1/Y2 has aBetaprime(shape1, shape2)
distribution.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

The response must have positive values only.

The beta-prime distribution is also known as the beta distribution of the second kind or the inverted
beta distribution.

80 betaR

Author(s)

Thomas W. Yee

References

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Chapter 25 of: Continuous Univariate
Distributions, 2nd edition, Volume 2, New York: Wiley.

See Also

betaff, Beta.

Examples

nn <- 1000
bdata <- data.frame(shape1 = exp(1), shape2 = exp(3))
bdata <- transform(bdata, yb = rbeta(nn, shape1, shape2))
bdata <- transform(bdata, y1 = (1-yb) / yb,

y2 = yb / (1-yb),
y3 = rgamma(nn, exp(3)) / rgamma(nn, exp(2)))

fit1 <- vglm(y1 ~ 1, betaprime, data = bdata, trace = TRUE)
coef(fit1, matrix = TRUE)

fit2 <- vglm(y2 ~ 1, betaprime, data = bdata, trace = TRUE)
coef(fit2, matrix = TRUE)

fit3 <- vglm(y3 ~ 1, betaprime, data = bdata, trace = TRUE)
coef(fit3, matrix = TRUE)

Compare the fitted values
with(bdata, mean(y3))
head(fitted(fit3))
Coef(fit3) # Useful for intercept-only models

betaR The Two-parameter Beta Distribution Family Function

Description

Estimation of the shape parameters of the two-parameter beta distribution.

Usage

betaR(lshape1 = "loglink", lshape2 = "loglink",
i1 = NULL, i2 = NULL, trim = 0.05,
A = 0, B = 1, parallel = FALSE, zero = NULL)

betaR 81

Arguments

lshape1, lshape2, i1, i2

Details at CommonVGAMffArguments. See Links for more choices.

trim An argument which is fed into mean(); it is the fraction (0 to 0.5) of observations
to be trimmed from each end of the response y before the mean is computed.
This is used when computing initial values, and guards against outliers.

A, B Lower and upper limits of the distribution. The defaults correspond to the stan-
dard beta distribution where the response lies between 0 and 1.

parallel, zero See CommonVGAMffArguments for more information.

Details

The two-parameter beta distribution is given by f(y) =

(y −A)shape1−1 × (B − y)shape2−1/[Beta(shape1, shape2)× (B −A)shape1+shape2−1]

for A < y < B, and Beta(., .) is the beta function (see beta). The shape parameters are pos-
itive, and here, the limits A and B are known. The mean of Y is E(Y) = A + (B − A) ×
shape1/(shape1 + shape2), and these are the fitted values of the object.

For the standard beta distribution the variance of Y is shape1×shape2/[(1+shape1+shape2)×
(shape1 + shape2)2]. If σ2 = 1/(1 + shape1 + shape2) then the variance of Y can be written
σ2µ(1− µ) where µ = shape1/(shape1 + shape2) is the mean of Y .

Another parameterization of the beta distribution involving the mean and a precision parameter is
implemented in betaff.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

The response must have values in the interval (A, B). VGAM 0.7-4 and prior called this function
betaff.

Author(s)

Thomas W. Yee

References

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Chapter 25 of: Continuous Univariate
Distributions, 2nd edition, Volume 2, New York: Wiley.

Gupta, A. K. and Nadarajah, S. (2004). Handbook of Beta Distribution and Its Applications, New
York: Marcel Dekker.

82 Biamhcop

See Also

betaff,

Beta, genbetaII, betaII, betabinomialff, betageometric, betaprime, rbetageom, rbetanorm,
kumar, simulate.vlm.

Examples

bdata <- data.frame(y = rbeta(1000, shape1 = exp(0), shape2 = exp(1)))
fit <- vglm(y ~ 1, betaR(lshape1 = "identitylink",

lshape2 = "identitylink"), bdata, trace = TRUE, crit = "coef")
fit <- vglm(y ~ 1, betaR, data = bdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit) # Useful for intercept-only models

bdata <- transform(bdata, Y = 5 + 8 * y) # From 5 to 13, not 0 to 1
fit <- vglm(Y ~ 1, betaR(A = 5, B = 13), data = bdata, trace = TRUE)
Coef(fit)
c(meanY = with(bdata, mean(Y)), head(fitted(fit),2))

Biamhcop Ali-Mikhail-Haq Bivariate Distribution

Description

Density, distribution function, and random generation for the (one parameter) bivariate Ali-Mikhail-
Haq distribution.

Usage

dbiamhcop(x1, x2, apar, log = FALSE)
pbiamhcop(q1, q2, apar)
rbiamhcop(n, apar)

Arguments

x1, x2, q1, q2 vector of quantiles.

n number of observations. Same as runif

apar the association parameter.

log Logical. If TRUE then the logarithm is returned.

Details

See biamhcop, the VGAM family functions for estimating the parameter by maximum likelihood
estimation, for the formula of the cumulative distribution function and other details.

biamhcop 83

Value

dbiamhcop gives the density, pbiamhcop gives the distribution function, and rbiamhcop generates
random deviates (a two-column matrix).

Author(s)

T. W. Yee and C. S. Chee

See Also

biamhcop.

Examples

x <- seq(0, 1, len = (N <- 101)); apar <- 0.7
ox <- expand.grid(x, x)
zedd <- dbiamhcop(ox[, 1], ox[, 2], apar = apar)
Not run:
contour(x, x, matrix(zedd, N, N), col = "blue")
zedd <- pbiamhcop(ox[, 1], ox[, 2], apar = apar)
contour(x, x, matrix(zedd, N, N), col = "blue")

plot(r <- rbiamhcop(n = 1000, apar = apar), col = "blue")
par(mfrow = c(1, 2))
hist(r[, 1]) # Should be uniform
hist(r[, 2]) # Should be uniform

End(Not run)

biamhcop Ali-Mikhail-Haq Distribution Family Function

Description

Estimate the association parameter of Ali-Mikhail-Haq’s bivariate distribution by maximum likeli-
hood estimation.

Usage

biamhcop(lapar = "rhobitlink", iapar = NULL, imethod = 1,
nsimEIM = 250)

Arguments

lapar Link function applied to the association parameter α, which is real and −1 <
α < 1. See Links for more choices.

iapar Numeric. Optional initial value for α. By default, an initial value is chosen inter-
nally. If a convergence failure occurs try assigning a different value. Assigning
a value will override the argument imethod.

84 biamhcop

imethod An integer with value 1 or 2 which specifies the initialization method. If failure
to converge occurs try the other value, or else specify a value for iapar.

nsimEIM See CommonVGAMffArguments for more information.

Details

The cumulative distribution function is

P (Y1 ≤ y1, Y2 ≤ y2) = y1y2/(1− α(1− y1)(1− y2))

for −1 < α < 1. The support of the function is the unit square. The marginal distributions are
the standard uniform distributions. When α = 0 the random variables are independent. This is an
Archimedean copula.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two-column matrix. Currently, the fitted value is a matrix with two columns
and values equal to 0.5. This is because each marginal distribution corresponds to a standard uni-
form distribution.

Author(s)

T. W. Yee and C. S. Chee

References

Balakrishnan, N. and Lai, C.-D. (2009). Continuous Bivariate Distributions, 2nd ed. New York:
Springer.

See Also

rbiamhcop, bifgmcop, bigumbelIexp, rbilogis, simulate.vlm.

Examples

ymat <- rbiamhcop(1000, apar = rhobitlink(2, inverse = TRUE))
fit <- vglm(ymat ~ 1, biamhcop, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)

Biclaytoncop 85

Biclaytoncop Clayton Copula (Bivariate) Distribution

Description

Density and random generation for the (one parameter) bivariate Clayton copula distribution.

Usage

dbiclaytoncop(x1, x2, apar = 0, log = FALSE)
rbiclaytoncop(n, apar = 0)

Arguments

x1, x2 vector of quantiles. The x1 and x2 should both be in the interval (0, 1).

n number of observations. Same as rnorm.

apar the association parameter. Should be in the interval [0,∞). The default corre-
sponds to independence.

log Logical. If TRUE then the logarithm is returned.

Details

See biclaytoncop, the VGAM family functions for estimating the parameter by maximum likeli-
hood estimation, for the formula of the cumulative distribution function and other details.

Value

dbiclaytoncop gives the density at point (x1,x2), rbiclaytoncop generates random deviates (a
two-column matrix).

Note

dbiclaytoncop() does not yet handle x1 = 0 and/or x2 = 0.

Author(s)

R. Feyter and T. W. Yee

References

Clayton, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statis-
tical Society, Series B, Methodological, 44, 414–422.

See Also

biclaytoncop, binormalcop, binormal.

86 biclaytoncop

Examples

Not run: edge <- 0.01 # A small positive value
N <- 101; x <- seq(edge, 1.0 - edge, len = N); Rho <- 0.7
ox <- expand.grid(x, x)
zedd <- dbiclaytoncop(ox[, 1], ox[, 2], apar = Rho, log = TRUE)
par(mfrow = c(1, 2))
contour(x, x, matrix(zedd, N, N), col = "blue", labcex = 1.5, las = 1)
plot(rbiclaytoncop(1000, 2), col = "blue", las = 1)
End(Not run)

biclaytoncop Clayton Copula (Bivariate) Family Function

Description

Estimate the correlation parameter of the (bivariate) Clayton copula distribution by maximum like-
lihood estimation.

Usage

biclaytoncop(lapar = "loglink", iapar = NULL, imethod = 1,
parallel = FALSE, zero = NULL)

Arguments

lapar, iapar, imethod

Details at CommonVGAMffArguments. See Links for more link function choices.

parallel, zero Details at CommonVGAMffArguments. If parallel = TRUE then the constraint is
also applied to the intercept.

Details

The cumulative distribution function is

P (u1, u2;α) = (u−α1 + u−α2 − 1)−1/α

for 0 ≤ α. Here, α is the association parameter. The support of the function is the interior of the
unit square; however, values of 0 and/or 1 are not allowed (currently). The marginal distributions
are the standard uniform distributions. When α = 0 the random variables are independent.

This VGAM family function can handle multiple responses, for example, a six-column matrix
where the first 2 columns is the first out of three responses, the next 2 columns being the next
response, etc.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

biclaytoncop 87

Note

The response matrix must have a multiple of two-columns. Currently, the fitted value is a matrix
with the same number of columns and values equal to 0.5. This is because each marginal distribution
corresponds to a standard uniform distribution.

This VGAM family function is fragile; each response must be in the interior of the unit square.

Author(s)

R. Feyter and T. W. Yee

References

Clayton, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statis-
tical Society, Series B, Methodological, 44, 414–422.

Schepsmeier, U. and Stober, J. (2014). Derivatives and Fisher information of bivariate copulas.
Statistical Papers 55, 525–542.

See Also

rbiclaytoncop, dbiclaytoncop, kendall.tau.

Examples

ymat <- rbiclaytoncop(n = (nn <- 1000), apar = exp(2))
bdata <- data.frame(y1 = ymat[, 1], y2 = ymat[, 2],

y3 = ymat[, 1], y4 = ymat[, 2], x2 = runif(nn))
summary(bdata)
Not run: plot(ymat, col = "blue")
fit1 <-

vglm(cbind(y1, y2, y3, y4) ~ 1, # 2 responses, e.g., (y1,y2) is the 1st
biclaytoncop, data = bdata,
trace = TRUE, crit = "coef") # Sometimes a good idea

coef(fit1, matrix = TRUE)
Coef(fit1)
head(fitted(fit1))
summary(fit1)

Another example; apar is a function of x2
bdata <- transform(bdata, apar = exp(-0.5 + x2))
ymat <- rbiclaytoncop(n = nn, apar = with(bdata, apar))
bdata <- transform(bdata, y5 = ymat[, 1], y6 = ymat[, 2])
fit2 <- vgam(cbind(y5, y6) ~ s(x2), data = bdata,

biclaytoncop(lapar = "loglink"), trace = TRUE)
Not run: plot(fit2, lcol = "blue", scol = "orange", se = TRUE)

88 BICvlm

BICvlm Bayesian Information Criterion

Description

Calculates the Bayesian information criterion (BIC) for a fitted model object for which a log-
likelihood value has been obtained.

Usage

BICvlm(object, ..., k = log(nobs(object)))

Arguments

object, ... Same as AICvlm.

k Numeric, the penalty per parameter to be used; the default is log(n) where n is
the number of observations).

Details

The so-called BIC or SBC (Schwarz’s Bayesian criterion) can be computed by calling AICvlm with
a different k argument. See AICvlm for information and caveats.

Value

Returns a numeric value with the corresponding BIC, or . . . , depending on k.

Warning

Like AICvlm, this code has not been double-checked. The general applicability of BIC for the
VGLM/VGAM classes has not been developed fully. In particular, BIC should not be run on some
VGAM family functions because of violation of certain regularity conditions, etc.

Many VGAM family functions such as cumulative can have the number of observations absorbed
into the prior weights argument (e.g., weights in vglm), either before or after fitting. Almost all
VGAM family functions can have the number of observations defined by the weights argument,
e.g., as an observed frequency. BIC simply uses the number of rows of the model matrix, say, as
defining n, hence the user must be very careful of this possible error. Use at your own risk!!

Note

BIC, AIC and other ICs can have have many additive constants added to them. The important thing
are the differences since the minimum value corresponds to the best model.

BIC has not been defined for QRR-VGLMs yet.

Author(s)

T. W. Yee.

Bifgmcop 89

See Also

AICvlm, VGLMs are described in vglm-class; VGAMs are described in vgam-class; RR-VGLMs
are described in rrvglm-class; BIC, AIC.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = TRUE, reverse = TRUE), data = pneumo))
coef(fit1, matrix = TRUE)
BIC(fit1)
(fit2 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = FALSE, reverse = TRUE), data = pneumo))
coef(fit2, matrix = TRUE)
BIC(fit2)

Bifgmcop Farlie-Gumbel-Morgenstern’s Bivariate Distribution

Description

Density, distribution function, and random generation for the (one parameter) bivariate Farlie-
Gumbel-Morgenstern’s distribution.

Usage

dbifgmcop(x1, x2, apar, log = FALSE)
pbifgmcop(q1, q2, apar)
rbifgmcop(n, apar)

Arguments

x1, x2, q1, q2 vector of quantiles.

n number of observations. Same as in runif.

apar the association parameter.

log Logical. If TRUE then the logarithm is returned.

Details

See bifgmcop, the VGAM family functions for estimating the parameter by maximum likelihood
estimation, for the formula of the cumulative distribution function and other details.

Value

dbifgmcop gives the density, pbifgmcop gives the distribution function, and rbifgmcop generates
random deviates (a two-column matrix).

90 bifgmcop

Author(s)

T. W. Yee

See Also

bifgmcop.

Examples

Not run: N <- 101; x <- seq(0.0, 1.0, len = N); apar <- 0.7
ox <- expand.grid(x, x)
zedd <- dbifgmcop(ox[, 1], ox[, 2], apar = apar)
contour(x, x, matrix(zedd, N, N), col = "blue")
zedd <- pbifgmcop(ox[, 1], ox[, 2], apar = apar)
contour(x, x, matrix(zedd, N, N), col = "blue")

plot(r <- rbifgmcop(n = 3000, apar = apar), col = "blue")
par(mfrow = c(1, 2))
hist(r[, 1]) # Should be uniform
hist(r[, 2]) # Should be uniform

End(Not run)

bifgmcop Farlie-Gumbel-Morgenstern’s Bivariate Distribution Family Func-
tion

Description

Estimate the association parameter of Farlie-Gumbel-Morgenstern’s bivariate distribution by maxi-
mum likelihood estimation.

Usage

bifgmcop(lapar = "rhobitlink", iapar = NULL, imethod = 1)

Arguments

lapar, iapar, imethod

Details at CommonVGAMffArguments. See Links for more link function choices.

Details

The cumulative distribution function is

P (Y1 ≤ y1, Y2 ≤ y2) = y1y2(1 + α(1− y1)(1− y2))

for −1 < α < 1. The support of the function is the unit square. The marginal distributions are the
standard uniform distributions. When α = 0 the random variables are independent.

bifgmexp 91

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two-column matrix. Currently, the fitted value is a matrix with two columns
and values equal to 0.5. This is because each marginal distribution corresponds to a standard uni-
form distribution.

Author(s)

T. W. Yee

References

Castillo, E., Hadi, A. S., Balakrishnan, N. and Sarabia, J. S. (2005). Extreme Value and Related
Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.

Smith, M. D. (2007). Invariance theorems for Fisher information. Communications in Statistics—
Theory and Methods, 36(12), 2213–2222.

See Also

rbifgmcop, bifrankcop, bifgmexp, simulate.vlm.

Examples

ymat <- rbifgmcop(1000, apar = rhobitlink(3, inverse = TRUE))
Not run: plot(ymat, col = "blue")
fit <- vglm(ymat ~ 1, fam = bifgmcop, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fitted(fit))

bifgmexp Bivariate Farlie-Gumbel-Morgenstern Exponential Distribution Fam-
ily Function

Description

Estimate the association parameter of FGM bivariate exponential distribution by maximum likeli-
hood estimation.

Usage

bifgmexp(lapar = "rhobitlink", iapar = NULL, tola0 = 0.01,
imethod = 1)

92 bifgmexp

Arguments

lapar Link function for the association parameter α, which lies between −1 and 1.
See Links for more choices and other information.

iapar Numeric. Optional initial value for α. By default, an initial value is chosen inter-
nally. If a convergence failure occurs try assigning a different value. Assigning
a value will override the argument imethod.

tola0 Positive numeric. If the estimate of α has an absolute value less than this then
it is replaced by this value. This is an attempt to fix a numerical problem when
the estimate is too close to zero.

imethod An integer with value 1 or 2 which specifies the initialization method. If failure
to converge occurs try the other value, or else specify a value for ia.

Details

The cumulative distribution function is

P (Y1 ≤ y1, Y2 ≤ y2) = e−y1−y2(1 + α[1− e−y1][1− e−y2]) + 1− e−y1 − e−y2

for α between −1 and 1. The support of the function is for y1 > 0 and y2 > 0. The marginal
distributions are an exponential distribution with unit mean. When α = 0 then the random variables
are independent, and this causes some problems in the estimation process since the distribution no
longer depends on the parameter.

A variant of Newton-Raphson is used, which only seems to work for an intercept model. It is a very
good idea to set trace = TRUE.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two-column matrix. Currently, the fitted value is a matrix with two columns
and values equal to 1. This is because each marginal distribution corresponds to a exponential
distribution with unit mean.

This VGAM family function should be used with caution.

Author(s)

T. W. Yee

References

Castillo, E., Hadi, A. S., Balakrishnan, N. and Sarabia, J. S. (2005). Extreme Value and Related
Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.

See Also

bifgmcop, bigumbelIexp.

bifrankcop 93

Examples

N <- 1000; mdata <- data.frame(y1 = rexp(N), y2 = rexp(N))
Not run: plot(ymat)
fit <- vglm(cbind(y1, y2) ~ 1, bifgmexp, data = mdata, trace = TRUE)
fit <- vglm(cbind(y1, y2) ~ 1, bifgmexp, data = mdata, # May fail

trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
head(fitted(fit))

bifrankcop Frank’s Bivariate Distribution Family Function

Description

Estimate the association parameter of Frank’s bivariate distribution by maximum likelihood estima-
tion.

Usage

bifrankcop(lapar = "loglink", iapar = 2, nsimEIM = 250)

Arguments

lapar Link function applied to the (positive) association parameter α. See Links for
more choices.

iapar Numeric. Initial value for α. If a convergence failure occurs try assigning a
different value.

nsimEIM See CommonVGAMffArguments.

Details

The cumulative distribution function is

P (Y1 ≤ y1, Y2 ≤ y2) = Hα(y1, y2) = logα[1 + (αy1 − 1)(αy2 − 1)/(α− 1)]

for α 6= 1. Note the logarithm here is to base α. The support of the function is the unit square.

When 0 < α < 1 the probability density function hα(y1, y2) is symmetric with respect to the lines
y2 = y1 and y2 = 1− y1. When α > 1 then hα(y1, y2) = h1/α(1− y1, y2).

α = 1 thenH(y1, y2) = y1y2, i.e., uniform on the unit square. As α approaches 0 thenH(y1, y2) =
min(y1, y2). As α approaches infinity then H(y1, y2) = max(0, y1 + y2 − 1).

The default is to use Fisher scoring implemented using rbifrankcop. For intercept-only models an
alternative is to set nsimEIM=NULL so that a variant of Newton-Raphson is used.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

94 bigamma.mckay

Note

The response must be a two-column matrix. Currently, the fitted value is a matrix with two columns
and values equal to a half. This is because the marginal distributions correspond to a standard
uniform distribution.

Author(s)

T. W. Yee

References

Genest, C. (1987). Frank’s family of bivariate distributions. Biometrika, 74, 549–555.

See Also

rbifrankcop, bifgmcop, simulate.vlm.

Examples

Not run:
ymat <- rbifrankcop(n = 2000, apar = exp(4))
plot(ymat, col = "blue")
fit <- vglm(ymat ~ 1, fam = bifrankcop, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
vcov(fit)
head(fitted(fit))
summary(fit)

End(Not run)

bigamma.mckay Bivariate Gamma: McKay’s Distribution

Description

Estimate the three parameters of McKay’s bivariate gamma distribution by maximum likelihood
estimation.

Usage

bigamma.mckay(lscale = "loglink", lshape1 = "loglink",
lshape2 = "loglink", iscale = NULL, ishape1 = NULL,
ishape2 = NULL, imethod = 1, zero = "shape")

bigamma.mckay 95

Arguments

lscale, lshape1, lshape2

Link functions applied to the (positive) parameters a, p and q respectively. See
Links for more choices.

iscale, ishape1, ishape2

Optional initial values for a, p and q respectively. The default is to compute
them internally.

imethod, zero See CommonVGAMffArguments.

Details

One of the earliest forms of the bivariate gamma distribution has a joint probability density function
given by

f(y1, y2; a, p, q) = (1/a)p+qyp−11 (y2 − y1)q−1 exp(−y2/a)/[Γ(p)Γ(q)]

for a > 0, p > 0, q > 0 and 0 < y1 < y2 (Mckay, 1934). Here, Γ is the gamma function, as in
gamma. By default, the linear/additive predictors are η1 = log(a), η2 = log(p), η3 = log(q).

The marginal distributions are gamma, with shape parameters p and p + q respectively, but they
have a common scale parameter a. Pearson’s product-moment correlation coefficient of y1 and y2
is
√
p/(p+ q). This distribution is also known as the bivariate Pearson type III distribution. Also,

Y2 − y1, conditional on Y1 = y1, has a gamma distribution with shape parameter q.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two column matrix where the first column is y1 and the second y2. It is
necessary that each element of the vectors y1 and y2 − y1 be positive. Currently, the fitted value is
a matrix with two columns; the first column has values ap for the marginal mean of y1, while the
second column has values a(p+ q) for the marginal mean of y2 (all evaluated at the final iteration).

Author(s)

T. W. Yee

References

McKay, A. T. (1934). Sampling from batches. Journal of the Royal Statistical Society—Supplement,
1, 207–216.

Kotz, S. and Balakrishnan, N. and Johnson, N. L. (2000). Continuous Multivariate Distributions
Volume 1: Models and Applications, 2nd edition, New York: Wiley.

Balakrishnan, N. and Lai, C.-D. (2009). Continuous Bivariate Distributions, 2nd edition. New
York: Springer.

96 bigumbelIexp

See Also

gamma2.

Examples

shape1 <- exp(1); shape2 <- exp(2); scalepar <- exp(3)
mdata <- data.frame(y1 = rgamma(nn <- 1000, shape1, scale = scalepar))
mdata <- transform(mdata, zedd = rgamma(nn, shape2, scale = scalepar))
mdata <- transform(mdata, y2 = y1 + zedd) # Z defined as Y2-y1|Y1=y1
fit <- vglm(cbind(y1, y2) ~ 1, bigamma.mckay, mdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
vcov(fit)

colMeans(depvar(fit)) # Check moments
head(fitted(fit), 1)

bigumbelIexp Gumbel’s Type I Bivariate Distribution Family Function

Description

Estimate the association parameter of Gumbel’s Type I bivariate distribution by maximum likeli-
hood estimation.

Usage

bigumbelIexp(lapar = "identitylink", iapar = NULL, imethod = 1)

Arguments

lapar Link function applied to the association parameter α. See Links for more
choices.

iapar Numeric. Optional initial value for α. By default, an initial value is chosen inter-
nally. If a convergence failure occurs try assigning a different value. Assigning
a value will override the argument imethod.

imethod An integer with value 1 or 2 which specifies the initialization method. If failure
to converge occurs try the other value, or else specify a value for ia.

Details

The cumulative distribution function is

P (Y1 ≤ y1, Y2 ≤ y2) = e−y1−y2+αy1y2 + 1− e−y1 − e−y2

for real α. The support of the function is for y1 > 0 and y2 > 0. The marginal distributions are an
exponential distribution with unit mean.

A variant of Newton-Raphson is used, which only seems to work for an intercept model. It is a very
good idea to set trace=TRUE.

bilogis 97

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two-column matrix. Currently, the fitted value is a matrix with two columns
and values equal to 1. This is because each marginal distribution corresponds to a exponential
distribution with unit mean.

This VGAM family function should be used with caution.

Author(s)

T. W. Yee

References

Gumbel, E. J. (1960). Bivariate Exponential Distributions. Journal of the American Statistical
Association, 55, 698–707.

See Also

bifgmexp.

Examples

nn <- 1000
gdata <- data.frame(y1 = rexp(nn), y2 = rexp(nn))
Not run: with(gdata, plot(cbind(y1, y2)))
fit <- vglm(cbind(y1, y2) ~ 1, bigumbelIexp, gdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fitted(fit))

bilogis Bivariate Logistic Distribution

Description

Density, distribution function, quantile function and random generation for the 4-parameter bivari-
ate logistic distribution.

Usage

dbilogis(x1, x2, loc1 = 0, scale1 = 1, loc2 = 0, scale2 = 1,
log = FALSE)

pbilogis(q1, q2, loc1 = 0, scale1 = 1, loc2 = 0, scale2 = 1)
rbilogis(n, loc1 = 0, scale1 = 1, loc2 = 0, scale2 = 1)

98 bilogis

Arguments

x1, x2, q1, q2 vector of quantiles.

n number of observations. Same as rlogis.

loc1, loc2 the location parameters l1 and l2.

scale1, scale2 the scale parameters s1 and s2.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

See bilogis, the VGAM family function for estimating the four parameters by maximum likeli-
hood estimation, for the formula of the cumulative distribution function and other details.

Value

dbilogis gives the density, pbilogis gives the distribution function, and rbilogis generates
random deviates (a two-column matrix).

Note

Gumbel (1961) proposed two bivariate logistic distributions with logistic distribution marginals,
which he called Type I and Type II. The Type I is this one. The Type II belongs to the Morgenstern
type. The biamhcop distribution has, as a special case, this distribution, which is when the random
variables are independent.

Author(s)

T. W. Yee

References

Gumbel, E. J. (1961). Bivariate logistic distributions. Journal of the American Statistical Associa-
tion, 56, 335–349.

See Also

bilogistic, biamhcop.

Examples

Not run: par(mfrow = c(1, 3))
ymat <- rbilogis(n = 2000, loc1 = 5, loc2 = 7, scale2 = exp(1))
myxlim <- c(-2, 15); myylim <- c(-10, 30)
plot(ymat, xlim = myxlim, ylim = myylim)

N <- 100
x1 <- seq(myxlim[1], myxlim[2], len = N)
x2 <- seq(myylim[1], myylim[2], len = N)
ox <- expand.grid(x1, x2)
z <- dbilogis(ox[,1], ox[,2], loc1 = 5, loc2 = 7, scale2 = exp(1))

bilogistic 99

contour(x1, x2, matrix(z, N, N), main = "density")
z <- pbilogis(ox[,1], ox[,2], loc1 = 5, loc2 = 7, scale2 = exp(1))
contour(x1, x2, matrix(z, N, N), main = "cdf")
End(Not run)

bilogistic Bivariate Logistic Distribution Family Function

Description

Estimates the four parameters of the bivariate logistic distribution by maximum likelihood estima-
tion.

Usage

bilogistic(llocation = "identitylink", lscale = "loglink",
iloc1 = NULL, iscale1 = NULL, iloc2 = NULL, iscale2 =
NULL, imethod = 1, nsimEIM = 250, zero = NULL)

Arguments

llocation Link function applied to both location parameters l1 and l2. See Links for more
choices.

lscale Parameter link function applied to both (positive) scale parameters s1 and s2.
See Links for more choices.

iloc1, iloc2 Initial values for the location parameters. By default, initial values are chosen
internally using imethod. Assigning values here will override the argument
imethod.

iscale1, iscale2

Initial values for the scale parameters. By default, initial values are chosen
internally using imethod. Assigning values here will override the argument
imethod.

imethod An integer with value 1 or 2 which specifies the initialization method. If failure
to converge occurs try the other value.

nsimEIM, zero See CommonVGAMffArguments for details.

Details

The four-parameter bivariate logistic distribution has a density that can be written as

f(y1, y2; l1, s1, l2, s2) = 2
exp[−(y1 − l1)/s1 − (y2 − l2)/s2]

s1s2 (1 + exp[−(y1 − l1)/s1] + exp[−(y2 − l2)/s2])
3

where s1 > 0 and s2 > 0 are the scale parameters, and l1 and l2 are the location parameters. Each
of the two responses are unbounded, i.e., −∞ < yj < ∞. The mean of Y1 is l1 etc. The fitted
values are returned in a 2-column matrix. The cumulative distribution function is

F (y1, y2; l1, s1, l2, s2) = (1 + exp[−(y1 − l1)/s1] + exp[−(y2 − l2)/s2])
−1

100 Binom2.or

The marginal distribution of Y1 is

P (Y1 ≤ y1) = F (y1; l1, s1) = (1 + exp[−(y1 − l1)/s1])
−1
.

By default, η1 = l1, η2 = log(s1), η3 = l2, η4 = log(s2) are the linear/additive predictors.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Author(s)

T. W. Yee

References

Gumbel, E. J. (1961). Bivariate logistic distributions. Journal of the American Statistical Associa-
tion, 56, 335–349.

Castillo, E., Hadi, A. S., Balakrishnan, N. and Sarabia, J. S. (2005). Extreme Value and Related
Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.

See Also

logistic, rbilogis.

Examples

Not run:
ymat <- rbilogis(n <- 50, loc1 = 5, loc2 = 7, scale2 = exp(1))
plot(ymat)
bfit <- vglm(ymat ~ 1, family = bilogistic, trace = TRUE)
coef(bfit, matrix = TRUE)
Coef(bfit)
head(fitted(bfit))
vcov(bfit)
head(weights(bfit, type = "work"))
summary(bfit)

End(Not run)

Binom2.or Bivariate Odds Ratio Model

Description

Density and random generation for a bivariate binary regression model using an odds ratio as the
measure of dependency.

Binom2.or 101

Usage

rbinom2.or(n, mu1,
mu2 = if (exchangeable) mu1 else
stop("argument 'mu2' not specified"),
oratio = 1, exchangeable = FALSE, tol = 0.001,
twoCols = TRUE, colnames = if (twoCols) c("y1","y2") else
c("00", "01", "10", "11"),
ErrorCheck = TRUE)

dbinom2.or(mu1, mu2 = if (exchangeable) mu1 else
stop("'mu2' not specified"),
oratio = 1, exchangeable = FALSE, tol = 0.001,
colnames = c("00", "01", "10", "11"), ErrorCheck = TRUE)

Arguments

n number of observations. Same as in runif. The arguments mu1, mu2, oratio
are recycled to this value.

mu1, mu2 The marginal probabilities. Only mu1 is needed if exchangeable = TRUE. Values
should be between 0 and 1.

oratio Odds ratio. Must be numeric and positive. The default value of unity means the
responses are statistically independent.

exchangeable Logical. If TRUE, the two marginal probabilities are constrained to be equal.
twoCols Logical. If TRUE, then a n × 2 matrix of 1s and 0s is returned. If FALSE, then a

n × 4 matrix of 1s and 0s is returned.
colnames The dimnames argument of matrix is assigned list(NULL, colnames).
tol Tolerance for testing independence. Should be some small positive numerical

value.
ErrorCheck Logical. Do some error checking of the input parameters?

Details

The function rbinom2.or generates data coming from a bivariate binary response model. The data
might be fitted with the VGAM family function binom2.or.

The function dbinom2.or does not really compute the density (because that does not make sense
here) but rather returns the four joint probabilities.

Value

The function rbinom2.or returns either a 2 or 4 column matrix of 1s and 0s, depending on the
argument twoCols.

The function dbinom2.or returns a 4 column matrix of joint probabilities; each row adds up to
unity.

Author(s)

T. W. Yee

102 binom2.or

See Also

binom2.or.

Examples

nn <- 1000 # Example 1
ymat <- rbinom2.or(nn, mu1 = logitlink(1, inv = TRUE),

oratio = exp(2), exch = TRUE)
(mytab <- table(ymat[, 1], ymat[, 2], dnn = c("Y1", "Y2")))
(myor <- mytab["0","0"] * mytab["1","1"] / (mytab["1","0"] *

mytab["0","1"]))
fit <- vglm(ymat ~ 1, binom2.or(exch = TRUE))
coef(fit, matrix = TRUE)

bdata <- data.frame(x2 = sort(runif(nn))) # Example 2
bdata <- transform(bdata,

mu1 = logitlink(-2 + 4 * x2, inverse = TRUE),
mu2 = logitlink(-1 + 3 * x2, inverse = TRUE))

dmat <- with(bdata, dbinom2.or(mu1 = mu1, mu2 = mu2,
oratio = exp(2)))

ymat <- with(bdata, rbinom2.or(n = nn, mu1 = mu1, mu2 = mu2,
oratio = exp(2)))

fit2 <- vglm(ymat ~ x2, binom2.or, data = bdata)
coef(fit2, matrix = TRUE)
Not run:
matplot(with(bdata, x2), dmat, lty = 1:4, col = 1:4,

main = "Joint probabilities", ylim = 0:1, type = "l",
ylab = "Probabilities", xlab = "x2", las = 1)

legend("top", lty = 1:4, col = 1:4,
legend = c("1 = (y1=0, y2=0)", "2 = (y1=0, y2=1)",

"3 = (y1=1, y2=0)", "4 = (y1=1, y2=1)"))

End(Not run)

binom2.or Bivariate Binary Regression with an Odds Ratio (Family Function)

Description

Fits a Palmgren (bivariate odds-ratio model, or bivariate logistic regression) model to two binary
responses. Actually, a bivariate logistic/probit/cloglog/cauchit model can be fitted. The odds ratio
is used as a measure of dependency.

Usage

binom2.or(lmu = "logitlink", lmu1 = lmu, lmu2 = lmu, loratio = "loglink",
imu1 = NULL, imu2 = NULL, ioratio = NULL, zero = "oratio",
exchangeable = FALSE, tol = 0.001, more.robust = FALSE)

binom2.or 103

Arguments

lmu Link function applied to the two marginal probabilities. See Links for more
choices. See the note below.

lmu1, lmu2 Link function applied to the first and second of the two marginal probabilities.

loratio Link function applied to the odds ratio. See Links for more choices.
imu1, imu2, ioratio

Optional initial values for the marginal probabilities and odds ratio. See CommonVGAMffArguments
for more details. In general good initial values are often required so use these
arguments if convergence failure occurs.

zero Which linear/additive predictor is modelled as an intercept only? The default is
for the odds ratio. A NULL means none. See CommonVGAMffArguments for more
details.

exchangeable Logical. If TRUE, the two marginal probabilities are constrained to be equal.

tol Tolerance for testing independence. Should be some small positive numerical
value.

more.robust Logical. If TRUE then some measures are taken to compute the derivatives and
working weights more robustly, i.e., in an attempt to avoid numerical problems.
Currently this feature is not debugged if set TRUE.

Details

Also known informally as the Palmgren model, the bivariate logistic model is a full-likelihood
based model defined as two logistic regressions plus log(oratio) = eta3 where eta3 is the third
linear/additive predictor relating the odds ratio to explanatory variables. Explicitly, the default
model is

logit[P (Yj = 1)] = ηj , j = 1, 2

for the marginals, and

log[P (Y00 = 1)P (Y11 = 1)/(P (Y01 = 1)P (Y10 = 1))] = η3,

specifies the dependency between the two responses. Here, the responses equal 1 for a success and
a 0 for a failure, and the odds ratio is often written ψ = p00p11/(p10p01). The model is fitted by
maximum likelihood estimation since the full likelihood is specified. The two binary responses are
independent if and only if the odds ratio is unity, or equivalently, the log odds ratio is 0. Fisher
scoring is implemented.

The default models η3 as a single parameter only, i.e., an intercept-only model, but this can be
circumvented by setting zero = NULL in order to model the odds ratio as a function of all the ex-
planatory variables. The function binom2.or() can handle other probability link functions such
as probitlink, clogloglink and cauchitlink links as well, so is quite general. In fact, the two
marginal probabilities can each have a different link function. A similar model is the bivariate pro-
bit model (binom2.rho), which is based on a standard bivariate normal distribution, but the bivariate
probit model is less interpretable and flexible.

The exchangeable argument should be used when the error structure is exchangeable, e.g., with
eyes or ears data.

104 binom2.or

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

When fitted, the fitted.values slot of the object contains the four joint probabilities, labelled as
(Y1, Y2) = (0,0), (0,1), (1,0), (1,1), respectively. These estimated probabilities should be extracted
with the fitted generic function.

Note

At present we call binom2.or families a bivariate odds-ratio model. The response should be either
a 4-column matrix of counts (whose columns correspond to (Y1, Y2) = (0,0), (0,1), (1,0), (1,1)
respectively), or a two-column matrix where each column has two distinct values, or a factor with
four levels. The function rbinom2.or may be used to generate such data. Successful convergence
requires at least one case of each of the four possible outcomes.

By default, a constant odds ratio is fitted because zero = 3. Set zero = NULL if you want the odds
ratio to be modelled as a function of the explanatory variables; however, numerical problems are
more likely to occur.

The argument lmu, which is actually redundant, is used for convenience and for upward compatibil-
ity: specifying lmu only means the link function will be applied to lmu1 and lmu2. Users who want
a different link function for each of the two marginal probabilities should use the lmu1 and lmu2
arguments, and the argument lmu is then ignored. It doesn’t make sense to specify exchangeable
= TRUE and have different link functions for the two marginal probabilities.

Regarding Yee and Dirnbock (2009), the xij (see vglm.control) argument enables environmental
variables with different values at the two time points to be entered into an exchangeable binom2.or
model. See the author’s webpage for sample code.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

le Cessie, S. and van Houwelingen, J. C. (1994). Logistic regression for correlated binary data.
Applied Statistics, 43, 95–108.

Palmgren, J. (1989). Regression Models for Bivariate Binary Responses. Technical Report no. 101,
Department of Biostatistics, University of Washington, Seattle.

Yee, T. W. and Dirnbock, T. (2009). Models for analysing species’ presence/absence data at two
time points. Journal of Theoretical Biology, 259(4), 684–694.

See Also

rbinom2.or, binom2.rho, loglinb2, zipebcom, coalminers, binomialff, logitlink, probitlink,
clogloglink, cauchitlink.

Binom2.rho 105

Examples

Fit the model in Table 6.7 in McCullagh and Nelder (1989)
coalminers <- transform(coalminers, Age = (age - 42) / 5)
fit <- vglm(cbind(nBnW, nBW, BnW, BW) ~ Age,

binom2.or(zero = NULL), data = coalminers)
fitted(fit)
summary(fit)
coef(fit, matrix = TRUE)
c(weights(fit, type = "prior")) * fitted(fit) # Table 6.8

Not run: with(coalminers, matplot(Age, fitted(fit), type = "l", las = 1,
xlab = "(age - 42) / 5", lwd = 2))

with(coalminers, matpoints(Age, depvar(fit), col=1:4))
legend(x = -4, y = 0.5, lty = 1:4, col = 1:4, lwd = 2,

legend = c("1 = (Breathlessness=0, Wheeze=0)",
"2 = (Breathlessness=0, Wheeze=1)",
"3 = (Breathlessness=1, Wheeze=0)",
"4 = (Breathlessness=1, Wheeze=1)"))

End(Not run)

Another model: pet ownership
Not run: data(xs.nz, package = "VGAMdata")
More homogeneous:
petdata <- subset(xs.nz, ethnicity == "European" & age < 70 &

sex == "M")
petdata <- na.omit(petdata[, c("cat", "dog", "age")])
summary(petdata)
with(petdata, table(cat, dog)) # Can compute the odds ratio

fit <- vgam(cbind((1-cat) * (1-dog), (1-cat) * dog,
cat * (1-dog), cat * dog) ~ s(age, df = 5),

binom2.or(zero = 3), data = petdata, trace = TRUE)
colSums(depvar(fit))
coef(fit, matrix = TRUE)

End(Not run)

Not run: # Plot the estimated probabilities
ooo <- order(with(petdata, age))
matplot(with(petdata, age)[ooo], fitted(fit)[ooo,], type = "l",

xlab = "Age", ylab = "Probability", main = "Pet ownership",
ylim = c(0, max(fitted(fit))), las = 1, lwd = 1.5)

legend("topleft", col=1:4, lty = 1:4, leg = c("no cat or dog ",
"dog only", "cat only", "cat and dog"), lwd = 1.5)

End(Not run)

Binom2.rho Bivariate Probit Model

106 Binom2.rho

Description

Density and random generation for a bivariate probit model. The correlation parameter rho is the
measure of dependency.

Usage

rbinom2.rho(n, mu1,
mu2 = if (exchangeable) mu1 else stop("argument 'mu2' not specified"),
rho = 0, exchangeable = FALSE, twoCols = TRUE,
colnames = if (twoCols) c("y1","y2") else c("00", "01", "10", "11"),
ErrorCheck = TRUE)

dbinom2.rho(mu1,
mu2 = if (exchangeable) mu1 else stop("'mu2' not specified"),
rho = 0, exchangeable = FALSE,
colnames = c("00", "01", "10", "11"), ErrorCheck = TRUE)

Arguments

n number of observations. Same as in runif. The arguments mu1, mu2, rho are
recycled to this value.

mu1, mu2 The marginal probabilities. Only mu1 is needed if exchangeable = TRUE. Values
should be between 0 and 1.

rho The correlation parameter. Must be numeric and lie between −1 and 1. The
default value of zero means the responses are uncorrelated.

exchangeable Logical. If TRUE, the two marginal probabilities are constrained to be equal.

twoCols Logical. If TRUE, then a n × 2 matrix of 1s and 0s is returned. If FALSE, then a
n × 4 matrix of 1s and 0s is returned.

colnames The dimnames argument of matrix is assigned list(NULL, colnames).

ErrorCheck Logical. Do some error checking of the input parameters?

Details

The function rbinom2.rho generates data coming from a bivariate probit model. The data might
be fitted with the VGAM family function binom2.rho.

The function dbinom2.rho does not really compute the density (because that does not make sense
here) but rather returns the four joint probabilities.

Value

The function rbinom2.rho returns either a 2 or 4 column matrix of 1s and 0s, depending on the
argument twoCols.

The function dbinom2.rho returns a 4 column matrix of joint probabilities; each row adds up to
unity.

binom2.rho 107

Author(s)

T. W. Yee

See Also

binom2.rho.

Examples

(myrho <- rhobitlink(2, inverse = TRUE)) # Example 1
nn <- 2000
ymat <- rbinom2.rho(nn, mu1 = 0.8, rho = myrho, exch = TRUE)
(mytab <- table(ymat[, 1], ymat[, 2], dnn = c("Y1", "Y2")))
fit <- vglm(ymat ~ 1, binom2.rho(exch = TRUE))
coef(fit, matrix = TRUE)

bdata <- data.frame(x2 = sort(runif(nn))) # Example 2
bdata <- transform(bdata, mu1 = probitlink(-2+4*x2, inv = TRUE),

mu2 = probitlink(-1+3*x2, inv = TRUE))
dmat <- with(bdata, dbinom2.rho(mu1, mu2, myrho))
ymat <- with(bdata, rbinom2.rho(nn, mu1, mu2, myrho))
fit2 <- vglm(ymat ~ x2, binom2.rho, data = bdata)
coef(fit2, matrix = TRUE)
Not run: matplot(with(bdata, x2), dmat, lty = 1:4, col = 1:4,

type = "l", main = "Joint probabilities",
ylim = 0:1, lwd = 2, ylab = "Probability")

legend(x = 0.25, y = 0.9, lty = 1:4, col = 1:4, lwd = 2,
legend = c("1 = (y1=0, y2=0)", "2 = (y1=0, y2=1)",

"3 = (y1=1, y2=0)", "4 = (y1=1, y2=1)"))
End(Not run)

binom2.rho Bivariate Probit Regression

Description

Fits a bivariate probit model to two binary responses. The correlation parameter rho is the measure
of dependency.

Usage

binom2.rho(lmu = "probitlink", lrho = "rhobitlink",
imu1 = NULL, imu2 = NULL,
irho = NULL, imethod = 1, zero = "rho",
exchangeable = FALSE, grho = seq(-0.95, 0.95, by = 0.05),
nsimEIM = NULL)

binom2.Rho(rho = 0, imu1 = NULL, imu2 = NULL,
exchangeable = FALSE, nsimEIM = NULL)

108 binom2.rho

Arguments

lmu Link function applied to the marginal probabilities. Should be left alone.
lrho Link function applied to the ρ association parameter. See Links for more choices.
imu1, imu2 Optional initial values for the two marginal probabilities. May be a vector.
irho Optional initial value for ρ. If given, this should lie between −1 and 1. See

below for more comments.
zero Specifies which linear/additive predictors are modelled as intercept-only. A

NULL means none. Numerically, the ρ parameter is easiest modelled as an in-
tercept only, hence the default. See CommonVGAMffArguments for more infor-
mation.

exchangeable Logical. If TRUE, the two marginal probabilities are constrained to be equal.
imethod, nsimEIM, grho

See CommonVGAMffArguments for more information. A value of at least 100 for
nsimEIM is recommended; the larger the value the better.

rho Numeric vector. Values are recycled to the needed length, and ought to be in
range, which is (−1, 1).

Details

The bivariate probit model was one of the earliest regression models to handle two binary responses
jointly. It has a probit link for each of the two marginal probabilities, and models the association
between the responses by the ρ parameter of a standard bivariate normal distribution (with zero
means and unit variances). One can think of the joint probabilities being Φ(η1, η2; ρ) where Φ is
the cumulative distribution function of a standard bivariate normal distribution.

Explicitly, the default model is

probit[P (Yj = 1)] = ηj , j = 1, 2

for the marginals, and
rhobit[rho] = η3.

The joint probability P (Y1 = 1, Y2 = 1) = Φ(η1, η2; ρ), and from these the other three joint
probabilities are easily computed. The model is fitted by maximum likelihood estimation since the
full likelihood is specified. Fisher scoring is implemented.

The default models η3 as a single parameter only, i.e., an intercept-only model for rho, but this can
be circumvented by setting zero = NULL in order to model rho as a function of all the explanatory
variables.

The bivariate probit model should not be confused with a bivariate logit model with a probit link
(see binom2.or). The latter uses the odds ratio to quantify the association. Actually, the bivariate
logit model is recommended over the bivariate probit model because the odds ratio is a more natural
way of measuring the association between two binary responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

When fitted, the fitted.values slot of the object contains the four joint probabilities, labelled as
(Y1, Y2) = (0,0), (0,1), (1,0), (1,1), respectively.

binom2.rho 109

Note

See binom2.or about the form of input the response should have.

By default, a constant ρ is fitted because zero = "rho". Set zero = NULL if you want the ρ parameter
to be modelled as a function of the explanatory variables. The value ρ lies in the interval (−1, 1),
therefore a rhobitlink link is default.

Converge problems can occur. If so, assign irho a range of values and monitor convergence (e.g.,
set trace = TRUE). Else try imethod. Practical experience shows that local solutions can occur, and
that irho needs to be quite close to the (global) solution. Also, imu1 and imu2 may be used.

This help file is mainly about binom2.rho(). binom2.Rho() fits a bivariate probit model with
known ρ. The inputted rho is saved in the misc slot of the fitted object, with rho as the component
name.

In some econometrics applications (e.g., Freedman 2010, Freedman and Sekhon 2010) one response
is used as an explanatory variable, e.g., a recursive binomial probit model. Such will not work here.
Historically, the bivariate probit model was the first VGAM I ever wrote, based on Ashford and
Sowden (1970). I don’t think they ever thought of it either! Hence the criticisms raised go beyond
the use of what was originally intended.

Author(s)

Thomas W. Yee

References

Ashford, J. R. and Sowden, R. R. (1970). Multi-variate probit analysis. Biometrics, 26, 535–546.

Freedman, D. A. (2010). Statistical Models and Causal Inference: a Dialogue with the Social
Sciences, Cambridge: Cambridge University Press.

Freedman, D. A. and Sekhon, J. S. (2010). Endogeneity in probit response models. Political Anal-
ysis, 18, 138–150.

See Also

rbinom2.rho, rhobitlink, pbinorm, binom2.or, loglinb2, coalminers, binomialff, rhobitlink,
fisherzlink.

Examples

coalminers <- transform(coalminers, Age = (age - 42) / 5)
fit <- vglm(cbind(nBnW, nBW, BnW, BW) ~ Age,

binom2.rho, data = coalminers, trace = TRUE)
summary(fit)
coef(fit, matrix = TRUE)

110 binomialff

binomialff Binomial Family Function

Description

Family function for fitting generalized linear models to binomial responses

Usage

binomialff(link = "logitlink", multiple.responses = FALSE,
parallel = FALSE, zero = NULL, bred = FALSE, earg.link = FALSE)

Arguments

link Link function; see Links and CommonVGAMffArguments for more information.
multiple.responses

Multivariate response? If TRUE, then the response is interpreted as M inde-
pendent binary responses, where M is the number of columns of the response
matrix. In this case, the response matrix should have Q columns consisting of
counts (successes), and the weights argument should have Q columns consist-
ing of the number of trials (successes plus failures).
If FALSE and the response is a (2-column) matrix, then the number of successes
is given in the first column, and the second column is the number of failures.

parallel A logical or formula. Used only if multiple.responses is TRUE. This argument
allows for the parallelism assumption whereby the regression coefficients for a
variable is constrained to be equal over the M linear/additive predictors. If
parallel = TRUE then the constraint is not applied to the intercepts.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The values must be from the set {1,2,. . . ,M}, where M
is the number of columns of the matrix response. See CommonVGAMffArguments
for more information.

earg.link Details at CommonVGAMffArguments.

bred Details at CommonVGAMffArguments. Setting bred = TRUE should work for mul-
tiple responses (multiple.responses = TRUE) and all VGAM link functions; it
has been tested for logitlink only (and it gives similar results to brglm but not
identical), and further testing is required. One result from fitting bias reduced
binary regression is that finite regression coefficients occur when the data is sep-
arable (see example below). Currently hdeff.vglm does not work when bred =
TRUE.

Details

This function is largely to mimic binomial, however there are some differences.

When used with cqo and cao, it may be preferable to use the clogloglink link.

binomialff 111

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, vgam, rrvglm, cqo, and cao.

Warning

See the above note regarding bred.

The maximum likelihood estimate will not exist if the data is completely separable or quasi-
completely separable. See Chapter 10 of Altman et al. (2004) for more details, and safeBina-
ryRegression and hdeff.vglm. Yet to do: add a sepcheck = TRUE, say, argument to further detect
this problem and give an appropriate warning.

Note

If multiple.responses is FALSE (default) then the response can be of one of two formats: a
factor (first level taken as failure), or a 2-column matrix (first column = successes) of counts. The
argument weights in the modelling function can also be specified as any vector of positive values.
In general, 1 means success and 0 means failure (to check, see the y slot of the fitted object). Note
that a general vector of proportions of success is no longer accepted.

The notation M is used to denote the number of linear/additive predictors.

If multiple.responses is TRUE, then the matrix response can only be of one format: a matrix of
1’s and 0’s (1 = success).

Fisher scoring is used. This can sometimes fail to converge by oscillating between successive
iterations (Ridout, 1990). See the example below.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

Altman, M. and Gill, J. and McDonald, M. P. (2004). Numerical Issues in Statistical Computing for
the Social Scientist, Hoboken, NJ, USA: Wiley-Interscience.

Ridout, M. S. (1990). Non-convergence of Fisher’s method of scoring—a simple example. GLIM
Newsletter, 20(6).

See Also

hdeff.vglm, Links, rrvglm, cqo, cao, betabinomial, posbinomial, zibinomial, double.expbinomial,
seq2binomial, amlbinomial, simplex, binomial, simulate.vlm, safeBinaryRegression, residualsvglm.

112 Binorm

Examples

shunua <- hunua[sort.list(with(hunua, altitude)),] # Sort by altitude
fit <- vglm(agaaus ~ poly(altitude, 2), binomialff(link = clogloglink),

data = shunua)
Not run:
plot(agaaus ~ jitter(altitude), shunua, ylab = "Pr(Agaaus = 1)",

main = "Presence/absence of Agathis australis", col = 4, las = 1)
with(shunua, lines(altitude, fitted(fit), col = "orange", lwd = 2))
End(Not run)

Fit two species simultaneously
fit2 <- vgam(cbind(agaaus, kniexc) ~ s(altitude),

binomialff(multiple.responses = TRUE), data = shunua)
Not run:
with(shunua, matplot(altitude, fitted(fit2), type = "l",

main = "Two species response curves", las = 1))
End(Not run)

Shows that Fisher scoring can sometime fail. See Ridout (1990).
ridout <- data.frame(v = c(1000, 100, 10), r = c(4, 3, 3), n = rep(5, 3))
(ridout <- transform(ridout, logv = log(v)))
The iterations oscillates between two local solutions:
glm.fail <- glm(r / n ~ offset(logv) + 1, weight = n,

binomial(link = 'cloglog'), ridout, trace = TRUE)
coef(glm.fail)
vglm()'s half-stepping ensures the MLE of -5.4007 is obtained:
vglm.ok <- vglm(cbind(r, n-r) ~ offset(logv) + 1,

binomialff(link = clogloglink), ridout, trace = TRUE)
coef(vglm.ok)

Separable data
set.seed(123)
threshold <- 0
bdata <- data.frame(x2 = sort(rnorm(nn <- 100)))
bdata <- transform(bdata, y1 = ifelse(x2 < threshold, 0, 1))
fit <- vglm(y1 ~ x2, binomialff(bred = TRUE),

data = bdata, criter = "coef", trace = TRUE)
coef(fit, matrix = TRUE) # Finite!!
summary(fit)
Not run: plot(depvar(fit) ~ x2, data = bdata, col = "blue", las = 1)
lines(fitted(fit) ~ x2, data = bdata, col = "orange")
abline(v = threshold, col = "gray", lty = "dashed")
End(Not run)

Binorm Bivariate Normal Distribution Cumulative Distribution Function

Description

Density, cumulative distribution function and random generation for the bivariate normal distribu-
tion distribution.

Binorm 113

Usage

dbinorm(x1, x2, mean1 = 0, mean2 = 0, var1 = 1, var2 = 1, cov12 = 0,
log = FALSE)

pbinorm(q1, q2, mean1 = 0, mean2 = 0, var1 = 1, var2 = 1, cov12 = 0)
rbinorm(n, mean1 = 0, mean2 = 0, var1 = 1, var2 = 1, cov12 = 0)
pnorm2(x1, x2, mean1 = 0, mean2 = 0, var1 = 1, var2 = 1, cov12 = 0)

Arguments

x1, x2, q1, q2 vector of quantiles.
mean1, mean2, var1, var2, cov12

vector of means, variances and the covariance.

n number of observations. Same as rnorm.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

The default arguments correspond to the standard bivariate normal distribution with correlation
parameter ρ = 0. That is, two independent standard normal distributions. Let sd1 (say) be
sqrt(var1) and written σ1, etc. Then the general formula for the correlation coefficient is ρ =
cov/(σ1σ2) where cov is argument cov12. Thus if arguments var1 and var2 are left alone then
cov12 can be inputted with ρ.

One can think of this function as an extension of pnorm to two dimensions, however note that the
argument names have been changed for VGAM 0.9-1 onwards.

Value

dbinorm gives the density, pbinorm gives the cumulative distribution function, rbinorm generates
random deviates (n by 2 matrix).

Warning

Being based on an approximation, the results of pbinorm() may be negative! Also, pnorm2()
should be withdrawn soon; use pbinorm() instead because it is identical.

Note

For rbinorm(), if the ith variance-covariance matrix is not positive-definite then the ith row is all
NAs.

References

pbinorm() is based on Donnelly (1973), the code was translated from FORTRAN to ratfor using
struct, and then from ratfor to C manually. The function was originally called bivnor, and TWY
only wrote a wrapper function.

Donnelly, T. G. (1973). Algorithm 462: Bivariate Normal Distribution. Communications of the
ACM, 16, 638.

114 binormal

See Also

pnorm, binormal, uninormal.

Examples

yvec <- c(-5, -1.96, 0, 1.96, 5)
ymat <- expand.grid(yvec, yvec)
cbind(ymat, pbinorm(ymat[, 1], ymat[, 2]))

Not run: rhovec <- seq(-0.95, 0.95, by = 0.01)
plot(rhovec, pbinorm(0, 0, cov12 = rhovec),

type = "l", col = "blue", las = 1)
abline(v = 0, h = 0.25, col = "gray", lty = "dashed")
End(Not run)

binormal Bivariate Normal Distribution Family Function

Description

Maximum likelihood estimation of the five parameters of a bivariate normal distribution.

Usage

binormal(lmean1 = "identitylink", lmean2 = "identitylink",
lsd1 = "loglink", lsd2 = "loglink",
lrho = "rhobitlink",
imean1 = NULL, imean2 = NULL,
isd1 = NULL, isd2 = NULL,
irho = NULL, imethod = 1,
eq.mean = FALSE, eq.sd = FALSE,
zero = c("sd", "rho"), rho.arg = NA)

Arguments

lmean1, lmean2, lsd1, lsd2, lrho

Link functions applied to the means, standard deviations and rho parameters.
See Links for more choices. Being positive quantities, a log link is the default
for the standard deviations.

imean1, imean2, isd1, isd2, irho, imethod, zero

See CommonVGAMffArguments for more information.

eq.mean, eq.sd Logical or formula. Constrains the means or the standard deviations to be equal.

rho.arg If ρ is known then this argument may be assigned the (scalar) value lying in
(−1, 1). The default is to estimate that parameter so thatM = 5. If known, then
other arguments such as lrho and irho are ignored, and "rho" is removed from
zero.

binormal 115

Details

For the bivariate normal distribution, this fits a linear model (LM) to the means, and by default, the
other parameters are intercept-only. The response should be a two-column matrix. The correlation
parameter is rho, which lies between −1 and 1 (thus the rhobitlink link is a reasonable choice).
The fitted means are returned as the fitted values, which is in the form of a two-column matrix.
Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

This function may be renamed to normal2() or something like that at a later date.

Note

If both equal means and equal standard deviations are desired then use something like constraints
= list("(Intercept)" = matrix(c(1,1,0,0,0, 0,0,1,1,0 ,0,0,0,0,1), 5, 3)) and maybe
zero = NULL etc.

Author(s)

T. W. Yee

See Also

uninormal, trinormal, pbinorm, bistudentt.

Examples

set.seed(123); nn <- 1000
bdata <- data.frame(x2 = runif(nn), x3 = runif(nn))
bdata <- transform(bdata, y1 = rnorm(nn, 1 + 2 * x2),

y2 = rnorm(nn, 3 + 4 * x2))
fit1 <- vglm(cbind(y1, y2) ~ x2,

binormal(eq.sd = TRUE), data = bdata, trace = TRUE)
coef(fit1, matrix = TRUE)
constraints(fit1)
summary(fit1)

Estimated P(Y1 <= y1, Y2 <= y2) under the fitted model
var1 <- loglink(2 * predict(fit1)[, "loglink(sd1)"], inv = TRUE)
var2 <- loglink(2 * predict(fit1)[, "loglink(sd2)"], inv = TRUE)
cov12 <- rhobitlink(predict(fit1)[, "rhobitlink(rho)"], inv = TRUE)
head(with(bdata, pbinorm(y1, y2,

mean1 = predict(fit1)[, "mean1"],
mean2 = predict(fit1)[, "mean2"],
var1 = var1, var2 = var2, cov12 = cov12)))

116 binormalcop

binormalcop Gaussian Copula (Bivariate) Family Function

Description

Estimate the correlation parameter of the (bivariate) Gaussian copula distribution by maximum
likelihood estimation.

Usage

binormalcop(lrho = "rhobitlink", irho = NULL, imethod = 1,
parallel = FALSE, zero = NULL)

Arguments

lrho, irho, imethod

Details at CommonVGAMffArguments. See Links for more link function choices.

parallel, zero Details at CommonVGAMffArguments. If parallel = TRUE then the constraint is
applied to the intercept too.

Details

The cumulative distribution function is

P (Y1 ≤ y1, Y2 ≤ y2) = Φ2(Φ−1(y1),Φ−1(y2); ρ)

for −1 < ρ < 1, Φ2 is the cumulative distribution function of a standard bivariate normal (see
pbinorm), and Φ is the cumulative distribution function of a standard univariate normal (see pnorm).

The support of the function is the interior of the unit square; however, values of 0 and/or 1 are not
allowed. The marginal distributions are the standard uniform distributions. When ρ = 0 the random
variables are independent.

This VGAM family function can handle multiple responses, for example, a six-column matrix
where the first 2 columns is the first out of three responses, the next 2 columns being the next
response, etc.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response matrix must have a multiple of two-columns. Currently, the fitted value is a matrix
with the same number of columns and values equal to 0.5. This is because each marginal distribution
corresponds to a standard uniform distribution.

This VGAM family function is fragile; each response must be in the interior of the unit square.
Setting crit = "coef" is sometimes a good idea because inaccuracies in pbinorm might mean
unnecessary half-stepping will occur near the solution.

Binormcop 117

Author(s)

T. W. Yee

References

Schepsmeier, U. and Stober, J. (2014). Derivatives and Fisher information of bivariate copulas.
Statistical Papers 55, 525–542.

See Also

rbinormcop, pnorm, kendall.tau.

Examples

nn <- 1000
ymat <- rbinormcop(nn, rho = rhobitlink(-0.9, inverse = TRUE))
bdata <- data.frame(y1 = ymat[, 1], y2 = ymat[, 2],

y3 = ymat[, 1], y4 = ymat[, 2],
x2 = runif(nn))

summary(bdata)
Not run: plot(ymat, col = "blue")
fit1 <- # 2 responses, e.g., (y1,y2) is the 1st

vglm(cbind(y1, y2, y3, y4) ~ 1, fam = binormalcop,
crit = "coef", # Sometimes a good idea
data = bdata, trace = TRUE)

coef(fit1, matrix = TRUE)
Coef(fit1)
head(fitted(fit1))
summary(fit1)

Another example; rho is a linear function of x2
bdata <- transform(bdata, rho = -0.5 + x2)
ymat <- rbinormcop(n = nn, rho = with(bdata, rho))
bdata <- transform(bdata, y5 = ymat[, 1], y6 = ymat[, 2])
fit2 <- vgam(cbind(y5, y6) ~ s(x2), data = bdata,

binormalcop(lrho = "identitylink"), trace = TRUE)
Not run: plot(fit2, lcol = "blue", scol = "orange", se = TRUE)

Binormcop Gaussian Copula (Bivariate) Distribution

Description

Density, distribution function, and random generation for the (one parameter) bivariate Gaussian
copula distribution.

118 Binormcop

Usage

dbinormcop(x1, x2, rho = 0, log = FALSE)
pbinormcop(q1, q2, rho = 0)
rbinormcop(n, rho = 0)

Arguments

x1, x2, q1, q2 vector of quantiles. The x1 and x2 should be in the interval (0, 1). Ditto for q1
and q2.

n number of observations. Same as rnorm.

rho the correlation parameter. Should be in the interval (−1, 1).

log Logical. If TRUE then the logarithm is returned.

Details

See binormalcop, the VGAM family functions for estimating the parameter by maximum likeli-
hood estimation, for the formula of the cumulative distribution function and other details.

Value

dbinormcop gives the density, pbinormcop gives the distribution function, and rbinormcop gener-
ates random deviates (a two-column matrix).

Note

Yettodo: allow x1 and/or x2 to have values 1, and to allow any values for x1 and/or x2 to be outside
the unit square.

Author(s)

T. W. Yee

See Also

binormalcop, binormal.

Examples

Not run: edge <- 0.01 # A small positive value
N <- 101; x <- seq(edge, 1.0 - edge, len = N); Rho <- 0.7
ox <- expand.grid(x, x)
zedd <- dbinormcop(ox[, 1], ox[, 2], rho = Rho, log = TRUE)
contour(x, x, matrix(zedd, N, N), col = "blue", labcex = 1.5)
zedd <- pbinormcop(ox[, 1], ox[, 2], rho = Rho)
contour(x, x, matrix(zedd, N, N), col = "blue", labcex = 1.5)

End(Not run)

Biplackett 119

Biplackett Plackett’s Bivariate Copula

Description

Density, distribution function, and random generation for the (one parameter) bivariate Plackett
copula.

Usage

dbiplackcop(x1, x2, oratio, log = FALSE)
pbiplackcop(q1, q2, oratio)
rbiplackcop(n, oratio)

Arguments

x1, x2, q1, q2 vector of quantiles.

n number of observations. Same as in runif.

oratio the positive odds ratio ψ.

log Logical. If TRUE then the logarithm is returned.

Details

See biplackettcop, the VGAM family functions for estimating the parameter by maximum like-
lihood estimation, for the formula of the cumulative distribution function and other details.

Value

dbiplackcop gives the density, pbiplackcop gives the distribution function, and rbiplackcop
generates random deviates (a two-column matrix).

Author(s)

T. W. Yee

References

Mardia, K. V. (1967). Some contributions to contingency-type distributions. Biometrika, 54, 235–
249.

See Also

biplackettcop, bifrankcop.

120 biplackettcop

Examples

Not run: N <- 101; oratio <- exp(1)
x <- seq(0.0, 1.0, len = N)
ox <- expand.grid(x, x)
zedd <- dbiplackcop(ox[, 1], ox[, 2], oratio = oratio)
contour(x, x, matrix(zedd, N, N), col = "blue")
zedd <- pbiplackcop(ox[, 1], ox[, 2], oratio = oratio)
contour(x, x, matrix(zedd, N, N), col = "blue")

plot(rr <- rbiplackcop(n = 3000, oratio = oratio))
par(mfrow = c(1, 2))
hist(rr[, 1]) # Should be uniform
hist(rr[, 2]) # Should be uniform

End(Not run)

biplackettcop Plackett’s Bivariate Copula Family Function

Description

Estimate the association parameter of Plackett’s bivariate distribution (copula) by maximum likeli-
hood estimation.

Usage

biplackettcop(link = "loglink", ioratio = NULL, imethod = 1,
nsimEIM = 200)

Arguments

link Link function applied to the (positive) odds ratio ψ. See Links for more choices
and information.

ioratio Numeric. Optional initial value for ψ. If a convergence failure occurs try as-
signing a value or a different value.

imethod, nsimEIM

See CommonVGAMffArguments.

Details

The defining equation is

ψ = H × (1− y1 − y2 +H)/((y1 −H)× (y2 −H))

where P (Y1 ≤ y1, Y2 ≤ y2) = Hψ(y1, y2) is the cumulative distribution function. The density
function is hψ(y1, y2) =

ψ[1 + (ψ − 1)(y1 + y2 − 2y1y2)]/
(
[1 + (ψ − 1)(y1 + y2)]2 − 4ψ(ψ − 1)y1y2

)3/2

biplackettcop 121

for ψ > 0. Some writers call ψ the cross product ratio but it is called the odds ratio here. The
support of the function is the unit square. The marginal distributions here are the standard uniform
although it is commonly generalized to other distributions.

If ψ = 1 then hψ(y1, y2) = y1y2, i.e., independence. As the odds ratio tends to infinity one has
y1 = y2. As the odds ratio tends to 0 one has y2 = 1− y1.

Fisher scoring is implemented using rbiplackcop. Convergence is often quite slow.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two-column matrix. Currently, the fitted value is a 2-column matrix with
0.5 values because the marginal distributions correspond to a standard uniform distribution.

Author(s)

T. W. Yee

References

Plackett, R. L. (1965). A class of bivariate distributions. Journal of the American Statistical Asso-
ciation, 60, 516–522.

See Also

rbiplackcop, bifrankcop.

Examples

Not run:
ymat <- rbiplackcop(n = 2000, oratio = exp(2))
plot(ymat, col = "blue")
fit <- vglm(ymat ~ 1, fam = biplackettcop, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
vcov(fit)
head(fitted(fit))
summary(fit)

End(Not run)

122 Bisa

biplot-methods Biplot of Constrained Regression Models

Description

biplot is a generic function applied to RR-VGLMs and QRR-VGLMs etc. These apply to rank-
1 and rank-2 models of these only. For RR-VGLMs these plot the second latent variable scores
against the first latent variable scores.

Methods

x The object from which the latent variables are extracted and/or plotted.

Note

See lvplot which is very much related to biplots.

Bisa The Birnbaum-Saunders Distribution

Description

Density, distribution function, and random generation for the Birnbaum-Saunders distribution.

Usage

dbisa(x, scale = 1, shape, log = FALSE)
pbisa(q, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
qbisa(p, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
rbisa(n, scale = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n Same as in runif.

scale, shape the (positive) scale and shape parameters.

log Logical. If TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

The Birnbaum-Saunders distribution is a distribution which is used in survival analysis. See bisa,
the VGAM family function for estimating the parameters, for more details.

bisa 123

Value

dbisa gives the density, pbisa gives the distribution function, and qbisa gives the quantile func-
tion, and rbisa generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

bisa.

Examples

Not run:
x <- seq(0, 6, len = 400)
plot(x, dbisa(x, shape = 1), type = "l", col = "blue",

ylab = "Density", lwd = 2, ylim = c(0,1.3), lty = 3,
main = "X ~ Birnbaum-Saunders(shape, scale = 1)")

lines(x, dbisa(x, shape = 2), col = "orange", lty = 2, lwd = 2)
lines(x, dbisa(x, shape = 0.5), col = "green", lty = 1, lwd = 2)
legend(x = 3, y = 0.9, legend = paste("shape = ",c(0.5, 1,2)),

col = c("green","blue","orange"), lty = 1:3, lwd = 2)

shape <- 1; x <- seq(0.0, 4, len = 401)
plot(x, dbisa(x, shape = shape), type = "l", col = "blue",

main = "Blue is density, orange is the CDF", las = 1,
sub = "Red lines are the 10,20,...,90 percentiles",
ylab = "", ylim = 0:1)

abline(h = 0, col = "blue", lty = 2)
lines(x, pbisa(x, shape = shape), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qbisa(probs, shape = shape)
lines(Q, dbisa(Q, shape = shape), col = "red", lty = 3, type = "h")
pbisa(Q, shape = shape) - probs # Should be all zero
abline(h = probs, col = "red", lty = 3)
lines(Q, pbisa(Q, shape = shape), col = "red", lty = 3, type = "h")

End(Not run)

bisa Birnbaum-Saunders Regression Family Function

Description

Estimates the shape and scale parameters of the Birnbaum-Saunders distribution by maximum like-
lihood estimation.

124 bisa

Usage

bisa(lscale = "loglink", lshape = "loglink", iscale = 1,
ishape = NULL, imethod = 1, zero = "shape", nowarning = FALSE)

Arguments

nowarning Logical. Suppress a warning? Ignored for VGAM 0.9-7 and higher.

lscale, lshape Parameter link functions applied to the shape and scale parameters (a and b
below). See Links for more choices. A log link is the default for both because
they are positive.

iscale, ishape Initial values for a and b. A NULL means an initial value is chosen internally
using imethod.

imethod An integer with value 1 or 2 or 3 which specifies the initialization method. If
failure to converge occurs try the other value, or else specify a value for ishape
and/or iscale.

zero Specifies which linear/additive predictor is modelled as intercept-only. If used,
choose one value from the set {1,2}. See CommonVGAMffArguments for more
details.

Details

The (two-parameter) Birnbaum-Saunders distribution has a cumulative distribution function that
can be written as

F (y; a, b) = Φ[ξ(y/b)/a]

where Φ(·) is the cumulative distribution function of a standard normal (see pnorm), ξ(t) =
√
t −

1/
√
t, y > 0, a > 0 is the shape parameter, b > 0 is the scale parameter. The mean of Y (which

is the fitted value) is b(1 + a2/2). and the variance is a2b2(1 + 5
4a

2). By default, η1 = log(a) and
η2 = log(b) for this family function.

Note that a and b are orthogonal, i.e., the Fisher information matrix is diagonal. This family function
implements Fisher scoring, and it is unnecessary to compute any integrals numerically.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Author(s)

T. W. Yee

References

Lemonte, A. J. and Cribari-Neto, F. and Vasconcellos, K. L. P. (2007). Improved statistical infer-
ence for the two-parameter Birnbaum-Saunders distribution. Computational Statistics and Data
Analysis, 51, 4656–4681.

Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions. Journal of Applied
Probability, 6, 319–327.

Bistudentt 125

Birnbaum, Z. W. and Saunders, S. C. (1969). Estimation for a family of life distributions with
applications to fatigue. Journal of Applied Probability, 6, 328–347.

Engelhardt, M. and Bain, L. J. and Wright, F. T. (1981). Inferences on the parameters of the
Birnbaum-Saunders fatigue life distribution based on maximum likelihood estimation. Techno-
metrics, 23, 251–256.

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2nd
edition, Volume 2, New York: Wiley.

See Also

pbisa, inv.gaussianff, CommonVGAMffArguments.

Examples

bdata1 <- data.frame(x2 = runif(nn <- 1000))
bdata1 <- transform(bdata1, shape = exp(-0.5 + x2),

scale = exp(1.5))
bdata1 <- transform(bdata1, y = rbisa(nn, scale, shape))
fit1 <- vglm(y ~ x2, bisa(zero = 1), data = bdata1, trace = TRUE)
coef(fit1, matrix = TRUE)

Not run:
bdata2 <- data.frame(shape = exp(-0.5), scale = exp(0.5))
bdata2 <- transform(bdata2, y = rbisa(nn, scale, shape))
fit <- vglm(y ~ 1, bisa, data = bdata2, trace = TRUE)
with(bdata2, hist(y, prob = TRUE, ylim = c(0, 0.5),

col = "lightblue"))
coef(fit, matrix = TRUE)
with(bdata2, mean(y))
head(fitted(fit))
x <- with(bdata2, seq(0, max(y), len = 200))
lines(dbisa(x, Coef(fit)[1], Coef(fit)[2]) ~ x, data = bdata2,

col = "orange", lwd = 2)
End(Not run)

Bistudentt Bivariate Student-t Distribution Density Function

Description

Density for the bivariate Student-t distribution.

Usage

dbistudentt(x1, x2, df, rho = 0, log = FALSE)

126 bistudentt

Arguments

x1, x2 vector of quantiles.

df, rho vector of degrees of freedom and correlation parameter. For df, a value Inf is
currently not working.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

One can think of this function as an extension of dt to two dimensions. See bistudentt for more
information.

Value

dbistudentt gives the density.

See Also

bistudentt, dt.

Examples

Not run: N <- 101; x <- seq(-4, 4, len = N); Rho <- 0.7
mydf <- 10; ox <- expand.grid(x, x)
zedd <- dbistudentt(ox[, 1], ox[, 2], df = mydf,

rho = Rho, log = TRUE)
contour(x, x, matrix(zedd, N, N), col = "blue", labcex = 1.5)

End(Not run)

bistudentt Bivariate Student-t Family Function

Description

Estimate the degrees of freedom and correlation parameters of the (bivariate) Student-t distribution
by maximum likelihood estimation.

Usage

bistudentt(ldf = "logloglink", lrho = "rhobitlink",
idf = NULL, irho = NULL, imethod = 1,
parallel = FALSE, zero = "rho")

Arguments

ldf, lrho, idf, irho, imethod

Details at CommonVGAMffArguments. See Links for more link function choices.

parallel, zero Details at CommonVGAMffArguments.

bistudentt 127

Details

The density function is

f(y1, y2; ν, ρ) =
1

2π
√

1− ρ2
(1 + (y21 + y22 − 2ρy1y2)/(ν(1− ρ2)))−(ν+2)/2

for −1 < ρ < 1, and real y1 and y2.

This VGAM family function can handle multiple responses, for example, a six-column matrix
where the first 2 columns is the first out of three responses, the next 2 columns being the next
response, etc.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

The working weight matrices have not been fully checked.

Note

The response matrix must have a multiple of two-columns. Currently, the fitted value is a matrix
with the same number of columns and values equal to 0.0.

Author(s)

T. W. Yee, with help from Thibault Vatter.

References

Schepsmeier, U. and Stober, J. (2014). Derivatives and Fisher information of bivariate copulas.
Statistical Papers 55, 525–542.

See Also

dbistudentt, binormal, pt.

Examples

nn <- 1000
mydof <- logloglink(1, inverse = TRUE)
ymat <- cbind(rt(nn, df = mydof), rt(nn, df = mydof))
bdata <- data.frame(y1 = ymat[, 1], y2 = ymat[, 2],

y3 = ymat[, 1], y4 = ymat[, 2],
x2 = runif(nn))

summary(bdata)
Not run: plot(ymat, col = "blue")
fit1 <- # 2 responses, e.g., (y1,y2) is the 1st
vglm(cbind(y1, y2, y3, y4) ~ 1,

bistudentt, # crit = "coef", # Sometimes a good idea

128 bmi.nz

data = bdata, trace = TRUE)
coef(fit1, matrix = TRUE)
Coef(fit1)
head(fitted(fit1))
summary(fit1)

bmi.nz Body Mass Index of New Zealand Adults Data

Description

The body mass indexes and ages from an approximate random sample of 700 New Zealand adults.

Usage

data(bmi.nz)

Format

A data frame with 700 observations on the following 2 variables.

age a numeric vector; their age (years).
BMI a numeric vector; their body mass indexes, which is their weight divided by the square of

their height (kg / m2).

Details

They are a random sample from the Fletcher Challenge/Auckland Heart and Health survey con-
ducted in the early 1990s.

There are some outliers in the data set.

A variable gender would be useful, and may be added later.

Source

Formerly the Clinical Trials Research Unit, University of Auckland, New Zealand.

References

MacMahon, S., Norton, R., Jackson, R., Mackie, M. J., Cheng, A., Vander Hoorn, S., Milne, A.,
McCulloch, A. (1995) Fletcher Challenge-University of Auckland Heart & Health Study: design
and baseline findings. New Zealand Medical Journal, 108, 499–502.

Examples

Not run: with(bmi.nz, plot(age, BMI, col = "blue"))
fit <- vgam(BMI ~ s(age, df = c(2, 4, 2)), lms.yjn,

data = bmi.nz, trace = TRUE)
qtplot(fit, pcol = "blue", tcol = "brown", lcol = "brown")
End(Not run)

borel.tanner 129

borel.tanner Borel-Tanner Distribution Family Function

Description

Estimates the parameter of a Borel-Tanner distribution by maximum likelihood estimation.

Usage

borel.tanner(Qsize = 1, link = "logitlink", imethod = 1)

Arguments

Qsize A positive integer. It is called Q below and is the initial queue size. The default
value Q = 1 corresponds to the Borel distribution.

link Link function for the parameter; see Links for more choices and for general
information.

imethod See CommonVGAMffArguments. Valid values are 1, 2, 3 or 4.

Details

The Borel-Tanner distribution (Tanner, 1953) describes the distribution of the total number of cus-
tomers served before a queue vanishes given a single queue with random arrival times of customers
(at a constant rate r per unit time, and each customer taking a constant time b to be served). Initially
the queue has Q people and the first one starts to be served. The two parameters appear in the den-
sity only in the form of the product rb, therefore we use a = rb, say, to denote the single parameter
to be estimated. The density function is

f(y; a) =
Q

(y −Q)!
yy−Q−1ay−Q exp(−ay)

where y = Q,Q + 1, Q + 2, The case Q = 1 corresponds to the Borel distribution (Borel,
1942). For the Q = 1 case it is necessary for 0 < a < 1 for the distribution to be proper. The Borel
distribution is a basic Lagrangian distribution of the first kind. The Borel-Tanner distribution is an
Q-fold convolution of the Borel distribution.

The mean is Q/(1 − a) (returned as the fitted values) and the variance is Qa/(1 − a)3. The
distribution has a very long tail unless a is small. Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Author(s)

T. W. Yee

130 Bort

References

Tanner, J. C. (1953). A problem of interference between two queues. Biometrika, 40, 58–69.

Borel, E. (1942). Sur l’emploi du theoreme de Bernoulli pour faciliter le calcul d’une infinite de
coefficients. Application au probleme de l’attente a un guichet. Comptes Rendus, Academie des
Sciences, Paris, Series A, 214, 452–456.

Johnson N. L., Kemp, A. W. and Kotz S. (2005). Univariate Discrete Distributions, 3rd edition,
p.328. Hoboken, New Jersey: Wiley.

Consul, P. C. and Famoye, F. (2006). Lagrangian Probability Distributions, Boston, MA, USA:
Birkhauser.

See Also

rbort, poissonff, felix.

Examples

bdata <- data.frame(y = rbort(n <- 200))
fit <- vglm(y ~ 1, borel.tanner, bdata, trace = TRUE, crit = "c")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

Bort The Borel-Tanner Distribution

Description

Density and random generation for the Borel-Tanner distribution.

Usage

dbort(x, Qsize = 1, a = 0.5, log = FALSE)
rbort(n, Qsize = 1, a = 0.5)

Arguments

x vector of quantiles.

n number of observations. Must be a positive integer of length 1.

Qsize, a See borel.tanner.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

See borel.tanner, the VGAM family function for estimating the parameter, for the formula of the
probability density function and other details.

Brat 131

Value

dbort gives the density, rbort generates random deviates.

Warning

Looping is used for rbort, therefore values of a close to 1 will result in long (or infinite!) compu-
tational times. The default value of a is subjective.

Author(s)

T. W. Yee

See Also

borel.tanner.

Examples

Not run: qsize <- 1; a <- 0.5; x <- qsize:(qsize+10)
plot(x, dbort(x, qsize, a), type = "h", las = 1, col = "blue",

ylab = paste("fbort(qsize=", qsize, ", a=", a, ")"),
log = "y", main = "Borel-Tanner density function")

End(Not run)

Brat Inputting Data to fit a Bradley Terry Model

Description

Takes in a square matrix of counts and outputs them in a form that is accessible to the brat and
bratt family functions.

Usage

Brat(mat, ties = 0 * mat, string = c(">", "=="), whitespace = FALSE)

Arguments

mat Matrix of counts, which is considered M by M in dimension when there are
ties, and M + 1 by M + 1 when there are no ties. The rows are winners and
the columns are losers, e.g., the 2-1 element is now many times Competitor 2
has beaten Competitor 1. The matrices are best labelled with the competitors’
names.

ties Matrix of counts. This should be the same dimension as mat. By default, there
are no ties. The matrix must be symmetric, and the diagonal should contain NAs.

string Character. The matrices are labelled with the first value of the descriptor, e.g.,
"NZ > Oz" ‘means’ NZ beats Australia in rugby. Suggested alternatives include
" beats " or " wins against ". The second value is used to handle ties.

132 Brat

whitespace Logical. If TRUE then a white space is added before and after string; it gener-
ally enhances readability. See CommonVGAMffArguments for some similar-type
information.

Details

In the VGAM package it is necessary for each matrix to be represented as a single row of data by
brat and bratt. Hence the non-diagonal elements of the M + 1 by M + 1 matrix are concatenated
into M(M + 1) values (no ties), while if there are ties, the non-diagonal elements of the M by M
matrix are concatenated into M(M − 1) values.

Value

A matrix with 1 row and either M(M + 1) or M(M − 1) columns.

Note

This is a data preprocessing function for brat and bratt.

Yet to do: merge InverseBrat into brat.

Author(s)

T. W. Yee

References

Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Hoboken, NJ, USA: Wiley.

See Also

brat, bratt, InverseBrat.

Examples

journal <- c("Biometrika", "Comm Statist", "JASA", "JRSS-B")
mat <- matrix(c(NA, 33, 320, 284, 730, NA, 813, 276,

498, 68, NA, 325, 221, 17, 142, NA), 4, 4)
dimnames(mat) <- list(winner = journal, loser = journal)
Brat(mat) # Less readable
Brat(mat, whitespace = TRUE) # More readable
vglm(Brat(mat, whitespace = TRUE) ~ 1, brat, trace = TRUE)

brat 133

brat Bradley Terry Model

Description

Fits a Bradley Terry model (intercept-only model) by maximum likelihood estimation.

Usage

brat(refgp = "last", refvalue = 1, ialpha = 1)

Arguments

refgp Integer whose value must be from the set {1,. . . ,M + 1}, where there are M + 1
competitors. The default value indicates the last competitor is used—but don’t
input a character string, in general.

refvalue Numeric. A positive value for the reference group.

ialpha Initial values for the αs. These are recycled to the appropriate length.

Details

The Bradley Terry model involves M + 1 competitors who either win or lose against each other
(no draws/ties allowed in this implementation–see bratt if there are ties). The probability that
Competitor i beats Competitor j is αi/(αi +αj), where all the αs are positive. Loosely, the αs can
be thought of as the competitors’ ‘abilities’. For identifiability, one of the αi is set to a known value
refvalue, e.g., 1. By default, this function chooses the last competitor to have this reference value.
The data can be represented in the form of a M + 1 by M + 1 matrix of counts, where winners are
the rows and losers are the columns. However, this is not the way the data should be inputted (see
below).

Excluding the reference value/group, this function chooses log(αj) as the M linear predictors. The
log link ensures that the αs are positive.

The Bradley Terry model can be fitted by logistic regression, but this approach is not taken here.
The Bradley Terry model can be fitted with covariates, e.g., a home advantage variable, but unfor-
tunately, this lies outside the VGLM theoretical framework and therefore cannot be handled with
this code.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm.

Warning

Presently, the residuals are wrong, and the prior weights are not handled correctly. Ideally, the total
number of counts should be the prior weights, after the response has been converted to proportions.
This would make it similar to family functions such as multinomial and binomialff.

134 brat

Note

The function Brat is useful for coercing a M + 1 by M + 1 matrix of counts into a one-row
matrix suitable for brat. Diagonal elements are skipped, and the usual S order of c(a.matrix) of
elements is used. There should be no missing values apart from the diagonal elements of the square
matrix. The matrix should have winners as the rows, and losers as the columns. In general, the
response should be a 1-row matrix with M(M + 1) columns.

Only an intercept model is recommended with brat. It doesn’t make sense really to include covari-
ates because of the limited VGLM framework.

Notationally, note that the VGAM family function brat has M + 1 contestants, while bratt has
M contestants.

Author(s)

T. W. Yee

References

Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Hoboken, NJ, USA: Wiley.

Stigler, S. (1994). Citation patterns in the journals of statistics and probability. Statistical Science,
9, 94–108.

The BradleyTerry2 package has more comprehensive capabilities than this function.

See Also

bratt, Brat, multinomial, binomialff.

Examples

Citation statistics: being cited is a 'win'; citing is a 'loss'
journal <- c("Biometrika", "Comm.Statist", "JASA", "JRSS-B")
mat <- matrix(c(NA, 33, 320, 284,

730, NA, 813, 276,
498, 68, NA, 325,
221, 17, 142, NA), 4, 4)

dimnames(mat) <- list(winner = journal, loser = journal)
fit <- vglm(Brat(mat) ~ 1, brat(refgp = 1), trace = TRUE)
fit <- vglm(Brat(mat) ~ 1, brat(refgp = 1), trace = TRUE, crit = "coef")
summary(fit)
c(0, coef(fit)) # Log-abilities (in order of "journal")
c(1, Coef(fit)) # Abilities (in order of "journal")
fitted(fit) # Probabilities of winning in awkward form
(check <- InverseBrat(fitted(fit))) # Probabilities of winning
check + t(check) # Should be 1's in the off-diagonals

bratt 135

bratt Bradley Terry Model With Ties

Description

Fits a Bradley Terry model with ties (intercept-only model) by maximum likelihood estimation.

Usage

bratt(refgp = "last", refvalue = 1, ialpha = 1, i0 = 0.01)

Arguments

refgp Integer whose value must be from the set {1,. . . ,M}, where there are M com-
petitors. The default value indicates the last competitor is used—but don’t input
a character string, in general.

refvalue Numeric. A positive value for the reference group.

ialpha Initial values for the αs. These are recycled to the appropriate length.

i0 Initial value for α0. If convergence fails, try another positive value.

Details

There are several models that extend the ordinary Bradley Terry model to handle ties. This family
function implements one of these models. It involves M competitors who either win or lose or
tie against each other. (If there are no draws/ties then use brat). The probability that Competitor
i beats Competitor j is αi/(αi + αj + α0), where all the αs are positive. The probability that
Competitor i ties with Competitor j is α0/(αi +αj +α0). Loosely, the αs can be thought of as the
competitors’ ‘abilities’, and α0 is an added parameter to model ties. For identifiability, one of the
αi is set to a known value refvalue, e.g., 1. By default, this function chooses the last competitor to
have this reference value. The data can be represented in the form of a M by M matrix of counts,
where winners are the rows and losers are the columns. However, this is not the way the data should
be inputted (see below).

Excluding the reference value/group, this function chooses log(αj) as the first M − 1 linear predic-
tors. The log link ensures that the αs are positive. The last linear predictor is log(α0).

The Bradley Terry model can be fitted with covariates, e.g., a home advantage variable, but unfor-
tunately, this lies outside the VGLM theoretical framework and therefore cannot be handled with
this code.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm.

136 bratt

Note

The function Brat is useful for coercing a M by M matrix of counts into a one-row matrix suitable
for bratt. Diagonal elements are skipped, and the usual S order of c(a.matrix) of elements is
used. There should be no missing values apart from the diagonal elements of the square matrix.
The matrix should have winners as the rows, and losers as the columns. In general, the response
should be a matrix with M(M − 1) columns.

Also, a symmetric matrix of ties should be passed into Brat. The diagonal of this matrix should be
all NAs.

Only an intercept model is recommended with bratt. It doesn’t make sense really to include
covariates because of the limited VGLM framework.

Notationally, note that the VGAM family function brat has M + 1 contestants, while bratt has
M contestants.

Author(s)

T. W. Yee

References

Torsney, B. (2004). Fitting Bradley Terry models using a multiplicative algorithm. In: Antoch,
J. (ed.) Proceedings in Computational Statistics COMPSTAT 2004, Physica-Verlag: Heidelberg.
Pages 513–526.

See Also

brat, Brat, binomialff.

Examples

citation statistics: being cited is a 'win'; citing is a 'loss'
journal <- c("Biometrika", "Comm.Statist", "JASA", "JRSS-B")
mat <- matrix(c(NA, 33, 320, 284,

730, NA, 813, 276,
498, 68, NA, 325,
221, 17, 142, NA), 4, 4)

dimnames(mat) <- list(winner = journal, loser = journal)

Add some ties. This is fictitional data.
ties <- 5 + 0 * mat
ties[2, 1] <- ties[1,2] <- 9

Now fit the model
fit <- vglm(Brat(mat, ties) ~ 1, bratt(refgp = 1), trace = TRUE,

crit = "coef")

summary(fit)
c(0, coef(fit)) # Log-abilities (last is log(alpha0))
c(1, Coef(fit)) # Abilities (last is alpha0)

fit@misc$alpha # alpha_1,...,alpha_M

calibrate 137

fit@misc$alpha0 # alpha_0

fitted(fit) # Probabilities of winning and tying, in awkward form
predict(fit)
(check <- InverseBrat(fitted(fit))) # Probabilities of winning
qprob <- attr(fitted(fit), "probtie") # Probabilities of a tie
qprobmat <- InverseBrat(c(qprob), NCo = nrow(ties)) # Pr(tie)
check + t(check) + qprobmat # Should be 1s in the off-diagonals

calibrate Model Calibrations

Description

calibrate is a generic function used to produce calibrations from various model fitting functions.
The function invokes particular ‘methods’ which depend on the ‘class’ of the first argument.

Usage

calibrate(object, ...)

Arguments

object An object for which a calibration is desired.

... Additional arguments affecting the calibration produced. Usually the most im-
portant argument in ... is newdata which, for calibrate, contains new re-
sponse data, Y, say.

Details

Given a regression model with explanatory variables X and response Y, calibration involves estimat-
ing X from Y using the regression model. It can be loosely thought of as the opposite of predict
(which takes an X and returns a Y of some sort.) In general, the central algorithm is maximum
likelihood calibration.

Value

In general, given a new response Y, some function of the explanatory variables X are returned.
For example, for constrained ordination models such as CQO and CAO models, it is usually not
possible to return X, so the latent variables are returned instead (they are linear combinations of the
X). See the specific calibrate methods functions to see what they return.

Note

This function was not called predictx because of the inability of constrained ordination models to
return X; they can only return the latent variable values (also known as site scores) instead.

138 calibrate-methods

Author(s)

T. W. Yee

References

ter Braak, C. J. F. and van Dam, H. (1989). Inferring pH from diatoms: a comparison of old and
new calibration methods. Hydrobiologia, 178, 209–223.

See Also

predict, calibrate.rrvglm, calibrate.qrrvglm.

Examples

Not run:
hspider[, 1:6] <- scale(hspider[, 1:6]) # Stdzed environmental vars
set.seed(123)
pcao1 <- cao(cbind(Pardlugu, Pardmont, Pardnigr, Pardpull, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider, Rank = 1, Bestof = 3,
df1.nl = c(Zoraspin = 2, 1.9), Crow1positive = TRUE)

siteNos <- 1:2 # Calibrate these sites
cpcao1 <- calibrate(pcao1, trace = TRUE,

newdata = data.frame(depvar(pcao1)[siteNos,],
model.matrix(pcao1)[siteNos,]))

Graphically compare the actual site scores with their calibrated values
persp(pcao1, main = "Site scores: solid=actual, dashed=calibrated",

label = TRUE, col = "blue", las = 1)
abline(v = latvar(pcao1)[siteNos], col = seq(siteNos)) # Actual scores
abline(v = cpcao1, lty = 2, col = seq(siteNos)) # Calibrated values

End(Not run)

calibrate-methods Calibration for Constrained Regression Models

Description

calibrate is a generic function applied to RR-VGLMs, QRR-VGLMs and RR-VGAMs, etc.

Methods

object The object from which the calibration is performed.

calibrate.qrrvglm 139

calibrate.qrrvglm Calibration for CQO and CAO models

Description

Performs maximum likelihood calibration for constrained quadratic and additive ordination models
(CQO and CAO models are better known as QRR-VGLMs and RR-VGAMs respectively).

Usage

calibrate.qrrvglm(object, newdata = NULL,
type = c("latvar", "predictors", "response", "vcov", "everything"),
lr.confint = FALSE, cf.confint = FALSE,
level = 0.95, initial.vals = NULL, ...)

Arguments

object The fitted CQO/CAO model.
newdata A data frame with new response data, such as new species data. The default is

to use the original data used to fit the model; however, the calibration may take
a long time to compute because the computations are expensive.
Note that the creation of the model frame associated with newdata is fragile.
Factors may not be created properly. If a variable is binary then its best for it to
be straightforward and have only 0 and 1 as values.

type What type of result to be returned. The first are the calibrated latent vari-
ables or site scores. This is always computed. The "predictors" are the lin-
ear/quadratic or additive predictors evaluated at the calibrated latent variables
or site scores. The "response" are the fitted values (usually means) evaluated
at the calibrated latent variables or site scores. The "vcov" are the Wald-type
estimated variance-covariance matrices of the calibrated latent variables or site
scores. The "everything" is for all of them, i.e., all types. Note that for CAO
models, the "vcov" type is unavailable.

lr.confint, level

Compute approximate likelihood ratio based confidence intervals? If TRUE then
level is the confidence level required and one should have type = "latvar" or
type = "everything"; and currently only rank-1 models are supported. This
option works for CLO and CQO models and not for CAO models. The function
uniroot is called to solve for the root of a nonlinear equation to obtain each
confidence limit, and this is not entirely reliable. It is assumed that the likeli-
hood function is unimodal about its MLE because only one root is returned if
there is more than one. One root is found on each side of the MLE. Techni-
cally, the default is to find the value of the latent variable whose difference in
deviance (or twice the difference in log-likelihoods) from the optimal model is
equal to qchisq(level, df = 1). The intervals are not true profile likelihood
intervals because it is not possible to estimate the regression coefficients of the
QRR-VGLM/RR-VGLM based on one response vector. See confint to get the
flavour of these two arguments in general.

140 calibrate.qrrvglm

cf.confint Compute approximate characteristic function based confidence intervals? If
TRUE then level is the confidence level required and one should have type =
"latvar" or type = "everything"; and currently only rank-1 models are sup-
ported. This option works for binomialff and poissonff CLO and CQO mod-
els and not for CAO models. The function uniroot is called to solve for the root
of a nonlinear equation to obtain each confidence limit, and this is not entirely
reliable. It is assumed that the likelihood function is unimodal because only
one root is returned if there is more than one. Technically, the CDF of a nor-
malized score statistic is obtained by Gauss–Hermite numerical integration of a
complex-valued integrand, and this is based on the inversion formula described
in Abate and Witt (1992).

initial.vals Initial values for the search. For rank-1 models, this should be a vector hav-
ing length equal to nrow(newdata), and for rank-2 models this should be a
two-column matrix with the number of rows equalling the number of rows in
newdata. The default is a grid defined by arguments in calibrate.qrrvglm.control.

... Arguments that are fed into calibrate.qrrvglm.control.

Details

Given a fitted regression CQO/CAO model, maximum likelihood calibration is theoretically easy
and elegant. However, the method assumes that all the responses are independent, which is often
not true in practice. More details and references are given in Yee (2018) and ch.6 of Yee (2015).

The function optim is used to search for the maximum likelihood solution. Good initial values
are needed, and arguments in calibrate.qrrvglm.control allows the user some control over the
choice of these.

Value

Several methods are implemented to obtain confidence intervals/regions for the calibration esti-
mates. One method is when lr.confint = TRUE, then a 4-column matrix is returned with the con-
fidence limits being the final 2 columns (if type = "everything" then the matrix is returned in the
lr.confint list component). Another similar method is when cf.confint = TRUE. There may be
some redundancy in whatever is returned. Other methods are returned by using type and they are
described as follows.

The argument type determines what is returned. If type = "everything" then all the type values
are returned in a list, with the following components. Each component has length nrow(newdata).

latvar Calibrated latent variables or site scores (the default). This may have the at-
tribute "objectiveFunction" which is usually the log-likelihood or the de-
viance.

predictors linear/quadratic or additive predictors. For example, for Poisson families, this
will be on a log scale, and for binomial families, this will be on a logit scale.

response Fitted values of the response, evaluated at the calibrated latent variables.
vcov Wald-type estimated variance-covariance matrices of the calibrated latent vari-

ables or site scores. Actually, these are stored in a 3-D array whose dimension is
c(Rank(object), Rank(object), nrow(newdata)). This type has only been
implemented for binomialff and poissonff models with canonical links and
noRRR = ~ 1 and, for CQOs, I.tolerances = TRUE or eq.tolerances = TRUE.

calibrate.qrrvglm 141

Warning

This function is computationally expensive. Setting trace = TRUE to get a running log can be a
good idea. This function has been tested but not extensively.

Note

Despite the name of this function, CAO models are handled as well to a certain extent. Some
combinations of parameters are not handled, e.g., lr.confint = TRUE only works for rank-1, type
= "vcov" only works for binomialff and poissonff models with canonical links and noRRR = ~ 1,
and higher-order rank models need eq.tolerances = TRUE or I.tolerances = TRUE as well. For
rank-1 objects, lr.confint = TRUE is recommended above type = "vcov" in terms of accuracy and
overall generality. For class "qrrvglm" objects it is necessary that all response’ tolerance matrices
are positive-definite which correspond to bell-shaped response curves/surfaces.

For binomialff and poissonff models the deviance slot is used for the optimization rather
than the loglikelihood slot, therefore one can calibrate using real-valued responses. (If the
loglikelihood slot were used then functions such as dpois would be used with log = TRUE and
then would be restricted to feed in integer-valued response values.)

Maximum likelihood calibration for Gaussian logit regression models may be performed by ri-
oja but this applies to a single environmental variable such as pH in data("SWAP", package =
"rioja"). In VGAM calibrate() estimates values of the latent variable rather than individual
explanatory variables, hence the setting is more on ordination.

Author(s)

T. W. Yee. Recent work on the standard errors by David Zucker and Sam Oman at HUJI is gratefully
acknowledged—these are returned in the vcov component and provided inspiration for lr.confint
and cf.confint. A joint publication is being prepared on this subject.

References

Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting transforms of probability
distributions. Queueing Systems, 10, 5–88.

ter Braak, C. J. F. (1995). Calibration. In: Data Analysis in Community and Landscape Ecology
by Jongman, R. H. G., ter Braak, C. J. F. and van Tongeren, O. F. R. (Eds.) Cambridge University
Press, Cambridge.

See Also

calibrate.qrrvglm.control, calibrate.rrvglm, calibrate, cqo, cao, optim, uniroot.

Examples

Not run:
hspider[, 1:6] <- scale(hspider[, 1:6]) # Stdze environmental variables
set.seed(123)
siteNos <- c(1, 5) # Calibrate these sites
pet1 <- cqo(cbind(Pardlugu, Pardmont, Pardnigr, Pardpull, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
trace = FALSE,

142 calibrate.qrrvglm.control

data = hspider[-siteNos,], # Sites not in fitted model
family = poissonff, I.toler = TRUE, Crow1positive = TRUE)

y0 <- hspider[siteNos, colnames(depvar(pet1))] # Species counts
(cpet1 <- calibrate(pet1, trace = TRUE, newdata = data.frame(y0)))
(clrpet1 <- calibrate(pet1, lr.confint = TRUE, newdata = data.frame(y0)))
(ccfpet1 <- calibrate(pet1, cf.confint = TRUE, newdata = data.frame(y0)))
(cp1wald <- calibrate(pet1, newdata = y0, type = "everything"))

End(Not run)

Not run:
Graphically compare the actual site scores with their calibrated
values. 95 percent likelihood-based confidence intervals in green.
persp(pet1, main = "Site scores: solid=actual, dashed=calibrated",

label = TRUE, col = "gray50", las = 1)
Actual site scores:
xvars <- rownames(concoef(pet1)) # Variables comprising the latvar
est.latvar <- as.matrix(hspider[siteNos, xvars]) %*% concoef(pet1)
abline(v = est.latvar, col = seq(siteNos))
abline(v = cpet1, lty = 2, col = seq(siteNos)) # Calibrated values
arrows(clrpet1[, 3], c(60, 60), clrpet1[, 4], c(60, 60), # Add CIs

length = 0.08, col = "orange", angle = 90, code = 3, lwd = 2)
arrows(ccfpet1[, 3], c(70, 70), ccfpet1[, 4], c(70, 70), # Add CIs

length = 0.08, col = "limegreen", angle = 90, code = 3, lwd = 2)
arrows(cp1wald$latvar - 1.96 * sqrt(cp1wald$vcov), c(65, 65),

cp1wald$latvar + 1.96 * sqrt(cp1wald$vcov), c(65, 65), # Wald CIs
length = 0.08, col = "blue", angle = 90, code = 3, lwd = 2)

legend("topright", lwd = 2,
leg = c("CF interval", "Wald interval", "LR interval"),
col = c("limegreen", "blue", "orange"), lty = 1)

End(Not run)

calibrate.qrrvglm.control

Control Function for CQO/CAO Calibration

Description

Algorithmic constants and parameters for running calibrate.qrrvglm are set using this function.

Usage

calibrate.qrrvglm.control(object, trace = FALSE, method.optim = "BFGS",
gridSize = ifelse(Rank == 1, 21, 9), varI.latvar = FALSE, ...)

calibrate.qrrvglm.control 143

Arguments

object The fitted CQO/CAO model. The user should ignore this argument.

trace Logical indicating if output should be produced for each iteration. It is a good
idea to set this argument to be TRUE since the computations are expensive.

method.optim Character. Fed into the method argument of optim.

gridSize Numeric, recycled to length Rank. Controls the resolution of the grid used
for initial values. For each latent variable, an equally spaced grid of length
gridSize is cast from the smallest site score to the largest site score. Then the
likelihood function is evaluated on the grid, and the best fit is chosen as the initial
value. Thus increasing the value of gridSize increases the chance of obtaining
the global solution, however, the computing time increases proportionately.

varI.latvar Logical. For CQO objects only, this argument is fed into Coef.qrrvglm.

... Avoids an error message for extraneous arguments.

Details

Most CQO/CAO users will only need to make use of trace and gridSize. These arguments should
be used inside their call to calibrate.qrrvglm, not this function directly.

Value

A list which with the following components.

trace Numeric (even though the input can be logical).

gridSize Positive integer.

varI.latvar Logical.

Note

Despite the name of this function, CAO models are handled as well.

References

Yee, T. W. (2020). On constrained and unconstrained quadratic ordination. Manuscript in prepara-
tion.

See Also

calibrate.qrrvglm, Coef.qrrvglm.

Examples

Not run: hspider[, 1:6] <- scale(hspider[, 1:6]) # Needed for I.tol=TRUE
set.seed(123)
p1 <- cqo(cbind(Alopacce, Alopcune, Pardlugu, Pardnigr,

Pardpull, Trocterr, Zoraspin) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider, I.tol = TRUE)

144 calibrate.rrvglm

sort(deviance(p1, history = TRUE)) # A history of all the iterations
siteNos <- 3:4 # Calibrate these sites
cp1 <- calibrate(p1, trace = TRUE,

new = data.frame(depvar(p1)[siteNos,]))

End(Not run)
Not run:
Graphically compare the actual site scores with their calibrated values
persp(p1, main = "Site scores: solid=actual, dashed=calibrated",

label = TRUE, col = "blue", las = 1)
abline(v = latvar(p1)[siteNos], col = seq(siteNos)) # Actual site scores
abline(v = cp1, lty = 2, col = seq(siteNos)) # Calibrated values

End(Not run)

calibrate.rrvglm Calibration for CLO models (RR-VGLMs)

Description

Performs maximum likelihood calibration for constrained linear ordination models (CLO models
are better known as RR-VGLMs).

Usage

calibrate.rrvglm(object, newdata = NULL,
type = c("latvar", "predictors", "response", "vcov", "everything"),
lr.confint = FALSE, cf.confint = FALSE,
level = 0.95, initial.vals = NULL, ...)

Arguments

object The fitted rrvglm model. Note that object should be fitted with corner con-
straints.

newdata See calibrate.qrrvglm.

type See calibrate.qrrvglm. If type = "vcov" then object should have been fit-
ted using binomialff or poissonff with canonical links, and have noRRR = ~
1.

lr.confint, cf.confint, level

Same as calibrate.qrrvglm.

initial.vals Same as calibrate.qrrvglm. The default is a grid defined by arguments in
calibrate.rrvglm.control.

... Arguments that are fed into calibrate.rrvglm.control.

calibrate.rrvglm 145

Details

Given a fitted regression CLO model, maximum likelihood calibration is theoretically easy and ele-
gant. However, the method assumes that all responses are independent. More details and references
are given in Yee (2015).

Calibration requires grouped or non-sparse data as the response. For example, if the family function
is multinomial then one cannot usually calibrate y0 if it is a vector of 0s except for one 1. Instead,
the response vector should be from grouped data so that there are few 0s. Indeed, it is found
empirically that the stereotype model (also known as a reduced-rank multinomial logit model)
calibrates well only with grouped data, and if the response vector is all 0s except for one 1 then the
MLE will probably be at -Inf or +Inf. As another example, if the family function is poissonff
then y0 must not be a vector of all 0s; instead, the response vector should have few 0s ideally. In
general, you can use simulation to see what type of data calibrates acceptably.

Internally, this function is a simplification of calibrate.qrrvglm and users should look at that
function for details. Good initial values are needed, and a grid is constructed to obtain these. The
function calibrate.rrvglm.control allows the user some control over the choice of these.

Value

See calibrate.qrrvglm. Of course, the quadratic term in the latent variables vanishes for RR-
VGLMs, so the model is simpler.

Warning

See calibrate.qrrvglm.

Note

See calibrate.qrrvglm about, e.g., calibration using real-valued responses.

Author(s)

T. W. Yee

See Also

calibrate.qrrvglm, calibrate, rrvglm, weightsvglm, optim, uniroot.

Examples

Not run: # Example 1
nona.xs.nz <- na.omit(xs.nz) # Overkill!! (Data in VGAMdata package)
nona.xs.nz$dmd <- with(nona.xs.nz, round(drinkmaxday))
nona.xs.nz$feethr <- with(nona.xs.nz, round(feethour))
nona.xs.nz$sleephr <- with(nona.xs.nz, round(sleep))
nona.xs.nz$beats <- with(nona.xs.nz, round(pulse))

p2 <- rrvglm(cbind(dmd, feethr, sleephr, beats) ~ age + smokenow +
depressed + embarrassed + fedup + hurt + miserable + # 11 psychological
nofriend + moody + nervous + tense + worry + worrier, # variables

146 calibrate.rrvglm.control

noRRR = ~ age + smokenow, trace = FALSE, poissonff, data = nona.xs.nz,
Rank = 2)

cp2 <- calibrate(p2, newdata = head(nona.xs.nz, 9), trace = TRUE)
cp2

two.cases <- nona.xs.nz[1:2,] # Another calibration example
two.cases$dmd <- c(4, 10)
two.cases$feethr <- c(4, 7)
two.cases$sleephr <- c(7, 8)
two.cases$beats <- c(62, 71)
(cp2b <- calibrate(p2, newdata = two.cases))

Example 2
p1 <- rrvglm(cbind(dmd, feethr, sleephr, beats) ~ age + smokenow +

depressed + embarrassed + fedup + hurt + miserable + # 11 psychological
nofriend + moody + nervous + tense + worry + worrier, # variables
noRRR = ~ age + smokenow, trace = FALSE, poissonff, data = nona.xs.nz,
Rank = 1)

(cp1c <- calibrate(p1, newdata = two.cases, lr.confint = TRUE))

End(Not run)

calibrate.rrvglm.control

Control Function for CLO (RR-VGLM) Calibration

Description

Algorithmic constants and parameters for running calibrate.rrvglm are set using this function.

Usage

calibrate.rrvglm.control(object, trace = FALSE, method.optim = "BFGS",
gridSize = ifelse(Rank == 1, 17, 9), ...)

Arguments

object The fitted rrvglm model. The user should ignore this argument.
trace, method.optim

Same as calibrate.qrrvglm.control.

gridSize Same as calibrate.qrrvglm.control.

... Avoids an error message for extraneous arguments.

Details

Most CLO users will only need to make use of trace and gridSize. These arguments should be
used inside their call to calibrate.rrvglm, not this function directly.

cao 147

Value

Similar to calibrate.qrrvglm.control.

See Also

calibrate.rrvglm, Coef.rrvglm.

cao Fitting Constrained Additive Ordination (CAO)

Description

A constrained additive ordination (CAO) model is fitted using the reduced-rank vector generalized
additive model (RR-VGAM) framework.

Usage

cao(formula, family = stop("argument 'family' needs to be assigned"),
data = list(),
weights = NULL, subset = NULL, na.action = na.fail,
etastart = NULL, mustart = NULL, coefstart = NULL,
control = cao.control(...), offset = NULL,
method = "cao.fit", model = FALSE, x.arg = TRUE, y.arg = TRUE,
contrasts = NULL, constraints = NULL,
extra = NULL, qr.arg = FALSE, smart = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit. The RHS of the formula is used
to construct the latent variables, upon which the smooths are applied. All the
variables in the formula are used for the construction of latent variables except
for those specified by the argument noRRR, which is itself a formula. The LHS
of the formula contains the response variables, which should be a matrix with
each column being a response (species).

family a function of class "vglmff" (see vglmff-class) describing what statistical
model is to be fitted. This is called a “VGAM family function”. See CommonVGAMffArguments
for general information about many types of arguments found in this type of
function. See cqo for a list of those presently implemented.

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from environment(formula), typically the environment from
which cao is called.

weights an optional vector or matrix of (prior) weights to be used in the fitting process.
For cao, this argument currently should not be used.

subset an optional logical vector specifying a subset of observations to be used in the
fitting process.

148 cao

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The “factory-fresh” default is na.omit.

etastart starting values for the linear predictors. It is aM -column matrix. IfM = 1 then
it may be a vector. For cao, this argument currently should not be used.

mustart starting values for the fitted values. It can be a vector or a matrix. Some family
functions do not make use of this argument. For cao, this argument currently
should not be used.

coefstart starting values for the coefficient vector. For cao, this argument currently should
not be used.

control a list of parameters for controlling the fitting process. See cao.control for
details.

offset a vector or M -column matrix of offset values. These are a priori known and are
added to the linear predictors during fitting. For cao, this argument currently
should not be used.

method the method to be used in fitting the model. The default (and presently only)
method cao.fit uses iteratively reweighted least squares (IRLS) within FOR-
TRAN code called from optim.

model a logical value indicating whether the model frame should be assigned in the
model slot.

x.arg, y.arg logical values indicating whether the model matrix and response vector/matrix
used in the fitting process should be assigned in the x and y slots. Note the
model matrix is the linear model (LM) matrix.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

constraints an optional list of constraint matrices. For cao, this argument currently should
not be used. The components of the list must be named with the term it cor-
responds to (and it must match in character format). Each constraint matrix
must have M rows, and be of full-column rank. By default, constraint matrices
are the M by M identity matrix unless arguments in the family function itself
override these values. If constraints is used it must contain all the terms; an
incomplete list is not accepted.

extra an optional list with any extra information that might be needed by the family
function. For cao, this argument currently should not be used.

qr.arg For cao, this argument currently should not be used.

smart logical value indicating whether smart prediction (smartpred) will be used.

... further arguments passed into cao.control.

Details

The arguments of cao are a mixture of those from vgam and cqo, but with some extras in cao.control.
Currently, not all of the arguments work properly.

CAO can be loosely be thought of as the result of fitting generalized additive models (GAMs) to
several responses (e.g., species) against a very small number of latent variables. Each latent variable
is a linear combination of the explanatory variables; the coefficients C (called C below) are called

cao 149

constrained coefficients or canonical coefficients, and are interpreted as weights or loadings. The
C are estimated by maximum likelihood estimation. It is often a good idea to apply scale to each
explanatory variable first.

For each response (e.g., species), each latent variable is smoothed by a cubic smoothing spline,
thus CAO is data-driven. If each smooth were a quadratic then CAO would simplify to con-
strained quadratic ordination (CQO; formerly called canonical Gaussian ordination or CGO). If
each smooth were linear then CAO would simplify to constrained linear ordination (CLO). CLO
can theoretically be fitted with cao by specifying df1.nl=0, however it is more efficient to use
rrvglm.

Currently, only Rank=1 is implemented, and only noRRR = ~1 models are handled.

With binomial data, the default formula is

logit(P [Ys = 1]) = ηs = fs(ν), s = 1, 2, . . . , S

where x2 is a vector of environmental variables, and ν = CTx2 is a R-vector of latent variables.
The ηs is an additive predictor for species s, and it models the probabilities of presence as an
additive model on the logit scale. The matrix C is estimated from the data, as well as the smooth
functions fs. The argument noRRR = ~ 1 specifies that the vector x1, defined for RR-VGLMs and
QRR-VGLMs, is simply a 1 for an intercept. Here, the intercept in the model is absorbed into the
functions. A clogloglink link may be preferable over a logitlink link.

With Poisson count data, the formula is

log(E[Ys]) = ηs = fs(ν)

which models the mean response as an additive models on the log scale.

The fitted latent variables (site scores) are scaled to have unit variance. The concept of a tolerance
is undefined for CAO models, but the optimums and maximums are defined. The generic functions
Max and Opt should work for CAO objects, but note that if the maximum occurs at the boundary
then Max will return a NA. Inference for CAO models is currently undeveloped.

Value

An object of class "cao" (this may change to "rrvgam" in the future). Several generic functions
can be applied to the object, e.g., Coef, concoef, lvplot, summary.

Warning

CAO is very costly to compute. With version 0.7-8 it took 28 minutes on a fast machine. I hope to
look at ways of speeding things up in the future.

Use set.seed just prior to calling cao() to make your results reproducible. The reason for this
is finding the optimal CAO model presents a difficult optimization problem, partly because the
log-likelihood function contains many local solutions. To obtain the (global) solution the user is
advised to try many initial values. This can be done by setting Bestof some appropriate value (see
cao.control). Trying many initial values becomes progressively more important as the nonlinear
degrees of freedom of the smooths increase.

150 cao

Note

CAO models are computationally expensive, therefore setting trace = TRUE is a good idea, as well
as running it on a simple random sample of the data set instead.

Sometimes the IRLS algorithm does not converge within the FORTRAN code. This results in
warnings being issued. In particular, if an error code of 3 is issued, then this indicates the IRLS
algorithm has not converged. One possible remedy is to increase or decrease the nonlinear degrees
of freedom so that the curves become more or less flexible, respectively.

Author(s)

T. W. Yee

References

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

cao.control, Coef.cao, cqo, latvar, Opt, Max, calibrate.qrrvglm, persp.cao, poissonff,
binomialff, negbinomial, gamma2, set.seed, gam() in gam, trapO.

Examples

Not run:
hspider[, 1:6] <- scale(hspider[, 1:6]) # Standardized environmental vars
set.seed(149) # For reproducible results
ap1 <- cao(cbind(Pardlugu, Pardmont, Pardnigr, Pardpull) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider, Rank = 1,
df1.nl = c(Pardpull= 2.7, 2.5),
Bestof = 7, Crow1positive = FALSE)

sort(deviance(ap1, history = TRUE)) # A history of all the iterations

Coef(ap1)
concoef(ap1)

par(mfrow = c(2, 2))
plot(ap1) # All the curves are unimodal; some quite symmetric

par(mfrow = c(1, 1), las = 1)
index <- 1:ncol(depvar(ap1))
lvplot(ap1, lcol = index, pcol = index, y = TRUE)

trplot(ap1, label = TRUE, col = index)
abline(a = 0, b = 1, lty = 2)

trplot(ap1, label = TRUE, col = "blue", log = "xy", which.sp = c(1, 3))
abline(a = 0, b = 1, lty = 2)

persp(ap1, col = index, lwd = 2, label = TRUE)
abline(v = Opt(ap1), lty = 2, col = index)

cao.control 151

abline(h = Max(ap1), lty = 2, col = index)

End(Not run)

cao.control Control Function for RR-VGAMs (CAO)

Description

Algorithmic constants and parameters for a constrained additive ordination (CAO), by fitting a
reduced-rank vector generalized additive model (RR-VGAM), are set using this function. This is
the control function for cao.

Usage

cao.control(Rank = 1, all.knots = FALSE, criterion = "deviance", Cinit = NULL,
Crow1positive = TRUE, epsilon = 1.0e-05, Etamat.colmax = 10,
GradientFunction = FALSE, iKvector = 0.1, iShape = 0.1,
noRRR = ~ 1, Norrr = NA,
SmallNo = 5.0e-13, Use.Init.Poisson.QO = TRUE,
Bestof = if (length(Cinit)) 1 else 10, maxitl = 10,
imethod = 1, bf.epsilon = 1.0e-7, bf.maxit = 10,
Maxit.optim = 250, optim.maxit = 20, sd.sitescores = 1.0,
sd.Cinit = 0.02, suppress.warnings = TRUE,
trace = TRUE, df1.nl = 2.5, df2.nl = 2.5,
spar1 = 0, spar2 = 0, ...)

Arguments

Rank The numerical rank R of the model, i.e., the number of latent variables. Cur-
rently only Rank = 1 is implemented.

all.knots Logical indicating if all distinct points of the smoothing variables are to be used
as knots. Assigning the value FALSE means fewer knots are chosen when the
number of distinct points is large, meaning less computational expense. See
vgam.control for details.

criterion Convergence criterion. Currently, only one is supported: the deviance is mini-
mized.

Cinit Optional initial C matrix which may speed up convergence.

Crow1positive Logical vector of length Rank (recycled if necessary): are the elements of the
first row of C positive? For example, if Rank is 4, then specifying Crow1positive
= c(FALSE, TRUE) will force C[1,1] and C[1,3] to be negative, and C[1,2] and
C[1,4] to be positive.

epsilon Positive numeric. Used to test for convergence for GLMs fitted in FORTRAN.
Larger values mean a loosening of the convergence criterion.

152 cao.control

Etamat.colmax Positive integer, no smaller than Rank. Controls the amount of memory used by
.Init.Poisson.QO(). It is the maximum number of columns allowed for the
pseudo-response and its weights. In general, the larger the value, the better the
initial value. Used only if Use.Init.Poisson.QO = TRUE.

GradientFunction

Logical. Whether optim’s argument gr is used or not, i.e., to compute gradient
values. Used only if FastAlgorithm is TRUE. Currently, this argument must be
set to FALSE.

iKvector, iShape

See qrrvglm.control.

noRRR Formula giving terms that are not to be included in the reduced-rank regression
(or formation of the latent variables). The default is to omit the intercept term
from the latent variables. Currently, only noRRR = ~ 1 is implemented.

Norrr Defunct. Please use noRRR. Use of Norrr will become an error soon.

SmallNo Positive numeric between .Machine$double.eps and 0.0001. Used to avoid
under- or over-flow in the IRLS algorithm.

Use.Init.Poisson.QO

Logical. If TRUE then the function .Init.Poisson.QO is used to obtain initial
values for the canonical coefficients C. If FALSE then random numbers are used
instead.

Bestof Integer. The best of Bestof models fitted is returned. This argument helps guard
against local solutions by (hopefully) finding the global solution from many fits.
The argument works only when the function generates its own initial value for C,
i.e., when C are not passed in as initial values. The default is only a convenient
minimal number and users are urged to increase this value.

maxitl Positive integer. Maximum number of Newton-Raphson/Fisher-scoring/local-
scoring iterations allowed.

imethod See qrrvglm.control.

bf.epsilon Positive numeric. Tolerance used by the modified vector backfitting algorithm
for testing convergence.

bf.maxit Positive integer. Number of backfitting iterations allowed in the compiled code.

Maxit.optim Positive integer. Number of iterations given to the function optim at each of the
optim.maxit iterations.

optim.maxit Positive integer. Number of times optim is invoked.

sd.sitescores Numeric. Standard deviation of the initial values of the site scores, which are
generated from a normal distribution. Used when Use.Init.Poisson.QO is
FALSE.

sd.Cinit Standard deviation of the initial values for the elements of C. These are normally
distributed with mean zero. This argument is used only if Use.Init.Poisson.QO
= FALSE.

suppress.warnings

Logical. Suppress warnings?

trace Logical indicating if output should be produced for each iteration. Having the
value TRUE is a good idea for large data sets.

cao.control 153

df1.nl, df2.nl Numeric and non-negative, recycled to length S. Nonlinear degrees of freedom
for smooths of the first and second latent variables. A value of 0 means the
smooth is linear. Roughly, a value between 1.0 and 2.0 often has the approximate
flexibility of a quadratic. The user should not assign too large a value to this
argument, e.g., the value 4.0 is probably too high. The argument df1.nl is
ignored if spar1 is assigned a positive value or values. Ditto for df2.nl.

spar1, spar2 Numeric and non-negative, recycled to length S. Smoothing parameters of the
smooths of the first and second latent variables. The larger the value, the more
smooth (less wiggly) the fitted curves. These arguments are an alternative to
specifying df1.nl and df2.nl. A value 0 (the default) for spar1 means that
df1.nl is used. Ditto for spar2. The values are on a scaled version of the latent
variables. See Green and Silverman (1994) for more information.

... Ignored at present.

Details

Many of these arguments are identical to qrrvglm.control. Here, R is the Rank, M is the number
of additive predictors, and S is the number of responses (species). Thus M = S for binomial and
Poisson responses, and M = 2S for the negative binomial and 2-parameter gamma distributions.

Allowing the smooths too much flexibility means the CAO optimization problem becomes more
difficult to solve. This is because the number of local solutions increases as the nonlinearity of the
smooths increases. In situations of high nonlinearity, many initial values should be used, so that
Bestof should be assigned a larger value. In general, there should be a reasonable value of df1.nl
somewhere between 0 and about 3 for most data sets.

Value

A list with the components corresponding to its arguments, after some basic error checking.

Note

The argument df1.nl can be inputted in the format c(spp1 = 2, spp2 = 3, 2.5), say, meaning the
default value is 2.5, but two species have alternative values.

If spar1 = 0 and df1.nl = 0 then this represents fitting linear functions (CLO). Currently, this is
handled in the awkward manner of setting df1.nl to be a small positive value, so that the smooth
is almost linear but not quite. A proper fix to this special case should done in the short future.

Author(s)

T. W. Yee

References

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Mod-
els: A Roughness Penalty Approach, London: Chapman & Hall.

154 Card

See Also

cao.

Examples

Not run:
hspider[,1:6] <- scale(hspider[,1:6]) # Standardized environmental vars
set.seed(123)
ap1 <- cao(cbind(Pardlugu, Pardmont, Pardnigr, Pardpull, Zoraspin) ~

WaterCon + BareSand + FallTwig +
CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider,
df1.nl = c(Zoraspin = 2.3, 2.1),
Bestof = 10, Crow1positive = FALSE)

sort(deviance(ap1, history = TRUE)) # A history of all the iterations

Coef(ap1)

par(mfrow = c(2, 3)) # All or most of the curves are unimodal; some are
plot(ap1, lcol = "blue") # quite symmetric. Hence a CQO model should be ok

par(mfrow = c(1, 1), las = 1)
index <- 1:ncol(depvar(ap1)) # lvplot is jagged because only 28 sites
lvplot(ap1, lcol = index, pcol = index, y = TRUE)

trplot(ap1, label = TRUE, col = index)
abline(a = 0, b = 1, lty = 2)

persp(ap1, label = TRUE, col = 1:4)

End(Not run)

Card Cardioid Distribution

Description

Density, distribution function, quantile function and random generation for the cardioid distribution.

Usage

dcard(x, mu, rho, log = FALSE)
pcard(q, mu, rho, lower.tail = TRUE, log.p = FALSE)
qcard(p, mu, rho, tolerance = 1e-07, maxits = 500,

lower.tail = TRUE, log.p = FALSE)
rcard(n, mu, rho, ...)

Card 155

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

mu, rho See cardioid for more information.
tolerance, maxits, ...

The first two are control parameters for the algorithm used to solve for the roots
of a nonlinear system of equations; tolerance controls for the accuracy and
maxits is the maximum number of iterations. rcard calls qcard so the ... can
be used to vary the two arguments.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See cardioid, the VGAM family function for estimating the two parameters by maximum likeli-
hood estimation, for the formula of the probability density function and other details.

Value

dcard gives the density, pcard gives the distribution function, qcard gives the quantile function,
and rcard generates random deviates.

Note

Convergence problems might occur with rcard.

Author(s)

Thomas W. Yee and Kai Huang

See Also

cardioid.

Examples

Not run:
mu <- 4; rho <- 0.4; x <- seq(0, 2*pi, len = 501)
plot(x, dcard(x, mu, rho), type = "l", las = 1, ylim = c(0, 1),

ylab = paste("[dp]card(mu=", mu, ", rho=", rho, ")"),
main = "Blue is density, orange is the CDF", col = "blue",
sub = "Purple lines are the 10,20,...,90 percentiles")

lines(x, pcard(x, mu, rho), col = "orange")

probs <- seq(0.1, 0.9, by = 0.1)
Q <- qcard(probs, mu, rho)
lines(Q, dcard(Q, mu, rho), col = "purple", lty = 3, type = "h")

156 cardioid

lines(Q, pcard(Q, mu, rho), col = "purple", lty = 3, type = "h")
abline(h = c(0,probs, 1), v = c(0, 2*pi), col = "purple", lty = 3)
max(abs(pcard(Q, mu, rho) - probs)) # Should be 0

End(Not run)

cardioid Cardioid Distribution Family Function

Description

Estimates the two parameters of the cardioid distribution by maximum likelihood estimation.

Usage

cardioid(lmu = extlogitlink(min = 0, max = 2*pi),
lrho = extlogitlink(min = -0.5, max = 0.5),
imu = NULL, irho = 0.3, nsimEIM = 100, zero = NULL)

Arguments

lmu, lrho Parameter link functions applied to the µ and ρ parameters, respectively. See
Links for more choices.

imu, irho Initial values. A NULL means an initial value is chosen internally. See CommonVGAMffArguments
for more information.

nsimEIM, zero See CommonVGAMffArguments for more information.

Details

The two-parameter cardioid distribution has a density that can be written as

f(y;µ, ρ) =
1

2π
(1 + 2 ρ cos(y − µ))

where 0 < y < 2π, 0 < µ < 2π, and −0.5 < ρ < 0.5 is the concentration parameter. The default
link functions enforce the range constraints of the parameters.

For positive ρ the distribution is unimodal and symmetric about µ. The mean of Y (which make up
the fitted values) is π + (ρ/π)((2π − µ) sin(2π − µ) + cos(2π − µ)− µ sin(µ)− cos(µ)).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

Numerically, this distribution can be difficult to fit because of a log-likelihood having multiple
maximums. The user is therefore encouraged to try different starting values, i.e., make use of imu
and irho.

cauchitlink 157

Note

Fisher scoring using simulation is used.

Author(s)

T. W. Yee

References

Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics, Singapore: World
Scientific.

See Also

rcard, extlogitlink, vonmises.

CircStats and circular currently have a lot more R functions for circular data than the VGAM
package.

Examples

Not run:
cdata <- data.frame(y = rcard(n = 1000, mu = 4, rho = 0.45))
fit <- vglm(y ~ 1, cardioid, data = cdata, trace = TRUE)
coef(fit, matrix=TRUE)
Coef(fit)
c(with(cdata, mean(y)), head(fitted(fit), 1))
summary(fit)

End(Not run)

cauchitlink Cauchit Link Function

Description

Computes the cauchit (tangent) link transformation, including its inverse and the first two deriva-
tives.

Usage

cauchitlink(theta, bvalue = .Machine$double.eps,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.
bvalue See Links.
inverse, deriv, short, tag

Details at Links.

158 cauchitlink

Details

This link function is an alternative link function for parameters that lie in the unit interval. This type
of link bears the same relation to the Cauchy distribution as the probit link bears to the Gaussian.
One characteristic of this link function is that the tail is heavier relative to the other links (see
examples below).

Numerical values of theta close to 0 or 1 or out of range result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the tangent of theta, i.e., tan(pi * (theta-0.5)) when inverse = FALSE, and if
inverse = TRUE then 0.5 + atan(theta)/pi.

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Note

Numerical instability may occur when theta is close to 1 or 0. One way of overcoming this is to
use bvalue.

As mentioned above, in terms of the threshold approach with cumulative probabilities for an ordinal
response this link function corresponds to the Cauchy distribution (see cauchy1).

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

logitlink, probitlink, clogloglink, loglink, cauchy, cauchy1, Cauchy.

Examples

p <- seq(0.01, 0.99, by = 0.01)
cauchitlink(p)
max(abs(cauchitlink(cauchitlink(p), inverse = TRUE) - p)) # Should be 0

p <- c(seq(-0.02, 0.02, by=0.01), seq(0.97, 1.02, by = 0.01))
cauchitlink(p) # Has no NAs

Not run:
par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)
p <- seq(0.01, 0.99, by = 0.01)

for (d in 0:1) {

cauchy 159

matplot(p, cbind(logitlink(p, deriv = d), probitlink(p, deriv = d)),
type = "n", col = "purple", ylab = "transformation",
las = 1, main = if (d == 0) "Some probability link functions"
else "First derivative")

lines(p, logitlink(p, deriv = d), col = "limegreen")
lines(p, probitlink(p, deriv = d), col = "purple")
lines(p, clogloglink(p, deriv = d), col = "chocolate")
lines(p, cauchitlink(p, deriv = d), col = "tan")
if (d == 0) {

abline(v = 0.5, h = 0, lty = "dashed")
legend(0, 4.5, c("logitlink", "probitlink", "clogloglink",

"cauchitlink"), lwd = mylwd,
col = c("limegreen", "purple", "chocolate", "tan"))

} else
abline(v = 0.5, lty = "dashed")

}

for (d in 0) {
matplot(y, cbind(logitlink(y, deriv = d, inverse = TRUE),

probitlink(y, deriv = d, inverse = TRUE)),
type = "n", col = "purple", xlab = "transformation", ylab = "p",
main = if (d == 0) "Some inverse probability link functions"
else "First derivative", las=1)

lines(y, logitlink(y, deriv = d, inverse = TRUE), col = "limegreen")
lines(y, probitlink(y, deriv = d, inverse = TRUE), col = "purple")
lines(y, clogloglink(y, deriv = d, inverse = TRUE), col = "chocolate")
lines(y, cauchitlink(y, deriv = d, inverse = TRUE), col = "tan")
if (d == 0) {

abline(h = 0.5, v = 0, lty = "dashed")
legend(-4, 1, c("logitlink", "probitlink", "clogloglink",

"cauchitlink"), lwd = mylwd,
col = c("limegreen", "purple", "chocolate", "tan"))

}
}
par(lwd = 1)

End(Not run)

cauchy Cauchy Distribution Family Function

Description

Estimates either the location parameter or both the location and scale parameters of the Cauchy
distribution by maximum likelihood estimation.

Usage

cauchy(llocation = "identitylink", lscale = "loglink",
imethod = 1, ilocation = NULL, iscale = NULL,

160 cauchy

gprobs.y = ppoints(19), gscale.mux = exp(-3:3), zero = "scale")
cauchy1(scale.arg = 1, llocation = "identitylink", ilocation = NULL,

imethod = 1, gprobs.y = ppoints(19), zero = NULL)

Arguments

llocation, lscale

Parameter link functions for the location parameter a and the scale parameter b.
See Links for more choices.

ilocation, iscale

Optional initial value for a and b. By default, an initial value is chosen internally
for each.

imethod Integer, either 1 or 2 or 3. Initial method, three algorithms are implemented. The
user should try all possible values to help avoid converging to a local solution.
Also, choose the another value if convergence fails, or use ilocation and/or
iscale.

gprobs.y, gscale.mux, zero

See CommonVGAMffArguments for information.

scale.arg Known (positive) scale parameter, called b below.

Details

The Cauchy distribution has density function

f(y; a, b) =
{
πb[1 + ((y − a)/b)2]

}−1
where y and a are real and finite, and b > 0. The distribution is symmetric about a and has a heavy
tail. Its median and mode are a, but the mean does not exist. The fitted values are the estimates of
a. Fisher scoring is used.

If the scale parameter is known (cauchy1) then there may be multiple local maximum likelihood
solutions for the location parameter. However, if both location and scale parameters are to be
estimated (cauchy) then there is a unique maximum likelihood solution provided n > 2 and less
than half the data are located at any one point.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

It is well-known that the Cauchy distribution may have local maximums in its likelihood function;
make full use of imethod, ilocation, iscale etc.

Note

Good initial values are needed. By default cauchy searches for a starting value for a and b on a 2-D
grid. Likewise, by default, cauchy1 searches for a starting value for a on a 1-D grid. If convergence
to the global maximum is not acheieved then it also pays to select a wide range of initial values via
the ilocation and/or iscale and/or imethod arguments.

cdf.lmscreg 161

Author(s)

T. W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

Barnett, V. D. (1966). Evaluation of the maximum-likehood estimator where the likelihood equation
has multiple roots. Biometrika, 53, 151–165.

Copas, J. B. (1975). On the unimodality of the likelihood for the Cauchy distribution. Biometrika,
62, 701–704.

Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator:
Observed versus expected Fisher information. Biometrika, 65, 457–481.

See Also

Cauchy, cauchit, studentt, simulate.vlm.

Examples

Both location and scale parameters unknown
set.seed(123)
cdata <- data.frame(x2 = runif(nn <- 1000))
cdata <- transform(cdata, loc = exp(1 + 0.5 * x2), scale = exp(1))
cdata <- transform(cdata, y2 = rcauchy(nn, loc, scale))
fit2 <- vglm(y2 ~ x2, cauchy(lloc = "loglink"), data = cdata, trace = TRUE)
coef(fit2, matrix = TRUE)
head(fitted(fit2)) # Location estimates
summary(fit2)

Location parameter unknown
cdata <- transform(cdata, scale1 = 0.4)
cdata <- transform(cdata, y1 = rcauchy(nn, loc, scale1))
fit1 <- vglm(y1 ~ x2, cauchy1(scale = 0.4), data = cdata, trace = TRUE)
coef(fit1, matrix = TRUE)

cdf.lmscreg Cumulative Distribution Function for LMS Quantile Regression

Description

Computes the cumulative distribution function (CDF) for observations, based on a LMS quantile
regression.

Usage

cdf.lmscreg(object, newdata = NULL, ...)

162 cdf.lmscreg

Arguments

object A VGAM quantile regression model, i.e., an object produced by modelling func-
tions such as vglm and vgam with a family function beginning with "lms.".

newdata Data frame where the predictions are to be made. If missing, the original data is
used.

... Parameters which are passed into functions such as cdf.lms.yjn.

Details

The CDFs returned here are values lying in [0,1] giving the relative probabilities associated with
the quantiles newdata. For example, a value near 0.75 means it is close to the upper quartile of the
distribution.

Value

A vector of CDF values lying in [0,1].

Note

The data are treated like quantiles, and the percentiles are returned. The opposite is performed by
qtplot.lmscreg.

The CDF values of the model have been placed in @post$cdf when the model was fitted.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

See Also

deplot.lmscreg, qtplot.lmscreg, lms.bcn, lms.bcg, lms.yjn.

Examples

fit <- vgam(BMI ~ s(age, df=c(4, 2)), lms.bcn(zero = 1), data = bmi.nz)
head(fit@post$cdf)
head(cdf(fit)) # Same
head(depvar(fit))
head(fitted(fit))

cdf(fit, data.frame(age = c(31.5, 39), BMI = c(28.4, 24)))

cens.gumbel 163

cens.gumbel Censored Gumbel Distribution

Description

Maximum likelihood estimation of the 2-parameter Gumbel distribution when there are censored
observations. A matrix response is not allowed.

Usage

cens.gumbel(llocation = "identitylink", lscale = "loglink", iscale = NULL,
mean = TRUE, percentiles = NULL, zero = "scale")

Arguments

llocation, lscale

Character. Parameter link functions for the location and (positive) scale param-
eters. See Links for more choices.

iscale Numeric and positive. Initial value for scale. Recycled to the appropriate length.
In general, a larger value is better than a smaller value. The default is to choose
the value internally.

mean Logical. Return the mean? If TRUE then the mean is returned, otherwise per-
centiles given by the percentiles argument.

percentiles Numeric with values between 0 and 100. If mean=FALSE then the fitted values
are percentiles which must be specified by this argument.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The value (possibly values) must be from the set {1,2}
corresponding respectively to location and scale. If zero=NULL then all lin-
ear/additive predictors are modelled as a linear combination of the explanatory
variables. The default is to fit the shape parameter as an intercept only.

Details

This VGAM family function is like gumbel but handles observations that are left-censored (so that
the true value would be less than the observed value) else right-censored (so that the true value
would be greater than the observed value). To indicate which type of censoring, input extra =
list(leftcensored = vec1, rightcensored = vec2) where vec1 and vec2 are logical vectors
the same length as the response. If the two components of this list are missing then the logical
values are taken to be FALSE. The fitted object has these two components stored in the extra slot.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

164 cens.gumbel

Warning

Numerical problems may occur if the amount of censoring is excessive.

Note

See gumbel for details about the Gumbel distribution. The initial values are based on assuming all
uncensored observations, therefore could be improved upon.

Author(s)

T. W. Yee

References

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

See Also

gumbel, gumbelff, rgumbel, guplot, gev, venice.

Examples

Example 1
ystar <- venice[["r1"]] # Use the first order statistic as the response
nn <- length(ystar)
L <- runif(nn, 100, 104) # Lower censoring points
U <- runif(nn, 130, 135) # Upper censoring points
y <- pmax(L, ystar) # Left censored
y <- pmin(U, y) # Right censored
extra <- list(leftcensored = ystar < L, rightcensored = ystar > U)
fit <- vglm(y ~ scale(year), data = venice, trace = TRUE, extra = extra,

fam = cens.gumbel(mean = FALSE, perc = c(5, 25, 50, 75, 95)))
coef(fit, matrix = TRUE)
head(fitted(fit))
fit@extra

Example 2: simulated data
nn <- 1000
ystar <- rgumbel(nn, loc = 1, scale = exp(0.5)) # The uncensored data
L <- runif(nn, -1, 1) # Lower censoring points
U <- runif(nn, 2, 5) # Upper censoring points
y <- pmax(L, ystar) # Left censored
y <- pmin(U, y) # Right censored
Not run: par(mfrow = c(1, 2)); hist(ystar); hist(y);
extra <- list(leftcensored = ystar < L, rightcensored = ystar > U)
fit <- vglm(y ~ 1, trace = TRUE, extra = extra, fam = cens.gumbel)
coef(fit, matrix = TRUE)

cens.normal 165

cens.normal Censored Normal Distribution

Description

Maximum likelihood estimation for the normal distribution with left and right censoring.

Usage

cens.normal(lmu = "identitylink", lsd = "loglink", imethod = 1, zero = "sd")

Arguments

lmu, lsd Parameter link functions applied to the mean and standard deviation parame-
ters. See Links for more choices. The standard deviation is a positive quantity,
therefore a log link is the default.

imethod Initialization method. Either 1 or 2, this specifies two methods for obtaining
initial values for the parameters.

zero A vector, e.g., containing the value 1 or 2; if so, the mean or standard deviation
respectively are modelled as an intercept only. Setting zero = NULL means both
linear/additive predictors are modelled as functions of the explanatory variables.
See CommonVGAMffArguments for more information.

Details

This function is like uninormal but handles observations that are left-censored (so that the true
value would be less than the observed value) else right-censored (so that the true value would be
greater than the observed value). To indicate which type of censoring, input extra = list(leftcensored
= vec1, rightcensored = vec2) where vec1 and vec2 are logical vectors the same length as the
response. If the two components of this list are missing then the logical values are taken to be
FALSE. The fitted object has these two components stored in the extra slot.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

This function, which is an alternative to tobit, cannot handle a matrix response and uses different
working weights. If there are no censored observations then uninormal is recommended instead.

Author(s)

T. W. Yee

166 cens.poisson

See Also

tobit, uninormal, double.cens.normal.

Examples

Not run:
cdata <- data.frame(x2 = runif(nn <- 1000)) # ystar are true values
cdata <- transform(cdata, ystar = rnorm(nn, m = 100 + 15 * x2, sd = exp(3)))
with(cdata, hist(ystar))
cdata <- transform(cdata, L = runif(nn, 80, 90), # Lower censoring points

U = runif(nn, 130, 140)) # Upper censoring points
cdata <- transform(cdata, y = pmax(L, ystar)) # Left censored
cdata <- transform(cdata, y = pmin(U, y)) # Right censored
with(cdata, hist(y))
Extra <- list(leftcensored = with(cdata, ystar < L),

rightcensored = with(cdata, ystar > U))
fit1 <- vglm(y ~ x2, cens.normal, data = cdata, crit = "c", extra = Extra)
fit2 <- vglm(y ~ x2, tobit(Lower = with(cdata, L), Upper = with(cdata, U)),

data = cdata, crit = "c", trace = TRUE)
coef(fit1, matrix = TRUE)
max(abs(coef(fit1, matrix = TRUE) -

coef(fit2, matrix = TRUE))) # Should be 0
names(fit1@extra)

End(Not run)

cens.poisson Censored Poisson Family Function

Description

Family function for a censored Poisson response.

Usage

cens.poisson(link = "loglink", imu = NULL,
biglambda = 10, smallno = 1e-10)

Arguments

link Link function applied to the mean; see Links for more choices.

imu Optional initial value; see CommonVGAMffArguments for more information.
biglambda, smallno

Used to help robustify the code when lambda is very large and the ppois value
is so close to 0 that the first derivative is computed to be a NA or NaN. When this
occurs mills.ratio is called.

cens.poisson 167

Details

Often a table of Poisson counts has an entry J+ meaning ≥ J . This family function is similar to
poissonff but handles such censored data. The input requires SurvS4. Only a univariate response
is allowed. The Newton-Raphson algorithm is used.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

As the response is discrete, care is required with Surv, especially with "interval" censored data
because of the (start, end] format. See the examples below. The examples have y < L as left
censored and y >= U (formatted as U+) as right censored observations, therefore L <= y < U is for
uncensored and/or interval censored observations. Consequently the input must be tweaked to con-
form to the (start, end] format.

A bit of attention has been directed to try robustify the code when lambda is very large, however
this currently works for left and right censored data only, not interval censored data. Sometime the
fix involves an approximation, hence it is a good idea to set trace = TRUE.

Note

The function poissonff should be used when there are no censored observations. Also, NAs are not
permitted with SurvS4, nor is type = "counting".

Author(s)

Thomas W. Yee

References

See survival for background.

See Also

SurvS4, poissonff, Links, mills.ratio.

Examples

Example 1: right censored data
set.seed(123); U <- 20
cdata <- data.frame(y = rpois(N <- 100, exp(3)))
cdata <- transform(cdata, cy = pmin(U, y),

rcensored = (y >= U))
cdata <- transform(cdata, status = ifelse(rcensored, 0, 1))
with(cdata, table(cy))
with(cdata, table(rcensored))
with(cdata, table(print(SurvS4(cy, status)))) # Check; U+ means >= U
fit <- vglm(SurvS4(cy, status) ~ 1, cens.poisson, data = cdata,

168 cens.poisson

trace = TRUE)
coef(fit, matrix = TRUE)
table(print(depvar(fit))) # Another check; U+ means >= U

Example 2: left censored data
L <- 15
cdata <- transform(cdata,

cY = pmax(L, y),
lcensored = y < L) # Note y < L, not cY == L or y <= L

cdata <- transform(cdata, status = ifelse(lcensored, 0, 1))
with(cdata, table(cY))
with(cdata, table(lcensored))
with(cdata, table(print(SurvS4(cY, status, type = "left")))) # Check
fit <- vglm(SurvS4(cY, status, type = "left") ~ 1, cens.poisson,

data = cdata, trace = TRUE)
coef(fit, matrix = TRUE)

Example 3: interval censored data
cdata <- transform(cdata, Lvec = rep(L, len = N),

Uvec = rep(U, len = N))
cdata <-

transform(cdata,
icensored = Lvec <= y & y < Uvec) # Not lcensored or rcensored

with(cdata, table(icensored))
cdata <- transform(cdata, status = rep(3, N)) # 3 == interval censored
cdata <- transform(cdata,

status = ifelse(rcensored, 0, status)) # 0 means right censored
cdata <- transform(cdata,

status = ifelse(lcensored, 2, status)) # 2 means left censored
Have to adjust Lvec and Uvec because of the (start, end] format:
cdata$Lvec[with(cdata,icensored)] <- cdata$Lvec[with(cdata,icensored)]-1
cdata$Uvec[with(cdata,icensored)] <- cdata$Uvec[with(cdata,icensored)]-1
Unchanged:
cdata$Lvec[with(cdata, lcensored)] <- cdata$Lvec[with(cdata, lcensored)]
cdata$Lvec[with(cdata, rcensored)] <- cdata$Uvec[with(cdata, rcensored)]
with(cdata, # Check
table(ii <- print(SurvS4(Lvec, Uvec, status, type = "interval"))))

fit <- vglm(SurvS4(Lvec, Uvec, status, type = "interval") ~ 1,
cens.poisson, data = cdata, trace = TRUE)

coef(fit, matrix = TRUE)
table(print(depvar(fit))) # Another check

Example 4: Add in some uncensored observations
index <- (1:N)[with(cdata, icensored)]
index <- head(index, 4)
cdata$status[index] <- 1 # actual or uncensored value
cdata$Lvec[index] <- cdata$y[index]
with(cdata, table(ii <- print(SurvS4(Lvec, Uvec, status,

type = "interval")))) # Check
fit <- vglm(SurvS4(Lvec, Uvec, status, type = "interval") ~ 1,

cens.poisson, data = cdata, trace = TRUE, crit = "c")
coef(fit, matrix = TRUE)
table(print(depvar(fit))) # Another check

cfibrosis 169

cfibrosis Cystic Fibrosis Data

Description

This data frame concerns families data and cystic fibrosis.

Usage

data(cfibrosis)

Format

A data frame with 24 rows on the following 4 variables.

siblings, affected, ascertained, families Over ascertained families, the kth ascertained family has
sk siblings of whom rk are affected and ak are ascertained.

Details

The data set allows a classical segregation analysis to be peformed. In particular, to test Mendelian
segregation ratios in nuclear family data. The likelihood has similarities with seq2binomial.

Source

The data is originally from Crow (1965) and appears as Table 2.3 of Lange (2002).

Crow, J. F. (1965) Problems of ascertainment in the analysis of family data. Epidemiology and
Genetics of Chronic Disease. Public Health Service Publication 1163, Neel J. V., Shaw M. W.,
Schull W. J., editors, Department of Health, Education, and Welfare, Washington, DC, USA.

Lange, K. (2002) Mathematical and Statistical Methods for Genetic Analysis. Second Edition.
Springer-Verlag: New York, USA.

Examples

cfibrosis
summary(cfibrosis)

170 cgo

cgo Redirects the user to cqo

Description

Redirects the user to the function cqo.

Usage

cgo(...)

Arguments

... Ignored.

Details

The former function cgo has been renamed cqo because CGO (for canonical Gaussian ordination)
is a confusing and inaccurate name. CQO (for constrained quadratic ordination) is better. This new
nomenclature described in Yee (2006).

Value

Nothing is returned; an error message is issued.

Warning

The code, therefore, in Yee (2004) will not run without changing the "g" to a "q".

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

cqo.

chest.nz 171

Examples

Not run:
cgo()

End(Not run)

chest.nz Chest Pain in NZ Adults Data

Description

Presence/absence of chest pain in 10186 New Zealand adults.

Usage

data(chest.nz)

Format

A data frame with 73 rows and the following 5 variables.

age a numeric vector; age (years).

nolnor a numeric vector of counts; no pain on LHS or RHS.

nolr a numeric vector of counts; no pain on LHS but pain on RHS.

lnor a numeric vector of counts; no pain on RHS but pain on LHS.

lr a numeric vector of counts; pain on LHS and RHS of chest.

Details

Each adult was asked their age and whether they experienced any pain or discomfort in their chest
over the last six months. If yes, they indicated whether it was on their LHS and/or RHS of their
chest.

Source

MacMahon, S., Norton, R., Jackson, R., Mackie, M. J., Cheng, A., Vander Hoorn, S., Milne, A.,
McCulloch, A. (1995) Fletcher Challenge-University of Auckland Heart & Health Study: design
and baseline findings. New Zealand Medical Journal, 108, 499–502.

172 chinese.nz

Examples

Not run:
fit <- vgam(cbind(nolnor, nolr, lnor, lr) ~ s(age, c(4, 3)),

binom2.or(exchan = TRUE, zero = NULL), data = chest.nz)
coef(fit, matrix = TRUE)

End(Not run)
Not run: plot(fit, which.cf = 2, se = TRUE)

chinese.nz Chinese Population in New Zealand 1867–2001 Data

Description

The Chinese population in New Zealand from 1867 to 2001, along with the whole of the New
Zealand population.

Usage

data(chinese.nz)

Format

A data frame with 27 observations on the following 4 variables.

year Year.

male Number of Chinese males.

female Number of Chinese females.

nz Total number in the New Zealand population.

Details

Historically, there was a large exodus of Chinese from the Guangdong region starting in the mid-
1800s to the gold fields of South Island of New Zealand, California (a region near Mexico), and
southern Australia, etc. Discrimination then meant that only men were allowed entry, to hinder
permanent settlement. In the case of New Zealand, the government relaxed its immigration laws
after WWII to allow wives of Chinese already in NZ to join them because China had been among
the Allied powers. Gradual relaxation in the immigration and an influx during the 1980s meant the
Chinese population became increasingly demographically normal over time.

The NZ total for the years 1867 and 1871 exclude the Maori population. Three modifications have
been made to the female column to make the data internally consistent with the original table.

References

Page 6 of Aliens At My Table: Asians as New Zealanders See Them by M. Ip and N. Murphy, (2005).
Penguin Books. Auckland, New Zealand.

chisq 173

Examples

Not run: par(mfrow = c(1, 2))
plot(female / (male + female) ~ year, chinese.nz, type = "b",

ylab = "Proportion", col = "blue", las = 1,
cex = 0.015 * sqrt(male + female),

cex = 0.10 * sqrt((male + female)^1.5 / sqrt(female) / sqrt(male)),
main = "Proportion of NZ Chinese that are female")

abline(h = 0.5, lty = "dashed", col = "gray")

fit1.cnz <- vglm(cbind(female, male) ~ year, binomialff,
data = chinese.nz)

fit2.cnz <- vglm(cbind(female, male) ~ sm.poly(year, 2), binomialff,
data = chinese.nz)

fit4.cnz <- vglm(cbind(female, male) ~ sm.bs(year, 5), binomialff,
data = chinese.nz)

lines(fitted(fit1.cnz) ~ year, chinese.nz, col = "purple", lty = 1)
lines(fitted(fit2.cnz) ~ year, chinese.nz, col = "green", lty = 2)
lines(fitted(fit4.cnz) ~ year, chinese.nz, col = "orange", lwd = 2, lty = 1)
legend("bottomright", col = c("purple", "green", "orange"),

lty = c(1, 2, 1), leg = c("linear", "quadratic", "B-spline"))

plot(100*(male+female)/nz ~ year, chinese.nz, type = "b", ylab = "Percent",
ylim = c(0, max(100*(male+female)/nz)), col = "blue", las = 1,
main = "Percent of NZers that are Chinese")

abline(h = 0, lty = "dashed", col = "gray")
End(Not run)

chisq Chi-squared Distribution

Description

Maximum likelihood estimation of the degrees of freedom for a chi-squared distribution.

Usage

chisq(link = "loglink", zero = NULL)

Arguments

link, zero See CommonVGAMffArguments for information.

Details

The degrees of freedom is treated as a parameter to be estimated, and as real (not integer). Being
positive, a log link is used by default. Fisher scoring is used.

174 clo

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

Multiple responses are permitted. There may be convergence problems if the degrees of freedom is
very large or close to zero.

Author(s)

T. W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

Chisquare. uninormal.

Examples

cdata <- data.frame(x2 = runif(nn <- 1000))
cdata <- transform(cdata, y1 = rchisq(nn, df = exp(1 - 1 * x2)),

y2 = rchisq(nn, df = exp(2 - 2 * x2)))
fit <- vglm(cbind(y1, y2) ~ x2, chisq, data = cdata, trace = TRUE)
coef(fit, matrix = TRUE)

clo Redirects the User to rrvglm()

Description

Redirects the user to the function rrvglm.

Usage

clo(...)

Arguments

... Ignored.

clogloglink 175

Details

CLO stands for constrained linear ordination, and is fitted with a statistical class of models called
reduced-rank vector generalized linear models (RR-VGLMs). It allows for generalized reduced-
rank regression in that response types such as Poisson counts and presence/absence data can be
handled.

Currently in the VGAM package, rrvglm is used to fit RR-VGLMs. However, the Author’s opinion
is that linear responses to a latent variable (composite environmental gradient) is not as common as
unimodal responses, therefore cqo is often more appropriate.

The new CLO/CQO/CAO nomenclature described in Yee (2006).

Value

Nothing is returned; an error message is issued.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

rrvglm, cqo.

Examples

Not run:
clo()

End(Not run)

clogloglink Complementary Log-log Link Function

Description

Computes the complementary log-log transformation, including its inverse and the first two deriva-
tives.

176 clogloglink

Usage

clogloglink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

bvalue See Links for general information about links.
inverse, deriv, short, tag

Details at Links.

Details

The complementary log-log link function is commonly used for parameters that lie in the unit
interval. But unlike logitlink, probitlink and cauchitlink, this link is not symmetric. It is
the inverse CDF of the extreme value (or Gumbel or log-Weibull) distribution. Numerical values of
theta close to 0 or 1 or out of range result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the complimentary log-log of theta, i.e., log(-log(1 - theta)) when inverse =
FALSE, and if inverse = TRUE then 1-exp(-exp(theta)).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

Note

Numerical instability may occur when theta is close to 1 or 0. One way of overcoming this is to
use bvalue.

Changing 1s to 0s and 0s to 1s in the response means that effectively a loglog link is fitted. That is,
tranform y by 1− y. That’s why only one of clogloglink and logloglink is written.

With constrained ordination (e.g., cqo and cao) used with binomialff, a complementary log-log
link function is preferred over the default logitlink, for a good reason. See the example below.

In terms of the threshold approach with cumulative probabilities for an ordinal response this link
function corresponds to the extreme value distribution.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

coalminers 177

See Also

Links, logitoffsetlink, logitlink, probitlink, cauchitlink, pgumbel.

Examples

p <- seq(0.01, 0.99, by = 0.01)
clogloglink(p)
max(abs(clogloglink(clogloglink(p), inverse = TRUE) - p)) # Should be 0

p <- c(seq(-0.02, 0.02, by = 0.01), seq(0.97, 1.02, by = 0.01))
clogloglink(p) # Has NAs
clogloglink(p, bvalue = .Machine$double.eps) # Has no NAs

Not run:
p <- seq(0.01, 0.99, by = 0.01)
plot(p, logitlink(p), type = "l", col = "limegreen", lwd = 2, las = 1,

main = "Some probability link functions", ylab = "transformation")
lines(p, probitlink(p), col = "purple", lwd = 2)
lines(p, clogloglink(p), col = "chocolate", lwd = 2)
lines(p, cauchitlink(p), col = "tan", lwd = 2)
abline(v = 0.5, h = 0, lty = "dashed")
legend(0.1, 4, c("logitlink", "probitlink", "clogloglink", "cauchitlink"),

col = c("limegreen", "purple", "chocolate", "tan"), lwd = 2)

End(Not run)

Not run:
This example shows that clogloglink is preferred over logitlink
n <- 500; p <- 5; S <- 3; Rank <- 1 # Species packing model:
mydata <- rcqo(n, p, S, eq.tol = TRUE, es.opt = TRUE, eq.max = TRUE,

family = "binomial", hi.abundance = 5, seed = 123,
Rank = Rank)

fitc <- cqo(attr(mydata, "formula"), I.tol = TRUE, data = mydata,
fam = binomialff(multiple.responses = TRUE, link = "cloglog"),
Rank = Rank)

fitl <- cqo(attr(mydata, "formula"), I.tol = TRUE, data = mydata,
fam = binomialff(multiple.responses = TRUE, link = "logitlink"),
Rank = Rank)

Compare the fitted models (cols 1 and 3) with the truth (col 2)
cbind(concoef(fitc), attr(mydata, "concoefficients"), concoef(fitl))

End(Not run)

coalminers Breathlessness and Wheeze Amongst Coalminers Data

Description

Coalminers who are smokers without radiological pneumoconiosis, classified by age, breathlessness
and wheeze.

178 Coef

Usage

data(coalminers)

Format

A data frame with 9 age groups with the following 5 columns.

BW Counts with breathlessness and wheeze.

BnW Counts with breathlessness but no wheeze.

nBW Counts with no breathlessness but wheeze.

nBnW Counts with neither breathlessness or wheeze.

age Age of the coal miners (actually, the midpoints of the 5-year category ranges).

Details

The data were published in Ashford and Sowden (1970). A more recent analysis is McCullagh and
Nelder (1989, Section 6.6).

Source

Ashford, J. R. and Sowden, R. R. (1970) Multi-variate probit analysis. Biometrics, 26, 535–546.

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman &
Hall.

Examples

str(coalminers)

Coef Computes Model Coefficients and Quantities

Description

Coef is a generic function which computes model coefficients from objects returned by modelling
functions. It is an auxiliary function to coef that enables extra capabilities for some specific models.

Usage

Coef(object, ...)

Arguments

object An object for which the computation of other types of model coefficients or
quantities is meaningful.

... Other arguments fed into the specific methods function of the model.

Coef.qrrvglm 179

Details

This function can often be useful for vglm objects with just an intercept term in the RHS of the
formula, e.g., y ~ 1. Then often this function will apply the inverse link functions to the parameters.
See the example below.

For reduced-rank VGLMs, this function can return the A, C matrices, etc.

For quadratic and additive ordination models, this function can return ecological meaningful quan-
tities such as tolerances, optimums, maximums.

Value

The value returned depends specifically on the methods function invoked.

Warning

This function may not work for all VGAM family functions. You should check your results on
some artificial data before applying it to models fitted to real data.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

coef, Coef.vlm, Coef.rrvglm, Coef.qrrvglm, depvar.

Examples

nn <- 1000
bdata <- data.frame(y = rbeta(nn, shape1 = 1, shape2 = 3)) # Original scale
fit <- vglm(y ~ 1, betaR, data = bdata, trace = TRUE) # Intercept-only model
coef(fit, matrix = TRUE) # Both on a log scale
Coef(fit) # On the original scale

Coef.qrrvglm Returns Important Matrices etc. of a QO Object

Description

This methods function returns important matrices etc. of a QO object.

Usage

Coef.qrrvglm(object, varI.latvar = FALSE, refResponse = NULL, ...)

180 Coef.qrrvglm

Arguments

object A CQO object. The former has class "qrrvglm".

varI.latvar Logical indicating whether to scale the site scores (latent variables) to have
variance-covariance matrix equal to the rank-R identity matrix. All models have
uncorrelated site scores (latent variables), and this option stretches or shrinks the
ordination axes if TRUE. See below for further details.

refResponse Integer or character. Specifies the reference response or reference species. By
default, the reference species is found by searching sequentially starting from
the first species until a positive-definite tolerance matrix is found. Then this
tolerance matrix is transformed to the identity matrix. Then the sites scores
(latent variables) are made uncorrelated. See below for further details.

... Currently unused.

Details

If I.tolerances=TRUE or eq.tolerances=TRUE (and its estimated tolerance matrix is positive-
definite) then all species’ tolerances are unity by transformation or by definition, and the spread of
the site scores can be compared to them. Vice versa, if one wishes to compare the tolerances with
the sites score variability then setting varI.latvar=TRUE is more appropriate.

For rank-2 QRR-VGLMs, one of the species can be chosen so that the angle of its major axis and
minor axis is zero, i.e., parallel to the ordination axes. This means the effect on the latent vars is
independent on that species, and that its tolerance matrix is diagonal. The argument refResponse
allows one to choose which is the reference species, which must have a positive-definite tolerance
matrix, i.e., is bell-shaped. If refResponse is not specified, then the code will try to choose some
reference species starting from the first species. Although the refResponse argument could possi-
bly be offered as an option when fitting the model, it is currently available after fitting the model,
e.g., in the functions Coef.qrrvglm and lvplot.qrrvglm.

Value

The A, B1, C, T, D matrices/arrays are returned, along with other slots. The returned object has
class "Coef.qrrvglm" (see Coef.qrrvglm-class).

Note

Consider an equal-tolerances Poisson/binomial CQO model with noRRR = ~ 1. For R = 1 it has
about 2S + p2 parameters. For R = 2 it has about 3S + 2p2 parameters. Here, S is the number
of species, and p2 = p− 1 is the number of environmental variables making up the latent variable.
For an unequal-tolerances Poisson/binomial CQO model with noRRR = ~ 1, it has about 3S−1+p2
parameters for R = 1, and about 6S − 3 + 2p2 parameters for R = 2. Since the total number of
data points is nS, where n is the number of sites, it pays to divide the number of data points by the
number of parameters to get some idea about how much information the parameters contain.

Author(s)

Thomas W. Yee

Coef.qrrvglm-class 181

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

cqo, Coef.qrrvglm-class, print.Coef.qrrvglm, lvplot.qrrvglm.

Examples

set.seed(123)
x2 <- rnorm(n <- 100)
x3 <- rnorm(n)
x4 <- rnorm(n)
latvar1 <- 0 + x3 - 2*x4
lambda1 <- exp(3 - 0.5 * (latvar1-0)^2)
lambda2 <- exp(2 - 0.5 * (latvar1-1)^2)
lambda3 <- exp(2 - 0.5 * ((latvar1+4)/2)^2) # Unequal tolerances
y1 <- rpois(n, lambda1)
y2 <- rpois(n, lambda2)
y3 <- rpois(n, lambda3)
set.seed(111)
vvv p1 <- cqo(cbind(y1, y2, y3) ~ x2 + x3 + x4, poissonff, trace = FALSE)
Not run: lvplot(p1, y = TRUE, lcol = 1:3, pch = 1:3, pcol = 1:3)

vvv Coef(p1)
vvv print(Coef(p1), digits=3)

Coef.qrrvglm-class Class “Coef.qrrvglm”

Description

The most pertinent matrices and other quantities pertaining to a QRR-VGLM (CQO model).

Objects from the Class

Objects can be created by calls of the form Coef(object,...) where object is an object of class
"qrrvglm" (created by cqo).

In this document, R is the rank, M is the number of linear predictors and n is the number of
observations.

182 Coef.qrrvglm-class

Slots

A: Of class "matrix", A, which are the linear ‘coefficients’ of the matrix of latent variables. It is
M by R.

B1: Of class "matrix", B1. These correspond to terms of the argument noRRR.

C: Of class "matrix", C, the canonical coefficients. It has R columns.

Constrained: Logical. Whether the model is a constrained ordination model.

D: Of class "array", D[,,j] is an order-Rank matrix, for j = 1,. . . ,M . Ideally, these are negative-
definite in order to make the response curves/surfaces bell-shaped.

Rank: The rank (dimension, number of latent variables) of the RR-VGLM. Called R.

latvar: n by R matrix of latent variable values.

latvar.order: Of class "matrix", the permutation returned when the function order is applied
to each column of latvar. This enables each column of latvar to be easily sorted.

Maximum: Of class "numeric", the M maximum fitted values. That is, the fitted values at the
optimums for noRRR = ~ 1 models. If noRRR is not ~ 1 then these will be NAs.

NOS: Number of species.

Optimum: Of class "matrix", the values of the latent variables where the optimums are. If the
curves are not bell-shaped, then the value will be NA or NaN.

Optimum.order: Of class "matrix", the permutation returned when the function order is applied
to each column of Optimum. This enables each row of Optimum to be easily sorted.

bellshaped: Vector of logicals: is each response curve/surface bell-shaped?

dispersion: Dispersion parameter(s).

Dzero: Vector of logicals, is each of the response curves linear in the latent variable(s)? It will be
if and only if D[,,j] equals O, for j = 1,. . . ,M .

Tolerance: Object of class "array", Tolerance[,,j] is an order-Rank matrix, for j = 1,. . . ,M ,
being the matrix of tolerances (squared if on the diagonal). These are denoted by T in Yee
(2004). Ideally, these are positive-definite in order to make the response curves/surfaces bell-
shaped. The tolerance matrices satisfy Ts = − 1

2D
−1
s .

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

See Also

Coef.qrrvglm, cqo, print.Coef.qrrvglm.

Coef.rrvglm 183

Examples

x2 <- rnorm(n <- 100)
x3 <- rnorm(n)
x4 <- rnorm(n)
latvar1 <- 0 + x3 - 2*x4
lambda1 <- exp(3 - 0.5 * (latvar1-0)^2)
lambda2 <- exp(2 - 0.5 * (latvar1-1)^2)
lambda3 <- exp(2 - 0.5 * ((latvar1+4)/2)^2)
y1 <- rpois(n, lambda1)
y2 <- rpois(n, lambda2)
y3 <- rpois(n, lambda3)
yy <- cbind(y1, y2, y3)
vvv p1 <- cqo(yy ~ x2 + x3 + x4, fam = poissonff, trace = FALSE)
Not run:
lvplot(p1, y = TRUE, lcol = 1:3, pch = 1:3, pcol = 1:3)

End(Not run)
vvv print(Coef(p1), digits = 3)

Coef.rrvglm Returns Important Matrices etc. of a RR-VGLM Object

Description

This methods function returns important matrices etc. of a RR-VGLM object.

Usage

Coef.rrvglm(object, ...)

Arguments

object An object of class "rrvglm".

... Currently unused.

Details

The A, B1, C matrices are returned, along with other slots. See rrvglm for details about RR-
VGLMs.

Value

An object of class "Coef.rrvglm" (see Coef.rrvglm-class).

Note

This function is an alternative to coef.rrvglm.

184 Coef.rrvglm-class

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

Coef.rrvglm-class, print.Coef.rrvglm, rrvglm.

Examples

Rank-1 stereotype model of Anderson (1984)
pneumo <- transform(pneumo, let = log(exposure.time), x3 = runif(nrow(pneumo)))
fit <- rrvglm(cbind(normal, mild, severe) ~ let + x3, multinomial, data = pneumo)
coef(fit, matrix = TRUE)
Coef(fit)

Coef.rrvglm-class Class “Coef.rrvglm”

Description

The most pertinent matrices and other quantities pertaining to a RR-VGLM.

Objects from the Class

Objects can be created by calls of the form Coef(object, ...) where object is an object of class
rrvglm (see rrvglm-class).

In this document, M is the number of linear predictors and n is the number of observations.

Slots

A: Of class "matrix", A.

B1: Of class "matrix", B1.

C: Of class "matrix", C.

Rank: The rank of the RR-VGLM.

colx1.index: Index of the columns of the "vlm"-type model matrix corresponding to the variables
in x1. These correspond to B1.

colx2.index: Index of the columns of the "vlm"-type model matrix corresponding to the variables
in x2. These correspond to the reduced-rank regression.

Atilde: Object of class "matrix", the A matrix with the corner rows removed. Thus each of the
elements have been estimated. This matrix is returned only if corner constraints were used.

Coef.vlm 185

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

Coef.rrvglm, rrvglm, rrvglm-class, print.Coef.rrvglm.

Examples

Rank-1 stereotype model of Anderson (1984)
pneumo <- transform(pneumo, let = log(exposure.time), x3 = runif(nrow(pneumo)))
fit <- rrvglm(cbind(normal, mild, severe) ~ let + x3, multinomial, data = pneumo)
coef(fit, matrix = TRUE)
Coef(fit)
print(Coef(fit), digits = 3)

Coef.vlm Extract Model Coefficients for VLM Objects

Description

Amongst other things, this function applies inverse link functions to the parameters of intercept-only
VGLMs.

Usage

Coef.vlm(object, ...)

Arguments

object A fitted model.

... Arguments which may be passed into coef.

Details

Most VGAM family functions apply a link function to the parameters, e.g., positive parameter are
often have a log link, parameters between 0 and 1 have a logit link. This function can back-transform
the parameter estimate to the original scale.

Value

For intercept-only models (e.g., formula is y ~ 1) the back-transformed parameter estimates can be
returned.

186 coefvgam

Warning

This function may not work for all VGAM family functions. You should check your results on
some artificial data before applying it to models fitted to real data.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

Coef, coef.

Examples

set.seed(123); nn <- 1000
bdata <- data.frame(y = rbeta(nn, shape1 = 1, shape2 = 3))
fit <- vglm(y ~ 1, betaff, data = bdata, trace = TRUE) # intercept-only model
coef(fit, matrix = TRUE) # log scale
Coef(fit) # On the original scale

coefvgam Extract Model Coefficients of a vgam() Object

Description

Extracts the estimated coefficients from vgam() objects.

Usage

coefvgam(object, type = c("linear", "nonlinear"), ...)

Arguments

object A vgam object.

type Character. The default is the first choice.

... Optional arguments fed into coefvlm.

Details

For VGAMs, because modified backfitting is performed, each fitted function is decomposed into a
linear and nonlinear (smooth) part. The argument type is used to return which one is wanted.

coefvlm 187

Value

A vector if type = "linear". A list if type = "nonlinear", and each component of this list corre-
sponds to an s term; the component contains an S4 object with slot names such as "Bcoefficients",
"knots", "xmin", "xmax".

Author(s)

Thomas W. Yee

See Also

vgam, coefvlm, coef.

Examples

fit <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = hunua)
coef(fit) # Same as coef(fit, type = "linear")
(ii <- coef(fit, type = "nonlinear"))
is.list(ii)
names(ii)
slotNames(ii[[1]])

coefvlm Extract Model Coefficients

Description

Extracts the estimated coefficients from VLM objects such as VGLMs.

Usage

coefvlm(object, matrix.out = FALSE, label = TRUE, colon = FALSE)

Arguments

object An object for which the extraction of coefficients is meaningful. This will usu-
ally be a vglm object.

matrix.out Logical. If TRUE then a matrix is returned. The explanatory variables are the
rows. The linear/additive predictors are the columns. The constraint matrices
are used to compute this matrix.

label Logical. If FALSE then the names of the vector of coefficients are set to NULL.

colon Logical. Explanatory variables which appear in more than one linear/additive
predictor are labelled with a colon, e.g., age:1, age:2. However, if it only
appears in one linear/additive predictor then the :1 is omitted by default. Then
setting colon = TRUE will add the :1.

188 CommonVGAMffArguments

Details

This function works in a similar way to applying coef() to a lm or glm object. However, for
VGLMs, there are more options available.

Value

A vector usually. A matrix if matrix.out = TRUE.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

vglm, coefvgam, coef.

Examples

zdata <- data.frame(x2 = runif(nn <- 200))
zdata <- transform(zdata, pstr0 = logitlink(-0.5 + 1*x2, inverse = TRUE),

lambda = loglink(0.5 + 2*x2, inverse = TRUE))
zdata <- transform(zdata, y2 = rzipois(nn, lambda, pstr0 = pstr0))

fit2 <- vglm(y2 ~ x2, zipoisson(zero = 1), data = zdata, trace = TRUE)
coef(fit2, matrix = TRUE) # Always a good idea
coef(fit2)
coef(fit2, colon = TRUE)

CommonVGAMffArguments Common VGAM Family Function Arguments

Description

Here is a description of some common and typical arguments found in many VGAM family func-
tions, e.g., lsigma, isigma, gsigma, nsimEI, parallel and zero.

Usage

TypicalVGAMfamilyFunction(lsigma = "loglink",
isigma = NULL,
link.list = list("(Default)" = "identitylink",

x2 = "loglink",
x3 = "logofflink",

CommonVGAMffArguments 189

x4 = "multilogitlink",
x5 = "multilogitlink"),

earg.list = list("(Default)" = list(),
x2 = list(),
x3 = list(offset = -1),
x4 = list(),
x5 = list()),

gsigma = exp(-5:5),
parallel = TRUE,
ishrinkage = 0.95,
nointercept = NULL, imethod = 1,
type.fitted = c("mean", "quantiles", "Qlink",

"pobs0", "pstr0", "onempstr0"),
percentiles = c(25, 50, 75),
probs.x = c(0.15, 0.85),
probs.y = c(0.25, 0.50, 0.75),
multiple.responses = FALSE, earg.link = FALSE,
whitespace = FALSE, bred = FALSE, lss = TRUE,
oim = FALSE, nsimEIM = 100, byrow.arg = FALSE,
zero = NULL)

Arguments

lsigma Character. Link function applied to a parameter and not necessarily a mean.
See Links for a selection of choices. If there is only one parameter then this
argument is often called link.

link.list, earg.list

Some VGAM family functions (such as normal.vcm) implement models with
potentially lots of parameter link functions. These two arguments allow many
such links and extra arguments to be inputted more easily. One has something
like link.list = list ("(Default)" = "identitylink", x2 = "loglink", x3
= "logofflink") and earg.list = list ("(Default)" = list(), x2 = list(),
x3 = "list(offset = -1)"). Then any unnamed terms will have the default
link with its corresponding extra argument. Note: the multilogitlink link is
also possible, and if so, at least two instances of it are necessary. Then the last
term is the baseline/reference group.

isigma Optional initial values can often be inputted using an argument beginning with
"i". For example, "isigma" and "ilocation", or just "init" if there is one
parameter. A value of NULL means a value is computed internally, i.e., a self-
starting VGAM family function. If a failure to converge occurs make use of
these types of arguments.

gsigma Grid-search initial values can be inputted using an argument beginning with "g",
e.g., "gsigma", "gshape" and "gscale". If argument isigma is inputted then
that has precedence over gsigma, etc.
If the grid search is 2-dimensional then it is advisable not to make the vectors too
long as a nested for loop may be used. Ditto for 3-dimensions etc. Sometimes a
".mux" is added as a suffix, e.g., gshape.mux; this means that the grid is created

190 CommonVGAMffArguments

relatively and not absolutely, e.g., its values are multipled by some single initial
estimate of the parameter in order to create the grid on an absolute scale.
Some family functions have an argument called gprobs.y. This is fed into the
probs argument of quantile in order to obtain some values of central tendency
of the response, i.e., some spread of values in the middle. when imethod = 1
to obtain an initial value for the mean Some family functions have an argument
called iprobs.y, and if so, then these values can overwrite gprobs.y.

parallel A logical, or a simple formula specifying which terms have equal/unequal co-
efficients. The formula must be simple, i.e., additive with simple main effects
terms. Interactions and nesting etc. are not handled. To handle complex formu-
las use the constraints argument (of vglm etc.); however, there is a lot more
setting up involved and things will not be as convenient.
Here are some examples. 1. parallel = TRUE ~ x2 + x5 means the parallelism
assumption is only applied to X2, X5 and the intercept. 2. parallel = TRUE
~ -1 and parallel = TRUE ~ 0 mean the parallelism assumption is applied to
no variables at all. Similarly, parallel = FALSE ~ -1 and parallel = FALSE
~ 0 mean the parallelism assumption is applied to all the variables including
the intercept. 3. parallel = FALSE ~ x2 - 1 and parallel = FALSE ~ x2 + 0
applies the parallelism constraint to all terms (including the intercept) except for
X2.
This argument is common in VGAM family functions for categorical responses,
e.g., cumulative, acat, cratio, sratio. For the proportional odds model
(cumulative) having parallel constraints applied to each explanatory variable
(except for the intercepts) means the fitted probabilities do not become negative
or greater than 1. However this parallelism or proportional-odds assumption
ought to be checked.

nsimEIM Some VGAM family functions use simulation to obtain an approximate ex-
pected information matrix (EIM). For those that do, the nsimEIM argument spec-
ifies the number of random variates used per observation; the mean of nsimEIM
random variates is taken. Thus nsimEIM controls the accuracy and a larger value
may be necessary if the EIMs are not positive-definite. For intercept-only mod-
els (y ~ 1) the value of nsimEIM can be smaller (since the common value used
is also then taken as the mean over the observations), especially if the number
of observations is large.
Some VGAM family functions provide two algorithms for estimating the EIM.
If applicable, set nsimEIM = NULL to choose the other algorithm.

imethod An integer with value 1 or 2 or 3 or ... which specifies the initialization method
for some parameters or a specific parameter. If failure to converge occurs try
the next higher value, and continue until success. For example, imethod = 1
might be the method of moments, and imethod = 2 might be another method. If
no value of imethod works then it will be necessary to use arguments such as
isigma. For many VGAM family functions it is advisable to try this argument
with all possible values to safeguard against problems such as converging to a
local solution. VGAM family functions with this argument usually correspond
to a model or distribution that is relatively hard to fit successfully, therefore care
is needed to ensure the global solution is obtained. So using all possible values
that this argument supplies is a good idea.

CommonVGAMffArguments 191

VGAM family functions such genpoisson2 recycle imethod to be of length 2
corresponding to the 2 parameters. In the future, this feature will be extended to
other family functions to confer more flexibility.

type.fitted Character. Type of fitted value returned by the fitted() methods function. The
first choice is always the default. The available choices depends on what kind
of family function it is. Using the first few letters of the chosen choice is okay.
See fittedvlm for more details.
The choice "Qlink" refers to quantile-links, which was introduced in Decem-
ber 2018 in VGAMextra 0.0-2 for several 1-parameter distributions. Here, ei-
ther the loglink or logitlink or identitylink of the quantile is the link
function (and the choice is dependent on the support of the distribution), and
link functions end in "Qlink". A limited amount of support is provided for
such links, e.g., fitted(fit) are the fitted quantiles, which is the same as
predict(fit, type = "response"). However, fitted(fit, percentiles =
77) will not work.

percentiles Numeric vector, with values between 0 and 100 (although it is not recommended
that exactly 0 or 100 be inputted). Used only if type.fitted = "quantiles"
or type.fitted = "percentiles", then this argument specifies the values of
these quantiles. The argument name tries to reinforce that the values lie between
0 and 100. See fittedvlm for more details.

probs.x, probs.y

Numeric, with values in (0, 1). The probabilites that define quantiles with re-
spect to some vector, usually an x or y of some sort. This is used to create
two subsets of data corresponding to ‘low’ and ‘high’ values of x or y. Each
value is separately fed into the probs argument of quantile. If the data set size
is small then it may be necessary to increase/decrease slightly the first/second
values respectively.

lss Logical. This stands for the ordering: location, scale and shape. Should the
ordering of the parameters be in this order? Almost all VGAM family functions
have this order by default, but in order to match the arguments of existing R
functions, one might need to set lss = FALSE. For example, the arguments of
weibullR are scale and shape, whereas rweibull are shape and scale. As a
temporary measure (from VGAM 0.9-7 onwards but prior to version 1.0-0),
some family functions such as sinmad have an lss argument without a default.
For these, setting lss = FALSE will work. Later, lss = TRUE will be the default.
Be careful for the dpqr-type functions, e.g., rsinmad.

whitespace Logical. Should white spaces (" ") be used in the labelling of the linear/additive
predictors? Setting TRUE usually results in more readability but it occupies more
columns of the output.

oim Logical. Should the observed information matrices (OIMs) be used for the
working weights? In general, setting oim = TRUE means the Newton-Raphson
algorithm, and oim = FALSE means Fisher-scoring. The latter uses the EIM, and
is usually recommended. If oim = TRUE then nsimEIM is ignored.

zero Either an integer vector, or a vector of character strings.
If an integer, then it specifies which linear/additive predictor is modelled as
intercept-only. That is, the regression coefficients are set to zero for all co-
variates except for the intercept. If zero is specified then it may be a vector with

192 CommonVGAMffArguments

values from the set {1, 2, . . . ,M}. The value zero = NULL means model all lin-
ear/additive predictors as functions of the explanatory variables. Here, M is the
number of linear/additive predictors. Technically, if zero contains the value j
then the jth row of every constraint matrix (except for the intercept) consists of
all 0 values.
Some VGAM family functions allow the zero argument to accept negative val-
ues; if so then its absolute value is recycled over each (usual) response. For
example, zero = -2 for the two-parameter negative binomial distribution would
mean, for each response, the second linear/additive predictor is modelled as
intercepts-only. That is, for all the k parameters in negbinomial (this VGAM
family function can handle a matrix of responses).
Suppose zero = zerovec where zerovec is a vector of negative values. If
G is the usual M value for a univariate response then the actual values for
argument zero are all values in c(abs(zerovec), G + abs(zerovec), 2*G +
abs(zerovec), ...) lying in the integer range 1 to M . For example, set-
ting zero = -c(2, 3) for a matrix response of 4 columns with zinegbinomial
(which usually has G = M = 3 for a univariate response) would be equivalent
to zero = c(2, 3, 5, 6, 8, 9, 11, 12). This example hasM = 12. Note that if
zerovec contains negative values then their absolute values should be elements
from the set 1:G.
Note: zero may have positive and negative values, for example, setting zero
= c(-2, 3) in the above example would be equivalent to zero = c(2, 3, 5, 8,
11).
The argument zero also accepts a character vector (for VGAM 1.0-1 onwards).
Each value is fed into grep with fixed = TRUE, meaning that wildcards "*" are
not useful. See the example below—all the variants work; those with LOCAT
issue a warning that that value is unmatched. Importantly, the parameter names
are c("location1", "scale1", "location2", "scale2") because there are
2 responses. Yee (2015) described zero for only numerical input. Allowing
character input is particularly important when the number of parameters cannot
be determined without having the actual data first. For example, with time series
data, an ARMA(p,q) process might have parameters θ1, . . . , θp which should be
intercept-only by default. Then specifying a numerical default value for zero
would be too difficult (there are the drift and scale parameters too). However,
it is possible with the character representation: zero = "theta" would achieve
this. In the future, most VGAM family functions might be converted to the
character representation—the advantage being that it is more readable. When
programming a VGAM family function that allows character input, the variable
predictors.names must be assigned correctly.

ishrinkage Shrinkage factor s used for obtaining initial values. Numeric, between 0 and
1. In general, the formula used is something like sµ + (1 − s)y where µ is a
measure of central tendency such as a weighted mean or median, and y is the
response vector. For example, the initial values are slight perturbations of the
mean towards the actual data. For many types of models this method seems to
work well and is often reasonably robust to outliers in the response. Often this
argument is only used if the argument imethod is assigned a certain value.

nointercept An integer-valued vector specifying which linear/additive predictors have no
intercepts. Any values must be from the set {1,2,. . . ,M}. A value of NULL

CommonVGAMffArguments 193

means no such constraints.
multiple.responses

Logical. Some VGAM family functions allow a multivariate or vector response.
If so, then usually the response is a matrix with columns corresponding to the in-
dividual response variables. They are all fitted simultaneously. Arguments such
as parallel may then be useful to allow for relationships between the regres-
sions of each response variable. If multiple.responses = TRUE then some-
times the response is interpreted differently, e.g., posbinomial chooses the first
column of a matrix response as success and combines the other columns as fail-
ure, but when multiple.responses = TRUE then each column of the response
matrix is the number of successes and the weights argument is of the same
dimension as the response and contains the number of trials.

earg.link This argument should be generally ignored.
byrow.arg Logical. Some VGAM family functions that handle multiple responses have

arguments that allow input to be fed in which affect all the responses, e.g., imu
for initalizing a mu parameter. In such cases it is sometime more convenient
to input one value per response by setting byrow.arg = TRUE; then values are
recycled in order to form a matrix of the appropriate dimension. This argument
matches byrow in matrix; in fact it is fed into such using matrix(..., byrow
= byrow.arg). This argument has no effect when there is one response.

bred Logical. Some VGAM family functions will allow bias-reduction based on
the work by Kosmidis and Firth. Sometimes half-stepping is a good idea; set
stepsize = 0.5 and monitor convergence by setting trace = TRUE.

Details

Full details will be given in documentation yet to be written, at a later date!

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

The zero argument is supplied for convenience but conflicts can arise with other arguments, e.g.,
the constraints argument of vglm and vgam. See Example 5 below for an example. If not sure,
use, e.g., constraints(fit) and coef(fit, matrix = TRUE) to check the result of a fit fit.

The arguments zero and nointercept can be inputted with values that fail. For example, multinomial(zero
= 2, nointercept = 1:3) means the second linear/additive predictor is identically zero, which will
cause a failure.

Be careful about the use of other potentially contradictory constraints, e.g., multinomial(zero =
2, parallel = TRUE ~ x3). If in doubt, apply constraints() to the fitted object to check.

VGAM family functions with the nsimEIM may have inaccurate working weight matrices. If
so, then the standard errors of the regression coefficients may be inaccurate. Thus output from
summary(fit), vcov(fit), etc. may be misleading.

Changes relating to the codelss argument have very important consequences and users must beware.
Good programming style is to rely on the argument names and not on the order.

194 CommonVGAMffArguments

Note

See Links regarding a major change in link functions, for version 0.9-0 and higher (released during
the 2nd half of 2012).

Author(s)

T. W. Yee

References

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R.
New York, USA: Springer.

Kosmidis, I. and Firth, D. (2009). Bias reduction in exponential family nonlinear models. Biometrika,
96(4), 793–804.

Miranda-Soberanis, V. F. and Yee, T. W. (2018). New link functions for distribution–specific quan-
tile regression based on vector generalized linear and additive models. Manuscript in preparation.

See Also

Links, vglmff-class, UtilitiesVGAM, normal.vcm, multilogitlink, VGAMextra.

Examples

Example 1
cumulative()
cumulative(link = "probitlink", reverse = TRUE, parallel = TRUE)

Example 2
wdata <- data.frame(x2 = runif(nn <- 1000))
wdata <- transform(wdata,

y = rweibull(nn, shape = 2 + exp(1 + x2), scale = exp(-0.5)))
fit <- vglm(y ~ x2, weibullR(lshape = logofflink(offset = -2), zero = 2),

data = wdata)
coef(fit, mat = TRUE)

Example 3; multivariate (multiple) response
Not run:
ndata <- data.frame(x = runif(nn <- 500))
ndata <- transform(ndata,

y1 = rnbinom(nn, mu = exp(3+x), size = exp(1)), # k is size
y2 = rnbinom(nn, mu = exp(2-x), size = exp(0)))

fit <- vglm(cbind(y1, y2) ~ x, negbinomial(zero = -2), data = ndata)
coef(fit, matrix = TRUE)

End(Not run)
Example 4
Not run:
fit1 and fit2 are equivalent
fit1 <- vglm(ymatrix ~ x2 + x3 + x4 + x5,

cumulative(parallel = FALSE ~ 1 + x3 + x5), data = cdata)

CommonVGAMffArguments 195

fit2 <- vglm(ymatrix ~ x2 + x3 + x4 + x5,
cumulative(parallel = TRUE ~ x2 + x4), data = cdata)

End(Not run)

Example 5
udata <- data.frame(x2 = rnorm(nn <- 200))
udata <- transform(udata,

y1 = rnorm(nn, mean = 1 - 3*x2, sd = exp(1 + 0.2*x2)),
y2 = rnorm(nn, mean = 1 - 3*x2, sd = exp(1)))

args(uninormal)
fit1 <- vglm(y1 ~ x2, uninormal, data = udata) # This is okay
fit2 <- vglm(y2 ~ x2, uninormal(zero = 2), data = udata) # This is okay

This creates potential conflict
clist <- list("(Intercept)" = diag(2), "x2" = diag(2))
fit3 <- vglm(y2 ~ x2, uninormal(zero = 2), data = udata,

constraints = clist) # Conflict!
coef(fit3, matrix = TRUE) # Shows that clist[["x2"]] was overwritten,
constraints(fit3) # i.e., 'zero' seems to override the 'constraints' arg

Example 6 ('whitespace' argument)
pneumo <- transform(pneumo, let = log(exposure.time))
fit1 <- vglm(cbind(normal, mild, severe) ~ let,

sratio(whitespace = FALSE, parallel = TRUE), data = pneumo)
fit2 <- vglm(cbind(normal, mild, severe) ~ let,

sratio(whitespace = TRUE, parallel = TRUE), data = pneumo)
head(predict(fit1), 2) # No white spaces
head(predict(fit2), 2) # Uses white spaces

Example 7 ('zero' argument with character input)
set.seed(123); n <- 1000
ldata <- data.frame(x2 = runif(n))
ldata <- transform(ldata, y1 = rlogis(n, loc = 5*x2, scale = exp(2)))
ldata <- transform(ldata, y2 = rlogis(n, loc = 5*x2, scale = exp(1*x2)))
ldata <- transform(ldata, w1 = runif(n))
ldata <- transform(ldata, w2 = runif(n))
fit7 <- vglm(cbind(y1, y2) ~ x2,
logistic(zero = "location1"), # location1 is intercept-only
logistic(zero = "location2"),
logistic(zero = "location*"), # Not okay... all is unmatched
logistic(zero = "scale1"),
logistic(zero = "scale2"),
logistic(zero = "scale"), # Both scale parameters are matched

logistic(zero = c("location", "scale2")), # All but scale1
logistic(zero = c("LOCAT", "scale2")), # Only scale2 is matched
logistic(zero = c("LOCAT")), # Nothing is matched
trace = TRUE,
weights = cbind(w1, w2),

weights = w1,
data = ldata)

coef(fit7, matrix = TRUE)

196 concoef

concoef Extract Model Constrained/Canonical Coefficients

Description

concoef is a generic function which extracts the constrained (canonical) coefficients from objects
returned by certain modelling functions.

Usage

concoef(object, ...)

Arguments

object An object for which the extraction of canonical coefficients is meaningful.

... Other arguments fed into the specific methods function of the model.

Details

For constrained quadratic and ordination models, canonical coefficients are the elements of the C
matrix used to form the latent variables. They are highly interpretable in ecology, and are looked at
as weights or loadings.

They are also applicable for reduced-rank VGLMs.

Value

The value returned depends specifically on the methods function invoked.

Warning

concoef replaces ccoef; the latter is deprecated.

For QO models, there is a direct inverse relationship between the scaling of the latent variables (site
scores) and the tolerances. One normalization is for the latent variables to have unit variance. An-
other normalization is for all the species’ tolerances to be unit (provided eq.tolerances is TRUE).
These two normalizations cannot simultaneously hold in general. For rank R models with R > 1
it becomes more complicated because the latent variables are also uncorrelated. An important ar-
gument when fitting quadratic ordination models is whether eq.tolerances is TRUE or FALSE. See
Yee (2004) for details.

Author(s)

Thomas W. Yee

concoef-methods 197

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

concoef-method, concoef.qrrvglm, concoef.cao, coef.

Examples

Not run: set.seed(111) # This leads to the global solution
hspider[,1:6] <- scale(hspider[,1:6]) # Standardized environmental vars
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider, Crow1positive = FALSE)

concoef(p1)

End(Not run)

concoef-methods Constrained (Canonical) Coefficients

Description

concoef is a generic function used to return the constrained (canonical) coefficients of a constrained
ordination model. The function invokes particular methods which depend on the class of the first
argument.

Methods

object The object from which the constrained coefficients are extracted.

198 confintvglm

confintvglm Confidence Intervals for Parameters of VGLMs

Description

Computes confidence intervals (CIs) for one or more parameters in a fitted model. Currently the
object must be a "vglm" object.

Usage

confintvglm(object, parm, level = 0.95, method = c("wald", "profile"),
trace = NULL, ...)

Arguments

object A fitted model object.
parm, level, ...

Same as confint.

method Character. The default is the first method. Abbreviations are allowed. Currently
"profile" is basically working; and it is likely to be more accurate especially
for small samples, as it is based on a profile log likelihood, however it is com-
putationally intensive.

trace Logical. If TRUE then one can monitor the computation as it progresses (be-
cause it is expensive). The default is the orginal model’s trace value (see
vglm.control). Setting FALSE suppresses all intermediate output.

Details

The default for this methods function is based on confint.default and assumes asymptotic nor-
mality. In particular, the coef and vcov methods functions are used for vglm-class objects.

When method = "profile" the function profilevglm is called to do the profiling. The code is very
heavily based on profile.glm which was originally written by D. M. Bates and W. N. Venables
(For S in 1996) and subsequently corrected by B. D. Ripley. Sometimes the profiling method can
give problems, for example, cumulative requires the M linear predictors not to intersect in the
data cloud. Such numerical problems are less common when method = "wald", however, it is well-
known that inference based on profile likelihoods is generally more accurate than Wald, especially
when the sample size is small. The deviance (deviance(object)) is used if possible, else the
difference 2 * (logLik(object) - ell) is computed, where ell are the values of the loglikelihood
on a grid.

For Wald CIs and rrvglm-class objects, currently an error message is produced because I haven’t
gotten around to write the methods function; it’s not too hard, but am too busy! An interim measure
is to coerce the object into a "vglm" object, but then the confidence intervals will tend to be too
narrow because the estimated constraint matrices are treated as known.

For Wald CIs and vgam-class objects, currently an error message is produced because the theory
is undeveloped.

confintvglm 199

Value

Same as confint.

Note

The order of the values of argument method may change in the future without notice. The functions
plot.profile.glm and pairs.profile.glm from MASS appear to work with output from this
function.

Author(s)

Thomas Yee adapted confint.lm to handle "vglm" objects, for Wald-type confidence intervals.
Also, profile.glm was originally written by D. M. Bates and W. N. Venables (For S in 1996) and
subsequently corrected by B. D. Ripley. This function effectively calls confint.profile.glm()
in MASS.

See Also

vcovvlm, summaryvglm, confint, profile.glm, lrt.stat.vlm, wald.stat, plot.profile.glm,
pairs.profile.glm.

Examples

Example 1: this is based on a glm example
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3, 1, 9); treatment <- gl(3, 3)
glm.D93 <- glm(counts ~ outcome + treatment, family = poisson())

vglm.D93 <- vglm(counts ~ outcome + treatment, family = poissonff)
confint(glm.D93) # needs MASS to be present on the system
confint.default(glm.D93) # based on asymptotic normality
confint(vglm.D93)
confint(vglm.D93) - confint(glm.D93) # Should be all 0s
confint(vglm.D93) - confint.default(glm.D93) # based on asympt. normality

Example 2: simulated negative binomial data with multiple responses
ndata <- data.frame(x2 = runif(nn <- 100))
ndata <- transform(ndata, y1 = rnbinom(nn, mu = exp(3+x2), size = exp(1)),

y2 = rnbinom(nn, mu = exp(2-x2), size = exp(0)))
fit1 <- vglm(cbind(y1, y2) ~ x2, negbinomial, data = ndata, trace = TRUE)
coef(fit1)
coef(fit1, matrix = TRUE)
confint(fit1)
confint(fit1, "x2:1") # This might be improved to "x2" some day...
Not run:
confint(fit1, method = "profile") # Computationally expensive
confint(fit1, "x2:1", method = "profile", trace = FALSE)

End(Not run)

fit2 <- rrvglm(y1 ~ x2, negbinomial(zero = NULL), data = ndata)
confint(as(fit2, "vglm")) # Too narrow (SEs are biased downwards)

200 constraints

constraints Constraint Matrices

Description

Extractor function for the constraint matrices of objects in the VGAM package.

Usage

constraints(object, ...)
constraints.vlm(object, type = c("lm", "term"), all = TRUE, which,

matrix.out = FALSE, colnames.arg = TRUE,
rownames.arg = TRUE, ...)

Arguments

object Some VGAM object, for example, having class vglmff-class.

type Character. Whether LM- or term-type constraints are to be returned. The num-
ber of such matrices returned is equal to nvar(object, type = "lm") and the
number of terms, respectively.

all, which If all = FALSE then which gives the integer index or a vector of logicals speci-
fying the selection.

matrix.out Logical. If TRUE then the constraint matrices are cbind()ed together. The result
is usually more compact because the default is a list of constraint matrices.

colnames.arg, rownames.arg

Logical. If TRUE then column and row names are assigned corresponding to the
variables.

... Other possible arguments such as type.

Details

Constraint matrices describe the relationship of coefficients/component functions of a particular
explanatory variable between the linear/additive predictors in VGLM/VGAM models. For example,
they may be all different (constraint matrix is the identity matrix) or all the same (constraint matrix
has one column and has unit values).

VGLMs and VGAMs have constraint matrices which are known. The class of RR-VGLMs have
constraint matrices which are unknown and are to be estimated.

Value

The extractor function constraints() returns a list comprising of constraint matrices—usually one
for each column of the VLM model matrix, and in that order. The list is labelled with the variable
names. Each constraint matrix has M rows, where M is the number of linear/additive predictors,
and whose rank is equal to the number of columns. A model with no constraints at all has an order
M identity matrix as each variable’s constraint matrix.

constraints 201

For vglm and vgam objects, feeding in type = "term" constraint matrices back into the same model
should work and give an identical model. The default are the "lm"-type constraint matrices; this is
a list with one constraint matrix per column of the LM matrix. See the constraints argument of
vglm, and the example below.

Note

In all VGAM family functions zero = NULL means none of the linear/additive predictors are mod-
elled as intercepts-only. Other arguments found in certain VGAM family functions which affect
constraint matrices include parallel and exchangeable.

The constraints argument in vglm and vgam allows constraint matrices to be inputted. If so, then
constraints(fit, type = "lm") can be fed into the constraints argument of the same object to
get the same model.

The xij argument does not affect constraint matrices; rather, it allows each row of the constraint
matrix to be multiplied by a specified vector.

Author(s)

T. W. Yee

References

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

is.parallel, is.zero, trim.constraints. VGLMs are described in vglm-class; RR-VGLMs
are described in rrvglm-class.

Arguments such as zero and parallel found in many VGAM family functions are a way of creat-
ing/modifying constraint matrices conveniently, e.g., see zero. See CommonVGAMffArguments for
more information.

Examples

Fit the proportional odds model:
pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ sm.bs(let, 3),

cumulative(parallel = TRUE, reverse = TRUE), data = pneumo))
coef(fit1, matrix = TRUE)
constraints(fit1) # Parallel assumption results in this
constraints(fit1, type = "term") # Same as the default ("vlm"-type)
is.parallel(fit1)

An equivalent model to fit1 (needs the type "term" constraints):
clist.term <- constraints(fit1, type = "term") # "term"-type constraints
cumulative() has no 'zero' argument to set to NULL (a good idea

202 corbet

when using the 'constraints' argument):
(fit2 <- vglm(cbind(normal, mild, severe) ~ sm.bs(let, 3), data = pneumo,

cumulative(reverse = TRUE), constraints = clist.term))
abs(max(coef(fit1, matrix = TRUE) -

coef(fit2, matrix = TRUE))) # Should be zero

Fit a rank-1 stereotype (RR-multinomial logit) model:
fit <- rrvglm(Country ~ Width + Height + HP, multinomial, data = car.all)
constraints(fit) # All except the first are the estimated A matrix

corbet Corbet’s Butterfly Data

Description

About 3300 individual butterflies were caught in Malaya by naturalist Corbet trapping butterflies.
They were classified to about 500 species.

Usage

data(corbet)

Format

A data frame with 24 observations on the following 2 variables.

species Number of species.

ofreq Observed frequency of individual butterflies of that species.

Details

In the early 1940s Corbet spent two years trapping butterflies in Malaya. Of interest was the total
number of species. Some species were so rare (e.g., 118 species had only one specimen) that it was
thought likely that there were many unknown species.

References

Fisher, R. A., Corbet, A. S. and Williams, C. B. (1943). The Relation Between the Number of
Species and the Number of Individuals in a Random Sample of an Animal Population. Journal of
Animal Ecology, 12, 42–58.

Examples

summary(corbet)

cqo 203

cqo Fitting Constrained Quadratic Ordination (CQO)

Description

A constrained quadratic ordination (CQO; formerly called canonical Gaussian ordination or CGO)
model is fitted using the quadratic reduced-rank vector generalized linear model (QRR-VGLM)
framework.

Usage

cqo(formula, family = stop("argument 'family' needs to be assigned"),
data = list(), weights = NULL, subset = NULL,
na.action = na.fail, etastart = NULL, mustart = NULL,
coefstart = NULL, control = qrrvglm.control(...), offset = NULL,
method = "cqo.fit", model = FALSE, x.arg = TRUE, y.arg = TRUE,
contrasts = NULL, constraints = NULL, extra = NULL,
smart = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit. The RHS of the formula is ap-
plied to each linear predictor. Different variables in each linear predictor can be
chosen by specifying constraint matrices.

family a function of class "vglmff" (see vglmff-class) describing what statistical
model is to be fitted. This is called a “VGAM family function”. See CommonVGAMffArguments
for general information about many types of arguments found in this type of
function. Currently the following families are supported: poissonff, binomialff
(logitlink and clogloglink links available), negbinomial, gamma2. Some-
times special arguments are required for cqo(), e.g., binomialff(multiple.responses
= TRUE).

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from environment(formula), typically the environment from
which cqo is called.

weights an optional vector or matrix of (prior) weights to be used in the fitting process.
Currently, this argument should not be used.

subset an optional logical vector specifying a subset of observations to be used in the
fitting process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The “factory-fresh” default is na.omit.

etastart starting values for the linear predictors. It is aM -column matrix. IfM = 1 then
it may be a vector. Currently, this argument probably should not be used.

mustart starting values for the fitted values. It can be a vector or a matrix. Some family
functions do not make use of this argument. Currently, this argument probably
should not be used.

204 cqo

coefstart starting values for the coefficient vector. Currently, this argument probably
should not be used.

control a list of parameters for controlling the fitting process. See qrrvglm.control
for details.

offset This argument must not be used.

method the method to be used in fitting the model. The default (and presently only)
method cqo.fit uses iteratively reweighted least squares (IRLS).

model a logical value indicating whether the model frame should be assigned in the
model slot.

x.arg, y.arg logical values indicating whether the model matrix and response matrix used in
the fitting process should be assigned in the x and y slots. Note the model matrix
is the LM model matrix.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

constraints an optional list of constraint matrices. The components of the list must be named
with the term it corresponds to (and it must match in character format). Each
constraint matrix must have M rows, and be of full-column rank. By default,
constraint matrices are the M by M identity matrix unless arguments in the
family function itself override these values. If constraints is used it must
contain all the terms; an incomplete list is not accepted. Constraint matrices for
x2 variables are taken as the identity matrix.

extra an optional list with any extra information that might be needed by the family
function.

smart logical value indicating whether smart prediction (smartpred) will be used.

... further arguments passed into qrrvglm.control.

Details

QRR-VGLMs or constrained quadratic ordination (CQO) models are estimated here by maximum
likelihood estimation. Optimal linear combinations of the environmental variables are computed,
called latent variables (these appear as latvar for R = 1 else latvar1, latvar2, etc. in the
output). Here, R is the rank or the number of ordination axes. Each species’ response is then a
regression of these latent variables using quadratic polynomials on a transformed scale (e.g., log for
Poisson counts, logit for presence/absence responses). The solution is obtained iteratively in order
to maximize the log-likelihood function, or equivalently, minimize the deviance.

The central formula (for Poisson and binomial species data) is given by

η = BT1 x1 +Aν +

M∑
m=1

(νTDmν)em

where x1 is a vector (usually just a 1 for an intercept), x2 is a vector of environmental variables,
ν = CTx2 is a R-vector of latent variables, em is a vector of 0s but with a 1 in the mth position.
The η are a vector of linear/additive predictors, e.g., the mth element is ηm = log(E[Ym]) for
the mth species. The matrices B1, A, C and Dm are estimated from the data, i.e., contain the
regression coefficients. The tolerance matrices satisfy Ts = − 1

2D
−1
s . Many important CQO details

are directly related to arguments in qrrvglm.control, e.g., the argument noRRR specifies which
variables comprise x1.

cqo 205

Theoretically, the four most popular VGAM family functions to be used with cqo correspond to the
Poisson, binomial, normal, and negative binomial distributions. The latter is a 2-parameter model.
All of these are implemented, as well as the 2-parameter gamma.

For initial values, the function .Init.Poisson.QO should work reasonably well if the data is Pois-
son with species having equal tolerances. It can be quite good on binary data too. Otherwise the
Cinit argument in qrrvglm.control can be used.

It is possible to relax the quadratic form to an additive model. The result is a data-driven approach
rather than a model-driven approach, so that CQO is extended to constrained additive ordination
(CAO) when R = 1. See cao for more details.

In this documentation,M is the number of linear predictors, S is the number of responses (species).
ThenM = S for Poisson and binomial species data, andM = 2S for negative binomial and gamma
distributed species data.

Incidentally, Unconstrained quadratic ordination (UQO) may be performed by, e.g., fitting a Good-
man’s RC association model; see uqo and the Yee and Hadi (2014) referenced there. For UQO, the
response is the usual site-by-species matrix and there are no environmental variables; the site scores
are free parameters. UQO can be performed under the assumption that all species have the same
tolerance matrices.

Value

An object of class "qrrvglm".

Warning

Local solutions are not uncommon when fitting CQO models. To increase the chances of obtaining
the global solution, increase the value of the argument Bestof in qrrvglm.control. For repro-
ducibility of the results, it pays to set a different random number seed before calling cqo (the func-
tion set.seed does this). The function cqo chooses initial values for C using .Init.Poisson.QO()
if Use.Init.Poisson.QO = TRUE, else random numbers.

Unless I.tolerances = TRUE or eq.tolerances = FALSE, CQO is computationally expensive with
memory and time. It pays to keep the rank down to 1 or 2. If eq.tolerances = TRUE and I.tolerances
= FALSE then the cost grows quickly with the number of species and sites (in terms of memory re-
quirements and time). The data needs to conform quite closely to the statistical model, and the
environmental range of the data should be wide in order for the quadratics to fit the data well (bell-
shaped response surfaces). If not, RR-VGLMs will be more appropriate because the response is
linear on the transformed scale (e.g., log or logit) and the ordination is called constrained linear
ordination or CLO.

Like many regression models, CQO is sensitive to outliers (in the environmental and species data),
sparse data, high leverage points, multicollinearity etc. For these reasons, it is necessary to examine
the data carefully for these features and take corrective action (e.g., omitting certain species, sites,
environmental variables from the analysis, transforming certain environmental variables, etc.). Any
optimum lying outside the convex hull of the site scores should not be trusted. Fitting a CAO is
recommended first, then upon transformations etc., possibly a CQO can be fitted.

For binary data, it is necessary to have ‘enough’ data. In general, the number of sites n ought to be
much larger than the number of species S, e.g., at least 100 sites for two species. Compared to count
(Poisson) data, numerical problems occur more frequently with presence/absence (binary) data. For
example, if Rank = 1 and if the response data for each species is a string of all absences, then all

206 cqo

presences, then all absences (when enumerated along the latent variable) then infinite parameter
estimates will occur. In general, setting I.tolerances = TRUE may help.

This function was formerly called cgo. It has been renamed to reinforce a new nomenclature de-
scribed in Yee (2006).

Note

The input requires care, preparation and thought—a lot more than other ordination methods. Here
is a partial checklist.

(1) The number of species should be kept reasonably low, e.g., 12 max. Feeding in 100+ species
wholesale is a recipe for failure. Choose a few species carefully. Using 10 well-chosen species
is better than 100+ species thrown in willy-nilly.

(2) Each species should be screened individually first, e.g., for presence/absence is the species to-
tally absent or totally present at all sites? For presence/absence data sort(colMeans(data))
can help avoid such species.

(3) The number of explanatory variables should be kept low, e.g., 7 max.

(4) Each explanatory variable should be screened individually first, e.g., is it heavily skewed or are
there outliers? They should be plotted and then transformed where needed. They should not
be too highly correlated with each other.

(5) Each explanatory variable should be scaled, e.g., to mean 0 and unit variance. This is especially
needed for I.tolerance = TRUE.

(6) Keep the rank low. Only if the data is very good should a rank-2 model be attempted. Usually
a rank-1 model is all that is practically possible even after a lot of work. The rank-1 model
should always be attempted first. Then might be clever and try use this for initial values for a
rank-2 model.

(7) If the number of sites is large then choose a random sample of them. For example, choose a
maximum of 500 sites. This will reduce the memory and time expense of the computations.

(8) Try I.tolerance = TRUE or eq.tolerance = FALSE if the inputted data set is large, so as to
reduce the computational expense. That’s because the default, I.tolerance = FALSE and
eq.tolerance = TRUE, is very memory hungry.

By default, a rank-1 equal-tolerances QRR-VGLM model is fitted (see qrrvglm.control for the
default control parameters). If Rank > 1 then the latent variables are always transformed so that
they are uncorrelated. By default, the argument trace is TRUE meaning a running log is printed
out while the computations are taking place. This is because the algorithm is computationally
expensive, therefore users might think that their computers have frozen if trace = FALSE!

The argument Bestof in qrrvglm.control controls the number of models fitted (each uses differ-
ent starting values) to the data. This argument is important because convergence may be to a local
solution rather than the global solution. Using more starting values increases the chances of finding
the global solution. Always plot an ordination diagram (use the generic function lvplot) and see
if it looks sensible. Local solutions arise because the optimization problem is highly nonlinear, and
this is particularly true for CAO.

Many of the arguments applicable to cqo are common to vglm and rrvglm.control. The most
important arguments are Rank, noRRR, Bestof, I.tolerances, eq.tolerances, isd.latvar, and
MUXfactor.

cqo 207

When fitting a 2-parameter model such as the negative binomial or gamma, it pays to have eq.tolerances
= TRUE and I.tolerances = FALSE. This is because numerical problems can occur when fitting the
model far away from the global solution when I.tolerances = TRUE. Setting the two arguments as
described will slow down the computation considerably, however it is numerically more stable.

In Example 1 below, an unequal-tolerances rank-1 QRR-VGLM is fitted to the hunting spiders
dataset, and Example 2 is the equal-tolerances version. The latter is less likely to have convergence
problems compared to the unequal-tolerances model. In Example 3 below, an equal-tolerances
rank-2 QRR-VGLM is fitted to the hunting spiders dataset. The numerical difficulties encountered
in fitting the rank-2 model suggests a rank-1 model is probably preferable. In Example 4 below,
constrained binary quadratic ordination (in old nomenclature, constrained Gaussian logit ordina-
tion) is fitted to some simulated data coming from a species packing model. With multivariate
binary responses, one must use multiple.responses = TRUE to indicate that the response (matrix)
is multivariate. Otherwise, it is interpreted as a single binary response variable. In Example 5 be-
low, the deviance residuals are plotted for each species. This is useful as a diagnostic plot. This is
done by (re)regressing each species separately against the latent variable.

Sometime in the future, this function might handle input of the form cqo(x, y), where x and y are
matrices containing the environmental and species data respectively.

Author(s)

Thomas W. Yee. Thanks to Alvin Sou for converting a lot of the original FORTRAN code into C.

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

ter Braak, C. J. F. and Prentice, I. C. (1988). A theory of gradient analysis. Advances in Ecological
Research, 18, 271–317.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

qrrvglm.control, Coef.qrrvglm, predictqrrvglm, calibrate.qrrvglm, model.matrixqrrvglm,
vcovqrrvglm, rcqo, cao, uqo, rrvglm, poissonff, binomialff, negbinomial, gamma2, lvplot.qrrvglm,
perspqrrvglm, trplot.qrrvglm, vglm, set.seed, hspider, trapO.

Examples

Not run:
Example 1; Fit an unequal tolerances model to the hunting spiders data
hspider[,1:6] <- scale(hspider[,1:6]) # Standardized environmental variables
set.seed(1234) # For reproducibility of the results
p1ut <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
fam = poissonff, data = hspider, Crow1positive = FALSE,
eq.tol = FALSE)

sort(deviance(p1ut, history = TRUE)) # A history of all the iterations

208 cqo

if (deviance(p1ut) > 1177) warning("suboptimal fit obtained")

S <- ncol(depvar(p1ut)) # Number of species
clr <- (1:(S+1))[-7] # Omits yellow
lvplot(p1ut, y = TRUE, lcol = clr, pch = 1:S, pcol = clr,

las = 1) # Ordination diagram
legend("topright", leg = colnames(depvar(p1ut)), col = clr,

pch = 1:S, merge = TRUE, bty = "n", lty = 1:S, lwd = 2)
(cp <- Coef(p1ut))

(a <- latvar(cp)[cp@latvar.order]) # Ordered site scores along the gradient
Names of the ordered sites along the gradient:
rownames(latvar(cp))[cp@latvar.order]
(aa <- Opt(cp)[, cp@Optimum.order]) # Ordered optimums along the gradient
aa <- aa[!is.na(aa)] # Delete the species that is not unimodal
names(aa) # Names of the ordered optimums along the gradient

trplot(p1ut, which.species = 1:3, log = "xy", type = "b", lty = 1, lwd = 2,
col = c("blue","red","green"), label = TRUE) -> ii # Trajectory plot

legend(0.00005, 0.3, paste(ii$species[, 1], ii$species[, 2], sep = " and "),
lwd = 2, lty = 1, col = c("blue", "red", "green"))

abline(a = 0, b = 1, lty = "dashed")

S <- ncol(depvar(p1ut)) # Number of species
clr <- (1:(S+1))[-7] # Omits yellow
persp(p1ut, col = clr, label = TRUE, las = 1) # Perspective plot

Example 2; Fit an equal tolerances model. Less numerically fraught.
set.seed(1234)
p1et <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, Crow1positive = FALSE)

sort(deviance(p1et, history = TRUE)) # A history of all the iterations
if (deviance(p1et) > 1586) warning("suboptimal fit obtained")
S <- ncol(depvar(p1et)) # Number of species
clr <- (1:(S+1))[-7] # Omits yellow
persp(p1et, col = clr, label = TRUE, las = 1)

Example 3: A rank-2 equal tolerances CQO model with Poisson data
This example is numerically fraught... need I.toler = TRUE too.
set.seed(555)
p2 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, Crow1positive = FALSE,
I.toler = TRUE, Rank = 2, Bestof = 3, isd.latvar = c(2.1, 0.9))

sort(deviance(p2, history = TRUE)) # A history of all the iterations
if (deviance(p2) > 1127) warning("suboptimal fit obtained")

cqo 209

lvplot(p2, ellips = FALSE, label = TRUE, xlim = c(-3,4),
C = TRUE, Ccol = "brown", sites = TRUE, scol = "grey",
pcol = "blue", pch = "+", chull = TRUE, ccol = "grey")

Example 4: species packing model with presence/absence data
set.seed(2345)
n <- 200; p <- 5; S <- 5
mydata <- rcqo(n, p, S, fam = "binomial", hi.abundance = 4,

eq.tol = TRUE, es.opt = TRUE, eq.max = TRUE)
myform <- attr(mydata, "formula")
set.seed(1234)
b1et <- cqo(myform, binomialff(multiple.responses = TRUE, link = "clogloglink"),

data = mydata)
sort(deviance(b1et, history = TRUE)) # A history of all the iterations
lvplot(b1et, y = TRUE, lcol = 1:S, pch = 1:S, pcol = 1:S, las = 1)
Coef(b1et)

Compare the fitted model with the 'truth'
cbind(truth = attr(mydata, "concoefficients"), fitted = concoef(b1et))

Example 5: Plot the deviance residuals for diagnostic purposes
set.seed(1234)
p1et <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, eq.tol = TRUE, trace = FALSE)

sort(deviance(p1et, history = TRUE)) # A history of all the iterations
if (deviance(p1et) > 1586) warning("suboptimal fit obtained")
S <- ncol(depvar(p1et))
par(mfrow = c(3, 4))
for (ii in 1:S) {

tempdata <- data.frame(latvar1 = c(latvar(p1et)),
sppCounts = depvar(p1et)[, ii])

tempdata <- transform(tempdata, myOffset = -0.5 * latvar1^2)

For species ii, refit the model to get the deviance residuals
fit1 <- vglm(sppCounts ~ offset(myOffset) + latvar1, poissonff,

data = tempdata, trace = FALSE)

For checking: this should be 0
print("max(abs(c(Coef(p1et)@B1[1,ii],Coef(p1et)@A[ii,1])-coef(fit1)))")
print(max(abs(c(Coef(p1et)@B1[1,ii],Coef(p1et)@A[ii,1])-coef(fit1))))

Plot the deviance residuals
devresid <- resid(fit1, type = "deviance")
predvalues <- predict(fit1) + fit1@offset
ooo <- with(tempdata, order(latvar1))
plot(predvalues + devresid ~ latvar1, data = tempdata, col = "red",

xlab = "latvar1", ylab = "", main = colnames(depvar(p1et))[ii])
with(tempdata, lines(latvar1[ooo], predvalues[ooo], col = "blue"))

210 crashes

}

End(Not run)

crashes Crashes on New Zealand Roads in 2009

Description

A variety of reported crash data cross-classified by time (hour of the day) and day of the week,
accumulated over 2009. These include fatalities and injuries (by car), trucks, motor cycles, bicycles
and pedestrians. There are some alcohol-related data too.

Usage

data(crashi)
data(crashf)
data(crashtr)
data(crashmc)
data(crashbc)
data(crashp)
data(alcoff)
data(alclevels)

Format

Data frames with hourly times as rows and days of the week as columns. The alclevels dataset
has hourly times and alcohol levels.

Mon, Tue, Wed, Thu, Fri, Sat, Sun Day of the week.
0-30, 31-50, 51-80, 81-100, 101-120, 121-150, 151-200, 201-250, 251-300, 301-350, 350+ Blood al-

cohol level (milligrams alcohol per 100 millilitres of blood).

Details

Each cell is the aggregate number of crashes reported at each hour-day combination, over the 2009
calendar year. The rownames of each data frame is the start time (hourly from midnight onwards)
on a 24 hour clock, e.g., 21 means 9.00pm to 9.59pm.

For crashes, chrashi are the number of injuries by car, crashf are the number of fatalities by car
(not included in chrashi), crashtr are the number of crashes involving trucks, crashmc are the
number of crashes involving motorcyclists, crashbc are the number of crashes involving bicycles,
and crashp are the number of crashes involving pedestrians. For alcohol-related offences, alcoff
are the number of alcohol offenders from breath screening drivers, and alclevels are the blood
alcohol levels of fatally injured drivers.

Source

http://www.transport.govt.nz/research/Pages/Motor-Vehicle-Crashes-in-New-Zealand-2009.aspx.
Thanks to Warwick Goold and Alfian F. Hadi for assistance.

cratio 211

References

Motor Vehicles Crashes in New Zealand 2009; Statistical Statement Calendar Year 2009. Ministry
of Transport, NZ Government; Yearly Report 2010. ISSN: 1176-3949

See Also

rrvglm, rcim, grc.

Examples

Not run: plot(unlist(alcoff), type = "l", frame.plot = TRUE,
axes = FALSE, col = "blue", bty = "o",
main = "Alcoholic offenders on NZ roads, aggregated over 2009",
sub = "Vertical lines at midnight (purple) and noon (orange)",
xlab = "Day/hour", ylab = "Number of offenders")

axis(1, at = 1 + (0:6) * 24 + 12, labels = colnames(alcoff))
axis(2, las = 1)
axis(3:4, labels = FALSE, tick = FALSE)
abline(v = sort(1 + c((0:7) * 24, (0:6) * 24 + 12)), lty = "dashed",

col = c("purple", "orange"))
End(Not run)

Goodmans RC models
Not run:
fitgrc1 <- grc(alcoff) # Rank-1 model
fitgrc2 <- grc(alcoff, Rank = 2, Corner = FALSE, Uncor = TRUE)
Coef(fitgrc2)

End(Not run)
Not run: biplot(fitgrc2, scaleA = 2.3, Ccol = "blue", Acol = "orange",

Clabels = as.character(1:23), xlim = c(-1.3, 2.3),
ylim = c(-1.2, 1))

End(Not run)

cratio Ordinal Regression with Continuation Ratios

Description

Fits a continuation ratio logit/probit/cloglog/cauchit/... regression model to an ordered (preferably)
factor response.

Usage

cratio(link = "logitlink", parallel = FALSE, reverse = FALSE, zero = NULL,
whitespace = FALSE)

212 cratio

Arguments

link Link function applied to the M continuation ratio probabilities. See Links for
more choices.

parallel A logical, or formula specifying which terms have equal/unequal coefficients.

reverse Logical. By default, the continuation ratios used are ηj = logit(P [Y > j|Y ≥
j]) for j = 1, . . . ,M . If reverse is TRUE, then ηj = logit(P [Y < j + 1|Y ≤
j + 1]) will be used.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The values must be from the set {1,2,. . . ,M}. The
default value means none are modelled as intercept-only terms.

whitespace See CommonVGAMffArguments for information.

Details

In this help file the response Y is assumed to be a factor with ordered values 1, 2, . . . ,M + 1, so
that M is the number of linear/additive predictors ηj .

There are a number of definitions for the continuation ratio in the literature. To make life easier, in
the VGAM package, we use continuation ratios and stopping ratios (see sratio). Stopping ratios
deal with quantities such as logitlink(P[Y=j|Y>=j]).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

No check is made to verify that the response is ordinal if the response is a matrix; see ordered.

Note

The response should be either a matrix of counts (with row sums that are all positive), or a factor.
In both cases, the y slot returned by vglm/vgam/rrvglm is the matrix of counts.

For a nominal (unordered) factor response, the multinomial logit model (multinomial) is more
appropriate.

Here is an example of the usage of the parallel argument. If there are covariates x1, x2 and
x3, then parallel = TRUE ~ x1 + x2 -1 and parallel = FALSE ~ x3 are equivalent. This would
constrain the regression coefficients for x1 and x2 to be equal; those of the intercepts and x3 would
be different.

Author(s)

Thomas W. Yee

References

See sratio.

cumulative 213

See Also

sratio, acat, cumulative, multinomial, margeff, pneumo, logitlink, probitlink, clogloglink,
cauchitlink.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let,

cratio(parallel = TRUE), data = pneumo))
coef(fit, matrix = TRUE)
constraints(fit)
predict(fit)
predict(fit, untransform = TRUE)
margeff(fit)

cumulative Ordinal Regression with Cumulative Probabilities

Description

Fits a cumulative link regression model to a (preferably ordered) factor response.

Usage

cumulative(link = "logitlink", parallel = FALSE, reverse = FALSE,
multiple.responses = FALSE, whitespace = FALSE)

Arguments

link Link function applied to the J cumulative probabilities. See Links for more
choices, e.g., for the cumulative probitlink/clogloglink/cauchitlink/. . . models.

parallel A logical or formula specifying which terms have equal/unequal coefficients.
See below for more information about the parallelism assumption. The default
results in what some people call the generalized ordered logit model to be fitted.
If parallel = TRUE then it does not apply to the intercept.
The partial proportional odds model can be fitted by assigning this argument
something like parallel = TRUE ~ -1 + x3 + x5 so that there is one regression
coefficient for x3 and x5. Equivalently, setting parallel = FALSE ~ 1 + x2 + x4
means M regression coefficients for the intercept and x2 and x4. It is important
that the intercept is never parallel.

reverse Logical. By default, the cumulative probabilities used are P (Y ≤ 1), P (Y ≤
2), . . . , P (Y ≤ J). If reverse is TRUE then P (Y ≥ 2), P (Y ≥ 3), . . . ,
P (Y ≥ J + 1) are used.
This should be set to TRUE for link= gordlink, pordlink, nbordlink. For
these links the cutpoints must be an increasing sequence; if reverse = FALSE
for then the cutpoints must be an decreasing sequence.

214 cumulative

multiple.responses

Logical. Multiple responses? If TRUE then the input should be a matrix with
values 1, 2, . . . , L, where L = J + 1 is the number of levels. Each column
of the matrix is a response, i.e., multiple responses. A suitable matrix can be
obtained from Cut.

whitespace See CommonVGAMffArguments for information.

Details

In this help file the response Y is assumed to be a factor with ordered values 1, 2, . . . , J + 1. Hence
M is the number of linear/additive predictors ηj ; for cumulative() one has M = J .

This VGAM family function fits the class of cumulative link models to (hopefully) an ordinal re-
sponse. By default, the non-parallel cumulative logit model is fitted, i.e.,

ηj = logit(P [Y ≤ j])

where j = 1, 2, . . . ,M and the ηj are not constrained to be parallel. This is also known as
the non-proportional odds model. If the logit link is replaced by a complementary log-log link
(clogloglink) then this is known as the proportional-hazards model.

In almost all the literature, the constraint matrices associated with this family of models are known.
For example, setting parallel = TRUE will make all constraint matrices (except for the intercept)
equal to a vector of M 1’s. If the constraint matrices are equal, unknown and to be estimated, then
this can be achieved by fitting the model as a reduced-rank vector generalized linear model (RR-
VGLM; see rrvglm). Currently, reduced-rank vector generalized additive models (RR-VGAMs)
have not been implemented here.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

No check is made to verify that the response is ordinal if the response is a matrix; see ordered.

Note

The response should be either a matrix of counts (with row sums that are all positive), or a fac-
tor. In both cases, the y slot returned by vglm/vgam/rrvglm is the matrix of counts. The formula
must contain an intercept term. Other VGAM family functions for an ordinal response include
acat, cratio, sratio. For a nominal (unordered) factor response, the multinomial logit model
(multinomial) is more appropriate.

With the logit link, setting parallel = TRUE will fit a proportional odds model. Note that the
TRUE here does not apply to the intercept term. In practice, the validity of the proportional odds
assumption needs to be checked, e.g., by a likelihood ratio test (LRT). If acceptable on the data,
then numerical problems are less likely to occur during the fitting, and there are less parameters.
Numerical problems occur when the linear/additive predictors cross, which results in probabilities
outside of (0, 1); setting parallel = TRUE will help avoid this problem.

cumulative 215

Here is an example of the usage of the parallel argument. If there are covariates x2, x3 and
x4, then parallel = TRUE ~ x2 + x3 -1 and parallel = FALSE ~ x4 are equivalent. This would
constrain the regression coefficients for x2 and x3 to be equal; those of the intercepts and x4 would
be different.

If the data is inputted in long format (not wide format, as in pneumo below) and the self-starting
initial values are not good enough then try using mustart, coefstart and/or etatstart. See the
example below.

To fit the proportional odds model one can use the VGAM family function propodds. Note that
propodds(reverse) is equivalent to cumulative(parallel = TRUE, reverse = reverse) (which
is equivalent to cumulative(parallel = TRUE, reverse = reverse, link = "logitlink")). It is
for convenience only. A call to cumulative() is preferred since it reminds the user that a paral-
lelism assumption is made, as well as being a lot more flexible.

Author(s)

Thomas W. Yee

References

Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Hoboken, NJ, USA: Wiley.

Agresti, A. (2010). Analysis of Ordinal Categorical Data, 2nd ed. Hoboken, NJ, USA: Wiley.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

Tutz, G. (2012). Regression for Categorical Data, Cambridge: Cambridge University Press.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1–34. doi:10.18637/jss.v032.i10.

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

See Also

propodds, R2latvar, ordsup, prplot, margeff, acat, cratio, sratio, multinomial, CommonVGAMffArguments,
pneumo, Links, hdeff.vglm, logitlink, probitlink, clogloglink, cauchitlink, gordlink,
pordlink, nbordlink, logistic1.

Examples

Fit the proportional odds model, p.179, in McCullagh and Nelder (1989)
pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = TRUE, reverse = TRUE), data = pneumo))
depvar(fit) # Sample proportions (good technique)
fit@y # Sample proportions (bad technique)
weights(fit, type = "prior") # Number of observations
coef(fit, matrix = TRUE)
constraints(fit) # Constraint matrices
apply(fitted(fit), 1, which.max) # Classification
apply(predict(fit, newdata = pneumo, type = "response"),

https://doi.org/10.18637/jss.v032.i10

216 Dagum

1, which.max) # Classification
R2latvar(fit)

Check that the model is linear in let ----------------------
fit2 <- vgam(cbind(normal, mild, severe) ~ s(let, df = 2),

cumulative(reverse = TRUE), data = pneumo)
Not run: plot(fit2, se = TRUE, overlay = TRUE, lcol = 1:2, scol = 1:2)

Check the proportional odds assumption with a LRT ----------
(fit3 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = FALSE, reverse = TRUE), data = pneumo))
pchisq(2 * (logLik(fit3) - logLik(fit)),

df = length(coef(fit3)) - length(coef(fit)), lower.tail = FALSE)
lrtest(fit3, fit) # More elegant

A factor() version of fit ----------------------------------
This is in long format (cf. wide format above)
Nobs <- round(depvar(fit) * c(weights(fit, type = "prior")))
sumNobs <- colSums(Nobs) # apply(Nobs, 2, sum)

pneumo.long <-
data.frame(symptoms = ordered(rep(rep(colnames(Nobs), nrow(Nobs)),

times = c(t(Nobs))),
levels = colnames(Nobs)),

let = rep(rep(with(pneumo, let), each = ncol(Nobs)),
times = c(t(Nobs))))

with(pneumo.long, table(let, symptoms)) # Should be same as pneumo

(fit.long1 <- vglm(symptoms ~ let, data = pneumo.long, trace = TRUE,
cumulative(parallel = TRUE, reverse = TRUE)))

coef(fit.long1, matrix = TRUE) # Should be as coef(fit, matrix = TRUE)
Could try using mustart if fit.long1 failed to converge.
mymustart <- matrix(sumNobs / sum(sumNobs),

nrow(pneumo.long), ncol(Nobs), byrow = TRUE)
fit.long2 <- vglm(symptoms ~ let, mustart = mymustart,

cumulative(parallel = TRUE, reverse = TRUE),
data = pneumo.long, trace = TRUE)

coef(fit.long2, matrix = TRUE) # Should be as coef(fit, matrix = TRUE)

Dagum The Dagum Distribution

Description

Density, distribution function, quantile function and random generation for the Dagum distribution
with shape parameters a and p, and scale parameter scale.

Dagum 217

Usage

ddagum(x, scale = 1, shape1.a, shape2.p, log = FALSE)
pdagum(q, scale = 1, shape1.a, shape2.p, lower.tail = TRUE,

log.p = FALSE)
qdagum(p, scale = 1, shape1.a, shape2.p, lower.tail = TRUE,

log.p = FALSE)
rdagum(n, scale = 1, shape1.a, shape2.p)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

shape1.a, shape2.p

shape parameters.

scale scale parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See dagum, which is the VGAM family function for estimating the parameters by maximum likeli-
hood estimation.

Value

ddagum gives the density, pdagum gives the distribution function, qdagum gives the quantile function,
and rdagum generates random deviates.

Note

The Dagum distribution is a special case of the 4-parameter generalized beta II distribution.

Author(s)

T. W. Yee and Kai Huang

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

dagum, genbetaII.

218 dagum

Examples

probs <- seq(0.1, 0.9, by = 0.1)
shape1.a <- 1; shape2.p <- 2
Should be 0:
max(abs(pdagum(qdagum(probs, shape1.a = shape1.a, shape2.p =

shape2.p), shape1.a = shape1.a, shape2.p = shape2.p) - probs))

Not run: par(mfrow = c(1, 2))
x <- seq(-0.01, 5, len = 401)
plot(x, dexp(x), type = "l", col = "black",

ylab = "", las = 1, ylim = c(0, 1),
main = "Black is std exponential, others are ddagum(x, ...)")

lines(x, ddagum(x, shape1.a = shape1.a, shape2.p = 1), col = "orange")
lines(x, ddagum(x, shape1.a = shape1.a, shape2.p = 2), col = "blue")
lines(x, ddagum(x, shape1.a = shape1.a, shape2.p = 5), col = "green")
legend("topright", col = c("orange","blue","green"),

lty = rep(1, len = 3), legend = paste("shape1.a =", shape1.a,
", shape2.p =", c(1, 2, 5)))

plot(x, pexp(x), type = "l", col = "black", ylab = "", las = 1,
main = "Black is std exponential, others are pdagum(x, ...)")

lines(x, pdagum(x, shape1.a = shape1.a, shape2.p = 1), col = "orange")
lines(x, pdagum(x, shape1.a = shape1.a, shape2.p = 2), col = "blue")
lines(x, pdagum(x, shape1.a = shape1.a, shape2.p = 5), col = "green")
legend("bottomright", col = c("orange", "blue", "green"),

lty = rep(1, len = 3), legend = paste("shape1.a =", shape1.a,
", shape2.p =", c(1, 2, 5)))

End(Not run)

dagum Dagum Distribution Family Function

Description

Maximum likelihood estimation of the 3-parameter Dagum distribution.

Usage

dagum(lscale = "loglink", lshape1.a = "loglink", lshape2.p =
"loglink", iscale = NULL, ishape1.a = NULL, ishape2.p =
NULL, imethod = 1, lss = TRUE, gscale = exp(-5:5), gshape1.a
= seq(0.75, 4, by = 0.25), gshape2.p = exp(-5:5), probs.y =
c(0.25, 0.5, 0.75), zero = "shape")

Arguments

lss See CommonVGAMffArguments for important information.

dagum 219

lshape1.a, lscale, lshape2.p

Parameter link functions applied to the (positive) parameters a, scale, and p.
See Links for more choices.

iscale, ishape1.a, ishape2.p, imethod, zero

See CommonVGAMffArguments for information. For imethod = 2 a good initial
value for ishape2.p is needed to obtain a good estimate for the other parameter.

gscale, gshape1.a, gshape2.p

See CommonVGAMffArguments for information.

probs.y See CommonVGAMffArguments for information.

Details

The 3-parameter Dagum distribution is the 4-parameter generalized beta II distribution with shape
parameter q = 1. It is known under various other names, such as the Burr III, inverse Burr, beta-
K, and 3-parameter kappa distribution. It can be considered a generalized log-logistic distribution.
Some distributions which are special cases of the 3-parameter Dagum are the inverse Lomax (a =
1), Fisk (p = 1), and the inverse paralogistic (a = p). More details can be found in Kleiber and
Kotz (2003).

The Dagum distribution has a cumulative distribution function

F (y) = [1 + (y/b)−a]−p

which leads to a probability density function

f(y) = apyap−1/[bap{1 + (y/b)a}p+1]

for a > 0, b > 0, p > 0, y ≥ 0. Here, b is the scale parameter scale, and the others are shape
parameters. The mean is

E(Y) = bΓ(p+ 1/a) Γ(1− 1/a)/Γ(p)

provided −ap < 1 < a; these are returned as the fitted values. This family function handles
multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

See the notes in genbetaII.

From Kleiber and Kotz (2003), the MLE is rather sensitive to isolated observations located suf-
ficiently far from the majority of the data. Reliable estimation of the scale parameter require
n > 7000, while estimates for a and p can be considered unbiased for n > 2000 or 3000.

Author(s)

T. W. Yee

220 dAR1

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Dagum, genbetaII, betaII, sinmad, fisk, inv.lomax, lomax, paralogistic, inv.paralogistic,
simulate.vlm.

Examples

ddata <- data.frame(y = rdagum(n = 3000, scale = exp(2),
shape1 = exp(1), shape2 = exp(1)))

fit <- vglm(y ~ 1, dagum(lss = FALSE), data = ddata, trace = TRUE)
fit <- vglm(y ~ 1, dagum(lss = FALSE, ishape1.a = exp(1)),

data = ddata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

dAR1 The AR-1 Autoregressive Process

Description

Density for the AR-1 model.

Usage

dAR1(x, drift = 0, var.error = 1, ARcoef1 = 0.0,
type.likelihood = c("exact", "conditional"), log = FALSE)

Arguments

x, vector of quantiles.

drift the scaled mean (also known as the drift parameter), µ∗. Note that the mean is
µ∗/(1− ρ). The default corresponds to observations that have mean 0.

log Logical. If TRUE then the logarithm of the density is returned.

type.likelihood, var.error, ARcoef1

See AR1. The argument ARcoef1 is ρ. The argument var.error is the variance
of the i.i.d. random noise, i.e., σ2. If type.likelihood = "conditional" then
the first element or row of the result is currently assigned NA—this is because
the density of the first observation is effectively ignored.

deermice 221

Details

Most of the background to this function is given in AR1. All the arguments are converted into
matrices, and then all their dimensions are obtained. They are then coerced into the same size: the
number of rows is the maximum of all the single rows, and ditto for the number of columns.

Value

dAR1 gives the density.

Author(s)

T. W. Yee and Victor Miranda

See Also

AR1.

Examples

nn <- 100; set.seed(1)
tdata <- data.frame(index = 1:nn,

TS1 = arima.sim(nn, model = list(ar = -0.50),
sd = exp(1)))

fit1 <- vglm(TS1 ~ 1, AR1, data = tdata, trace = TRUE)
rhobitlink(-0.5)
coef(fit1, matrix = TRUE)
(Cfit1 <- Coef(fit1))
summary(fit1) # SEs are useful to know
logLik(fit1)
sum(dAR1(depvar(fit1), drift = Cfit1[1], var.error = (Cfit1[2])^2,

ARcoef1 = Cfit1[3], log = TRUE))

fit2 <- vglm(TS1 ~ 1, AR1(type.likelihood = "cond"), data = tdata, trace = TRUE)
(Cfit2 <- Coef(fit2)) # Okay for intercept-only models
logLik(fit2)
head(keep <- dAR1(depvar(fit2), drift = Cfit2[1], var.error = (Cfit2[2])^2,

ARcoef1 = Cfit2[3], type.likelihood = "cond", log = TRUE))
sum(keep[-1])

deermice Captures of Peromyscus maniculatus (Also Known as Deer Mice).

Description

Captures of Peromyscus maniculatus collected at East Stuart Gulch, Colorado, USA.

Usage

data(deermice)

222 deplot.lmscreg

Format

The format is a data frame.

Details

Peromyscus maniculatus is a rodent native to North America. The deer mouse is small in size, only
about 8 to 10 cm long, not counting the length of the tail.

Originally, the columns of this data frame represent the sex (m or f), the ages (y: young, sa: semi-
adult, a: adult), the weights in grams, and the capture histories of 38 individuals over 6 trapping
occasions (1: captured, 0: not captured).

The data set was collected by V. Reid and distributed with the CAPTURE program of Otis et al.
(1978).

deermice has 38 deermice whereas Perom had 36 deermice (Perom has been withdrawn.) In
deermice the two semi-adults have been classified as adults. The sex variable has 1 for female,
and 0 for male.

References

Huggins, R. M. (1991). Some practical aspects of a conditional likelihood approach to capture
experiments. Biometrics, 47, 725–732.

Otis, D. L. et al. (1978). Statistical inference from capture data on closed animal populations,
Wildlife Monographs, 62, 3–135.

See Also

posbernoulli.b, posbernoulli.t, fill1.

Examples

head(deermice)
Not run:
fit1 <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + age,

posbernoulli.t(parallel.t = TRUE), deermice, trace = TRUE)
coef(fit1)
coef(fit1, matrix = TRUE)

End(Not run)

deplot.lmscreg Density Plot for LMS Quantile Regression

Description

Plots a probability density function associated with a LMS quantile regression.

deplot.lmscreg 223

Usage

deplot.lmscreg(object, newdata = NULL, x0, y.arg, show.plot =
TRUE, ...)

Arguments

object A VGAM quantile regression model, i.e., an object produced by modelling func-
tions such as vglm and vgam with a family function beginning with "lms.", e.g.,
lms.yjn.

newdata Optional data frame containing secondary variables such as sex. It should have
a maximum of one row. The default is to use the original data.

x0 Numeric. The value of the primary variable at which to make the ‘slice’.

y.arg Numerical vector. The values of the response variable at which to evaluate the
density. This should be a grid that is fine enough to ensure the plotted curves are
smooth.

show.plot Logical. Plot it? If FALSE no plot will be done.

... Graphical parameter that are passed into plotdeplot.lmscreg.

Details

This function calls, e.g., deplot.lms.yjn in order to compute the density function.

Value

The original object but with a list placed in the slot post, called @post$deplot. The list has
components

newdata The argument newdata above, or a one-row data frame constructed out of the
x0 argument.

y The argument y.arg above.

density Vector of the density function values evaluated at y.arg.

Note

plotdeplot.lmscreg actually does the plotting.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

224 depvar

See Also

plotdeplot.lmscreg, qtplot.lmscreg, lms.bcn, lms.bcg, lms.yjn.

Examples

Not run:
fit <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero = 1), bmi.nz)
ygrid <- seq(15, 43, by = 0.25)
deplot(fit, x0 = 20, y = ygrid, xlab = "BMI", col = "green", llwd = 2,

main = "BMI distribution at ages 20 (green), 40 (blue), 60 (red)")
deplot(fit, x0 = 40, y = ygrid, add = TRUE, col = "blue", llwd = 2)
deplot(fit, x0 = 60, y = ygrid, add = TRUE, col = "red", llwd = 2) -> a

names(a@post$deplot)
a@post$deplot$newdata
head(a@post$deplot$y)
head(a@post$deplot$density)

End(Not run)

depvar Response Variable Extracted

Description

A generic function that extracts the response/dependent variable from objects.

Usage

depvar(object, ...)

Arguments

object An object that has some response/dependent variable.

... Other arguments fed into the specific methods function of the model. In par-
ticular, sometimes type = c("lm", "lm2") is available, in which case the first
one is chosen if the user does not input a value. The latter value corresponds to
argument form2, and sometimes a response for that is optional.

Details

By default this function is preferred to calling fit@y, say.

Value

The response/dependent variable, usually as a matrix or vector.

dextlogF 225

Author(s)

Thomas W. Yee

See Also

model.matrix, vglm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo))
fit@y # Sample proportions (not recommended)
depvar(fit) # Better than using fit@y
weights(fit, type = "prior") # Number of observations

dextlogF Extended log-F Distribution

Description

Density for the extended log-F distribution.

Usage

dextlogF(x, lambda, tau, location = 0, scale = 1, log = FALSE)

Arguments

x Vector of quantiles.

lambda, tau See extlogF1.
location, scale

See extlogF1.

log If TRUE then the log density is returned, else the density.

Details

The details are given in extlogF1.

Value

dextlogF gives the density.

Author(s)

T. W. Yee

226 df.residual

See Also

extlogF1, dalap.

Examples

Not run: x <- seq(-2, 8, by = 0.1); mytau <- 0.25; mylambda <- 0.2
plot(x, dextlogF(x, mylambda, tau = mytau), type = "l",

las = 1, col = "blue", ylab = "PDF (log-scale)", log = "y",
main = "Extended log-F density function is blue",
sub = "Asymmetric Laplace is orange dashed")

lines(x, dalap(x, tau = mytau, scale = 3.5), col = "orange", lty = 2)
abline(v = 0, col = "gray", lty = 2)
End(Not run)

df.residual Residual Degrees-of-Freedom

Description

Returns the residual degrees-of-freedom extracted from a fitted VGLM object.

Usage

df.residual_vlm(object, type = c("vlm", "lm"), ...)

Arguments

object an object for which the degrees-of-freedom are desired, e.g., a vglm object.

type the type of residual degrees-of-freedom wanted. In some applications the ’usual’
LM-type value may be more appropriate. The default is the first choice.

... additional optional arguments.

Details

When a VGLM is fitted, a large (VLM) generalized least squares (GLS) fit is done at each IRLS
iteration. To do this, an ordinary least squares (OLS) fit is performed by transforming the GLS using
Cholesky factors. The number of rows is M times the ‘ordinary’ number of rows of the LM-type
model: nM . Here, M is the number of linear/additive predictors. So the formula for the VLM-type
residual degrees-of-freedom is nM − p∗ where p∗ is the number of columns of the ‘big’ VLM
matrix. The formula for the LM-type residual degrees-of-freedom is n− pj where pj is the number
of columns of the ‘ordinary’ LM matrix corresponding to the jth linear/additive predictor.

Value

The value of the residual degrees-of-freedom extracted from the object. When type = "vlm" this is
a single integer, and when type = "lm" this is a M -vector of integers.

dgaitdplot 227

See Also

vglm, deviance, lm, anova.vglm,

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo))
head(model.matrix(fit, type = "vlm"))
head(model.matrix(fit, type = "lm"))

df.residual(fit, type = "vlm") # n * M - p_VLM
nobs(fit, type = "vlm") # n * M
nvar(fit, type = "vlm") # p_VLM

df.residual(fit, type = "lm") # n - p_LM(j)
nobs(fit, type = "lm") # n
nvar(fit, type = "lm") # p_LM
nvar_vlm(fit, type = "lm") # p_LM(j) (<= p_LM elementwise)

dgaitdplot Plotting the GAITD Combo Density

Description

Plots a 1- or 2-parameter GAITD combo probability mass function.

Usage

dgaitdplot(theta.p, fam = "pois", a.mix = NULL, i.mix = NULL,
d.mix = NULL, a.mlm = NULL, i.mlm = NULL,
d.mlm = NULL, truncate = NULL, max.support = Inf,
pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
theta.a = theta.p, theta.i = theta.p, theta.d = theta.p,
deflation = FALSE, plot.it = TRUE, new.plot = TRUE,
offset.x = ifelse(new.plot, 0, 0.25), type.plot = "h",
xlim = c(0, min(100, max.support + 2)),
ylim = NULL, xlab = "", ylab = "Probability", main = "",
cex.main = 1.2, posn.main = NULL,
all.col = NULL, all.lty = NULL, all.lwd = NULL,
lty.p = "solid", lty.a.mix = "longdash", lty.a.mlm = "longdash",
lty.i.mix = "dashed", lty.i.mlm = "dashed",
lty.d.mix = "solid", lty.d.mlm = "solid", lty.d.dip = "dashed",
col.p = "pink2",
col.a.mix = artichoke.col, col.a.mlm = asparagus.col,
col.i.mix = indigo.col, col.i.mlm = iris.col,
col.d.mix = deer.col, col.d.mlm = dirt.col, col.d.dip = desire.col,

228 dgaitdplot

col.t = turquoise.col, cex.p = 1, lwd.p = NULL, lwd.a = NULL,
lwd.i = NULL, lwd.d = NULL, iontop = TRUE, dontop = TRUE,
las = 0, lend = "round", axes.x = TRUE, axes.y = TRUE,
Plot.trunc = TRUE, cex.t = 1, pch.t = 1,
baseparams.argnames = NULL, nparams = 1, flip.args = FALSE, ...)

Arguments

theta.p Numeric, usually scalar but may have length 2. This matches with, e.g., lambda.p
for Gaitdpois. A length 2 example is c(size.p, munb.p) for Gaitdnbinom, in
which case fam = "nbinom". Another length 2 example is c(mean.p, dispind.p)
for Gaitgenpois1, in which case fam = "genpois1".

fam Character, paste0("dgait", fam) should be a d-type function returning the
PMF. The default is for the GAITD Poisson combo.

a.mix, i.mix, a.mlm, i.mlm

See Gaitdpois and gaitdpoisson.

d.mix, d.mlm See Gaitdpois and gaitdpoisson.
truncate, max.support

See Gaitdpois and gaitdpoisson.
pobs.mix, pobs.mlm, byrow.aid

See Gaitdpois and gaitdpoisson.
pstr.mix, pstr.mlm, pdip.mix, pdip.mlm

See Gaitdpois and gaitdpoisson.
theta.a, theta.i, theta.d

Similar to theta.p, and they should have the same length too.

deflation Logical. Plot the deflation (dip) probabilities?

plot.it Logical. Plot the PMF?
new.plot, offset.x

If new.plot then plot is called. If multiple plots are desired then use offset.x
to shift the lines.

xlim, ylim, xlab, ylab

See par and plot.default. Argument xlim should be integer-valued.
main, cex.main, posn.main

Character, size and position of main for the title. See title, par and plot.default.
The position is used if it is a 2-vector.

all.col, all.lty, all.lwd

These arguments allow all the colours, line types and line widths arguments to
be assigned to these values, i.e., so that they are the same for all values of the
support. For example, if all.lwd = 2 then this sets lwd.p, lwd.a, lwd.i and
lwd.d all equal to 2.

lty.p, lty.a.mix, lty.a.mlm, lty.i.mix, lty.i.mlm

Line type for parent, altered and inflated. See par and plot.default.
col.p, col.a.mix, col.a.mlm, col.i.mix, col.i.mlm

Line colour for parent (nonspecial), altered, inflated, truncated and deflated val-
ues. See par and plot.default. Roughly, by default and currently, the parent is
pink-like, the altered are greenish, the inflated are purplish/violet, the truncated

dgaitdplot 229

are light blue, and the deflated are brownish with the dip probabilities being
reddish. The proper colour names are similar to being acrostic. For each opera-
tor, the colours of "mix" vs "mlm" are similar but different—this is intentional.
Warning: the default colours might change, depending on style!

lty.d.mix, lty.d.mlm, lty.d.dip

Similar to above. Used when deflation = TRUE.
col.d.mix, col.d.mlm, col.d.dip

Similar to above. Used when deflation = TRUE. The website https://www.
spycolor.com was used to choose some of the default colours; the first two are
also called "dirt" and "deer" respectively, which are both brownish.

col.t Point colour for truncated values, the default is "tan".
type.plot, cex.p

The former matches ’type’ argument in plot.default. The latter is the size of
the point if type.plot = "p" or type.plot = "b", etc.

lwd.p, lwd.a, lwd.i, lwd.d

Line width for parent, altered and inflated. See par and plot.default. By
default par()\$lwd is used for all of them.

las, lend See par.

iontop, dontop Logicals. Draw the inflated and deflated bars on top? The default is to draw
the spikes on top, but if FALSE then the spikes are drawn from the bottom—this
makes it easier to see their distribution. Likewise, if deflation = TRUE then
dontop is used to position the deflation (dip) probabilities.

axes.x, axes.y Logical. Plot axes? See par and plot.default.
Plot.trunc, cex.t, pch.t

Logical. Plot the truncated values? If so, then specify the size and plotting
character. See par and plot.default.

baseparams.argnames

Character string specifying the argument name for the generic parameter theta,
e.g., "lambda" for gaitdpoisson, By appending .p, there is an argument called
lambda.p in dgaitdpois. Another example is for gaitdlog: "shape" ap-
pended with .p means that dgaitdlog should have an argument called shape.p.
This argument is optional and increases the reliability of the do.call call inter-
nally.

nparams, flip.args

Not for use by the user. It is used internally to handle the NBD.

... Currently unused but there is provision for passing graphical arguments in in the
future; see par.

Details

This is meant to be a crude function to plot the PMF of the GAITD combo model. Some flexibility
is offered via many graphical arguments, but there are still many improvements that could be done.

Value

A list is returned invisibly. The components are:

https://www.spycolor.com
https://www.spycolor.com

230 dhuber

x The integer values between the values of xlim.

pmf.z The value of the PMF, by calling the d-type function with all the arguments fed
in.

sc.parent The same level as the scaled parent distribution. Thus for inflated values, the
value where the spikes begin. And for deflated values, the value at the top of
the dips. This is a convenient way to obtain them as it is quite cumbersome
to compute them manually. For any nonspecial value, such as non-inflated and
non-deflated values, they are equal to pmf.z.

unsc.parent Unscaled parent distribution. If there is no alteration, inflation, deflation and
truncation then this is the basic PMF stipulated by the parent distribution only.
Usually this is FYI only.

Note

This utility function may change a lot in the future.

Author(s)

T. W. Yee.

See Also

plotdgaitd, spikeplot, meangaitd, Gaitdpois, gaitdpoisson, Gaitdnbinom, multilogitlink.

Examples

Not run: # This might not work because genpois1 is elsewhere...
i.mix <- seq(0, 25, by = 5)
mean.p <- 10
dispind.p <- 8^2 / mean.p # Var(Y) = dispind.p * mean.p
dgaitdplot(c(mean.p, dispind.p), fam = "genpois1",

a.mix = i.mix + 1, i.mix = i.mix, max.support = 33, lwd.i = 2,
pobs.mix = 0.1, pstr.mix = 0.1, lwd.p = 2, lwd.a = 2)

End(Not run)

dhuber Huber’s Least Favourable Distribution

Description

Density, distribution function, quantile function and random generation for Huber’s least favourable
distribution, see Huber and Ronchetti (2009).

dhuber 231

Usage

dhuber(x, k = 0.862, mu = 0, sigma = 1, log = FALSE)
edhuber(x, k = 0.862, mu = 0, sigma = 1, log = FALSE)
rhuber(n, k = 0.862, mu = 0, sigma = 1)
qhuber(p, k = 0.862, mu = 0, sigma = 1, lower.tail = TRUE,

log.p = FALSE)
phuber(q, k = 0.862, mu = 0, sigma = 1, lower.tail = TRUE,

log.p = FALSE)

Arguments

x, q numeric vector, vector of quantiles.

p vector of probabilities.

n number of random values to be generated. If length(n) > 1 then the length is
taken to be the number required.

k numeric. Borderline value of central Gaussian part of the distribution. This is
known as the tuning constant, and should be positive. For example, k = 0.862
refers to a 20% contamination neighborhood of the Gaussian distribution. If k =
1.40 then this is 5% contamination.

mu numeric. distribution mean.

sigma numeric. Distribution scale (sigma = 1 defines the distribution in standard form,
with standard Gaussian centre).

log Logical. If log = TRUE then the logarithm of the result is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

Details are given in huber2, the VGAM family function for estimating the parameters mu and
sigma.

Value

dhuber gives out a vector of density values.

edhuber gives out a list with components val (density values) and eps (contamination proportion).

rhuber gives out a vector of random numbers generated by Huber’s least favourable distribution.

phuber gives the distribution function, qhuber gives the quantile function.

Author(s)

Christian Hennig wrote [d,ed,r]huber() (from smoothmest) and slight modifications were made
by T. W. Yee to replace looping by vectorization and addition of the log argument. Arash Ardalan
wrote [pq]huber(), and two arguments for these were implemented by Kai Huang. This helpfile
was adapted from smoothmest.

232 Diffzeta

See Also

huber2.

Examples

set.seed(123456)
edhuber(1:5, k = 1.5)
rhuber(5)

Not run: mu <- 3; xx <- seq(-2, 7, len = 100) # Plot CDF and PDF
plot(xx, dhuber(xx, mu = mu), type = "l", col = "blue", las = 1,

main = "blue is density, orange is the CDF", ylab = "",
sub = "Purple lines are the 10,20,...,90 percentiles",
ylim = 0:1)

abline(h = 0, col = "blue", lty = 2)
lines(xx, phuber(xx, mu = mu), type = "l", col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qhuber(probs, mu = mu)
lines(Q, dhuber(Q, mu = mu), col = "purple", lty = 3, type = "h")
lines(Q, phuber(Q, mu = mu), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
phuber(Q, mu = mu) - probs # Should be all 0s

End(Not run)

Diffzeta Differenced Zeta Distribution

Description

Density, distribution function, quantile function, and random generation for the differenced zeta
distribution.

Usage

ddiffzeta(x, shape, start = 1, log = FALSE)
pdiffzeta(q, shape, start = 1, lower.tail = TRUE)
qdiffzeta(p, shape, start = 1)
rdiffzeta(n, shape, start = 1)

Arguments

x, q, p, n Same as in runif.

shape, start Details at diffzeta.
log, lower.tail

Same as in runif.

diffzeta 233

Details

This distribution appears to work well on the distribution of English words in such texts. Some
more details are given in diffzeta.

Value

ddiffzeta gives the density, pdiffzeta gives the distribution function, qdiffzeta gives the quan-
tile function, and rdiffzeta generates random deviates.

Note

Given some response data, the VGAM family function diffzeta estimates the parameter shape.

Function pdiffzeta() suffers from the problems that plog sometimes has, i.e., when p is very
close to 1.

Author(s)

T. W. Yee

See Also

diffzeta, zetaff, zipf, Oizeta.

Examples

ddiffzeta(1:20, 0.5, start = 2)
rdiffzeta(20, 0.5)

Not run: shape <- 0.8; x <- 1:10
plot(x, ddiffzeta(x, sh = shape), type = "h", ylim = 0:1, las = 1,

sub = "shape=0.8", col = "blue", ylab = "Probability",
main = "Differenced zeta distribution: blue=PMF; orange=CDF")

lines(x + 0.1, pdiffzeta(x, shape = shape), col = "orange",
lty = 3, type = "h")

End(Not run)

diffzeta Differenced Zeta Distribution Family Function

Description

Estimates the parameter of the differenced zeta distribution.

Usage

diffzeta(start = 1, lshape = "loglink", ishape = NULL)

234 diffzeta

Arguments

lshape, ishape Same as zetaff.

start Smallest value of the support of the distribution. Must be a positive integer.

Details

The PMF is

P (Y = y) = (a/y)s − (a/(1 + y))s, s > 0, y = a, a+ 1, . . . ,

where s is the positive shape parameter, and a is start. According to Moreno-Sanchez et al. (2016),
this model fits quite well to about 40 percent of all the English books in the Project Gutenberg data
base (about 30,000 texts). Multiple responses are handled.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Author(s)

T. W. Yee

References

Moreno-Sanchez, I., Font-Clos, F. and Corral, A. (2016). Large-Scale Analysis of Zipf’s Law in
English Texts, PLoS ONE, 11(1), 1–19.

See Also

Diffzeta, zetaff, zeta, zipf, zipf.

Examples

odata <- data.frame(x2 = runif(nn <- 1000)) # Artificial data
odata <- transform(odata, shape = loglink(-0.25 + x2, inv = TRUE))
odata <- transform(odata, y1 = rdiffzeta(nn, shape))
with(odata, table(y1))
ofit <- vglm(y1 ~ x2, diffzeta, odata, trace = TRUE)
coef(ofit, matrix = TRUE)

dirichlet 235

dirichlet Fitting a Dirichlet Distribution

Description

Fits a Dirichlet distribution to a matrix of compositions.

Usage

dirichlet(link = "loglink", parallel = FALSE, zero = NULL,
imethod = 1)

Arguments

link Link function applied to each of the M (positive) shape parameters αj . See
Links for more choices. The default gives ηj = log(αj).

parallel, zero, imethod

See CommonVGAMffArguments for more information.

Details

In this help file the response is assumed to be a M -column matrix with positive values and whose
rows each sum to unity. Such data can be thought of as compositional data. There are M lin-
ear/additive predictors ηj .

The Dirichlet distribution is commonly used to model compositional data, including applications in
genetics. Suppose (Y1, . . . , YM)T is the response. Then it has a Dirichlet distribution if (Y1, . . . , YM−1)T

has density
Γ(α+)∏M
j=1 Γ(αj)

M∏
j=1

y
αj−1
j

where α+ = α1 + · · ·+ αM , αj > 0, and the density is defined on the unit simplex

∆M =

(y1, . . . , yM)T : y1 > 0, . . . , yM > 0,

M∑
j=1

yj = 1

 .

One has E(Yj) = αj/α+, which are returned as the fitted values. For this distribution Fisher
scoring corresponds to Newton-Raphson.

The Dirichlet distribution can be motivated by considering the random variables (G1, . . . , GM)T

which are each independent and identically distributed as a gamma distribution with density f(gj) =

g
αj−1
j e−gj/Γ(αj). Then the Dirichlet distribution arises when Yj = Gj/(G1 + · · ·+GM).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

When fitted, the fitted.values slot of the object contains the M -column matrix of means.

236 dirmul.old

Note

The response should be a matrix of positive values whose rows each sum to unity. Similar to this is
count data, where probably a multinomial logit model (multinomial) may be appropriate. Another
similar distribution to the Dirichlet is the Dirichlet-multinomial (see dirmultinomial).

Author(s)

Thomas W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

rdiric, dirmultinomial, multinomial, simplex.

Examples

ddata <- data.frame(rdiric(1000,
shape = exp(c(y1 = -1, y2 = 1, y3 = 0))))

fit <- vglm(cbind(y1, y2, y3) ~ 1, dirichlet,
data = ddata, trace = TRUE, crit = "coef")

Coef(fit)
coef(fit, matrix = TRUE)
head(fitted(fit))

dirmul.old Fitting a Dirichlet-Multinomial Distribution

Description

Fits a Dirichlet-multinomial distribution to a matrix of non-negative integers.

Usage

dirmul.old(link = "loglink", ialpha = 0.01, parallel = FALSE,
zero = NULL)

dirmul.old 237

Arguments

link Link function applied to each of the M (positive) shape parameters αj for j =
1, . . . ,M . See Links for more choices. Here, M is the number of columns of
the response matrix.

ialpha Numeric vector. Initial values for the alpha vector. Must be positive. Recycled
to length M .

parallel A logical, or formula specifying which terms have equal/unequal coefficients.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The values must be from the set {1,2,. . . ,M}.

Details

The Dirichlet-multinomial distribution, which is somewhat similar to a Dirichlet distribution, has
probability function

P (Y1 = y1, . . . , YM = yM) =

(
2y∗

y1, . . . , yM

)
Γ(α+)

Γ(2y∗ + α+)

M∏
j=1

Γ(yj + αj)

Γ(αj)

for αj > 0, α+ = α1 + · · · + αM , and 2y∗ = y1 + · · · + yM . Here,
(
a
b

)
means “a choose b” and

refers to combinations (see choose). The (posterior) mean is

E(Yj) = (yj + αj)/(2y∗ + α+)

for j = 1, . . . ,M , and these are returned as the fitted values as a M -column matrix.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

The response should be a matrix of non-negative values. Convergence seems to slow down if there
are zero values. Currently, initial values can be improved upon.

This function is almost defunct and may be withdrawn soon. Use dirmultinomial instead.

Author(s)

Thomas W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

Paul, S. R., Balasooriya, U. and Banerjee, T. (2005). Fisher information matrix of the Dirichlet-
multinomial distribution. Biometrical Journal, 47, 230–236.

238 dirmultinomial

Tvedebrink, T. (2010). Overdispersion in allelic counts and θ-correction in forensic genetics. The-
oretical Population Biology, 78, 200–210.

See Also

dirmultinomial, dirichlet, betabinomialff, multinomial.

Examples

Data from p.50 of Lange (2002)
alleleCounts <- c(2, 84, 59, 41, 53, 131, 2, 0,

0, 50, 137, 78, 54, 51, 0, 0,
0, 80, 128, 26, 55, 95, 0, 0,
0, 16, 40, 8, 68, 14, 7, 1)

dim(alleleCounts) <- c(8, 4)
alleleCounts <- data.frame(t(alleleCounts))
dimnames(alleleCounts) <- list(c("White","Black","Chicano","Asian"),

paste("Allele", 5:12, sep = ""))

set.seed(123) # @initialize uses random numbers
fit <- vglm(cbind(Allele5,Allele6,Allele7,Allele8,Allele9,

Allele10,Allele11,Allele12) ~ 1, dirmul.old,
trace = TRUE, crit = "c", data = alleleCounts)

(sfit <- summary(fit))
vcov(sfit)
round(eta2theta(coef(fit),

fit@misc$link,
fit@misc$earg), digits = 2) # not preferred

round(Coef(fit), digits = 2) # preferred
round(t(fitted(fit)), digits = 4) # 2nd row of Lange (2002, Table 3.5)
coef(fit, matrix = TRUE)

pfit <- vglm(cbind(Allele5,Allele6,Allele7,Allele8,Allele9,
Allele10,Allele11,Allele12) ~ 1,

dirmul.old(parallel = TRUE), trace = TRUE,
data = alleleCounts)

round(eta2theta(coef(pfit, matrix = TRUE), pfit@misc$link,
pfit@misc$earg), digits = 2) # 'Right' answer

round(Coef(pfit), digits = 2) # 'Wrong' due to parallelism constraint

dirmultinomial Fitting a Dirichlet-Multinomial Distribution

Description

Fits a Dirichlet-multinomial distribution to a matrix response.

dirmultinomial 239

Usage

dirmultinomial(lphi = "logitlink", iphi = 0.10, parallel = FALSE,
zero = "M")

Arguments

lphi Link function applied to the φ parameter, which lies in the open unit interval
(0, 1). See Links for more choices.

iphi Numeric. Initial value for φ. Must be in the open unit interval (0, 1). If a failure
to converge occurs then try assigning this argument a different value.

parallel A logical (formula not allowed here) indicating whether the probabilities π1, . . . , πM−1
are to be equal via equal coefficients. Note πM will generally be different from
the other probabilities. Setting parallel = TRUE will only work if you also set
zero = NULL because of interference between these arguments (with respect to
the intercept term).

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The values must be from the set {1, 2, . . . ,M}. If the
character "M" then this means the numerical value M , which corresponds to lin-
ear/additive predictor associated with φ. Setting zero = NULL means none of the
values from the set {1, 2, . . . ,M}.

Details

The Dirichlet-multinomial distribution arises from a multinomial distribution where the probability
parameters are not constant but are generated from a multivariate distribution called the Dirichlet
distribution. The Dirichlet-multinomial distribution has probability function

P (Y1 = y1, . . . , YM = yM) =

(
N∗

y1, . . . , yM

)∏M
j=1

∏yj
r=1(πj(1− φ) + (r − 1)φ)∏N∗
r=1(1− φ+ (r − 1)φ)

where φ is the over-dispersion parameter and N∗ = y1 + · · · + yM . Here,
(
a
b

)
means “a choose

b” and refers to combinations (see choose). The above formula applies to each row of the matrix
response. In this VGAM family function the first M − 1 linear/additive predictors correspond to
the first M − 1 probabilities via

ηj = log(P [Y = j]/P [Y = M]) = log(πj/πM)

where ηj is the jth linear/additive predictor (ηM = 0 by definition for P [Y = M] but not for φ)
and j = 1, . . . ,M − 1. The M th linear/additive predictor corresponds to lphi applied to φ.

Note thatE(Yj) = N∗πj but the probabilities (returned as the fitted values) πj are bundled together
as a M -column matrix. The quantities N∗ are returned as the prior weights.

The beta-binomial distribution is a special case of the Dirichlet-multinomial distribution whenM =
2; see betabinomial. It is easy to show that the first shape parameter of the beta distribution is
shape1 = π(1/φ − 1) and the second shape parameter is shape2 = (1 − π)(1/φ − 1). Also,
φ = 1/(1 + shape1 + shape2), which is known as the intra-cluster correlation coefficient.

240 dirmultinomial

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

If the model is an intercept-only model then @misc (which is a list) has a component called shape
which is a vector with the M values πj(1/φ− 1).

Warning

This VGAM family function is prone to numerical problems, especially when there are covariates.

Note

The response can be a matrix of non-negative integers, or else a matrix of sample proportions and
the total number of counts in each row specified using the weights argument. This dual input option
is similar to multinomial.

To fit a ‘parallel’ model with the φ parameter being an intercept-only you will need to use the
constraints argument.

Currently, Fisher scoring is implemented. To compute the expected information matrix a for loop
is used; this may be very slow when the counts are large. Additionally, convergence may be slower
than usual due to round-off error when computing the expected information matrices.

Author(s)

Thomas W. Yee

References

Paul, S. R., Balasooriya, U. and Banerjee, T. (2005). Fisher information matrix of the Dirichlet-
multinomial distribution. Biometrical Journal, 47, 230–236.

Tvedebrink, T. (2010). Overdispersion in allelic counts and θ-correction in forensic genetics. The-
oretical Population Biology, 78, 200–210.

Yu, P. and Shaw, C. A. (2014). An Efficient Algorithm for Accurate Computation of the Dirichlet-
Multinomial Log-Likelihood Function. Bioinformatics, 30, 1547–54.

See Also

dirmul.old, betabinomial, betabinomialff, dirichlet, multinomial.

Examples

nn <- 5; M <- 4; set.seed(1)
ydata <- data.frame(round(matrix(runif(nn * M, max = 100), nn, M)))
colnames(ydata) <- paste("y", 1:M, sep = "") # Integer counts

fit <- vglm(cbind(y1, y2, y3, y4) ~ 1, dirmultinomial,
data = ydata, trace = TRUE)

head(fitted(fit))
depvar(fit) # Sample proportions

dlogF 241

weights(fit, type = "prior", matrix = FALSE) # Total counts per row

Not run:
ydata <- transform(ydata, x2 = runif(nn))
fit <- vglm(cbind(y1, y2, y3, y4) ~ x2, dirmultinomial,

data = ydata, trace = TRUE)
Coef(fit)
coef(fit, matrix = TRUE)
(sfit <- summary(fit))
vcov(sfit)

End(Not run)

dlogF log F Distribution

Description

Density for the log F distribution.

Usage

dlogF(x, shape1, shape2, log = FALSE)

Arguments

x Vector of quantiles.

shape1, shape2 Positive shape parameters.

log if TRUE then the log density is returned, else the density.

Details

The details are given in logF.

Value

dlogF gives the density.

Author(s)

T. W. Yee

See Also

hypersecant, dextlogF.

242 double.cens.normal

Examples

Not run: shape1 <- 1.5; shape2 <- 0.5; x <- seq(-5, 8, length = 1001)
plot(x, dlogF(x, shape1, shape2), type = "l",

las = 1, col = "blue", ylab = "pdf",
main = "log F density function")

End(Not run)

double.cens.normal Univariate Normal Distribution with Double Censoring

Description

Maximum likelihood estimation of the two parameters of a univariate normal distribution when
there is double censoring.

Usage

double.cens.normal(r1 = 0, r2 = 0, lmu = "identitylink", lsd =
"loglink", imu = NULL, isd = NULL, zero = "sd")

Arguments

r1, r2 Integers. Number of smallest and largest values censored, respectively.

lmu, lsd Parameter link functions applied to the mean and standard deviation. See Links
for more choices.

imu, isd, zero See CommonVGAMffArguments for more information.

Details

This family function uses the Fisher information matrix given in Harter and Moore (1966). The
matrix is not diagonal if either r1 or r2 are positive.

By default, the mean is the first linear/additive predictor and the log of the standard deviation is the
second linear/additive predictor.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

This family function only handles a vector or one-column matrix response. The weights argument,
if used, are interpreted as frequencies, therefore it must be a vector with positive integer values.

With no censoring at all (the default), it is better (and equivalent) to use uninormal.

double.expbinomial 243

Author(s)

T. W. Yee

References

Harter, H. L. and Moore, A. H. (1966). Iterative maximum-likelihood estimation of the parameters
of normal populations from singly and doubly censored samples. Biometrika, 53, 205–213.

See Also

uninormal, cens.normal, tobit.

Examples

Not run: # Repeat the simulations of Harter & Moore (1966)
SIMS <- 100 # Number of simulations (change this to 1000)
mu.save <- sd.save <- rep(NA, len = SIMS)
r1 <- 0; r2 <- 4; nn <- 20
for (sim in 1:SIMS) {

y <- sort(rnorm(nn))
y <- y[(1+r1):(nn-r2)] # Delete r1 smallest and r2 largest
fit <- vglm(y ~ 1, double.cens.normal(r1 = r1, r2 = r2))
mu.save[sim] <- predict(fit)[1, 1]
sd.save[sim] <- exp(predict(fit)[1, 2]) # Assumes a log link & ~ 1

}
c(mean(mu.save), mean(sd.save)) # Should be c(0,1)
c(sd(mu.save), sd(sd.save))

End(Not run)

Data from Sarhan & Greenberg (1962); MLEs are mu=9.2606, sd=1.3754
strontium90 <- data.frame(y = c(8.2, 8.4, 9.1, 9.8, 9.9))
fit <- vglm(y ~ 1, double.cens.normal(r1 = 2, r2 = 3, isd = 6),

data = strontium90, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)

double.expbinomial Double Exponential Binomial Distribution Family Function

Description

Fits a double exponential binomial distribution by maximum likelihood estimation. The two pa-
rameters here are the mean and dispersion parameter.

Usage

double.expbinomial(lmean = "logitlink", ldispersion = "logitlink",
idispersion = 0.25, zero = "dispersion")

244 double.expbinomial

Arguments

lmean, ldispersion

Link functions applied to the two parameters, called µ and θ respectively below.
See Links for more choices. The defaults cause the parameters to be restricted
to (0, 1).

idispersion Initial value for the dispersion parameter. If given, it must be in range, and is
recyled to the necessary length. Use this argument if convergence failure occurs.

zero A vector specifying which linear/additive predictor is to be modelled as intercept-
only. If assigned, the single value can be either 1 or 2. The default is to have a
single dispersion parameter value. To model both parameters as functions of the
covariates assign zero = NULL. See CommonVGAMffArguments for more details.

Details

This distribution provides a way for handling overdispersion in a binary response. The double
exponential binomial distribution belongs the family of double exponential distributions proposed
by Efron (1986). Below, equation numbers refer to that original article. Briefly, the idea is that
an ordinary one-parameter exponential family allows the addition of a second parameter θ which
varies the dispersion of the family without changing the mean. The extended family behaves like
the original family with sample size changed from n to nθ. The extended family is an exponential
family in µ when n and θ are fixed, and an exponential family in θ when n and µ are fixed. Having
0 < θ < 1 corresponds to overdispersion with respect to the binomial distribution. See Efron
(1986) for full details.

This VGAM family function implements an approximation (2.10) to the exact density (2.4). It
replaces the normalizing constant by unity since the true value nearly equals 1. The default model
fitted is η1 = logit(µ) and η2 = logit(θ). This restricts both parameters to lie between 0 and 1,
although the dispersion parameter can be modelled over a larger parameter space by assigning the
arguments ldispersion and edispersion.

Approximately, the mean (of Y) is µ. The effective sample size is the dispersion parameter mul-
tiplied by the original sample size, i.e., nθ. This family function uses Fisher scoring, and the two
estimates are asymptotically independent because the expected information matrix is diagonal.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm.

Warning

Numerical difficulties can occur; if so, try using idispersion.

Note

This function processes the input in the same way as binomialff, however multiple responses are
not allowed (binomialff(multiple.responses = FALSE)).

double.expbinomial 245

Author(s)

T. W. Yee

References

Efron, B. (1986). Double exponential families and their use in generalized linear regression. Jour-
nal of the American Statistical Association, 81, 709–721.

See Also

binomialff, toxop, CommonVGAMffArguments.

Examples

This example mimics the example in Efron (1986).
The results here differ slightly.

Scale the variables
toxop <- transform(toxop,

phat = positive / ssize,
srainfall = scale(rainfall), # (6.1)
sN = scale(ssize)) # (6.2)

A fit similar (should be identical) to Sec.6 of Efron (1986).
But does not use poly(), and M = 1.25 here, as in (5.3)
cmlist <- list("(Intercept)" = diag(2),

"I(srainfall)" = rbind(1, 0),
"I(srainfall^2)" = rbind(1, 0),
"I(srainfall^3)" = rbind(1, 0),
"I(sN)" = rbind(0, 1),
"I(sN^2)" = rbind(0, 1))

fit <-
vglm(cbind(phat, 1 - phat) * ssize ~

I(srainfall) + I(srainfall^2) + I(srainfall^3) +
I(sN) + I(sN^2),
double.expbinomial(ldisp = extlogitlink(min = 0, max = 1.25),

idisp = 0.2, zero = NULL),
toxop, trace = TRUE, constraints = cmlist)

Now look at the results
coef(fit, matrix = TRUE)
head(fitted(fit))
summary(fit)
vcov(fit)
sqrt(diag(vcov(fit))) # Standard errors

Effective sample size (not quite the last column of Table 1)
head(predict(fit))
Dispersion <- extlogitlink(predict(fit)[,2], min = 0, max = 1.25,

inverse = TRUE)
c(round(weights(fit, type = "prior") * Dispersion, digits = 1))

246 ducklings

Ordinary logistic regression (gives same results as (6.5))
ofit <- vglm(cbind(phat, 1 - phat) * ssize ~

I(srainfall) + I(srainfall^2) + I(srainfall^3),
binomialff, toxop, trace = TRUE)

Same as fit but it uses poly(), and can be plotted (cf. Fig.1)
cmlist2 <- list("(Intercept)" = diag(2),

"poly(srainfall, degree = 3)" = rbind(1, 0),
"poly(sN, degree = 2)" = rbind(0, 1))

fit2 <-
vglm(cbind(phat, 1 - phat) * ssize ~

poly(srainfall, degree = 3) + poly(sN, degree = 2),
double.expbinomial(ldisp = extlogitlink(min = 0, max = 1.25),

idisp = 0.2, zero = NULL),
toxop, trace = TRUE, constraints = cmlist2)

Not run: par(mfrow = c(1, 2)) # Cf. Fig.1
plot(as(fit2, "vgam"), se = TRUE, lcol = "blue", scol = "orange")

Cf. Figure 1(a)
par(mfrow = c(1,2))
ooo <- with(toxop, sort.list(rainfall))
with(toxop, plot(rainfall[ooo], fitted(fit2)[ooo], type = "l",

col = "blue", las = 1, ylim = c(0.3, 0.65)))
with(toxop, points(rainfall[ooo], fitted(ofit)[ooo],

col = "orange", type = "b", pch = 19))

Cf. Figure 1(b)
ooo <- with(toxop, sort.list(ssize))
with(toxop, plot(ssize[ooo], Dispersion[ooo], type = "l",

col = "blue", las = 1, xlim = c(0, 100)))
End(Not run)

ducklings Relative Frequencies of Serum Proteins in White Pekin Ducklings

Description

Relative frequencies of serum proteins in white Pekin ducklings as determined by electrophoresis.

Usage

data(ducklings)

Format

The format is: chr "ducklings"

eCDF 247

Details

Columns p1, p2, p3 stand for pre-albumin, albumin, globulins respectively. These were collected
from 3-week old white Pekin ducklings. Let Y1 be proportional to the total milligrams of pre-
albumin in the blood serum of a duckling. Similarly, let Y2 and Y3 be directly proportional to the
same factor as Y1 to the total milligrams respectively of albumin and globulins in its blood serum.
The proportion of pre-albumin is given by Y1/(Y1 + Y2 + Y3), and similarly for the others.

Source

Mosimann, J. E. (1962) On the compound multinomial distribution, the multivariate β-distribution,
and correlations among proportions, Biometrika, 49, 65–82.

See Also

dirichlet.

Examples

print(ducklings)

eCDF Empirical Cumulative Distribution Function

Description

Returns the desired quantiles of quantile regression object such as an extlogF1() or lms.bcn() VGLM
object

Usage

eCDF.vglm(object, all = FALSE, ...)

Arguments

object an object such as a vglm object with family function extlogF1 or lms.bcn.

all Logical. Return all other information? If true, the empirical CDF is returned.

... additional optional arguments. Currently unused.

Details

This function was specifically written for a vglm object with family function extlogF1 or lms.bcn.
It returns the proportion of data lying below each of the fitted quantiles, and optionally the desired
quantiles (arguments tau or percentiles / 100 in the family function). The output is coerced to
be comparable between family functions by calling the columns by the same names.

248 enzyme

Value

A vector with each value lying in (0, 1). If all = TRUE then a 2-column matrix with the second
column being the tau values or equivalent.

See Also

extlogF1, lms.bcn, vglm.

Examples

fit1 <- vglm(BMI ~ ns(age, 4), extlogF1, data = bmi.nz) # trace = TRUE
eCDF(fit1)
eCDF(fit1, all = TRUE)

enzyme Enzyme Data

Description

Enzyme velocity and substrate concentration.

Usage

data(enzyme)

Format

A data frame with 12 observations on the following 2 variables.

conc a numeric explanatory vector; substrate concentration

velocity a numeric response vector; enzyme velocity

Details

Sorry, more details need to be included later.

Source

Sorry, more details need to be included later.

References

Watts, D. G. (1981). An introduction to nonlinear least squares. In: L. Endrenyi (Ed.), Kinetic Data
Analysis: Design and Analysis of Enzyme and Pharmacokinetic Experiments, pp.1–24. New York:
Plenum Press.

See Also

micmen.

erf 249

Examples

Not run:
fit <- vglm(velocity ~ 1, micmen, data = enzyme, trace = TRUE,

form2 = ~ conc - 1, crit = "crit")
summary(fit)

End(Not run)

erf Error Function, and variants

Description

Computes the error function, or its inverse, based on the normal distribution. Also computes the
complement of the error function, or its inverse,

Usage

erf(x, inverse = FALSE)
erfc(x, inverse = FALSE)

Arguments

x Numeric.

inverse Logical. Of length 1.

Details

Erf(x) is defined as

Erf(x) =
2√
π

∫ x

0

exp(−t2)dt

so that it is closely related to pnorm. The inverse function is defined for x in (−1, 1).

Value

Returns the value of the function evaluated at x.

Note

Some authors omit the term 2/
√
π from the definition of Erf(x). Although defined for complex

arguments, this function only works for real arguments.

The complementary error function erfc(x) is defined as 1− erf(x), and is implemented by erfc.
Its inverse function is defined for x in (0, 2).

Author(s)

T. W. Yee

250 erlang

References

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, New York: Dover Publications Inc.

See Also

pnorm.

Examples

Not run:
curve(erf, -3, 3, col = "orange", ylab = "", las = 1)
curve(pnorm, -3, 3, add = TRUE, col = "blue", lty = "dotted", lwd = 2)
abline(v = 0, h = 0, lty = "dashed")
legend("topleft", c("erf(x)", "pnorm(x)"), col = c("orange", "blue"),

lty = c("solid", "dotted"), lwd = 1:2)
End(Not run)

erlang Erlang Distribution

Description

Estimates the scale parameter of the Erlang distribution by maximum likelihood estimation.

Usage

erlang(shape.arg, lscale = "loglink", imethod = 1, zero = NULL)

Arguments

shape.arg The shape parameters. The user must specify a positive integer, or integers for
multiple responses. They are recycled by.row = TRUE according to matrix.

lscale Link function applied to the (positive) scale parameter. See Links for more
choices.

imethod, zero See CommonVGAMffArguments for more details.

Details

The Erlang distribution is a special case of the gamma distribution with shape that is a positive
integer. If shape.arg = 1 then it simplifies to the exponential distribution. As illustrated in the
example below, the Erlang distribution is the distribution of the sum of shape.arg independent and
identically distributed exponential random variates.

The probability density function of the Erlang distribution is given by

f(y) = exp(−y/scale)yshape−1scale−shape/Γ(shape)

for known positive integer shape, unknown scale > 0 and y > 0. Here, Γ(shape) is the gamma
function, as in gamma. The mean of Y is µ = shape × scale and its variance is shape × scale2.
The linear/additive predictor, by default, is η = log(scale).

Expectiles-Exponential 251

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

Multiple responses are permitted. The rate parameter found in gammaR is 1/scale here—see also
rgamma.

Author(s)

T. W. Yee

References

Most standard texts on statistical distributions describe this distribution, e.g.,

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

gammaR, exponential, simulate.vlm.

Examples

rate <- exp(2); myshape <- 3
edata <- data.frame(y = rep(0, nn <- 1000))
for (ii in 1:myshape)

edata <- transform(edata, y = y + rexp(nn, rate = rate))
fit <- vglm(y ~ 1, erlang(shape = myshape), edata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit) # Answer = 1/rate
1/rate
summary(fit)

Expectiles-Exponential

Expectiles of the Exponential Distribution

Description

Density function, distribution function, and expectile function and random generation for the distri-
bution associated with the expectiles of an exponential distribution.

252 Expectiles-Exponential

Usage

deexp(x, rate = 1, log = FALSE)
peexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qeexp(p, rate = 1, Maxit.nr = 10, Tol.nr = 1.0e-6,

lower.tail = TRUE, log.p = FALSE)
reexp(n, rate = 1)

Arguments

x, p, q See deunif.

n, rate, log See rexp.
lower.tail, log.p

Same meaning as in pexp or qexp.
Maxit.nr, Tol.nr

See deunif.

Details

General details are given in deunif including a note regarding the terminology used. Here, exp
corresponds to the distribution of interest, F , and eexp corresponds to G. The addition of “e” is for
the ‘other’ distribution associated with the parent distribution. Thus deexp is for g, peexp is for G,
qeexp is for the inverse of G, reexp generates random variates from g.

For qeexp the Newton-Raphson algorithm is used to solve for y satisfying p = G(y). Numerical
problems may occur when values of p are very close to 0 or 1.

Value

deexp(x) gives the density function g(x). peexp(q) gives the distribution functionG(q). qeexp(p)
gives the expectile function: the value y such that G(y) = p. reexp(n) gives n random variates
from G.

Author(s)

T. W. Yee and Kai Huang

See Also

deunif, denorm, dexp.

Examples

my.p <- 0.25; y <- rexp(nn <- 1000)
(myexp <- qeexp(my.p))
sum(myexp - y[y <= myexp]) / sum(abs(myexp - y)) # Should be my.p

Not run: par(mfrow = c(2,1))
yy <- seq(-0, 4, len = nn)
plot(yy, deexp(yy), col = "blue", ylim = 0:1, xlab = "y", ylab = "g(y)",

type = "l", main = "g(y) for Exp(1); dotted green is f(y) = dexp(y)")

Expectiles-Normal 253

lines(yy, dexp(yy), col = "green", lty = "dotted", lwd = 2) # 'original'

plot(yy, peexp(yy), type = "l", col = "blue", ylim = 0:1,
xlab = "y", ylab = "G(y)", main = "G(y) for Exp(1)")

abline(v = 1, h = 0.5, col = "red", lty = "dashed")
lines(yy, pexp(yy), col = "green", lty = "dotted", lwd = 2)
End(Not run)

Expectiles-Normal Expectiles of the Normal Distribution

Description

Density function, distribution function, and expectile function and random generation for the distri-
bution associated with the expectiles of a normal distribution.

Usage

denorm(x, mean = 0, sd = 1, log = FALSE)
penorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qenorm(p, mean = 0, sd = 1, Maxit.nr = 10, Tol.nr = 1.0e-6,

lower.tail = TRUE, log.p = FALSE)
renorm(n, mean = 0, sd = 1)

Arguments

x, p, q See deunif.
n, mean, sd, log

See rnorm.
lower.tail, log.p

Same meaning as in pnorm or qnorm.
Maxit.nr, Tol.nr

See deunif.

Details

General details are given in deunif including a note regarding the terminology used. Here, norm
corresponds to the distribution of interest, F , and enorm corresponds to G. The addition of “e” is
for the ‘other’ distribution associated with the parent distribution. Thus denorm is for g, penorm is
for G, qenorm is for the inverse of G, renorm generates random variates from g.

For qenorm the Newton-Raphson algorithm is used to solve for y satisfying p = G(y). Numerical
problems may occur when values of p are very close to 0 or 1.

Value

denorm(x) gives the density function g(x). penorm(q) gives the distribution functionG(q). qenorm(p)
gives the expectile function: the value y such that G(y) = p. renorm(n) gives n random variates
from G.

254 Expectiles-sc.t2

Author(s)

T. W. Yee and Kai Huang

See Also

deunif, deexp, dnorm, amlnormal, lms.bcn.

Examples

my.p <- 0.25; y <- rnorm(nn <- 1000)
(myexp <- qenorm(my.p))
sum(myexp - y[y <= myexp]) / sum(abs(myexp - y)) # Should be my.p

Non-standard normal
mymean <- 1; mysd <- 2
yy <- rnorm(nn, mymean, mysd)
(myexp <- qenorm(my.p, mymean, mysd))
sum(myexp - yy[yy <= myexp]) / sum(abs(myexp - yy)) # Should be my.p
penorm(-Inf, mymean, mysd) # Should be 0
penorm(Inf, mymean, mysd) # Should be 1
penorm(mean(yy), mymean, mysd) # Should be 0.5
abs(qenorm(0.5, mymean, mysd) - mean(yy)) # Should be 0
abs(penorm(myexp, mymean, mysd) - my.p) # Should be 0
integrate(f = denorm, lower = -Inf, upper = Inf,

mymean, mysd) # Should be 1

Not run:
par(mfrow = c(2, 1))
yy <- seq(-3, 3, len = nn)
plot(yy, denorm(yy), type = "l", col="blue", xlab = "y", ylab = "g(y)",

main = "g(y) for N(0,1); dotted green is f(y) = dnorm(y)")
lines(yy, dnorm(yy), col = "green", lty = "dotted", lwd = 2) # 'original'

plot(yy, penorm(yy), type = "l", col = "blue", ylim = 0:1,
xlab = "y", ylab = "G(y)", main = "G(y) for N(0,1)")

abline(v = 0, h = 0.5, col = "red", lty = "dashed")
lines(yy, pnorm(yy), col = "green", lty = "dotted", lwd = 2)
End(Not run)

Expectiles-sc.t2 Expectiles/Quantiles of the Scaled Student t Distribution with 2 Df

Description

Density function, distribution function, and quantile/expectile function and random generation for
the scaled Student t distribution with 2 degrees of freedom.

Expectiles-sc.t2 255

Usage

dsc.t2(x, location = 0, scale = 1, log = FALSE)
psc.t2(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qsc.t2(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rsc.t2(n, location = 0, scale = 1)

Arguments

x, q Vector of expectiles/quantiles. See the terminology note below.

p Vector of probabilities. These should lie in (0, 1).

n, log See runif.
location, scale

Location and scale parameters. The latter should have positive values. Values
of these vectors are recyled.

lower.tail, log.p

Same meaning as in pt or qt.

Details

A Student-t distribution with 2 degrees of freedom and a scale parameter of sqrt(2) is equivalent
to the standard form of this distribution (called Koenker’s distribution below). Further details about
this distribution are given in sc.studentt2.

Value

dsc.t2(x) gives the density function. psc.t2(q) gives the distribution function. qsc.t2(p) gives
the expectile and quantile function. rsc.t2(n) gives n random variates.

Author(s)

T. W. Yee and Kai Huang

See Also

dt, sc.studentt2.

Examples

my.p <- 0.25; y <- rsc.t2(nn <- 5000)
(myexp <- qsc.t2(my.p))
sum(myexp - y[y <= myexp]) / sum(abs(myexp - y)) # Should be my.p
Equivalently:
I1 <- mean(y <= myexp) * mean(myexp - y[y <= myexp])
I2 <- mean(y > myexp) * mean(-myexp + y[y > myexp])
I1 / (I1 + I2) # Should be my.p
Or:
I1 <- sum(myexp - y[y <= myexp])
I2 <- sum(-myexp + y[y > myexp])

256 Expectiles-Uniform

Non-standard Koenker distribution
myloc <- 1; myscale <- 2
yy <- rsc.t2(nn, myloc, myscale)
(myexp <- qsc.t2(my.p, myloc, myscale))
sum(myexp - yy[yy <= myexp]) / sum(abs(myexp - yy)) # Should be my.p
psc.t2(mean(yy), myloc, myscale) # Should be 0.5
abs(qsc.t2(0.5, myloc, myscale) - mean(yy)) # Should be 0
abs(psc.t2(myexp, myloc, myscale) - my.p) # Should be 0
integrate(f = dsc.t2, lower = -Inf, upper = Inf,

locat = myloc, scale = myscale) # Should be 1

y <- seq(-7, 7, len = 201)
max(abs(dsc.t2(y) - dt(y / sqrt(2), df = 2) / sqrt(2))) # Should be 0
Not run: plot(y, dsc.t2(y), type = "l", col = "blue", las = 1,

ylim = c(0, 0.4), main = "Blue = Koenker; orange = N(0, 1)")
lines(y, dnorm(y), type = "l", col = "orange")
abline(h = 0, v = 0, lty = 2)
End(Not run)

Expectiles-Uniform Expectiles of the Uniform Distribution

Description

Density function, distribution function, and expectile function and random generation for the distri-
bution associated with the expectiles of a uniform distribution.

Usage

deunif(x, min = 0, max = 1, log = FALSE)
peunif(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
qeunif(p, min = 0, max = 1, Maxit.nr = 10, Tol.nr = 1.0e-6,

lower.tail = TRUE, log.p = FALSE)
reunif(n, min = 0, max = 1)

Arguments

x, q Vector of expectiles. See the terminology note below.

p Vector of probabilities. These should lie in (0, 1).
n, min, max, log

See runif.
lower.tail, log.p

Same meaning as in punif or qunif.

Maxit.nr Numeric. Maximum number of Newton-Raphson iterations allowed. A warning
is issued if convergence is not obtained for all p values.

Tol.nr Numeric. Small positive value specifying the tolerance or precision to which the
expectiles are computed.

Expectiles-Uniform 257

Details

Jones (1994) elucidated on the property that the expectiles of a random variable X with distribution
function F (x) correspond to the quantiles of a distribution G(x) where G is related by an explicit
formula to F . In particular, let y be the p-expectile of F . Then y is the p-quantile of G where

p = G(y) = (P (y)− yF (y))/(2[P (y)− yF (y)] + y − µ),

and µ is the mean of X . The derivative of G is

g(y) = (µF (y)− P (y))/(2[P (y)− yF (y)] + y − µ)2.

Here, P (y) is the partial moment
∫ y
−∞ xf(x) dx and 0 < p < 1. The 0.5-expectile is the mean µ

and the 0.5-quantile is the median.

A note about the terminology used here. Recall in the S language there are the dpqr-type functions
associated with a distribution, e.g., dunif, punif, qunif, runif, for the uniform distribution. Here,
unif corresponds to F and eunif corresponds to G. The addition of “e” (for expectile) is for the
‘other’ distribution associated with the parent distribution. Thus deunif is for g, peunif is for G,
qeunif is for the inverse of G, reunif generates random variates from g.

For qeunif the Newton-Raphson algorithm is used to solve for y satisfying p = G(y). Numerical
problems may occur when values of p are very close to 0 or 1.

Value

deunif(x) gives the density function g(x). peunif(q) gives the distribution functionG(q). qeunif(p)
gives the expectile function: the expectile y such that G(y) = p. reunif(n) gives n random vari-
ates from G.

Author(s)

T. W. Yee and Kai Huang

References

Jones, M. C. (1994). Expectiles and M-quantiles are quantiles. Statistics and Probability Letters,
20, 149–153.

See Also

deexp, denorm, dunif, dsc.t2.

Examples

my.p <- 0.25; y <- runif(nn <- 1000)
(myexp <- qeunif(my.p))
sum(myexp - y[y <= myexp]) / sum(abs(myexp - y)) # Should be my.p
Equivalently:
I1 <- mean(y <= myexp) * mean(myexp - y[y <= myexp])
I2 <- mean(y > myexp) * mean(-myexp + y[y > myexp])
I1 / (I1 + I2) # Should be my.p
Or:

258 expexpff

I1 <- sum(myexp - y[y <= myexp])
I2 <- sum(-myexp + y[y > myexp])

Non-standard uniform
mymin <- 1; mymax <- 8
yy <- runif(nn, mymin, mymax)
(myexp <- qeunif(my.p, mymin, mymax))
sum(myexp - yy[yy <= myexp]) / sum(abs(myexp - yy)) # Should be my.p
peunif(mymin, mymin, mymax) # Should be 0
peunif(mymax, mymin, mymax) # Should be 1
peunif(mean(yy), mymin, mymax) # Should be 0.5
abs(qeunif(0.5, mymin, mymax) - mean(yy)) # Should be 0
abs(qeunif(0.5, mymin, mymax) - (mymin+mymax)/2) # Should be 0
abs(peunif(myexp, mymin, mymax) - my.p) # Should be 0
integrate(f = deunif, lower = mymin - 3, upper = mymax + 3,

min = mymin, max = mymax) # Should be 1

Not run:
par(mfrow = c(2,1))
yy <- seq(0.0, 1.0, len = nn)
plot(yy, deunif(yy), type = "l", col = "blue", ylim = c(0, 2),

xlab = "y", ylab = "g(y)", main = "g(y) for Uniform(0,1)")
lines(yy, dunif(yy), col = "green", lty = "dotted", lwd = 2) # 'original'

plot(yy, peunif(yy), type = "l", col = "blue", ylim = 0:1,
xlab = "y", ylab = "G(y)", main = "G(y) for Uniform(0,1)")

abline(a = 0.0, b = 1.0, col = "green", lty = "dotted", lwd = 2)
abline(v = 0.5, h = 0.5, col = "red", lty = "dashed")
End(Not run)

expexpff Exponentiated Exponential Distribution

Description

Estimates the two parameters of the exponentiated exponential distribution by maximum likelihood
estimation.

Usage

expexpff(lrate = "loglink", lshape = "loglink",
irate = NULL, ishape = 1.1, tolerance = 1.0e-6, zero = NULL)

Arguments

lshape, lrate Parameter link functions for the α and λ parameters. See Links for more
choices. The defaults ensure both parameters are positive.

ishape Initial value for the α parameter. If convergence fails try setting a different value
for this argument.

expexpff 259

irate Initial value for the λ parameter. By default, an initial value is chosen internally
using ishape.

tolerance Numeric. Small positive value for testing whether values are close enough to 1
and 2.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The default is none of them. If used, choose one value
from the set {1,2}.

Details

The exponentiated exponential distribution is an alternative to the Weibull and the gamma distribu-
tions. The formula for the density is

f(y;λ, α) = αλ(1− exp(−λy))α−1 exp(−λy)

where y > 0, λ > 0 and α > 0. The mean of Y is (ψ(α + 1) − ψ(1))/λ (returned as the fitted
values) where ψ is the digamma function. The variance of Y is (ψ′(1)− ψ′(α + 1))/λ2 where ψ′

is the trigamma function.

This distribution has been called the two-parameter generalized exponential distribution by Gupta
and Kundu (2006). A special case of the exponentiated exponential distribution: α = 1 is the
exponential distribution.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Practical experience shows that reasonably good initial values really helps. In particular, try setting
different values for the ishape argument if numerical problems are encountered or failure to con-
vergence occurs. Even if convergence occurs try perturbing the initial value to make sure the global
solution is obtained and not a local solution. The algorithm may fail if the estimate of the shape
parameter is too close to unity.

Note

Fisher scoring is used, however, convergence is usually very slow. This is a good sign that there is a
bug, but I have yet to check that the expected information is correct. Also, I have yet to implement
Type-I right censored data using the results of Gupta and Kundu (2006).

Another algorithm for fitting this model is implemented in expexpff1.

Author(s)

T. W. Yee

260 expexpff1

References

Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma
and Weibull distributions, Biometrical Journal, 43, 117–130.

Gupta, R. D. and Kundu, D. (2006). On the comparison of Fisher information of the Weibull and
GE distributions, Journal of Statistical Planning and Inference, 136, 3130–3144.

See Also

expexpff1, gammaR, weibullR, CommonVGAMffArguments.

Examples

A special case: exponential data
edata <- data.frame(y = rexp(n <- 1000))
fit <- vglm(y ~ 1, fam = expexpff, data = edata, trace = TRUE, maxit = 99)
coef(fit, matrix = TRUE)
Coef(fit)

Ball bearings data (number of million revolutions before failure)
edata <- data.frame(bbearings = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64,
68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40))
fit <- vglm(bbearings ~ 1, fam = expexpff(irate = 0.05, ish = 5),

trace = TRUE, maxit = 300, data = edata)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(rate=0.0314, shape=5.2589)
logLik(fit) # Authors get -112.9763

Failure times of the airconditioning system of an airplane
eedata <- data.frame(acplane = c(23, 261, 87, 7, 120, 14, 62, 47,
225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14,
71, 11, 14, 11, 16, 90, 1, 16, 52, 95))
fit <- vglm(acplane ~ 1, fam = expexpff(ishape = 0.8, irate = 0.15),

trace = TRUE, maxit = 99, data = eedata)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(rate=0.0145, shape=0.8130)
logLik(fit) # Authors get log-lik -152.264

expexpff1 Exponentiated Exponential Distribution

Description

Estimates the two parameters of the exponentiated exponential distribution by maximizing a profile
(concentrated) likelihood.

expexpff1 261

Usage

expexpff1(lrate = "loglink", irate = NULL, ishape = 1)

Arguments

lrate Parameter link function for the (positive) λ parameter. See Links for more
choices.

irate Initial value for the λ parameter. By default, an initial value is chosen internally
using ishape.

ishape Initial value for the α parameter. If convergence fails try setting a different value
for this argument.

Details

See expexpff for details about the exponentiated exponential distribution. This family function
uses a different algorithm for fitting the model. Given λ, the MLE of α can easily be solved in
terms of λ. This family function maximizes a profile (concentrated) likelihood with respect to λ.
Newton-Raphson is used, which compares with Fisher scoring with expexpff.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

The standard errors produced by a summary of the model may be wrong.

Note

This family function works only for intercept-only models, i.e., y ~ 1 where y is the response.

The estimate of α is attached to the misc slot of the object, which is a list and contains the compo-
nent shape.

As Newton-Raphson is used, the working weights are sometimes negative, and some adjustment is
made to these to make them positive.

Like expexpff, good initial values are needed. Convergence may be slow.

Author(s)

T. W. Yee

References

Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma
and Weibull distributions, Biometrical Journal, 43, 117–130.

See Also

expexpff, CommonVGAMffArguments.

262 expgeom

Examples

Ball bearings data (number of million revolutions before failure)
edata <- data.frame(bbearings = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64,
68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40))
fit <- vglm(bbearings ~ 1, expexpff1(ishape = 4), trace = TRUE,

maxit = 250, checkwz = FALSE, data = edata)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(0.0314, 5.2589) with log-lik -112.9763
logLik(fit)
fit@misc$shape # Estimate of shape

Failure times of the airconditioning system of an airplane
eedata <- data.frame(acplane = c(23, 261, 87, 7, 120, 14, 62, 47,
225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14,
71, 11, 14, 11, 16, 90, 1, 16, 52, 95))
fit <- vglm(acplane ~ 1, expexpff1(ishape = 0.8), trace = TRUE,

maxit = 50, checkwz = FALSE, data = eedata)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(0.0145, 0.8130) with log-lik -152.264
logLik(fit)
fit@misc$shape # Estimate of shape

expgeom The Exponential Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the exponential geomet-
ric distribution.

Usage

dexpgeom(x, scale = 1, shape, log = FALSE)
pexpgeom(q, scale = 1, shape)
qexpgeom(p, scale = 1, shape)
rexpgeom(n, scale = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

scale, shape positive scale and shape parameters.

log Logical. If log = TRUE then the logarithm of the density is returned.

expgeometric 263

Details

See expgeometric, the VGAM family function for estimating the parameters, for the formula of
the probability density function and other details.

Value

dexpgeom gives the density, pexpgeom gives the distribution function, qexpgeom gives the quantile
function, and rexpgeom generates random deviates.

Note

We define scale as the reciprocal of the scale parameter used by Adamidis and Loukas (1998).

Author(s)

J. G. Lauder and T. W. Yee

See Also

expgeometric, exponential, geometric.

Examples

Not run:
shape <- 0.5; scale <- 1; nn <- 501
x <- seq(-0.10, 3.0, len = nn)
plot(x, dexpgeom(x, scale, shape), type = "l", las = 1, ylim = c(0, 2),

ylab = paste("[dp]expgeom(shape = ", shape, ", scale = ", scale, ")"),
col = "blue", cex.main = 0.8,
main = "Blue is density, red is cumulative distribution function",
sub = "Purple lines are the 10,20,...,90 percentiles")

lines(x, pexpgeom(x, scale, shape), col = "red")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qexpgeom(probs, scale, shape)
lines(Q, dexpgeom(Q, scale, shape), col = "purple", lty = 3, type = "h")
lines(Q, pexpgeom(Q, scale, shape), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
max(abs(pexpgeom(Q, scale, shape) - probs)) # Should be 0

End(Not run)

expgeometric Exponential Geometric Distribution Family Function

Description

Estimates the two parameters of the exponential geometric distribution by maximum likelihood
estimation.

264 expgeometric

Usage

expgeometric(lscale = "loglink", lshape = "logitlink",
iscale = NULL, ishape = NULL,
tol12 = 1e-05, zero = 1, nsimEIM = 400)

Arguments

lscale, lshape Link function for the two parameters. See Links for more choices.

iscale, ishape Numeric. Optional initial values for the scale and shape parameters.

tol12 Numeric. Tolerance for testing whether a parameter has value 1 or 2.

zero, nsimEIM See CommonVGAMffArguments.

Details

The exponential geometric distribution has density function

f(y; c = scale, s = shape) = (1/c)(1− s)e−y/c(1− se−y/c)−2

where y > 0, c > 0 and s ∈ (0, 1). The mean, (c(s − 1)/s) log(1 − s) is returned as the fitted
values. Note the median is c log(2− s). Simulated Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

We define scale as the reciprocal of the scale parameter used by Adamidis and Loukas (1998).

Author(s)

J. G. Lauder and T. W. Yee

References

Adamidis, K., Loukas, S. (1998). A lifetime distribution with decreasing failure rate. Statistics and
Probability Letters, 39, 35–42.

See Also

dexpgeom, exponential, geometric.

expint 265

Examples

Not run:
Scale <- exp(2); shape = logitlink(-1, inverse = TRUE);
edata <- data.frame(y = rexpgeom(n = 2000, scale = Scale, shape = shape))
fit <- vglm(y ~ 1, expgeometric, edata, trace = TRUE)
c(with(edata, mean(y)), head(fitted(fit), 1))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

End(Not run)

expint The Exponential Integral and Variants

Description

Computes the exponential integral Ei(x) for real values, as well as exp(−x) × Ei(x) and E1(x)
and their derivatives (up to the 3rd derivative).

Usage

expint(x, deriv = 0)
expexpint(x, deriv = 0)
expint.E1(x, deriv = 0)

Arguments

x Numeric. Ideally a vector of positive reals.

deriv Integer. Either 0, 1, 2 or 3.

Details

The exponential integral Ei(x) function is the integral of exp(t)/t from 0 to x, for positive real x.
The function E1(x) is the integral of exp(−t)/t from x to infinity, for positive real x.

Value

Function expint(x, deriv = n) returns the nth derivative ofEi(x) (up to the 3rd), function expexpint(x,
deriv = n) returns the nth derivative of exp(−x)×Ei(x) (up to the 3rd), function expint.E1(x,
deriv = n) returns the nth derivative of E1(x) (up to the 3rd).

Warning

These functions have not been tested thoroughly.

266 explink

Author(s)

T. W. Yee has simply written a small wrapper function to call the NETLIB FORTRAN code.
Xiangjie Xue modified the functions to calculate derivatives. Higher derivatives can actually be
calculated—please let me know if you need it.

References

http://www.netlib.org/specfun/ei.

See Also

log, exp. There is also a package called expint.

Examples

Not run:
par(mfrow = c(2, 2))
curve(expint, 0.01, 2, xlim = c(0, 2), ylim = c(-3, 5),

las = 1, col = "orange")
abline(v = (-3):5, h = (-4):5, lwd = 2, lty = "dotted", col = "gray")
abline(h = 0, v = 0, lty = "dashed", col = "blue")

curve(expexpint, 0.01, 2, xlim = c(0, 2), ylim = c(-3, 2),
las = 1, col = "orange")

abline(v = (-3):2, h = (-4):5, lwd = 2, lty = "dotted", col = "gray")
abline(h = 0, v = 0, lty = "dashed", col = "blue")

curve(expint.E1, 0.01, 2, xlim = c(0, 2), ylim = c(0, 5),
las = 1, col = "orange")

abline(v = (-3):2, h = (-4):5, lwd = 2, lty = "dotted", col = "gray")
abline(h = 0, v = 0, lty = "dashed", col = "blue")

End(Not run)

explink Exponential Link Function

Description

Computes the exponential transformation, including its inverse and the first two derivatives.

Usage

explink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

http://www.netlib.org/specfun/ei

explink 267

Arguments

theta Numeric or character. See below for further details.

bvalue See clogloglink.

inverse, deriv, short, tag

Details at Links.

Details

The exponential link function is potentially suitable for parameters that are positive. Numerical
values of theta close to negative or positive infinity may result in 0, Inf, -Inf, NA or NaN.

Value

For explink with deriv = 0, the exponential of theta, i.e., exp(theta) when inverse = FALSE.
And if inverse = TRUE then log(theta); if theta is not positive then it will return NaN.

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

Note

This function has particular use for computing quasi-variances when used with rcim and uninormal.

Numerical instability may occur when theta is close to negative or positive infinity. One way of
overcoming this (one day) is to use bvalue.

Author(s)

Thomas W. Yee

See Also

Links, loglink, rcim, Qvar, uninormal.

Examples

theta <- rnorm(30)
explink(theta)
max(abs(explink(explink(theta), inverse = TRUE) - theta)) # 0?

268 explog

explog The Exponential Logarithmic Distribution

Description

Density, distribution function, quantile function and random generation for the exponential loga-
rithmic distribution.

Usage

dexplog(x, scale = 1, shape, log = FALSE)
pexplog(q, scale = 1, shape)
qexplog(p, scale = 1, shape)
rexplog(n, scale = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

scale, shape positive scale and shape parameters.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

See explogff, the VGAM family function for estimating the parameters, for the formula of the
probability density function and other details.

Value

dexplog gives the density, pexplog gives the distribution function, qexplog gives the quantile
function, and rexplog generates random deviates.

Note

We define scale as the reciprocal of the scale parameter used by Tahmasabi and Rezaei (2008).

Author(s)

J. G. Lauder and T. W. Yee

See Also

explogff, exponential.

explogff 269

Examples

Not run:
shape <- 0.5; scale <- 2; nn <- 501
x <- seq(-0.50, 6.0, len = nn)
plot(x, dexplog(x, scale, shape), type = "l", las = 1, ylim = c(0, 1.1),

ylab = paste("[dp]explog(shape = ", shape, ", scale = ", scale, ")"),
col = "blue", cex.main = 0.8,
main = "Blue is density, orange is cumulative distribution function",
sub = "Purple lines are the 10,20,...,90 percentiles")

lines(x, pexplog(x, scale, shape), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qexplog(probs, scale, shape = shape)
lines(Q, dexplog(Q, scale, shape = shape), col = "purple", lty = 3, type = "h")
lines(Q, pexplog(Q, scale, shape = shape), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
max(abs(pexplog(Q, scale, shape = shape) - probs)) # Should be 0

End(Not run)

explogff Exponential Logarithmic Distribution Family Function

Description

Estimates the two parameters of the exponential logarithmic distribution by maximum likelihood
estimation.

Usage

explogff(lscale = "loglink", lshape = "logitlink",
iscale = NULL, ishape = NULL,
tol12 = 1e-05, zero = 1, nsimEIM = 400)

Arguments

lscale, lshape See CommonVGAMffArguments for information.

tol12 Numeric. Tolerance for testing whether a parameter has value 1 or 2.
iscale, ishape, zero, nsimEIM

See CommonVGAMffArguments.

Details

The exponential logarithmic distribution has density function

f(y; c, s) = (1/(− log p))(((1/c)(1− s)e−y/c)/(1− (1− s)e−y/c))

where y > 0, scale parameter c > 0, and shape parameter s ∈ (0, 1). The mean, (−polylog(2, 1−
p)c)/ log(s) is not returned as the fitted values. Note the median is c log(1 +

√
s) and it is currently

returned as the fitted values. Simulated Fisher scoring is implemented.

270 exponential

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

We define scale as the reciprocal of the rate parameter used by Tahmasabi and Sadegh (2008).

Yet to do: find a polylog() function.

Author(s)

J. G. Lauder and T. W .Yee

References

Tahmasabi, R., Sadegh, R. (2008). A two-parameter lifetime distribution with decreasing failure
rate. Computational Statistics and Data Analysis, 52, 3889–3901.

See Also

dexplog, exponential,

Examples

Not run: Scale <- exp(2); shape <- logitlink(-1, inverse = TRUE)
edata <- data.frame(y = rexplog(n = 2000, scale = Scale, shape = shape))
fit <- vglm(y ~ 1, explogff, data = edata, trace = TRUE)
c(with(edata, median(y)), head(fitted(fit), 1))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

End(Not run)

exponential Exponential Distribution

Description

Maximum likelihood estimation for the exponential distribution.

Usage

exponential(link = "loglink", location = 0, expected = TRUE,
type.fitted = c("mean", "percentiles", "Qlink"),
percentiles = 50,
ishrinkage = 0.95, parallel = FALSE, zero = NULL)

exponential 271

Arguments

link Parameter link function applied to the positive parameter rate. See Links for
more choices.

location Numeric of length 1, the known location parameter, A, say.

expected Logical. If TRUE Fisher scoring is used, otherwise Newton-Raphson. The latter
is usually faster.

ishrinkage, parallel, zero

See CommonVGAMffArguments for information.

type.fitted, percentiles

See CommonVGAMffArguments for information.

Details

The family function assumes the response Y has density

f(y) = λ exp(−λ(y −A))

for y > A, where A is the known location parameter. By default, A = 0. Then E(Y) = A + 1/λ
and V ar(Y) = 1/λ2.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

Suppose A = 0. For a fixed time interval, the number of events is Poisson with mean λ if the time
between events has a geometric distribution with mean λ−1. The argument rate in exponential
is the same as rexp etc. The argument lambda in rpois is somewhat the same as rate here.

Author(s)

T. W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

amlexponential, gpd, laplace, expgeometric, explogff, poissonff, mix2exp, freund61, simulate.vlm,
Exponential.

272 exppois

Examples

edata <- data.frame(x2 = runif(nn <- 100) - 0.5)
edata <- transform(edata, x3 = runif(nn) - 0.5)
edata <- transform(edata, eta = 0.2 - 0.7 * x2 + 1.9 * x3)
edata <- transform(edata, rate = exp(eta))
edata <- transform(edata, y = rexp(nn, rate = rate))
with(edata, stem(y))

fit.slow <- vglm(y ~ x2 + x3, exponential, data = edata, trace = TRUE)
fit.fast <- vglm(y ~ x2 + x3, exponential(exp = FALSE), data = edata,

trace = TRUE, crit = "coef")
coef(fit.slow, mat = TRUE)
summary(fit.slow)

Compare results with a GPD. Has a threshold.
threshold <- 0.5
gdata <- data.frame(y1 = threshold + rexp(n = 3000, rate = exp(1.5)))

fit.exp <- vglm(y1 ~ 1, exponential(location = threshold), data = gdata)
coef(fit.exp, matrix = TRUE)
Coef(fit.exp)
logLik(fit.exp)

fit.gpd <- vglm(y1 ~ 1, gpd(threshold = threshold), data = gdata)
coef(fit.gpd, matrix = TRUE)
Coef(fit.gpd)
logLik(fit.gpd)

exppois The Exponential Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the exponential poisson
distribution.

Usage

dexppois(x, rate = 1, shape, log = FALSE)
pexppois(q, rate = 1, shape, lower.tail = TRUE, log.p = FALSE)
qexppois(p, rate = 1, shape, lower.tail = TRUE, log.p = FALSE)
rexppois(n, rate = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

exppois 273

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

shape, rate positive parameters.

log Logical. If log = TRUE then the logarithm of the density is returned.

lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See exppoisson, the VGAM family function for estimating the parameters, for the formula of the
probability density function and other details.

Value

dexppois gives the density, pexppois gives the distribution function, qexppois gives the quantile
function, and rexppois generates random deviates.

Author(s)

Kai Huang and J. G. Lauder

See Also

exppoisson.

Examples

Not run: rate <- 2; shape <- 0.5; nn <- 201
x <- seq(-0.05, 1.05, len = nn)
plot(x, dexppois(x, rate = rate, shape), type = "l", las = 1, ylim = c(0, 3),

ylab = paste("fexppoisson(rate = ", rate, ", shape = ", shape, ")"),
col = "blue", cex.main = 0.8,
main = "Blue is the density, orange the cumulative distribution function",
sub = "Purple lines are the 10,20,...,90 percentiles")

lines(x, pexppois(x, rate = rate, shape), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qexppois(probs, rate = rate, shape)
lines(Q, dexppois(Q, rate = rate, shape), col = "purple", lty = 3, type = "h")
lines(Q, pexppois(Q, rate = rate, shape), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3); abline(h = 0, col = "gray50")
max(abs(pexppois(Q, rate = rate, shape) - probs)) # Should be 0

End(Not run)

274 exppoisson

exppoisson Exponential Poisson Distribution Family Function

Description

Estimates the two parameters of the exponential Poisson distribution by maximum likelihood esti-
mation.

Usage

exppoisson(lrate = "loglink", lshape = "loglink",
irate = 2, ishape = 1.1, zero = NULL)

Arguments

lshape, lrate Link function for the two positive parameters. See Links for more choices.

ishape, irate Numeric. Initial values for the shape and rate parameters. Currently this func-
tion is not intelligent enough to obtain better initial values.

zero See CommonVGAMffArguments.

Details

The exponential Poisson distribution has density function

f(y;β = rate, λ = shape) =
λβ

1− e−λ
e−λ−βy+λ exp (−βy)

where y > 0, and the parameters shape, λ, and rate, β, are positive. The distribution implies a
population facing discrete hazard rates which are multiples of a base hazard. This VGAM fam-
ily function requires the hypergeo package (to use their genhypergeo function). The median is
returned as the fitted value.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

This VGAM family function does not work properly!

Author(s)

J. G. Lauder, jamesglauder@gmail.com

References

Kus, C., (2007). A new lifetime distribution. Computational Statistics and Data Analysis, 51,
4497–4509.

extlogF1 275

See Also

dexppois, exponential, poisson.

Examples

Not run:
shape <- exp(1); rate <- exp(2)
rdata <- data.frame(y = rexppois(n = 1000, rate = rate, shape = shape))
library("hypergeo") # Required!
fit <- vglm(y ~ 1, exppoisson, data = rdata, trace = FALSE, maxit = 1200)
c(with(rdata, median(y)), head(fitted(fit), 1))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

End(Not run)

extlogF1 Extended log-F Distribution Family Function

Description

Maximum likelihood estimation of the 1-parameter extended log-F distribution.

Usage

extlogF1(tau = c(0.25, 0.5, 0.75), parallel = TRUE ~ 0,
seppar = 0, tol0 = -0.001,
llocation = "identitylink", ilocation = NULL,
lambda.arg = NULL, scale.arg = 1, ishrinkage = 0.95,
digt = 4, idf.mu = 3, imethod = 1)

Arguments

tau Numeric, the desired quantiles. A strictly increasing sequence, each value must
be in (0, 1). The default values are the three quartiles, matching lms.bcn.

parallel Similar to alaplace1, applying to the location parameters. One can try fix up
the quantile-crossing problem after fitting the model by calling fix.crossing.
Use is.crossing to see if there is a problem. The default for parallel is
totally FALSE, i.e., FALSE for every variable including the intercept. Quantile-
crossing can occur when values of tau are too close, given the data. How the
quantiles are modelled with respect to the covariates also has a big effect, e.g.,
if they are too flexible or too inflexible then the problem is likely to occur. For
example, using bs with df = 10 is likely to create problems.
Setting parallel = TRUE results in a totally parallel model; all quantiles are
parallel and this assumption can be too strong for some data sets. Instead,
fix.crossing only repairs the quantiles that cross. So one must carefully
choose values of tau for fitting the original fit.

276 extlogF1

seppar, tol0 Numeric, both of unit length and nonnegative, the separation and shift parame-
ters. If seppar is positive then any crossing quantile is penalized by the differ-
ence cubed multiplied by seppar. The log-likelihood subtracts the penalty. The
shift parameter ensures that the result is strictly noncrossing when seppar is
large enough; otherwise if tol0 = 0 and seppar is large then the crossing quan-
tiles remain crossed even though the offending amount becomes small but never
exactly 0. Informally, tol0 pushes the adjustment enough so that is.crossing
should return FALSE.
If tol0 is positive then that is the shift in absolute terms. But tol0 may be as-
signed a negative value, in which case it is interpreted multiplicatively relative
to the midspread of the response; tol0 <- abs(tol0) * midspread. Regard-
less, fit@extra$tol0 is the amount in absolute terms.
If avoiding the quantile crossing problem is of concern to you, try increasing
seppar to decrease the amount of crossing. Probably it is best to choose the
smallest value of seppar so that is.crossing returns FALSE. Increasing tol0
relatively or absolutely means the fitted quantiles are allowed to move apart
more. However, tau must be considered when choosing tol0.

llocation, ilocation

See Links for more choices and CommonVGAMffArguments for more informa-
tion. Choosing loglink should usually be good for counts. And choosing
logitlink should be a reasonable for proportions. However, avoid choosing
tau values close to the boundary, for example, if p0 is the proportion of 0s then
choose p0 � τ . For proportions grouped data is much better than ungrouped
data, and the bigger the groups the more the granularity so that the empirical
proportion can approximate tau more closely.

lambda.arg Positive tuning parameter which controls the sharpness of the cusp. The limit
as it approaches 0 is probably very similar to dalap. The default is to choose
the value internally. If scale.arg increases, then probably lambda.arg needs
to increase accordingly. If lambda.arg is too large then the empirical quan-
tiles may not be very close to tau. If lambda.arg is too close to 0 then the
convergence behaviour will not be good and local solutions found, as well as
numerical problems in general. Monitoring convergence is recommended when
varying lambda.arg.

scale.arg Positive scale parameter and sometimes called scale. The transformation used
is (y - location) / scale. This function should be okay for response vari-
ables having a moderate range (0–100, say), but if very different from this then
experimenting with this argument will be a good idea.

ishrinkage, idf.mu, digt

Similar to alaplace1.

imethod Initialization method. Either the value 1, 2, or See CommonVGAMffArguments
for more information.

Details

This is an experimental family function for quantile regression. Fasiolo et al. (2020) propose an ex-
tended log-F distribution (ELF) however this family function only estimates the location parameter.
The distribution has a scale parameter which can be inputted (default value is unity). One location

extlogF1 277

parameter is estimated for each tau value and these are the estimated quantiles. For quantile regres-
sion it is not necessary to estimate the scale parameter since the log-likelihood function is triangle
shaped.

The ELF is used as an approximation of the asymmetric Laplace distribution (ALD). The latter
cannot be estimated properly using Fisher scoring/IRLS but the ELF holds promise because it has
continuous derivatives and therefore fewer problems with the regularity conditions. Because the
ELF is fitted to data to obtain an empirical result the convergence behaviour may not be gentle and
smooth. Hence there is a function-specific control function called extlogF1.control which has
something like stepsize = 0.5 and maxits = 100. It has been found that slowing down the rate
of convergence produces greater stability during the estimation process. Regardless, convergence
should be monitored carefully always.

This function accepts a vector response but not a matrix response.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

Changes will occur in the future to fine-tune things. In general setting trace = TRUE is strongly
encouraged because it is needful to check that convergence occurs properly.

If seppar > 0 then logLik(fit) will return the penalized log-likelihood.

Author(s)

Thomas W. Yee

References

Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. and Goude, Y. (2020). Fast calibrated additive
quantile regression. J. Amer. Statist. Assoc., in press.

Yee, T. W. (2020). On quantile regression based on the 1-parameter extended log-F distribution. In
preparation.

See Also

dextlogF, is.crossing, fix.crossing, eCDF, vglm.control, logF, alaplace1, dalap, lms.bcn.

Examples

nn <- 1000; mytau <- c(0.25, 0.75)
edata <- data.frame(x2 = sort(rnorm(nn)))
edata <- transform(edata, y1 = 1 + x2 + rnorm(nn, sd = exp(-1)),

y2 = cos(x2) / (1 + abs(x2)) + rnorm(nn, sd = exp(-1)))
fit1 <- vglm(y1 ~ x2, extlogF1(tau = mytau), data = edata) # trace = TRUE
fit2 <- vglm(y2 ~ bs(x2, 6), extlogF1(tau = mytau), data = edata)
coef(fit1, matrix = TRUE)
fit2@extra$percentile # Empirical percentiles here

278 familyname

summary(fit2)
c(is.crossing(fit1), is.crossing(fit2))
head(fitted(fit1))
Not run: plot(y2 ~ x2, edata, col = "blue")
matlines(with(edata, x2), fitted(fit2), col="orange", lty = 1, lwd = 2)
End(Not run)

familyname Family Function Name

Description

Extractor function for the name of the family function of an object in the VGAM package.

Usage

familyname(object, ...)
familyname.vlm(object, all = FALSE, ...)

Arguments

object Some VGAM object, for example, having class vglmff-class.

all If all = TRUE then all of the vfamily slot is returned; this contains subclasses
the object might have. The default is the return the first value only.

... Other possible arguments for the future.

Details

Currently VGAM implements over 150 family functions. This function returns the name of the
function assigned to the family argument, for modelling functions such as vglm and vgam. Some-
times a slightly different answer is returned, e.g., propodds really calls cumulative with some
arguments set, hence the output returned by this function is "cumulative" (note that one day this
might change, however).

Value

A character string or vector.

Note

Arguments used in the invocation are not included. Possibly this is something to be done in the
future.

See Also

vglmff-class, vglm-class.

Felix 279

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit1 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = TRUE, reverse = TRUE), data = pneumo)
familyname(fit1)
familyname(fit1, all = TRUE)
familyname(propodds()) # "cumulative"

Felix The Felix Distribution

Description

Density for the Felix distribution.

Usage

dfelix(x, rate = 0.25, log = FALSE)

Arguments

x vector of quantiles.

rate See felix.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

See felix, the VGAM family function for estimating the parameter, for the formula of the proba-
bility density function and other details.

Value

dfelix gives the density.

Warning

The default value of rate is subjective.

Author(s)

T. W. Yee

See Also

felix.

280 felix

Examples

Not run:
rate <- 0.25; x <- 1:15
plot(x, dfelix(x, rate), type = "h", las = 1, col = "blue",

ylab = paste("dfelix(rate=", rate, ")"),
main = "Felix density function")

End(Not run)

felix Felix Distribution Family Function

Description

Estimates the parameter of a Felix distribution by maximum likelihood estimation.

Usage

felix(lrate = extlogitlink(min = 0, max = 0.5), imethod = 1)

Arguments

lrate Link function for the parameter, called a below; see Links for more choices and
for general information.

imethod See CommonVGAMffArguments. Valid values are 1, 2, 3 or 4.

Details

The Felix distribution is an important basic Lagrangian distribution. The density function is

f(y; a) =
1

((y − 1)/2)!
y(y−3)/2a(y−1)/2 exp(−ay)

where y = 1, 3, 5, . . . and 0 < a < 0.5. The mean is 1/(1 − 2a) (returned as the fitted values).
Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Author(s)

T. W. Yee

References

Consul, P. C. and Famoye, F. (2006). Lagrangian Probability Distributions, Boston, USA: Birkhauser.

fff 281

See Also

dfelix, borel.tanner.

Examples

fdata <- data.frame(y = 2 * rpois(n = 200, 1) + 1) # Not real data!
fit <- vglm(y ~ 1, felix, data = fdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

fff F Distribution Family Function

Description

Maximum likelihood estimation of the (2-parameter) F distribution.

Usage

fff(link = "loglink", idf1 = NULL, idf2 = NULL, nsimEIM = 100,
imethod = 1, zero = NULL)

Arguments

link Parameter link function for both parameters. See Links for more choices. The
default keeps the parameters positive.

idf1, idf2 Numeric and positive. Initial value for the parameters. The default is to choose
each value internally.

nsimEIM, zero See CommonVGAMffArguments for more information.

imethod Initialization method. Either the value 1 or 2. If both fail try setting values for
idf1 and idf2.

Details

The F distribution is named after Fisher and has a density function that has two parameters, called
df1 and df2 here. This function treats these degrees of freedom as positive reals rather than integers.
The mean of the distribution is df2/(df2 − 2) provided df2 > 2, and its variance is 2df22(df1 +
df2− 2)/(df1(df2− 2)2(df2− 4)) provided df2 > 4. The estimated mean is returned as the fitted
values. Although the F distribution can be defined to accommodate a non-centrality parameter ncp,
it is assumed zero here. Actually it shouldn’t be too difficult to handle any known ncp; something
to do in the short future.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

282 fill1

Warning

Numerical problems will occur when the estimates of the parameters are too low or too high.

Author(s)

T. W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

FDist.

Examples

Not run:
fdata <- data.frame(x2 = runif(nn <- 2000))
fdata <- transform(fdata, df1 = exp(2+0.5*x2),

df2 = exp(2-0.5*x2))
fdata <- transform(fdata, y = rf(nn, df1, df2))
fit <- vglm(y ~ x2, fff, data = fdata, trace = TRUE)
coef(fit, matrix = TRUE)

End(Not run)

fill1 Creates a Matrix of Appropriate Dimension

Description

A support function for the argument xij, it generates a matrix of an appropriate dimension.

Usage

fill1(x, values = 0, ncolx = ncol(x))

Arguments

x A vector or matrix which is used to determine the dimension of the answer, in
particular, the number of rows. After converting x to a matrix if necessary, the
answer is a matrix of values values, of dimension nrow(x) by ncolx.

values Numeric. The answer contains these values, which are recycled columnwise if
necessary, i.e., as matrix(values, ..., byrow=TRUE).

ncolx The number of columns of the returned matrix. The default is the number of
columns of x.

fill1 283

Details

The xij argument for vglm allows the user to input variables specific to each linear/additive predic-
tor. For example, consider the bivariate logit model where the first/second linear/additive predictor
is the logistic regression of the first/second binary response respectively. The third linear/additive
predictor is log(OR) = eta3, where OR is the odds ratio. If one has ocular pressure as a covariate
in this model then xij is required to handle the ocular pressure for each eye, since these will be
different in general. [This contrasts with a variable such as age, the age of the person, which has a
common value for both eyes.] In order to input these data into vglm one often finds that functions
fill1, fill2, etc. are useful.

All terms in the xij and formula arguments in vglm must appear in the form2 argument too.

Value

matrix(values, nrow=nrow(x), ncol=ncolx), i.e., a matrix consisting of values values, with
the number of rows matching x, and the default number of columns is the number of columns of x.

Note

The effect of the xij argument is after other arguments such as exchangeable and zero. Hence
xij does not affect constraint matrices.

Additionally, there are currently 3 other identical fill1 functions, called fill2, fill3 and fill4;
if you need more then assign fill5 = fill6 = fill1 etc. The reason for this is that if more than
one fill1 function is needed then they must be unique. For example, if M = 4 then xij =
list(op ~ lop + rop + fill1(mop) + fill1(mop)) would reduce to xij = list(op ~ lop + rop +
fill1(mop)), whereas xij = list(op ~ lop + rop + fill1(mop) + fill2(mop)) would retain all
M terms, which is needed.

In Examples 1 to 3 below, the xij argument illustrates covariates that are specific to a linear pre-
dictor. Here, lop/rop are the ocular pressures of the left/right eye in an artificial dataset, and mop is
their mean. Variables leye and reye might be the presence/absence of a particular disease on the
LHS/RHS eye respectively.

In Example 3, the xij argument illustrates fitting the (exchangeable) model where there is a com-
mon smooth function of the ocular pressure. One should use regression splines since s in vgam does
not handle the xij argument. However, regression splines such as bs and ns need to have the same
basis functions here for both functions, and Example 3 illustrates a trick involving a function BS to
obtain this, e.g., same knots. Although regression splines create more than a single column per term
in the model matrix, fill1(BS(lop,rop)) creates the required (same) number of columns.

Author(s)

T. W. Yee

See Also

vglm.control, vglm, multinomial, Select.

284 fill1

Examples

fill1(runif(5))
fill1(runif(5), ncol = 3)
fill1(runif(5), val = 1, ncol = 3)

Generate (independent) eyes data for the examples below; OR=1.
nn <- 1000 # Number of people
eyesdata <- data.frame(lop = round(runif(nn), 2),

rop = round(runif(nn), 2),
age = round(rnorm(nn, 40, 10)))

eyesdata <- transform(eyesdata,
mop = (lop + rop) / 2, # Mean ocular pressure
op = (lop + rop) / 2, # Value unimportant unless plotting

op = lop, # Choose this if plotting
eta1 = 0 - 2*lop + 0.04*age, # Linear predictor for left eye
eta2 = 0 - 2*rop + 0.04*age) # Linear predictor for right eye

eyesdata <- transform(eyesdata,
leye = rbinom(nn, size=1, prob = logitlink(eta1, inverse = TRUE)),
reye = rbinom(nn, size=1, prob = logitlink(eta2, inverse = TRUE)))

Example 1. All effects are linear.
fit1 <- vglm(cbind(leye,reye) ~ op + age,

family = binom2.or(exchangeable = TRUE, zero = 3),
data = eyesdata, trace = TRUE,
xij = list(op ~ lop + rop + fill1(lop)),
form2 = ~ op + lop + rop + fill1(lop) + age)

head(model.matrix(fit1, type = "lm")) # LM model matrix
head(model.matrix(fit1, type = "vlm")) # Big VLM model matrix
coef(fit1)
coef(fit1, matrix = TRUE) # Unchanged with 'xij'
constraints(fit1)
max(abs(predict(fit1)-predict(fit1, new = eyesdata))) # Okay
summary(fit1)
Not run:
plotvgam(fit1,

se = TRUE) # Wrong, e.g., coz it plots against op, not lop.
So set op = lop in the above for a correct plot.

End(Not run)

Example 2. This uses regression splines on ocular pressure.
It uses a trick to ensure common basis functions.
BS <- function(x, ...)

sm.bs(c(x,...), df = 3)[1:length(x), , drop = FALSE] # trick

fit2 <-
vglm(cbind(leye,reye) ~ BS(lop,rop) + age,

family = binom2.or(exchangeable = TRUE, zero = 3),
data = eyesdata, trace = TRUE,
xij = list(BS(lop,rop) ~ BS(lop,rop) +

BS(rop,lop) +
fill1(BS(lop,rop))),

finney44 285

form2 = ~ BS(lop,rop) + BS(rop,lop) + fill1(BS(lop,rop)) +
lop + rop + age)

head(model.matrix(fit2, type = "lm")) # LM model matrix
head(model.matrix(fit2, type = "vlm")) # Big VLM model matrix
coef(fit2)
coef(fit2, matrix = TRUE)
summary(fit2)
fit2@smart.prediction
max(abs(predict(fit2) - predict(fit2, new = eyesdata))) # Okay
predict(fit2, new = head(eyesdata)) # OR is 'scalar' as zero=3
max(abs(head(predict(fit2)) -

predict(fit2, new = head(eyesdata)))) # Should be 0
Not run:
plotvgam(fit2, se = TRUE, xlab = "lop") # Correct

End(Not run)

Example 3. Capture-recapture model with ephemeral and enduring
memory effects. Similar to Yang and Chao (2005), Biometrics.
deermice <- transform(deermice, Lag1 = y1)
M.tbh.lag1 <-

vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight + Lag1,
posbernoulli.tb(parallel.t = FALSE ~ 0,

parallel.b = FALSE ~ 0,
drop.b = FALSE ~ 1),

xij = list(Lag1 ~ fill1(y1) + fill1(y2) + fill1(y3) +
fill1(y4) + fill1(y5) + fill1(y6) +
y1 + y2 + y3 + y4 + y5),

form2 = ~ sex + weight + Lag1 +
fill1(y1) + fill1(y2) + fill1(y3) + fill1(y4) +
fill1(y5) + fill1(y6) +
y1 + y2 + y3 + y4 + y5 + y6,

data = deermice, trace = TRUE)
coef(M.tbh.lag1)

finney44 Toxicity trial for insects

Description

A data frame of a toxicity trial.

Usage

data(finney44)

Format

A data frame with 6 observations on the following 3 variables.

286 fisherzlink

pconc a numeric vector, percent concentration of pyrethrins.

hatched number of eggs that hatched.

unhatched number of eggs that did not hatch.

Details

Finney (1944) describes a toxicity trial of five different concentrations of pyrethrins (percent) plus
a control that were administered to eggs of Ephestia kuhniella. The natural mortality rate is large,
and a common adjustment is to use Abbott’s formula.

References

Finney, D. J. (1944). The application of the probit method to toxicity test data adjusted for mortality
in the controls. Annals of Applied Biology, 31, 68–74.

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of
Economic Entomology, 18, 265–7.

Examples

data(finney44)
transform(finney44, mortality = unhatched / (hatched + unhatched))

fisherzlink Fisher’s Z Link Function

Description

Computes the Fisher Z transformation, including its inverse and the first two derivatives.

Usage

fisherzlink(theta, bminvalue = NULL, bmaxvalue = NULL,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.
bminvalue, bmaxvalue

Optional boundary values. Values of theta which are less than or equal to −1
can be replaced by bminvalue before computing the link function value. Values
of theta which are greater than or equal to 1 can be replaced by bmaxvalue
before computing the link function value. See Links.

inverse, deriv, short, tag

Details at Links.

fisherzlink 287

Details

The fisherz link function is commonly used for parameters that lie between −1 and 1. Numerical
values of theta close to −1 or 1 or out of range result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, 0.5 * log((1+theta)/(1-theta)) (same as atanh(theta)) when inverse = FALSE,
and if inverse = TRUE then (exp(2*theta)-1)/(exp(2*theta)+1) (same as tanh(theta)).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

Note

Numerical instability may occur when theta is close to −1 or 1. One way of overcoming this is to
use, e.g., bminvalue.

The link function rhobitlink is very similar to fisherzlink, e.g., just twice the value of fisherzlink.
This link function may be renamed to atanhlink in the near future.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, rhobitlink, logitlink.

Examples

theta <- seq(-0.99, 0.99, by = 0.01)
y <- fisherzlink(theta)
Not run: plot(theta, y, type = "l", las = 1, ylab = "",

main = "fisherzlink(theta)", col = "blue")
abline(v = (-1):1, h = 0, lty = 2, col = "gray")
End(Not run)

x <- c(seq(-1.02, -0.98, by = 0.01), seq(0.97, 1.02, by = 0.01))
fisherzlink(x) # Has NAs
fisherzlink(x, bminvalue = -1 + .Machine$double.eps,

bmaxvalue = 1 - .Machine$double.eps) # Has no NAs

288 Fisk

Fisk The Fisk Distribution

Description

Density, distribution function, quantile function and random generation for the Fisk distribution
with shape parameter a and scale parameter scale.

Usage

dfisk(x, scale = 1, shape1.a, log = FALSE)
pfisk(q, scale = 1, shape1.a, lower.tail = TRUE, log.p = FALSE)
qfisk(p, scale = 1, shape1.a, lower.tail = TRUE, log.p = FALSE)
rfisk(n, scale = 1, shape1.a)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

shape1.a shape parameter.

scale scale parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See fisk, which is the VGAM family function for estimating the parameters by maximum likeli-
hood estimation.

Value

dfisk gives the density, pfisk gives the distribution function, qfisk gives the quantile function,
and rfisk generates random deviates.

Note

The Fisk distribution is a special case of the 4-parameter generalized beta II distribution.

Author(s)

T. W. Yee and Kai Huang

fisk 289

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

fisk, genbetaII.

Examples

fdata <- data.frame(y = rfisk(1000, shape = exp(1), scale = exp(2)))
fit <- vglm(y ~ 1, fisk(lss = FALSE), data = fdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)

fisk Fisk Distribution family function

Description

Maximum likelihood estimation of the 2-parameter Fisk distribution.

Usage

fisk(lscale = "loglink", lshape1.a = "loglink", iscale = NULL,
ishape1.a = NULL, imethod = 1, lss = TRUE,
gscale = exp(-5:5), gshape1.a = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")

Arguments

lss See CommonVGAMffArguments for important information.

lshape1.a, lscale

Parameter link functions applied to the (positive) parameters a and scale. See
Links for more choices.

iscale, ishape1.a, imethod, zero

See CommonVGAMffArguments for information. For imethod = 2 a good initial
value for iscale is needed to obtain a good estimate for the other parameter.

gscale, gshape1.a

See CommonVGAMffArguments for information.

probs.y See CommonVGAMffArguments for information.

290 fisk

Details

The 2-parameter Fisk (aka log-logistic) distribution is the 4-parameter generalized beta II distribu-
tion with shape parameter q = p = 1. It is also the 3-parameter Singh-Maddala distribution with
shape parameter q = 1, as well as the Dagum distribution with p = 1. More details can be found in
Kleiber and Kotz (2003).

The Fisk distribution has density

f(y) = aya−1/[ba{1 + (y/b)a}2]

for a > 0, b > 0, y ≥ 0. Here, b is the scale parameter scale, and a is a shape parameter. The
cumulative distribution function is

F (y) = 1− [1 + (y/b)a]−1 = [1 + (y/b)−a]−1.

The mean is
E(Y) = bΓ(1 + 1/a) Γ(1− 1/a)

provided a > 1; these are returned as the fitted values. This family function handles multiple
responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

See the notes in genbetaII.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Fisk, genbetaII, betaII, dagum, sinmad, inv.lomax, lomax, paralogistic, inv.paralogistic,
simulate.vlm.

Examples

fdata <- data.frame(y = rfisk(200, shape = exp(1), exp(2)))
fit <- vglm(y ~ 1, fisk(lss = FALSE), data = fdata, trace = TRUE)
fit <- vglm(y ~ 1, fisk(ishape1.a = exp(2)), fdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

fittedvlm 291

fittedvlm Fitted Values of a VLM object

Description

Extractor function for the fitted values of a model object that inherits from a vector linear model
(VLM), e.g., a model of class "vglm".

Usage

fittedvlm(object, drop = FALSE, type.fitted = NULL,
percentiles = NULL, ...)

Arguments

object a model object that inherits from a VLM.

drop Logical. If FALSE then the answer is a matrix. If TRUE then the answer is a
vector.

type.fitted Character. Some VGAM family functions have a type.fitted argument. If
so then a different type of fitted value can be returned. It is recomputed from
the model after convergence. Note: this is an experimental feature and not all
VGAM family functions have this implemented yet. See CommonVGAMffArguments
for more details.

percentiles See CommonVGAMffArguments for details.

... Currently unused.

Details

The “fitted values” usually corresponds to the mean response, however, because the VGAM pack-
age fits so many models, this sometimes refers to quantities such as quantiles. The mean may even
not exist, e.g., for a Cauchy distribution.

Note that the fitted value is output from the @linkinv slot of the VGAM family function, where
the eta argument is the n×M matrix of linear predictors.

Value

The fitted values evaluated at the final IRLS iteration.

Note

This function is one of several extractor functions for the VGAM package. Others include coef,
deviance, weights and constraints etc. This function is equivalent to the methods function for
the generic function fitted.values.

If fit is a VLM or VGLM then fitted(fit) and predict(fit, type = "response") should be
equivalent (see predictvglm). The latter has the advantage in that it handles a newdata argument
so that the fitted values can be computed for a different data set.

292 fix.crossing

Author(s)

Thomas W. Yee

References

Chambers, J. M. and T. J. Hastie (eds) (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

fitted, predictvglm, vglmff-class.

Examples

Categorical regression example 1
pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo))
fitted(fit1)

LMS quantile regression example 2
fit2 <- vgam(BMI ~ s(age, df = c(4, 2)),

lms.bcn(zero = 1), data = bmi.nz, trace = TRUE)
head(predict(fit2, type = "response")) # Equals to both these:
head(fitted(fit2))
predict(fit2, type = "response", newdata = head(bmi.nz))

Zero-inflated example 3
zdata <- data.frame(x2 = runif(nn <- 1000))
zdata <- transform(zdata,

pstr0.3 = logitlink(-0.5 , inverse = TRUE),
lambda.3 = loglink(-0.5 + 2*x2, inverse = TRUE))

zdata <- transform(zdata,
y1 = rzipois(nn, lambda = lambda.3, pstr0 = pstr0.3))

fit3 <- vglm(y1 ~ x2, zipoisson(zero = NULL), zdata, trace = TRUE)
head(fitted(fit3, type.fitted = "mean")) # E(Y) (the default)
head(fitted(fit3, type.fitted = "pobs0")) # Pr(Y = 0)
head(fitted(fit3, type.fitted = "pstr0")) # Prob of a structural 0
head(fitted(fit3, type.fitted = "onempstr0")) # 1 - Pr(structural 0)

fix.crossing Fixing a Quantile Regression having Crossing

Description

Returns a similar object fitted with columns of the constraint matrices amalgamated so it is a par-
tially parallel VGLM object. The columns combined correspond to certain crossing quantiles. This
applies especially to an extlogF1() VGLM object.

Usage

fix.crossing.vglm(object, maxit = 100, trace = FALSE, ...)

fix.crossing 293

Arguments

object an object such as a vglm object with family function extlogF1.

maxit, trace values for overwriting components in vglm.control. Setting these to NULL will
mean the values in vglm.control on object will be retained.

... additional optional arguments. Currently unused.

Details

The quantile crossing problem has been described as disturbing and embarrassing. This function
was specifically written for a vglm with family function extlogF1. It examines the fitted quantiles
of object to see if any cross. If so, then a pair of columns is combined to make those two quantiles
parallel. After fitting the submodel it then repeats testing for crossing quantiles and repairing them,
until there is no more quantile crossing detected. Note that it is possible that the quantiles cross in
some subset of the covariate space not covered by the data—see is.crossing.

This function is fragile and likely to change in the future. For extlogF1 models, it is assumed
that argument data has been assigned a data frame, and that the default values of the argument
parallel has been used; this means that the second constraint matrix is diag(M). The constraint
matrix of the intercept term remains unchanged as diag(M).

Value

An object very similar to the original object, but with possibly different constraint matrices (partially
parallel) so as to remove any quantile crossing.

See Also

extlogF1, is.crossing, lms.bcn. vglm.

Examples

Not run: ooo <- with(bmi.nz, order(age))
bmi.nz <- bmi.nz[ooo,] # Sort by age
with(bmi.nz, plot(age, BMI, col = "blue"))
mytau <- c(50, 93, 95, 97) / 100 # Some quantiles are quite close
fit1 <- vglm(BMI ~ ns(age, 7), extlogF1(mytau), bmi.nz, trace = TRUE)
plot(BMI ~ age, bmi.nz, col = "blue", las = 1,

main = "Partially parallel (darkgreen) & nonparallel quantiles",
sub = "Crossing quantiles are orange")

fix.crossing(fit1)
matlines(with(bmi.nz, age), fitted(fit1), lty = 1, col = "orange")
fit2 <- fix.crossing(fit1) # Some quantiles have been fixed
constraints(fit2)
matlines(with(bmi.nz, age), fitted(fit2), lty = "dashed",

col = "darkgreen", lwd = 2)
End(Not run)

294 flourbeetle

flourbeetle Mortality of Flour Beetles from Carbon Disulphide

Description

The flourbeetle data frame has 8 rows and 4 columns. Two columns are explanatory, the other
two are responses.

Usage

data(flourbeetle)

Format

This data frame contains the following columns:

logdose log10 applied to CS2mgL.

CS2mgL a numeric vector, the concentration of gaseous carbon disulphide in mg per litre.

exposed a numeric vector, counts; the number of beetles exposed to the poison.

killed a numeric vector, counts; the numbers killed.

Details

These data were originally given in Table IV of Bliss (1935) and are the combination of two series of
toxicological experiments involving Tribolium confusum, also known as the flour beetle. Groups of
such adult beetles were exposed for 5 hours of gaseous carbon disulphide at different concentrations,
and their mortality measured.

Source

Bliss, C.I., 1935. The calculation of the dosage-mortality curve. Annals of Applied Biology, 22,
134–167.

See Also

binomialff, probitlink.

Examples

fit1 <- vglm(cbind(killed, exposed - killed) ~ logdose,
binomialff(link = probitlink), flourbeetle, trace = TRUE)

summary(fit1)

Foldnorm 295

Foldnorm The Folded-Normal Distribution

Description

Density, distribution function, quantile function and random generation for the (generalized) folded-
normal distribution.

Usage

dfoldnorm(x, mean = 0, sd = 1, a1 = 1, a2 = 1, log = FALSE)
pfoldnorm(q, mean = 0, sd = 1, a1 = 1, a2 = 1,

lower.tail = TRUE, log.p = FALSE)
qfoldnorm(p, mean = 0, sd = 1, a1 = 1, a2 = 1,

lower.tail = TRUE, log.p = FALSE, ...)
rfoldnorm(n, mean = 0, sd = 1, a1 = 1, a2 = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as rnorm.

mean, sd see rnorm.

a1, a2 see foldnormal.

log Logical. If TRUE then the log density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

... Arguments that can be passed into uniroot.

Details

See foldnormal, the VGAM family function for estimating the parameters, for the formula of the
probability density function and other details.

Value

dfoldnorm gives the density, pfoldnorm gives the distribution function, qfoldnorm gives the quan-
tile function, and rfoldnorm generates random deviates.

Author(s)

T. W. Yee and Kai Huang. Suggestions from Mauricio Romero led to improvements in qfoldnorm().

See Also

foldnormal, uniroot.

296 foldnormal

Examples

Not run:
m <- 1.5; SD <- exp(0)
x <- seq(-1, 4, len = 501)
plot(x, dfoldnorm(x, m = m, sd = SD), type = "l", ylim = 0:1,

ylab = paste("foldnorm(m = ", m, ", sd = ",
round(SD, digits = 3), ")"), las = 1,

main = "Blue is density, orange is CDF", col = "blue",
sub = "Purple lines are the 10,20,...,90 percentiles")

abline(h = 0, col = "gray50")
lines(x, pfoldnorm(x, m = m, sd = SD), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qfoldnorm(probs, m = m, sd = SD)
lines(Q, dfoldnorm(Q, m, SD), col = "purple", lty = 3, type = "h")
lines(Q, pfoldnorm(Q, m, SD), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
max(abs(pfoldnorm(Q, m = m, sd = SD) - probs)) # Should be 0

End(Not run)

foldnormal Folded Normal Distribution Family Function

Description

Fits a (generalized) folded (univariate) normal distribution.

Usage

foldnormal(lmean = "identitylink", lsd = "loglink", imean = NULL,
isd = NULL, a1 = 1, a2 = 1, nsimEIM = 500, imethod = 1,
zero = NULL)

Arguments

lmean, lsd Link functions for the mean and standard deviation parameters of the usual uni-
variate normal distribution. They are µ and σ respectively. See Links for more
choices.

imean, isd Optional initial values for µ and σ. A NULL means a value is computed internally.
See CommonVGAMffArguments.

a1, a2 Positive weights, called a1 and a2 below. Each must be of length 1.

nsimEIM, imethod, zero

See CommonVGAMffArguments.

foldnormal 297

Details

If a random variable has an ordinary univariate normal distribution then the absolute value of that
random variable has an ordinary folded normal distribution. That is, the sign has not been recorded;
only the magnitude has been measured.

More generally, suppose X is normal with mean mean and standard deviation sd. Let Y =
max(a1X,−a2X) where a1 and a2 are positive weights. This means that Y = a1X for X > 0,
and Y = a2X for X < 0. Then Y is said to have a generalized folded normal distribution. The
ordinary folded normal distribution corresponds to the special case a1 = a2 = 1.

The probability density function of the ordinary folded normal distribution can be written dnorm(y,
mean, sd) + dnorm(y, -mean, sd) for y ≥ 0. By default, mean and log(sd) are the linear/additive
predictors. Having mean=0 and sd=1 results in the half-normal distribution. The mean of an ordi-
nary folded normal distribution is

E(Y) = σ
√

2/π exp(−µ2/(2σ2)) + µ[1− 2Φ(−µ/σ)]

and these are returned as the fitted values. Here, Φ() is the cumulative distribution function of a
standard normal (pnorm).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Under- or over-flow may occur if the data is ill-conditioned. It is recommended that several different
initial values be used to help avoid local solutions.

Note

The response variable for this family function is the same as uninormal except positive values are
required. Reasonably good initial values are needed. Fisher scoring using simulation is imple-
mented.

See CommonVGAMffArguments for general information about many of these arguments.

Yet to do: implement the results of Johnson (1962) which gives expressions for the EIM, albeit,
under a different parameterization. Also, one element of the EIM appears to require numerical
integration.

Author(s)

Thomas W. Yee

References

Lin, P. C. (2005). Application of the generalized folded-normal distribution to the process capability
measures. International Journal of Advanced Manufacturing Technology, 26, 825–830.

Johnson, N. L. (1962). The folded normal distribution: accuracy of estimation by maximum likeli-
hood. Technometrics, 4, 249–256.

298 foldsqrtlink

See Also

rfoldnorm, uninormal, dnorm, skewnormal.

Examples

Not run: m <- 2; SD <- exp(1)
fdata <- data.frame(y = rfoldnorm(n <- 1000, m = m, sd = SD))
hist(with(fdata, y), prob = TRUE, main = paste("foldnormal(m = ",

m, ", sd = ", round(SD, 2), ")"))
fit <- vglm(y ~ 1, foldnormal, data = fdata, trace = TRUE)
coef(fit, matrix = TRUE)
(Cfit <- Coef(fit))
Add the fit to the histogram:
mygrid <- with(fdata, seq(min(y), max(y), len = 200))
lines(mygrid, dfoldnorm(mygrid, Cfit[1], Cfit[2]), col = "orange")

End(Not run)

foldsqrtlink Folded Square Root Link Function

Description

Computes the folded square root transformation, including its inverse and the first two derivatives.

Usage

foldsqrtlink(theta, min = 0, max = 1, mux = sqrt(2),
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.
min, max, mux These are called L, U and K below.
inverse, deriv, short, tag

Details at Links.

Details

The folded square root link function can be applied to parameters that lie betweenL andU inclusive.
Numerical values of theta out of range result in NA or NaN.

Value

For foldsqrtlink with deriv = 0: K(
√
θ − L−

√
U − θ) or mux * (sqrt(theta-min) - sqrt(max-theta))

when inverse = FALSE, and if inverse = TRUE then some more complicated function that returns
a NA unless theta is between -mux*sqrt(max-min) and mux*sqrt(max-min).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

foldsqrtlink 299

Note

The default has, if theta is 0 or 1, the link function value is -sqrt(2) and +sqrt(2) respec-
tively. These are finite values, therefore one cannot use this link function for general modelling of
probabilities because of numerical problem, e.g., with binomialff, cumulative. See the example
below.

Author(s)

Thomas W. Yee

See Also

Links.

Examples

p <- seq(0.01, 0.99, by = 0.01)
foldsqrtlink(p)
max(abs(foldsqrtlink(foldsqrtlink(p), inverse = TRUE) - p)) # 0

p <- c(seq(-0.02, 0.02, by = 0.01), seq(0.97, 1.02, by = 0.01))
foldsqrtlink(p) # Has NAs

Not run:
p <- seq(0.01, 0.99, by = 0.01)
par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)
for (d in 0:1) {

matplot(p, cbind(logitlink(p, deriv = d),
foldsqrtlink(p, deriv = d)), las = 1,

type = "n", col = "purple", ylab = "transformation",
main = if (d == 0) "Some probability link functions"
else "First derivative")

lines(p, logitlink(p, deriv = d), col = "limegreen")
lines(p, probitlink(p, deriv = d), col = "purple")
lines(p, clogloglink(p, deriv = d), col = "chocolate")
lines(p, foldsqrtlink(p, deriv = d), col = "tan")
if (d == 0) {

abline(v = 0.5, h = 0, lty = "dashed")
legend(0, 4.5, c("logitlink", "probitlink",

"clogloglink", "foldsqrtlink"),
lwd = 2, col = c("limegreen", "purple",

"chocolate", "tan"))
} else

abline(v = 0.5, lty = "dashed")
}

for (d in 0) {
matplot(y, cbind(logitlink(y, deriv = d, inverse = TRUE),

foldsqrtlink(y, deriv = d, inverse = TRUE)),
type = "n", col = "purple", xlab = "transformation",
ylab = "p", lwd = 2, las = 1, main = if (d == 0)

300 formulavlm

"Some inverse probability link functions" else
"First derivative")

lines(y, logitlink(y, deriv=d, inverse=TRUE), col = "limegreen")
lines(y, probitlink(y, deriv=d, inverse=TRUE), col = "purple")
lines(y, clogloglink(y, deriv=d, inverse=TRUE), col = "chocolate")
lines(y, foldsqrtlink(y, deriv=d, inverse = TRUE), col = "tan")
if (d == 0) {

abline(h = 0.5, v = 0, lty = "dashed")
legend(-4, 1, c("logitlink", "probitlink",

"clogloglink", "foldsqrtlink"), lwd = 2,
col = c("limegreen", "purple", "chocolate", "tan"))

}
}
par(lwd = 1)

End(Not run)

This is lucky to converge
fit.h <- vglm(agaaus ~ sm.bs(altitude),

binomialff(foldsqrtlink(mux = 5)),
hunua, trace = TRUE)

Not run:
plotvgam(fit.h, se = TRUE, lcol = "orange", scol = "orange",

main = "Orange is Hunua, Blue is Waitakere")
End(Not run)
head(predict(fit.h, hunua, type = "response"))

Not run:
The following fails.
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(foldsqrtlink(mux = 10), par = TRUE, rev = TRUE),
data = pneumo, trace = TRUE, maxit = 200)

End(Not run)

formulavlm Model Formulae and Term Names for VGLMs

Description

The methods function for formula to extract the formula from a fitted object, as well as a methods
function to return the names of the terms in the formula.

Usage

S3 method for class 'vlm'
formula(x, ...)
formulavlm(x, form.number = 1, ...)
term.names(model, ...)
term.namesvlm(model, form.number = 1, ...)

Frank 301

Arguments

x, model A fitted model object.

form.number Formula number, is 1 or 2. which correspond to the arguments formula and
form2 respectively.

... Same as formula.

Details

The formula methods function is based on formula.

Value

The formula methods function should return something similar to formula. The term.names
methods function should return a character string with the terms in the formula; this includes any
intercept (which is denoted by "(Intercept)" as the first element.)

Author(s)

Thomas W. Yee

See Also

has.interceptvlm.

Examples

Example: this is based on a glm example
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3, 1, 9); treatment <- gl(3, 3)
vglm.D93 <- vglm(counts ~ outcome + treatment, family = poissonff)
formula(vglm.D93)
pdata <- data.frame(counts, outcome, treatment) # Better style
vglm.D93 <- vglm(counts ~ outcome + treatment, poissonff, data = pdata)
formula(vglm.D93)
term.names(vglm.D93)
responseName(vglm.D93)
has.intercept(vglm.D93)

Frank Frank’s Bivariate Distribution

Description

Density, distribution function, and random generation for the (one parameter) bivariate Frank dis-
tribution.

302 Frank

Usage

dbifrankcop(x1, x2, apar, log = FALSE)
pbifrankcop(q1, q2, apar)
rbifrankcop(n, apar)

Arguments

x1, x2, q1, q2 vector of quantiles.

n number of observations. Same as in runif.

apar the positive association parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

See bifrankcop, the VGAM family functions for estimating the association parameter by maxi-
mum likelihood estimation, for the formula of the cumulative distribution function and other details.

Value

dbifrankcop gives the density, pbifrankcop gives the distribution function, and rbifrankcop
generates random deviates (a two-column matrix).

Author(s)

T. W. Yee

References

Genest, C. (1987). Frank’s family of bivariate distributions. Biometrika, 74, 549–555.

See Also

bifrankcop.

Examples

Not run: N <- 100; apar <- exp(2)
xx <- seq(-0.30, 1.30, len = N)
ox <- expand.grid(xx, xx)
zedd <- dbifrankcop(ox[, 1], ox[, 2], apar = apar)
contour(xx, xx, matrix(zedd, N, N))
zedd <- pbifrankcop(ox[, 1], ox[, 2], apar = apar)
contour(xx, xx, matrix(zedd, N, N))

plot(rr <- rbifrankcop(n = 3000, apar = exp(4)))
par(mfrow = c(1, 2))
hist(rr[, 1]); hist(rr[, 2]) # Should be uniform

End(Not run)

Frechet 303

Frechet The Frechet Distribution

Description

Density, distribution function, quantile function and random generation for the three parameter
Frechet distribution.

Usage

dfrechet(x, location = 0, scale = 1, shape, log = FALSE)
pfrechet(q, location = 0, scale = 1, shape,

lower.tail = TRUE, log.p = FALSE)
qfrechet(p, location = 0, scale = 1, shape,

lower.tail = TRUE, log.p = FALSE)
rfrechet(n, location = 0, scale = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Passed into runif.
location, scale, shape

the location parameter a, scale parameter b, and shape parameter s.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in punif or qunif.

Details

See frechet, the VGAM family function for estimating the 2 parameters (without location param-
eter) by maximum likelihood estimation, for the formula of the probability density function and
range restrictions on the parameters.

Value

dfrechet gives the density, pfrechet gives the distribution function, qfrechet gives the quantile
function, and rfrechet generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Castillo, E., Hadi, A. S., Balakrishnan, N. and Sarabia, J. S. (2005). Extreme Value and Related
Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.

304 frechet

See Also

frechet.

Examples

Not run: shape <- 5
x <- seq(-0.1, 3.5, length = 401)
plot(x, dfrechet(x, shape = shape), type = "l", ylab = "",

main = "Frechet density divided into 10 equal areas",
sub = "Orange = CDF", las = 1)

abline(h = 0, col = "blue", lty = 2)
qq <- qfrechet(seq(0.1, 0.9, by = 0.1), shape = shape)
lines(qq, dfrechet(qq, shape = shape), col = 2, lty = 2, type = "h")
lines(x, pfrechet(q = x, shape = shape), col = "orange")

End(Not run)

frechet Frechet Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter Frechet distribution.

Usage

frechet(location = 0, lscale = "loglink",
lshape = logofflink(offset = -2),
iscale = NULL, ishape = NULL, nsimEIM = 250, zero = NULL)

Arguments

location Numeric. Location parameter. It is called a below.

lscale, lshape Link functions for the parameters; see Links for more choices.
iscale, ishape, zero, nsimEIM

See CommonVGAMffArguments for information.

Details

The (3-parameter) Frechet distribution has a density function that can be written

f(y) =
sb

(y − a)2
[b/(y − a)]s−1 exp[−(b/(y − a))s]

for y > a and scale parameter b > 0. The positive shape parameter is s. The cumulative distribution
function is

F (y) = exp[−(b/(y − a))s].

frechet 305

The mean of Y is a+ bΓ(1− 1/s) for s > 1 (these are returned as the fitted values). The variance
of Y is b2[Γ(1− 2/s)− Γ2(1− 1/s)] for s > 2.

Family frechet has a known, and log(b) and log(s − 2) are the default linear/additive predictors.
The working weights are estimated by simulated Fisher scoring.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Family function frechet may fail for low values of the shape parameter, e.g., near 2 or lower.

Author(s)

T. W. Yee

References

Castillo, E., Hadi, A. S., Balakrishnan, N. and Sarabia, J. S. (2005). Extreme Value and Related
Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.

See Also

rfrechet, gev.

Examples

Not run:
set.seed(123)
fdata <- data.frame(y1 = rfrechet(1000, shape = 2 + exp(1)))
with(fdata, hist(y1))
fit2 <- vglm(y1 ~ 1, frechet, data = fdata, trace = TRUE)
coef(fit2, matrix = TRUE)
Coef(fit2)
head(fitted(fit2))
with(fdata, mean(y1))
head(weights(fit2, type = "working"))
vcov(fit2)

End(Not run)

306 freund61

freund61 Freund’s (1961) Bivariate Extension of the Exponential Distribution

Description

Estimate the four parameters of the Freund (1961) bivariate extension of the exponential distribution
by maximum likelihood estimation.

Usage

freund61(la = "loglink", lap = "loglink", lb = "loglink",
lbp = "loglink", ia = NULL, iap = NULL, ib = NULL,
ibp = NULL, independent = FALSE, zero = NULL)

Arguments

la, lap, lb, lbp

Link functions applied to the (positive) parameters α, α′, β and β′, respectively
(the “p” stands for “prime”). See Links for more choices.

ia, iap, ib, ibp

Initial value for the four parameters respectively. The default is to estimate them
all internally.

independent Logical. If TRUE then the parameters are constrained to satisfy α = α′ and
β = β′, which implies that y1 and y2 are independent and each have an ordinary
exponential distribution.

zero A vector specifying which linear/additive predictors are modelled as intercepts
only. The values can be from the set {1,2,3,4}. The default is none of them. See
CommonVGAMffArguments for more information.

Details

This model represents one type of bivariate extension of the exponential distribution that is appli-
cable to certain problems, in particular, to two-component systems which can function if one of the
components has failed. For example, engine failures in two-engine planes, paired organs such as
peoples’ eyes, ears and kidneys. Suppose y1 and y2 are random variables representing the lifetimes
of two components A and B in a two component system. The dependence between y1 and y2 is
essentially such that the failure of the B component changes the parameter of the exponential life
distribution of the A component from α to α′, while the failure of the A component changes the
parameter of the exponential life distribution of the B component from β to β′.

The joint probability density function is given by

f(y1, y2) = αβ′ exp(−β′y2 − (α+ β − β′)y1)

for 0 < y1 < y2, and

f(y1, y2) = βα′ exp(−α′y1 − (α+ β − α′)y2)

freund61 307

for 0 < y2 < y1. Here, all four parameters are positive, as well as the responses y1 and y2. Under
this model, the probability that component A is the first to fail is α/(α + β). The time to the first
failure is distributed as an exponential distribution with rate α + β. Furthermore, the distribution
of the time from first failure to failure of the other component is a mixture of Exponential(α′) and
Exponential(β′) with proportions β/(α+ β) and α/(α+ β) respectively.

The marginal distributions are, in general, not exponential. By default, the linear/additive predictors
are η1 = log(α), η2 = log(α′), η3 = log(β), η4 = log(β′).

A special case is when α = α′ and β = β′, which means that y1 and y2 are independent, and both
have an ordinary exponential distribution with means 1/α and 1/β respectively.

Fisher scoring is used, and the initial values correspond to the MLEs of an intercept model. Conse-
quently, convergence may take only one iteration.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

To estimate all four parameters, it is necessary to have some data where y1 < y2 and y2 < y1.

The response must be a two-column matrix, with columns y1 and y2. Currently, the fitted value is
a matrix with two columns; the first column has values (α′ + β)/(α′(α + β)) for the mean of y1,
while the second column has values (β′+α)/(β′(α+β)) for the mean of y2. The variance of y1 is

(α′)2 + 2αβ + β2

(α′)2(α+ β)2
,

the variance of y2 is
(β′)2 + 2αβ + α2

(β′)2(α+ β)2
,

the covariance of y1 and y2 is
α′β′ − αβ
α′β′(α+ β)2

.

Author(s)

T. W. Yee

References

Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal of the American
Statistical Association, 56, 971–977.

See Also

exponential.

308 Gaitdbinom

Examples

fdata <- data.frame(y1 = rexp(nn <- 1000, rate = exp(1)))
fdata <- transform(fdata, y2 = rexp(nn, rate = exp(2)))
fit1 <- vglm(cbind(y1, y2) ~ 1, freund61, fdata, trace = TRUE)
coef(fit1, matrix = TRUE)
Coef(fit1)
vcov(fit1)
head(fitted(fit1))
summary(fit1)

y1 and y2 are independent, so fit an independence model
fit2 <- vglm(cbind(y1, y2) ~ 1, freund61(indep = TRUE),

data = fdata, trace = TRUE)
coef(fit2, matrix = TRUE)
constraints(fit2)
pchisq(2 * (logLik(fit1) - logLik(fit2)), # p-value

df = df.residual(fit2) - df.residual(fit1),
lower.tail = FALSE)

lrtest(fit1, fit2) # Better alternative

Gaitdbinom Generally–Altered, –Inflated, –Truncated and –Deflated Binomial
Distribution

Description

Density, distribution function, quantile function and random generation for the generally–altered,
–inflated and –truncated binomial distribution. Both parametric and nonparametric variants are
supported; these are based on finite mixtures of the parent with itself and the multinomial logit
model (MLM) respectively.

Usage

dgaitdbinom(x, size.p, prob.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
prob.a = prob.p, prob.i = prob.p, prob.d = prob.p,
log = FALSE, ...)

pgaitdbinom(q, size.p, prob.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
pobs.mix = 0, pobs.mlm = 0,

Gaitdbinom 309

pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
prob.a = prob.p, prob.i = prob.p, prob.d = prob.p,
lower.tail = TRUE, ...)

qgaitdbinom(p, size.p, prob.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
prob.a = prob.p, prob.i = prob.p, prob.d = prob.p, ...)

rgaitdbinom(n, size.p, prob.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
prob.a = prob.p, prob.i = prob.p, prob.d = prob.p, ...)

Arguments

x, q, p, n, log, lower.tail

Same meaning as in Binomial.

size.p, prob.p Same meaning as in Binomial. See Gaitdpois for generic information.

size.a, prob.a See Gaitdpois for generic information.

size.i, prob.i See Gaitdpois for generic information.

size.d, prob.d See Gaitdpois for generic information.

truncate See Gaitdpois for generic information.
a.mix, i.mix, d.mix

See Gaitdpois for generic information.
a.mlm, i.mlm, d.mlm

See Gaitdpois for generic information.
pstr.mix, pstr.mlm, byrow.aid

See Gaitdpois for generic information.
pobs.mix, pobs.mlm

See Gaitdpois for generic information.
pdip.mix, pdip.mlm

See Gaitdpois for generic information.

... Arguments such as max.support that are ignored. This will occur internally
within dgaitdplot.

310 Gaitdbinom

Details

These functions for the GAITD binomial distribution are analogous to the GAITD Poisson, hence
most details have been put in Gaitdpois.

Value

dgaitdbinom gives the density, pgaitdbinom gives the distribution function, qgaitdbinom gives
the quantile function, and rgaitdbinom generates random deviates. The default values of the argu-
ments correspond to ordinary dbinom, pbinom, qbinom, rbinom respectively.

Note

Functions Posbinom have been moved to VGAMdata. It is better to use dgaitdbinom(x, size,
prob, truncate = 0) instead of dposbinom(x, size, prob), etc.

Author(s)

T. W. Yee.

See Also

Gaitdpois, Gaitdnbinom, multinomial, Gaitdlog, Gaitdzeta.

Examples

size <- 20
ivec <- c(6, 10); avec <- c(8, 11); prob <- 0.25; xgrid <- 0:25
tvec <- 14; pobs.a <- 0.05; pstr.i <- 0.15
dvec <- 5; pdip.mlm <- 0.05
(ddd <- dgaitdbinom(xgrid, size, prob.p = prob,

prob.a = prob + 0.05, truncate = tvec, pobs.mix = pobs.a,
pdip.mlm = pdip.mlm, d.mlm = dvec,
pobs.mlm = pobs.a, a.mlm = avec,
pstr.mix = pstr.i, i.mix = ivec))

Not run: dgaitdplot(c(size, prob), ylab = "Probability",
xlab = "x", pobs.mix = pobs.mix,
pobs.mlm = pobs.a, a.mlm = avec, all.lwd = 3,
pdip.mlm = pdip.mlm, d.mlm = dvec, fam = "binom",
pstr.mix = pstr.i, i.mix = ivec, deflation = TRUE,
main = "GAITD Combo PMF---Binomial Parent")

End(Not run)

Gaitdlog 311

Gaitdlog Generally–Altered, –Inflated, –Truncated and –Deflated Logarithmic
Distribution

Description

Density, distribution function, quantile function and random generation for the generally–altered,
–inflated, –truncated and –deflated logarithmic distribution. Both parametric and nonparametric
variants are supported; these are based on finite mixtures of the parent with itself and the multino-
mial logit model (MLM) respectively.

Usage

dgaitdlog(x, shape.p, a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
shape.a = shape.p, shape.i = shape.p, shape.d = shape.p,
log = FALSE)

pgaitdlog(q, shape.p, a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
shape.a = shape.p, shape.i = shape.p, shape.d = shape.p,
lower.tail = TRUE)

qgaitdlog(p, shape.p, a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
shape.a = shape.p, shape.i = shape.p, shape.d = shape.p)

rgaitdlog(n, shape.p, a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
shape.a = shape.p, shape.i = shape.p, shape.d = shape.p)

Arguments

x, q, p, n, log, lower.tail

Same meaning as in dlog.

312 Gaitdlog

shape.p, shape.a, shape.i, shape.d

Same meaning as shape for dlog, i.e., for an ordinary logarithmic distribution.
See Gaitdpois for generic information.

truncate, max.support

See Gaitdpois for generic information.
a.mix, i.mix, d.mix

See Gaitdpois for generic information.
a.mlm, i.mlm, d.mlm

See Gaitdpois for generic information.
pobs.mlm, pstr.mlm, pdip.mlm, byrow.aid

See Gaitdpois for generic information.
pobs.mix, pstr.mix, pdip.mix

See Gaitdpois for generic information.

Details

These functions for the logarithmic distribution are analogous to the Poisson, hence most details
have been put in Gaitdpois. These functions do what Oalog, Oilog, Otlog collectively did plus
much more.

Value

dgaitdlog gives the density, pgaitdlog gives the distribution function, qgaitdlog gives the quan-
tile function, and rgaitdlog generates random deviates. The default values of the arguments cor-
respond to ordinary dlog, plog, qlog, rlog respectively.

Note

See Gaitdpois for general information also relevant to this parent distribution.

Author(s)

T. W. Yee.

See Also

gaitdlog, Gaitdpois, Gaitdzeta, multinomial, Oalog, Oilog, Otlog.

Examples

ivec <- c(2, 10); avec <- ivec + 1; shape <- 0.995; xgrid <- 0:15
max.support <- 15; pobs.a <- 0.10; pstr.i <- 0.15
dvec <- 1; pdip.mlm <- 0.05
(ddd <- dgaitdlog(xgrid, shape,

max.support = max.support, pobs.mix = pobs.a,
pdip.mlm = pdip.mlm, d.mlm = dvec,
a.mix = avec, pstr.mix = pstr.i, i.mix = ivec))

Not run: dgaitdplot(shape, ylab = "Probability", xlab = "x",
max.support = max.support, pobs.mix = pobs.mix,
pobs.mlm = pobs.mlm, a.mlm = avec, all.lwd = 3,

gaitdlog 313

pdip.mlm = pdip.mlm, d.mlm = dvec, fam = "log",
pstr.mix = pstr.i, i.mix = ivec, deflation = TRUE,
main = "GAITD Combo PMF---Logarithmic Parent")

End(Not run)

gaitdlog Generally–Altered, –Inflated, –Truncated and Deflated Logarithmic
Regression

Description

Fits a generally–altered, –inflated, –truncated and deflated logarithmic regression by MLE. The
GAITD combo model having 7 types of special values is implemented. This allows logarithmic
mixtures on nested and/or partitioned support as well as a multinomial logit model for altered,
inflated and deflated values. Truncation may include the upper tail.

Usage

gaitdlog(a.mix = NULL, i.mix = NULL, d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, d.mlm = NULL,
truncate = NULL, max.support = Inf,
zero = c("pobs", "pstr", "pdip"), eq.ap = TRUE, eq.ip = TRUE,
eq.dp = TRUE, parallel.a = FALSE,
parallel.i = FALSE, parallel.d = FALSE,
lshape.p = "logitlink", lshape.a = lshape.p,
lshape.i = lshape.p, lshape.d = lshape.p,
type.fitted = c("mean", "shapes", "pobs.mlm", "pstr.mlm",
"pdip.mlm", "pobs.mix", "pstr.mix", "pdip.mix", "Pobs.mix",
"Pstr.mix", "Pdip.mix", "nonspecial",
"Numer", "Denom.p", "sum.mlm.i", "sum.mix.i", "sum.mlm.d",
"sum.mix.d", "ptrunc.p", "cdf.max.s"),
gshape.p = -expm1(-7 * ppoints(12)), gpstr.mix = ppoints(7) / 3,
gpstr.mlm = ppoints(7) / (3 + length(i.mlm)),
imethod = 1, mux.init = c(0.75, 0.5, 0.75),
ishape.p = NULL, ishape.a = ishape.p,
ishape.i = ishape.p, ishape.d = ishape.p,
ipobs.mix = NULL, ipstr.mix = NULL, ipdip.mix = NULL,
ipobs.mlm = NULL, ipstr.mlm = NULL, ipdip.mlm = NULL,
byrow.aid = FALSE, ishrinkage = 0.95, probs.y = 0.35)

Arguments
truncate, max.support

See gaitdpoisson.
a.mix, i.mix, d.mix

See gaitdpoisson.
a.mlm, i.mlm, d.mlm

See gaitdpoisson.

314 gaitdlog

lshape.p, lshape.a, lshape.i, lshape.d

Link functions. See gaitdpoisson and Links for more choices and infor-
mation. Actually, it is usually a good idea to set these arguments equal to
logffMlink because the log-mean is the first linear/additive predictor so it is
like a Poisson regression.

eq.ap, eq.ip, eq.dp

Single logical each. See gaitdpoisson.
parallel.a, parallel.i, parallel.d

Single logical each. See gaitdpoisson.
type.fitted, mux.init

See gaitdpoisson.
imethod, ipobs.mix, ipstr.mix, ipdip.mix

See CommonVGAMffArguments and gaitdpoisson for information.
ipobs.mlm, ipstr.mlm, ipdip.mlm, byrow.aid

See CommonVGAMffArguments and gaitdpoisson for information.
gpstr.mix, gpstr.mlm

See CommonVGAMffArguments and gaitdpoisson for information.
gshape.p, ishape.p

See CommonVGAMffArguments and gaitdpoisson for information. The former
argument is used only if the latter is not given. Practical experience has shown
that good initial values are needed, so if convergence is not obtained then try a
finer grid.

ishape.a, ishape.i, ishape.d

See CommonVGAMffArguments and gaitdpoisson for information.
probs.y, ishrinkage

See CommonVGAMffArguments and gaitdpoisson for information.

zero See gaitdpoisson and CommonVGAMffArguments for information.

Details

Many details to this family function can be found in gaitdpoisson because it is also a 1-parameter
discrete distribution. This function currently does not handle multiple responses. Further details are
at Gaitdlog.

As alluded to above, when there are covariates it is much more interpretable to model the mean
rather than the shape parameter. Hence logffMlink is recommended. (This might become the
default in the future.) So installing VGAMextra is a good idea.

Apart from the order of the linear/additive predictors, the following are (or should be) equivalent:
gaitdlog() and logff(), gaitdlog(a.mix = 1) and oalog(zero = "pobs1"), gaitdlog(i.mix
= 1) and oilog(zero = "pstr1"), gaitdlog(truncate = 1) and otlog(). The functions oalog,
oilog and otlog have been placed in VGAMdata.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

gaitdlog 315

Warning

See gaitdpoisson.

Note

See gaitdpoisson.

Author(s)

T. W. Yee

See Also

Gaitdlog, logff, logffMlink, Gaitdpois, gaitdpoisson, gaitdzeta, spikeplot, goffset,
Trunc, oalog, oilog, otlog, CommonVGAMffArguments, rootogram4, simulate.vlm.

Examples

avec <- c(5, 10) # Alter these values parametrically
ivec <- c(3, 15) # Inflate these values
tvec <- c(6, 7) # Truncate these values
max.support <- 20; set.seed(1)
pobs.a <- pstr.i <- 0.1
gdata <- data.frame(x2 = runif(nn <- 1000))
gdata <- transform(gdata, shape.p = logitlink(2+0.5*x2, inverse = TRUE))
gdata <- transform(gdata,

y1 = rgaitdlog(nn, shape.p, a.mix = avec, pobs.mix = pobs.a,
i.mix = ivec, pstr.mix = pstr.i, truncate = tvec,
max.support = max.support))

gaitdlog(a.mix = avec, i.mix = ivec, max.support = max.support)
with(gdata, table(y1))
Not run: spikeplot(with(gdata, y1), las = 1)
fit7 <- vglm(y1 ~ x2, trace = TRUE, data = gdata,

gaitdlog(i.mix = ivec, truncate = tvec,
max.support = max.support, a.mix = avec,
eq.ap = TRUE, eq.ip = TRUE))

head(fitted(fit7, type.fitted = "Pstr.mix"))
head(predict(fit7))
t(coef(fit7, matrix = TRUE)) # Easier to see with t()
summary(fit7)
Not run: spikeplot(with(gdata, y1), lwd = 2, ylim = c(0, 0.4))
plotdgaitd(fit7, new.plot = FALSE, offset.x = 0.2, all.lwd = 2)
End(Not run)

316 Gaitdnbinom

Gaitdnbinom Generally–Altered, –Inflated, –Truncated and –Deflated Negative Bi-
nomial Distribution

Description

Density, distribution function, quantile function and random generation for the generally–altered,
–inflated, –truncated and –deflated negative binomial (GAITD-NB) distribution. Both parametric
and nonparametric variants are supported; these are based on finite mixtures of the parent with itself
and the multinomial logit model (MLM) respectively.

Usage

dgaitdnbinom(x, size.p, munb.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p,
log = FALSE)

pgaitdnbinom(q, size.p, munb.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p,
lower.tail = TRUE)

qgaitdnbinom(p, size.p, munb.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p)

rgaitdnbinom(n, size.p, munb.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,

Gaitdnbinom 317

pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p)

Arguments

x, q, p, n, log, lower.tail

Same meaning as in rnbinom.

size.p, munb.p Same meaning as in rnbinom. See Gaitdpois for generic information.

size.a, munb.a See Gaitdpois for generic information.

size.i, munb.i See Gaitdpois for generic information.

size.d, munb.d See Gaitdpois for generic information.
truncate, max.support

See Gaitdpois for generic information.
a.mix, i.mix, d.mix

See Gaitdpois for generic information.
a.mlm, i.mlm, d.mlm

See Gaitdpois for generic information.
pobs.mlm, pstr.mlm, byrow.aid

See Gaitdpois for generic information.
pobs.mix, pstr.mix

See Gaitdpois for generic information.
pdip.mix, pdip.mlm

See Gaitdpois for generic information.

Details

These functions for the NBD are analogous to the Poisson, hence most details have been put in
Gaitdpois. The NBD has two possible parameterizations: one involving a probability (argument
begins with prob) and the other the mean (beginning with mu). Only the latter is supported here.

For now, arguments such as prob.p and prob.a are no longer supported. That’s because mu is more
likely to be used by most statisticians than prob; see dnbinom.

Value

dgaitdnbinom gives the density, pgaitdnbinom gives the distribution function, qgaitdnbinom
gives the quantile function, and rgaitdnbinom generates random deviates. The default values of
the arguments correspond to ordinary dnbinom, pnbinom, qnbinom, rnbinom respectively.

Note

Four functions were moved from VGAM to VGAMdata; they can be seen at Posnegbin. It is
preferable to use dgaitdnbinom(x, size, munb.p = munb, truncate = 0) instead of dposnbinom(x,
size, munb = munb), etc.

318 gaitdnbinomial

Author(s)

T. W. Yee.

See Also

gaitdnbinomial, Gaitdpois, multinomial, Gaitdbinom, Gaitdlog, Gaitdzeta.

Examples

size <- 10; xgrid <- 0:25
ivec <- c(5, 6, 10, 14); avec <- c(8, 11); munb <- 10
tvec <- 15; pobs.a <- 0.05; pstr.i <- 0.25
dvec <- 13; pdip.mlm <- 0.03; pobs.mlm <- 0.05
(ddd <- dgaitdnbinom(xgrid, size, munb.p = munb, munb.a = munb + 5,

truncate = tvec, pobs.mix = pobs.a,
pdip.mlm = pdip.mlm, d.mlm = dvec,
pobs.mlm = pobs.a, a.mlm = avec,
pstr.mix = pstr.i, i.mix = ivec))

Not run: dgaitdplot(c(size, munb), fam = "nbinom",
ylab = "Probability", xlab = "x", xlim = c(0, 25),
truncate = tvec, pobs.mix = pobs.mix,
pobs.mlm = pobs.mlm, a.mlm = avec, all.lwd = 3,
pdip.mlm = pdip.mlm, d.mlm = dvec,
pstr.mix = pstr.i, i.mix = ivec, deflation = TRUE,
main = "GAITD Combo PMF---NB Parent")

End(Not run)

gaitdnbinomial Generally–Altered, –Inflated, –Truncated and Deflated Negative Bi-
nomial Regression

Description

Fits a generally–altered, –inflated –truncated and deflated negative binomial regression by MLE.
The GAITD combo model having 7 types of special values is implemented. This allows mixtures
of negative binomial distributions on nested and/or partitioned support as well as a multinomial
logit model for (nonparametric) altered, inflated and deflated values.

Usage

gaitdnbinomial(a.mix = NULL, i.mix = NULL, d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, d.mlm = NULL,
truncate = NULL, zero = c("size", "pobs", "pstr", "pdip"),
eq.ap = TRUE, eq.ip = TRUE, eq.dp = TRUE,
parallel.a = FALSE, parallel.i = FALSE, parallel.d = FALSE,
lmunb.p = "loglink",
lmunb.a = lmunb.p, lmunb.i = lmunb.p, lmunb.d = lmunb.p,
lsize.p = "loglink",

gaitdnbinomial 319

lsize.a = lsize.p, lsize.i = lsize.p, lsize.d = lsize.p,
type.fitted = c("mean", "munbs", "sizes", "pobs.mlm",
"pstr.mlm", "pdip.mlm", "pobs.mix", "pstr.mix", "pdip.mix",
"Pobs.mix", "Pstr.mix", "Pdip.mix", "nonspecial", "Numer",
"Denom.p", "sum.mlm.i", "sum.mix.i",
"sum.mlm.d", "sum.mix.d", "ptrunc.p", "cdf.max.s"),
gpstr.mix = ppoints(7) / 3,
gpstr.mlm = ppoints(7) / (3 + length(i.mlm)),
imethod = 1, mux.init = c(0.75, 0.5, 0.75, 0.5),
imunb.p = NULL, imunb.a = imunb.p,
imunb.i = imunb.p, imunb.d = imunb.p,
isize.p = NULL, isize.a = isize.p,
isize.i = isize.p, isize.d = isize.p,
ipobs.mix = NULL, ipstr.mix = NULL,
ipdip.mix = NULL, ipobs.mlm = NULL,
ipstr.mlm = NULL, ipdip.mlm = NULL,
byrow.aid = FALSE, ishrinkage = 0.95, probs.y = 0.35,
nsimEIM = 500, cutoff.prob = 0.999, eps.trig = 1e-7,
nbd.max.support = 4000, max.chunk.MB = 30)

Arguments

truncate See gaitdpoisson.
a.mix, i.mix, d.mix

See gaitdpoisson.
a.mlm, i.mlm, d.mlm

See gaitdpoisson.
lmunb.p, lmunb.a, lmunb.i, lmunb.d

Link functions pertaining to the mean parameters. See gaitdpoisson where
llambda.p etc. are the equivalent.

lsize.p, lsize.a, lsize.i, lsize.d

Link functions pertaining to the size parameters. See NegBinomial.
eq.ap, eq.ip, eq.dp

See gaitdpoisson. These apply to both munb and size parameters simultane-
ously. See NegBinomial also.

parallel.a, parallel.i, parallel.d

See gaitdpoisson.

type.fitted See gaitdpoisson.
gpstr.mix, gpstr.mlm

See gaitdpoisson.
imethod, ipobs.mix, ipstr.mix, ipdip.mix

See gaitdpoisson and CommonVGAMffArguments.
ipobs.mlm, ipstr.mlm, ipdip.mlm

See gaitdpoisson.

mux.init Numeric, of length 4. General downward multiplier for initial values for the
sample proportions (MLEs actually). See gaitdpoisson. The fourth value cor-
responds to size.

320 gaitdnbinomial

imunb.p, imunb.a, imunb.i, imunb.d

See gaitdpoisson; imunb.p is similar to ilambda.p, etc.
isize.p, isize.a, isize.i, isize.d

See gaitdpoisson; isize.p is similar to ilambda.p, etc.
probs.y, ishrinkage

See CommonVGAMffArguments for information.

byrow.aid Details are at Gaitdpois.

zero See gaitdpoisson and CommonVGAMffArguments.
nsimEIM, cutoff.prob, eps.trig

See negbinomial.
nbd.max.support, max.chunk.MB

See negbinomial.

Details

The GAITD–NB combo model is the pinnacle of GAITD regression for counts because it poten-
tially handles underdispersion, equidispersion and overdispersion relative to the Poisson, as well as
alteration, inflation, deflation and truncation at arbitrary support points. In contrast, gaitdpoisson
cannot handle overdispersion so well. The GAITD–NB is so flexible that it can accommodate up to
seven modes.

The full GAITD–NB–NB–MLM–NB-MLM–NB-MLM combo model may be fitted with this fam-
ily function. There are seven types of special values and all arguments for these may be used in
a single model. Here, the MLM represents the nonparametric while the NB refers to the nega-
tive binomial mixtures. The defaults for this function correspond to an ordinary negative binomial
regression so that negbinomial is called instead.

While much of the documentation here draws upon gaitdpoisson, there are additional details here
because the NBD is a two parameter distribution that handles overdispersion relative to the Possion.
Consequently, this family function is exceeding flexible and there are many more pitfalls to avoid.

The order of the linear/additive predictors is best explained by an example. Suppose a combo model
has length(a.mix) > 3 and length(i.mix) > 3, length(d.mix) > 3, a.mlm = 3:5, i.mlm = 6:9
and d.mlm = 10:12, say. Then loglink(munb.p) and loglink(size.p) are the first two. The third
is multilogitlink(pobs.mix) followed by loglink(munb.a) and loglink(size.a) because
a.mix is long enough. The sixth is multilogitlink(pstr.mix) followed by loglink(munb.i)
and loglink(size.i) because i.mix is long enough. The ninth is multilogitlink(pdip.mix)
followed by loglink(munb.d) and loglink(size.d) because d.mix is long enough. Next are
the probabilities for the a.mlm values. Then are the probabilities for the i.mlm values. Lastly
are the probabilities for the d.mlm values. All the probabilities are estimated by one big MLM
and effectively the "(Others)" column of left over probabilities is associated with the nonspecial
values. These might be called the nonspecial baseline probabilities (NBP) or reserve probabilities.
The dimension of the vector of linear/additive predictors here is M = 21.

Apart from the order of the linear/additive predictors, the following are (or should be) equivalent:
gaitdnbinomial() and negbinomial(), gaitdnbinomial(a.mix = 0) and zanegbinomial(zero
= "pobs0"), gaitdnbinomial(i.mix = 0) and zinegbinomial(zero = "pstr0"), gaitdnbinomial(truncate
= 0) and posnegbinomial(). Likewise, if a.mix and i.mix are assigned a scalar then it effectively
moves that scalar to a.mlm and i.mlm because there is no parameters such as munb.i being es-
timated. Thus gaitdnbinomial(a.mix = 0) and gaitdnbinomial(a.mlm = 0) are the effectively
same, and ditto for gaitdnbinomial(i.mix = 0) and gaitdnbinomial(i.mlm = 0).

gaitdnbinomial 321

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

The fitted.values slot of the fitted object, which should be extracted by the generic function
fitted, returns the mean µ by default. See the information above on type.fitted.

Warning

See gaitdpoisson. Also, having eq.ap = TRUE, eq.ip = TRUE and eq.dp = TRUE is often needed
to obtain initial values that are good enough because they borrow strength across the different oper-
ators. It is usually easy to relax these assumptions later.

This family function is under constant development and future changes will occur.

Note

If length(a.mix) is 1 then effectively this becomes a value of a.mlm. If length(a.mix) is 2
then an error message will be issued (overfitting really). If length(a.mix) is 3 then this is al-
most overfitting too. Hence length(a.mix) should be 4 or more. Ditto for length(i.mix) and
length(d.mix).

See gaitdpoisson for notes about numerical problems that can easily arise. With the NBD there is
even more potential trouble that can occur. In particular, good initial values are more necessary so
it pays to experiment with arguments such as imunb.p and isize.p, as well as fitting an intercept-
only model first before adding covariates and using etastart.

Currently max.support is missing because only Inf is handled. This might change later.

Author(s)

T. W. Yee

References

Yee, T. W. and Ma, C. (2022). Generally–altered, –inflated, –truncated and –deflated regression,
with application to heaped and seeped data. In preparation.

See Also

Gaitdnbinom, multinomial, rootogram4, specials, plotdgaitd, spikeplot, meangaitd, KLD,
gaitdpoisson, gaitdlog, gaitdzeta, multilogitlink, multinomial, goffset, Trunc, negbinomial,
CommonVGAMffArguments, simulate.vlm.

Examples

i.mix <- c(5, 10, 12, 16) # Inflate these values parametrically
i.mlm <- c(14, 15) # Inflate these values
a.mix <- c(1, 6, 13, 20) # Alter these values
tvec <- c(3, 11) # Truncate these values
pstr.mlm <- 0.1 # So parallel.i = TRUE
pobs.mix <- pstr.mix <- 0.1; set.seed(1)

322 Gaitdpois

gdata <- data.frame(x2 = runif(nn <- 1000))
gdata <- transform(gdata, munb.p = exp(2 + 0.0 * x2),

size.p = exp(1))
gdata <- transform(gdata,

y1 = rgaitdnbinom(nn, size.p, munb.p, a.mix = a.mix,
i.mix = i.mix,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
i.mlm = i.mlm, pstr.mlm = pstr.mlm,
truncate = tvec))

gaitdnbinomial(a.mix = a.mix, i.mix = i.mix, i.mlm = i.mlm)
with(gdata, table(y1))
fit1 <- vglm(y1 ~ 1, crit = "coef", trace = TRUE, data = gdata,

gaitdnbinomial(a.mix = a.mix, i.mix = i.mix,
i.mlm = i.mlm,
parallel.i = TRUE, eq.ap = TRUE,
eq.ip = TRUE, truncate = tvec))

head(fitted(fit1, type.fitted = "Pstr.mix"))
head(predict(fit1))
t(coef(fit1, matrix = TRUE)) # Easier to see with t()
summary(fit1)
Not run: spikeplot(with(gdata, y1), lwd = 2)
plotdgaitd(fit1, new.plot = FALSE, offset.x = 0.2, all.lwd = 2)
End(Not run)

Gaitdpois Generally–Altered, –Inflated, –Truncated and –Deflated Poisson Dis-
tribution

Description

Density, distribution function, quantile function and random generation for the generally–altered, –
inflated, –truncated and –deflated Poisson distribution. Both parametric and nonparametric variants
are supported; these are based on finite mixtures of the parent with itself and the multinomial logit
model (MLM) respectively.

Usage

dgaitdpois(x, lambda.p, a.mix = NULL, a.mlm = NULL, i.mix = NULL,
i.mlm = NULL, d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0, pstr.mix = 0,
pstr.mlm = 0, pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
lambda.a = lambda.p, lambda.i = lambda.p,
lambda.d = lambda.p, log = FALSE)

pgaitdpois(q, lambda.p, a.mix = NULL, a.mlm = NULL, i.mix = NULL,
i.mlm = NULL, d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0, pstr.mix = 0,
pstr.mlm = 0, pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
lambda.a = lambda.p, lambda.i = lambda.p,
lambda.d = lambda.p, lower.tail = TRUE)

Gaitdpois 323

qgaitdpois(p, lambda.p, a.mix = NULL, a.mlm = NULL, i.mix = NULL,
i.mlm = NULL, d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0, pstr.mix = 0,
pstr.mlm = 0, pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
lambda.a = lambda.p, lambda.i = lambda.p, lambda.d = lambda.p)

rgaitdpois(n, lambda.p, a.mix = NULL, a.mlm = NULL, i.mix = NULL,
i.mlm = NULL, d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0, pstr.mix = 0,
pstr.mlm = 0, pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
lambda.a = lambda.p, lambda.i = lambda.p, lambda.d = lambda.p)

Arguments

x, q, p, n Same meaning as in Poisson.
log, lower.tail

Same meaning as in Poisson.
lambda.p, lambda.a, lambda.i, lambda.d

Same meaning as in Poisson, i.e., for an ordinary Poisson distribution. The
first is for the main parent (or base) distribution. The next two concern the
parametric variant and these distributions (usually spikes) may be altered and/or
inflated. The last one concerns the deflated variant. Short vectors are recycled.

truncate, max.support

numeric; these specify the set of truncated values. The default value of NULL
means an empty set for the former. The latter is the maximum support value so
that any value larger has been truncated (necessary because truncate = (max.support
+ 1):Inf is not allowed), hence is needed for truncating the upper tail of the dis-
tribution. Note that max(truncate) < max.support must be satisfied otherwise
an error message will be issued.

a.mix, i.mix, d.mix

Vectors of nonnegative integers; the altered, inflated and deflated values for the
parametric variant. Each argument must have unique values only. Assigning
argument a.mix means that pobs.mix will be used. Assigning i.mix means
that pstr.mix will be used. Assigning d.mix means that pdip.mix will be
used. If a.mix is of unit length then the default probability mass function (PMF)
evaluated at a.mix will be pobs.mix. So having a.mix = 0 corresponds to the
zero-inflated Poisson distribution (see Zipois).

a.mlm, i.mlm, d.mlm

Similar to the above, but for the nonparametric (MLM) variant. For example,
assigning a.mlm means that pobs.mlm will be used. Collectively, the above 7
arguments represent 7 disjoint sets of special values and they are a proper subset
of the support of the distribution.

pobs.mlm, pstr.mlm, pdip.mlm, byrow.aid

The first three arguments are coerced into a matrix of probabilities using byrow.aid
to determine the order of the elements (similar to byrow in matrix, and the
.aid reinforces the behaviour that it applies to both altered, inflated and deflated
cases). The first argument is recycled if necessary to become n x length(a.mlm).
The second argument becomes n x length(i.mlm). The third argument be-
comes n x length(d.mlm). Thus these arguments are not used unless a.mlm,

324 Gaitdpois

i.mlm and d.mlm are assigned. For deflated models, pdip.mix and pdip.mlm
are positive-valued and VGAM will subtract these quantities; the argument
deflation has been deprecated.

pobs.mix, pstr.mix, pdip.mix

Vectors of probabilities that are recycled if necessary to length n. The first
argument is used when a.mix is not NULL. The second argument is used when
i.mix is not NULL. The third argument is used when d.mix is not NULL.

Details

These functions allow any combination of 4 operator types: truncation, alteration, inflation and de-
flation. The precedence is truncation, then alteration and lastly inflation and deflation. Informally,
deflation can be thought of as the opposite of inflation. This order minimizes the potential interfer-
ence among the operators. Loosely, a set of probabilities is set to 0 by truncation and the remaining
probabilities are scaled up. Then a different set of probabilities are set to some values pobs.mix
and/or pobs.mlm and the remaining probabilities are rescaled up. Then another different set of
probabilities is inflated by an amount pstr.mlm and/or proportional to pstr.mix so that individual
elements in this set have two sources. Then another different set of probabilities is deflated by an
amount pdip.mlm and/or proportional to pdip.mix. Then all the probabilities are rescaled so that
they sum to unity.

Both parametric and nonparametric variants are implemented. They usually have arguments with
suffix .mix and .mlm respectively. The MLM is a loose coupling that effectively separates the
parent (or base) distribution from the altered values. Values inflated nonparametrically effectively
have their spikes shaved off. The .mix variant has associated with it lambda.a and lambda.i and
lambda.d because it is mixture of 4 Poisson distributions with partitioned or nested support.

Any value of the support of the distribution that is altered, inflated, truncated or deflated is called
a special value. A special value that is altered may mean that its probability increases or decreases
relative to the parent distribution. An inflated special value means that its probability has increased,
provided alteration elsewhere has not made it decrease in the first case. There are seven types of
special values and they are represented by a.mix, a.mlm, i.mix, i.mlm, d.mix, d.mlm, truncate.

Terminology-wise, special values are altered or inflated or truncated or deflated, and the remaining
support points that correspond directly to the parent distribution are nonspecial or ordinary. These
functions do what Zapois, Zipois, Pospois collectively did plus much more.

In the notation of Yee and Ma (2022) these functions allow for the special cases: (i) GAIT–
Pois(lambda.p)–Pois(lambda.a, a.mix, pobs.mix)–Pois(lambda.i, i.mix, pstr.mix); (ii) GAIT–
Pois(lambda.p)–MLM(a.mlm, pobs.mlm)–MLM(i.mlm, pstr.mlm). Model (i) is totally paramet-
ric while model (ii) is the most nonparametric possible.

Value

dgaitdpois gives the density, pgaitdpois gives the distribution function, qgaitdpois gives the
quantile function, and rgaitdpois generates random deviates. The default values of the arguments
correspond to ordinary dpois, ppois, qpois, rpois respectively.

Note

Functions Pospois and those similar have been moved to VGAMdata. It is better to use dgaitdpois(x,
lambda, truncate = 0) instead of dposbinom(x, lambda), etc.

gaitdpoisson 325

Author(s)

T. W. Yee.

References

Yee, T. W. and Ma, C. (2022). Generally–altered, –inflated, –truncated and –deflated regression,
with application to heaped and seeped data. In preparation.

See Also

gaitdpoisson, multinomial, specials, spikeplot, dgaitdplot, Zapois, Zipois, Pospois
Poisson; Gaitdbinom, Gaitdnbinom, Gaitdlog, Gaitdzeta.

Examples

ivec <- c(6, 14); avec <- c(8, 11); lambda <- 10; xgrid <- 0:25
tvec <- 15; max.support <- 20; pobs.mix <- 0.05; pstr.i <- 0.25
dvec <- 13; pdip.mlm <- 0.05; pobs.mlm <- 0.05
(ddd <- dgaitdpois(xgrid, lambda, lambda.a = lambda + 5,

truncate = tvec, max.support = max.support, pobs.mix = pobs.mix,
pobs.mlm = pobs.mlm, a.mlm = avec,
pdip.mlm = pdip.mlm, d.mlm = dvec,
pstr.mix = pstr.i, i.mix = ivec))

Not run: dgaitdplot(lambda, ylab = "Probability", xlab = "x",
truncate = tvec, max.support = max.support, pobs.mix = pobs.mix,
pobs.mlm = pobs.mlm, a.mlm = avec, all.lwd = 3,
pdip.mlm = pdip.mlm, d.mlm = dvec,
pstr.mix = pstr.i, i.mix = ivec, deflation = TRUE,
main = "GAITD Combo PMF---Poisson Parent")

End(Not run)

gaitdpoisson Generally–Altered, –Inflated, –Truncated and Deflated Poisson Re-
gression

Description

Fits a generally–altered, –inflated –truncated and deflated Poisson regression by MLE. The GAITD
combo model having 7 types of special values is implemented. This allows mixtures of Poissons on
nested and/or partitioned support as well as a multinomial logit model for (nonparametric) altered,
inflated and deflated values. Truncation may include the upper tail.

Usage

gaitdpoisson(a.mix = NULL, i.mix = NULL, d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, d.mlm = NULL,
truncate = NULL, max.support = Inf,
zero = c("pobs", "pstr", "pdip"),

326 gaitdpoisson

eq.ap = TRUE, eq.ip = TRUE, eq.dp = TRUE,
parallel.a = FALSE, parallel.i = FALSE, parallel.d = FALSE,
llambda.p = "loglink", llambda.a = llambda.p,
llambda.i = llambda.p, llambda.d = llambda.p,
type.fitted = c("mean", "lambdas", "pobs.mlm", "pstr.mlm",
"pdip.mlm", "pobs.mix", "pstr.mix", "pdip.mix",
"Pobs.mix", "Pstr.mix", "Pdip.mix", "nonspecial",
"Numer", "Denom.p", "sum.mlm.i", "sum.mix.i",
"sum.mlm.d", "sum.mix.d", "ptrunc.p",
"cdf.max.s"), gpstr.mix = ppoints(7) / 3,
gpstr.mlm = ppoints(7) / (3 + length(i.mlm)),
imethod = 1, mux.init = c(0.75, 0.5, 0.75),
ilambda.p = NULL, ilambda.a = ilambda.p,
ilambda.i = ilambda.p, ilambda.d = ilambda.p,
ipobs.mix = NULL, ipstr.mix = NULL, ipdip.mix = NULL,
ipobs.mlm = NULL, ipstr.mlm = NULL, ipdip.mlm = NULL,
byrow.aid = FALSE, ishrinkage = 0.95, probs.y = 0.35)

Arguments

truncate, max.support

Vector of truncated values, i.e., nonnegative integers. For the first seven argu-
ments (for the special values) a NULL stands for an empty set, and the seven sets
must be mutually disjoint. Argument max.support enables RHS-truncation,
i.e., something equivalent to truncate = (U+1):Inf for some upper support
point U specified by max.support.

a.mix, i.mix, d.mix

Vector of altered and inflated values corresponding to finite mixture models.
These are described as parametric or structured.
The parameter lambda.p is always estimated. If length(a.mix) is 1 or more
then the parameter pobs.mix is estimated. If length(i.mix) is 1 or more then
the parameter pstr.mix is estimated. If length(d.mix) is 1 or more then the
parameter pdip.mix is estimated.
If length(a.mix) is 2 or more then the parameter lambda.a is estimated. If
length(i.mix) is 2 or more then the parameter lambda.i is estimated. If
length(d.mix) is 2 or more then the parameter lambda.d is estimated.
If length(a.mix) == 1, length(i.mix) == 1 or length(d.mix) == 1 then lambda.a,
lambda.i and lambda.d are unidentifiable and therefore ignored. In such cases
it would be equivalent to moving a.mix into a.mlm, etc.
Due to its great flexibility, it is easy to misuse this function and ideally the
values of the above arguments should be well justified by the application on
hand. Adding inappropriate or unnecessary values to these arguments willy-nilly
is a recipe for disaster, especially for i.mix and d.mix. Using a.mlm effectively
removes a subset of the data from the main analysis, therefore may result in
a substantial loss of efficiency. For seeped values, a.mix, a.mlm, d.mix and
d.mlm can be used only. Heaped values can be handled by i.mlm and i.mix, as
well as a.mix and a.mlm. Because of the NBP reason below, it sometimes may
be necessary to specify deflated values to altered values.

gaitdpoisson 327

a.mlm, i.mlm, d.mlm

Vector of altered, inflated and deflated values corresponding to the multinomial
logit model (MLM) probabilities of observing those values—see multinomial.
These are described as nonparametric or unstructured.

llambda.p, llambda.a, llambda.i, llambda.d

Link functions for the parent, altered, inflated and deflated distributions respec-
tively. See Links for more choices and information.

eq.ap, eq.ip, eq.dp

Single logical each. Constrain the rate parameters to be equal? See CommonVGAMffArguments
for information. Having all three arguments TRUE gives greater stability in
the estimation because of fewer parameters and therefore fewer initial values
needed, however if so then one should try relax some of the arguments later.
For the GIT–Pois–Pois submodel, after plotting the responses, if the distribu-
tion of the spikes above the nominal probabilities has roughly the same shape
as the ordinary values then setting eq.ip = TRUE would be a good idea so that
lambda.i == lambda.p. And if i.mix is of length 2 or a bit more, then TRUE
should definitely be entertained. Likewise, for heaped or seeped data, setting
eq.ap = TRUE (so that lambda.p == lambda.p) would be a good idea for the
GAT–Pois–Pois if the shape of the altered probabilities is roughly the same as
the parent distribution.

parallel.a, parallel.i, parallel.d

Single logical each. Constrain the MLM probabilities to be equal? If so then
this applies to all length(a.mlm) pobs.mlm probabilities or all length(i.mlm)
pstr.mlm probabilities or all length(d.mlm) pdip.mlm probabilities. See CommonVGAMffArguments
for information. The default means that the probabilities are generally uncon-
strained and unstructured and will follow the shape of the data. See constraints.

type.fitted See CommonVGAMffArguments and below for information. The first value is
the default, and this is usually the unconditional mean. Choosing an irrelevant
value may result in an NA being returned and a warning, e.g., "pstr.mlm" for a
nonparametric GAT model.
The choice "lambdas" returns a matrix with at least one column and up to
three others, corresponding to all those estimated. In order, their colnames are
"lambda.p", "lambda.a", "lambda.i" and "lambda.d". For other distribu-
tions such as gaitdlog type.fitted = "shapes" is permitted and the colnames
are "shape.p", "shape.a", "shape.i" and "shape.d", etc.
Option "Pobs.mix" provides more detail about "pobs.mix" by returning a ma-
trix whose columns correspond to each altered value; the row sums (rowSums)
of this matrix is "pobs.mix". Likewise "Pstr.mix" about "pstr.mix" and
"Pdip.mix" about "pdip.mix".
The choice "cdf.max.s" is the CDF evaluated at max.support using the par-
ent distribution, e.g., ppois(max.support, lambda.p) for gaitdpoisson. The
value should be 1 if max.support = Inf (the default). The choice "nonspecial"
is the probability of a nonspecial value. The choices "Denom.p" and "Numer"
are quantities found in the GAITD combo PMF and are for convenience only.
The choice type.fitted = "pobs.mlm" returns a matrix whose columns are
the altered probabilities (Greek symbol ωs). The choice "pstr.mlm" returns a
matrix whose columns are the inflated probabilities (Greek symbol φs). The

328 gaitdpoisson

choice "pdip.mlm" returns a matrix whose columns are the deflated probabili-
ties (Greek symbol ψs).
The choice "ptrunc.p" returns the probability of having a truncated value with
respect to the parent distribution. It includes any truncated values in the up-
per tail beyond max.support. The probability of a value less than or equal to
max.support with respect to the parent distribution is "cdf.max.s".
The choice "sum.mlm.i" adds two terms. This gives the probability of an in-
flated value, and the formula can be loosely written down as something like
"pstr.mlm" + "Numer" * dpois(i.mlm, lambda.p) / "Denom.p". The other
three "sum.m*" arguments are similar.

gpstr.mix, gpstr.mlm

See CommonVGAMffArguments for information. Gridsearch values for the two
parameters. If failure occurs try a finer grid, especially closer to 0, and/or exper-
iment with mux.init.

imethod, ipobs.mix, ipstr.mix, ipdip.mix

See CommonVGAMffArguments for information. Good initial values are difficult
to compute because of the great flexibility of GAITD regression, therefore it is
often necessary to use these arguments. A careful examination of a spikeplot
of the data should lead to good choices.

ipobs.mlm, ipstr.mlm, ipdip.mlm

See CommonVGAMffArguments for information.
mux.init Numeric, of length 3. General downward multiplier for initial values for the

sample proportions (MLEs actually). This is under development and more de-
tails are forthcoming. In general, 1 means unchanged and values should lie in
(0, 1], and values about 0.5 are recommended. The elements apply in order to
altered, inflated and deflated (no distinction between mix and MLM).

ilambda.p, ilambda.a, ilambda.i, ilambda.d

Initial values for the rate parameters; see CommonVGAMffArguments for infor-
mation.

probs.y, ishrinkage

See CommonVGAMffArguments for information.
byrow.aid Details are at Gaitdpois.
zero See CommonVGAMffArguments for information. By default, all the MLM proba-

bilities are modelled as simple as possible (intercept-only) to help avoid numer-
ical problems, especially when there are many covariates. The Poisson means
are modelled by the covariates, and the default zero vector is pruned of any ir-
relevant values. To model all the MLM probabilities with covariates set zero =
NULL, however, the number of regression coefficients could be excessive.
For the MLM probabilities, to model pobs.mix only with covariates set zero
= c('pstr', 'pobs.mlm', 'pdip'). Likewise, to model pstr.mix only with
covariates set zero = c('pobs', 'pstr.mlm', 'pdip').
It is noted that, amongst other things, zipoisson and zipoissonff differ with
respect to zero, and ditto for zapoisson and zapoissonff.

Details

The full GAITD–Pois combo model may be fitted with this family function. There are seven types of
special values and all arguments for these may be used in a single model. Here, the MLM represents

gaitdpoisson 329

the nonparametric while the Pois refers to the Poisson mixtures. The defaults for this function
correspond to an ordinary Poisson regression so that poissonff is called instead. A MLM with
only one probability to model is equivalent to logistic regression (binomialff and logitlink).

The order of the linear/additive predictors is best explained by an example. Suppose a combo model
has length(a.mix) > 2 and length(i.mix) > 2, length(d.mix) > 2, a.mlm = 3:5, i.mlm = 6:9
and d.mlm = 10:12, say. Then loglink(lambda.p) is the first. The second is multilogitlink(pobs.mix)
followed by loglink(lambda.a) because a.mix is long enough. The fourth is multilogitlink(pstr.mix)
followed by loglink(lambda.i) because i.mix is long enough. The sixth is multilogitlink(pdip.mix)
followed by loglink(lambda.d) because d.mix is long enough. Next are the probabilities for the
a.mlm values. Then are the probabilities for the i.mlm values. Lastly are the probabilities for the
d.mlm values. All the probabilities are estimated by one big MLM and effectively the "(Others)"
column of left over probabilities is associated with the nonspecial values. These might be called the
nonspecial baseline probabilities (NBP). The dimension of the vector of linear/additive predictors
here is M = 17.

Two mixture submodels that may be fitted can be abbreviated GAT–Pois–Pois or GIT–Pois–Pois.
For the GAT model the distribution being fitted is a (spliced) mixture of two Poissons with differing
(partitioned) support. Likewise, for the GIT model the distribution being fitted is a mixture of two
Poissons with nested support. The two rate parameters may be constrained to be equal using eq.ap
and eq.ip.

A good first step is to apply spikeplot for selecting candidate values for altering, inflating and
deflating. Deciding between parametrically or nonparametrically can also be determined from ex-
amining the spike plot. Misspecified a.mix/a.mlm/i.mix/i.mlm/d.mix/d.mlm will result in con-
vergence problems (setting trace = TRUE is a very good idea.) This function currently does not
handle multiple responses. Further details are at Gaitdpois.

A well-conditioned data–model combination should pose no difficulties for the automatic starting
value selection being successful. Failure to obtain initial values from this self-starting family func-
tion indicates the degree of inflation/deflation may be marginal and/or a misspecified model. If
this problem is worth surmounting the arguments to focus on especially are mux.init, gpstr.mix,
gpstr.mlm, ipdip.mix and ipdip.mlm. See below for the stepping-stone trick.

Apart from the order of the linear/additive predictors, the following are (or should be) equiv-
alent: gaitdpoisson() and poissonff(), gaitdpoisson(a.mix = 0) and zapoisson(zero =
"pobs0"), gaitdpoisson(i.mix = 0) and zipoisson(zero = "pstr0"), gaitdpoisson(truncate
= 0) and pospoisson(). Likewise, if a.mix and i.mix are assigned a scalar then it effectively
moves that scalar to a.mlm and i.mlm because there is no lambda.a or lambda.i being estimated.
Thus gaitdpoisson(a.mix = 0) and gaitdpoisson(a.mlm = 0) are the effectively same, and ditto
for gaitdpoisson(i.mix = 0) and gaitdpoisson(i.mlm = 0).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

The fitted.values slot of the fitted object, which should be extracted by the generic function
fitted, returns the mean µ by default. See the information above on type.fitted.

330 gaitdpoisson

Warning

Amateurs tend to be overzealous fitting zero-inflated models when the fitted mean is low—the
warning of ziP should be heeded. For GAITD regression the warning applies more strongly and
generally; here to all i.mix, i.mlm, d.mix and d.mlm values, not just 0. Even one misspecified
special value usually will cause convergence problems.

Default values for this and similar family functions may change in the future, e.g., eq.ap and eq.ip.
Important internal changes might occur too, such as the ordering of the linear/additive predictors
and the quantities returned as the fitted values.

Using i.mlm requires more caution than a.mlm because gross inflation is ideally needed for it to
work safely. Ditto for i.mix versus a.mix. Data exhibiting deflation or little to no inflation will
produce numerical problems, hence set trace = TRUE to monitor convergence. More than c.10 IRLS
iterations should raise suspicion.

Ranking the four operators by difficulty, the easiest is truncation followed by alteration, then infla-
tion and the most difficult is deflation. The latter needs good initial values and the current default
will probably not work on some data sets. Studying the spikeplot is time very well spent. In general
it is very easy to specify an overfitting model so it is a good idea to split the data into training and
test sets.

This function is quite memory-hungry with respect to length(c(a.mix, i.mix, d.mix, a.mlm,
i.mlm, d.mlm)). On consuming something different, because all values of the NBP vector need to
be positive it pays to be economical with respect to d.mlm especially so that one does not consume
up probabilities unnecessarily so to speak.

It is often a good idea to set eq.ip = TRUE, especially when length(i.mix) is not much more than
2 or the values of i.mix are not spread over the range of the response. This way the estimation
can borrow strength from both the inflated and non-inflated values. If the i.mix values form a
single small cluster then this can easily create estimation difficulties—the idea is somewhat similar
to multicollinearity. The same holds for d.mix.

Note

Numerical problems can easily arise because of the exceeding flexibility of this distribution and/or
the lack of sizeable inflation/deflation; it is a good idea to gain experience with simulated data first
before applying it to real data. Numerical problems may arise if any of the special values are in
remote places of the support, e.g., a value y such that dpois(y, lambda.p) is very close to 0. This
is because the ratio of two tiny values can be unstable.

Good initial values may be difficult to obtain using self-starting procedures, especially when there
are covariates. If so, then it is advisable to use a trick: fit an intercept-only model first and then
use etastart = predict(int.only.model) to fit the model with covariates. This uses the simpler
model as a stepping-stone.

The labelling of the linear/additive predictors has been abbreviated to reduce space. For exam-
ple, multilogitlink(pobs.mix) and multilogitlink(pstr.mix) would be more accurately
multilogitlink(cbind(pobs.mix, pstr.mix)) because one grand MLM is fitted. This short-
ening may result in modifications needed in other parts of VGAM to compensate.

Because estimation involves a MLM, the restricted parameter space means that if the dip probabil-
ities are large then the NBP may become too close to 0. If this is so then there are tricks to avoid

gaitdpoisson 331

a negative NBP. One of them is to model as many values of d.mlm as d.mix, hence the dip proba-
bilities become modelled via the deflation distribution instead. Another trick to alter those special
values rather than deflating them if the dip probabilities are large.

Due to its complexity, the HDE test hdeff is currently unavailable for GAITD regressions.

Randomized quantile residuals (RQRs) are available; see residualsvglm.

Author(s)

T. W. Yee

References

Yee, T. W. and Ma, C. (2022). Generally–altered, –inflated, –truncated and –deflated regression,
with application to heaped and seeped data. In preparation.

See Also

Gaitdpois, multinomial, rootogram4, specials, plotdgaitd, spikeplot, meangaitd, KLD,
goffset, Trunc, gaitdnbinomial, gaitdlog, gaitdzeta, multilogitlink, multinomial, residualsvglm,
poissonff, zapoisson, zipoisson, pospoisson, CommonVGAMffArguments, simulate.vlm.

Examples

i.mix <- c(5, 10) # Inflate these values parametrically
i.mlm <- c(14, 15) # Inflate these values
a.mix <- c(1, 13) # Alter these values
tvec <- c(3, 11) # Truncate these values
pstr.mlm <- 0.1 # So parallel.i = TRUE
pobs.mix <- pstr.mix <- 0.1
max.support <- 20; set.seed(1)
gdata <- data.frame(x2 = runif(nn <- 1000))
gdata <- transform(gdata, lambda.p = exp(2 + 0.0 * x2))
gdata <- transform(gdata,

y1 = rgaitdpois(nn, lambda.p, a.mix = a.mix, i.mix = i.mix,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
i.mlm = i.mlm, pstr.mlm = pstr.mlm,
truncate = tvec, max.support = max.support))

gaitdpoisson(a.mix = a.mix, i.mix = i.mix, i.mlm = i.mlm)
with(gdata, table(y1))
fit1 <- vglm(y1 ~ 1, crit = "coef", trace = TRUE, data = gdata,

gaitdpoisson(a.mix = a.mix, i.mix = i.mix,
i.mlm = i.mlm, parallel.i = TRUE,
eq.ap = TRUE, eq.ip = TRUE, truncate =
tvec, max.support = max.support))

head(fitted(fit1, type.fitted = "Pstr.mix"))
head(predict(fit1))
t(coef(fit1, matrix = TRUE)) # Easier to see with t()
summary(fit1) # No HDE test by default but HDEtest = TRUE is ideal
Not run: spikeplot(with(gdata, y1), lwd = 2)
plotdgaitd(fit1, new.plot = FALSE, offset.x = 0.2, all.lwd = 2)
End(Not run)

332 Gaitdzeta

Gaitdzeta Generally–Altered, –Inflated and –Truncated Zeta Distribution

Description

Density, distribution function, quantile function and random generation for the generally–altered, –
inflated and –truncated zeta distribution. Both parametric and nonparametric variants are supported;
these are based on finite mixtures of the parent with itself and the multinomial logit model (MLM)
respectively.

Usage

dgaitdzeta(x, shape.p, a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0,
byrow.aid = FALSE,
shape.a = shape.p, shape.i = shape.p, shape.d = shape.p,
log = FALSE)

pgaitdzeta(q, shape.p, a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0,
byrow.aid = FALSE,
shape.a = shape.p, shape.i = shape.p, shape.d = shape.p,
lower.tail = TRUE)

qgaitdzeta(p, shape.p, a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0,
byrow.aid = FALSE,
shape.a = shape.p, shape.i = shape.p, shape.d = shape.p)

rgaitdzeta(n, shape.p, a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL, truncate = NULL,
max.support = Inf, pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0,
byrow.aid = FALSE,
shape.a = shape.p, shape.i = shape.p, shape.d = shape.p)

Gaitdzeta 333

Arguments

x, q, p, n, log, lower.tail

Same meaning as in dzeta.
shape.p, shape.a, shape.i, shape.d

Same meaning as shape for dzeta, i.e., for an ordinary zeta distribution. See
Gaitdpois for generic information.

truncate, max.support

See Gaitdpois for generic information.
a.mix, i.mix, d.mix

See Gaitdpois for generic information.
a.mlm, i.mlm, d.mlm

See Gaitdpois for generic information.
pobs.mlm, pstr.mlm, pdip.mlm, byrow.aid

See Gaitdpois for generic information.
pobs.mix, pstr.mix, pdip.mix

See Gaitdpois for generic information.

Details

These functions for the zeta distribution are analogous to the Poisson, hence most details have been
put in Gaitdpois. These functions do what Oazeta, Oizeta, Otzeta collectively did plus much
more.

Value

dgaitdzeta gives the density, pgaitdzeta gives the distribution function, qgaitdzeta gives the
quantile function, and rgaitdzeta generates random deviates. The default values of the arguments
correspond to ordinary dzeta, pzeta, qzeta, rzeta respectively.

Note

See Gaitdpois for general information also relevant to this parent distribution.

Author(s)

T. W. Yee.

See Also

gaitdzeta, Gaitdpois, multinomial, Oazeta, Oizeta, Otzeta.

Examples

ivec <- c(2, 10); avec <- ivec + 4; shape <- 0.95; xgrid <- 0:29
tvec <- 15; max.support <- 25; pobs.a <- 0.10; pstr.i <- 0.15
(ddd <- dgaitdzeta(xgrid, shape, truncate = tvec,

max.support = max.support, pobs.mix = pobs.a,
a.mix = avec, pstr.mix = pstr.i, i.mix = ivec))

Not run: plot(xgrid, ddd, type = "n", ylab = "Probability",

334 gaitdzeta

xlab = "x", main = "GAIT PMF---Zeta Parent")
mylwd <- 0.5
abline(v = avec, col = 'blue', lwd = mylwd)
abline(v = ivec, col = 'purple', lwd = mylwd)
abline(v = tvec, col = 'tan', lwd = mylwd)
abline(v = max.support, col = 'magenta', lwd = mylwd)
abline(h = c(pobs.a, pstr.i, 0:1), col = 'gray', lty = "dashed")
lines(xgrid, dzeta(xgrid, shape), col='gray', lty="dashed") # f_{\pi}
lines(xgrid, ddd, type = "h", col = "pink", lwd = 3) # GAIT PMF
points(xgrid[ddd == 0], ddd[ddd == 0], pch = 16, col = 'tan', cex = 2)

End(Not run)

gaitdzeta Generally–Altered, –Inflated, –Truncated and Deflated Zeta Regres-
sion

Description

Fits a generally–altered, –inflated, –truncated and deflated zeta regression by MLE. The GAITD
combo model having 7 types of special values is implemented. This allows mixtures of zetas on
nested and/or partitioned support as well as a multinomial logit model for altered, inflated and
deflated values.

Usage

gaitdzeta(a.mix = NULL, i.mix = NULL, d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, d.mlm = NULL,
truncate = NULL, max.support = Inf,
zero = c("pobs", "pstr", "pdip"), eq.ap = TRUE, eq.ip = TRUE,
eq.dp = TRUE, parallel.a = FALSE,
parallel.i = FALSE, parallel.d = FALSE,
lshape.p = "loglink", lshape.a = lshape.p,
lshape.i = lshape.p, lshape.d = lshape.p,
type.fitted = c("mean", "shapes", "pobs.mlm", "pstr.mlm",
"pdip.mlm", "pobs.mix", "pstr.mix", "pdip.mix", "Pobs.mix",
"Pstr.mix", "Pdip.mix", "nonspecial",
"Numer", "Denom.p", "sum.mlm.i", "sum.mix.i", "sum.mlm.d",
"sum.mix.d", "ptrunc.p", "cdf.max.s"),
gshape.p = -expm1(-ppoints(7)), gpstr.mix = ppoints(7) / 3,
gpstr.mlm = ppoints(7) / (3 + length(i.mlm)),
imethod = 1, mux.init = c(0.75, 0.5, 0.75),
ishape.p = NULL, ishape.a = ishape.p,
ishape.i = ishape.p, ishape.d = ishape.p,
ipobs.mix = NULL, ipstr.mix = NULL, ipdip.mix = NULL,
ipobs.mlm = NULL, ipstr.mlm = NULL, ipdip.mlm = NULL,
byrow.aid = FALSE, ishrinkage = 0.95, probs.y = 0.35)

gaitdzeta 335

Arguments
truncate, max.support

See gaitdpoisson. Only max.support = Inf is allowed because some equa-
tions are intractable.

a.mix, i.mix, d.mix

See gaitdpoisson.
a.mlm, i.mlm, d.mlm

See gaitdpoisson.
lshape.p, lshape.a, lshape.i, lshape.d

Link functions. See gaitdpoisson and Links for more choices and infor-
mation. Actually, it is usually a good idea to set these arguments equal to
zetaffMlink because the log-mean is the first linear/additive predictor so it
is like a Poisson regression.

eq.ap, eq.ip, eq.dp

Single logical each. See gaitdpoisson
parallel.a, parallel.i, parallel.d

Single logical each. See gaitdpoisson.
type.fitted, mux.init

See gaitdpoisson.
imethod, ipobs.mix, ipstr.mix, ipdip.mix

See CommonVGAMffArguments and gaitdpoisson for information.
ipobs.mlm, ipstr.mlm, ipdip.mlm, byrow.aid

See CommonVGAMffArguments and gaitdpoisson for information.
gpstr.mix, gpstr.mlm

See CommonVGAMffArguments and gaitdpoisson for information.
gshape.p, ishape.p

See CommonVGAMffArguments and gaitdpoisson for information. The former
is used only if the latter is not given. Practical experience has shown that good
initial values are needed, so if convergence is not obtained then try a finer grid.

ishape.a, ishape.i, ishape.d

See CommonVGAMffArguments and gaitdpoisson for information.
probs.y, ishrinkage

See CommonVGAMffArguments for information.
zero See gaitdpoisson and CommonVGAMffArguments for information.

Details

Many details to this family function can be found in gaitdpoisson because it is also a 1-parameter
discrete distribution. This function currently does not handle multiple responses. Further details are
at Gaitdzeta.

As alluded to above, when there are covariates it is much more interpretable to model the mean
rather than the shape parameter. Hence zetaffMlink is recommended. (This might become the
default in the future.) So installing VGAMextra is a good idea.

Apart from the order of the linear/additive predictors, the following are (or should be) equivalent:
gaitdzeta() and zetaff(), gaitdzeta(a.mix = 1) and oazeta(zero = "pobs1"), gaitdzeta(i.mix
= 1) and oizeta(zero = "pstr1"), gaitdzeta(truncate = 1) and otzeta(). The functions oazeta,
oizeta and otzeta have been placed in VGAMdata.

336 gaitdzeta

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

See gaitdpoisson.

Note

See gaitdpoisson.

Author(s)

T. W. Yee

See Also

Gaitdzeta, zetaff, zetaffMlink, Gaitdpois, gaitdpoisson, gaitdlog, spikeplot, goffset,
Trunc, oazeta, oizeta, otzeta, CommonVGAMffArguments, rootogram4, simulate.vlm.

Examples

Not run:
avec <- c(5, 10) # Alter these values parametrically
ivec <- c(3, 15) # Inflate these values
tvec <- c(6, 7) # Truncate these values
set.seed(1); pobs.a <- pstr.i <- 0.1
gdata <- data.frame(x2 = runif(nn <- 1000))
gdata <- transform(gdata, shape.p = logitlink(2, inverse = TRUE))
gdata <- transform(gdata,

y1 = rgaitdzeta(nn, shape.p, a.mix = avec, pobs.mix = pobs.a,
i.mix = ivec, pstr.mix = pstr.i, truncate = tvec))

gaitdzeta(a.mix = avec, i.mix = ivec)
with(gdata, table(y1))
spikeplot(with(gdata, y1), las = 1)
fit7 <- vglm(y1 ~ 1, trace = TRUE, data = gdata, crit = "coef",

gaitdzeta(i.mix = ivec, truncate = tvec,
a.mix = avec, eq.ap = TRUE, eq.ip = TRUE))

head(fitted(fit7, type.fitted = "Pstr.mix"))
head(predict(fit7))
t(coef(fit7, matrix = TRUE)) # Easier to see with t()
summary(fit7)
spikeplot(with(gdata, y1), lwd = 2, ylim = c(0, 0.6), xlim = c(0, 20))
plotdgaitd(fit7, new.plot = FALSE, offset.x = 0.2, all.lwd = 2)

End(Not run)

gamma1 337

gamma1 1-parameter Gamma Regression Family Function

Description

Estimates the 1-parameter gamma distribution by maximum likelihood estimation.

Usage

gamma1(link = "loglink", zero = NULL, parallel = FALSE,
type.fitted = c("mean", "percentiles", "Qlink"),
percentiles = 50)

Arguments

link Link function applied to the (positive) shape parameter. See Links for more
choices and general information.

zero, parallel Details at CommonVGAMffArguments.
type.fitted, percentiles

See CommonVGAMffArguments for information. Using "Qlink" is for quantile-
links in VGAMextra.

Details

The density function is given by

f(y) = exp(−y)× yshape−1/Γ(shape)

for shape > 0 and y > 0. Here, Γ(shape) is the gamma function, as in gamma. The mean of Y
(returned as the default fitted values) is µ = shape, and the variance is σ2 = shape.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

This VGAM family function can handle a multiple responses, which is inputted as a matrix.

The parameter shape matches with shape in rgamma. The argument rate in rgamma is assumed 1
for this family function, so that scale = 1 is used for calls to dgamma, qgamma, etc.

If rate is unknown use the family function gammaR to estimate it too.

Author(s)

T. W. Yee

338 gamma2

References

Most standard texts on statistical distributions describe the 1-parameter gamma distribution, e.g.,

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

gammaR for the 2-parameter gamma distribution, lgamma1, lindley, simulate.vlm.

Examples

gdata <- data.frame(y = rgamma(n = 100, shape = exp(3)))
fit <- vglm(y ~ 1, gamma1, data = gdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

gamma2 2-parameter Gamma Regression Family Function

Description

Estimates the 2-parameter gamma distribution by maximum likelihood estimation.

Usage

gamma2(lmu = "loglink", lshape = "loglink",
imethod = 1, ishape = NULL,
parallel = FALSE, deviance.arg = FALSE, zero = "shape")

Arguments

lmu, lshape Link functions applied to the (positive) mu and shape parameters (called µ and
a respectively). See Links for more choices.

ishape Optional initial value for shape. A NULL means a value is computed internally.
If a failure to converge occurs, try using this argument. This argument is ignored
if used within cqo; see the iShape argument of qrrvglm.control instead.

imethod An integer with value 1 or 2 which specifies the initialization method for the µ
parameter. If failure to converge occurs try another value (and/or specify a value
for ishape).

deviance.arg Logical. If TRUE, the deviance function is attached to the object. Under ordi-
nary circumstances, it should be left alone because it really assumes the shape
parameter is at the maximum likelihood estimate. Consequently, one cannot use
that criterion to minimize within the IRLS algorithm. It should be set TRUE only
when used with cqo under the fast algorithm.

zero See CommonVGAMffArguments for information.
parallel Details at CommonVGAMffArguments. If parallel = TRUE then the constraint is

not applied to the intercept.

gamma2 339

Details

This distribution can model continuous skewed responses. The density function is given by

f(y;µ, a) =
exp(−ay/µ)× (ay/µ)a−1 × a

µ× Γ(a)

for µ > 0, a > 0 and y > 0. Here, Γ(·) is the gamma function, as in gamma. The mean of Y is
µ = µ (returned as the fitted values) with variance σ2 = µ2/a. If 0 < a < 1 then the density has a
pole at the origin and decreases monotonically as y increases. If a = 1 then this corresponds to the
exponential distribution. If a > 1 then the density is zero at the origin and is unimodal with mode
at y = µ− µ/a; this can be achieved with lshape="logloglink".

By default, the two linear/additive predictors are η1 = log(µ) and η2 = log(a). This family function
implements Fisher scoring and the working weight matrices are diagonal.

This VGAM family function handles multivariate responses, so that a matrix can be used as the
response. The number of columns is the number of species, say, and zero=-2 means that all species
have a shape parameter equalling a (different) intercept only.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be strictly positive. A moment estimator for the shape parameter may be imple-
mented in the future.

If mu and shape are vectors, then rgamma(n = n, shape = shape, scale = mu/shape) will generate
random gamma variates of this parameterization, etc.; see GammaDist.

Author(s)

T. W. Yee

References

The parameterization of this VGAM family function is the 2-parameter gamma distribution de-
scribed in the monograph

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

gamma1 for the 1-parameter gamma distribution, gammaR for another parameterization of the 2-
parameter gamma distribution that is directly matched with rgamma, bigamma.mckay for a bivariate
gamma distribution, expexpff, GammaDist, gordlink, CommonVGAMffArguments, simulate.vlm,
negloglink.

340 gammahyperbola

Examples

Essentially a 1-parameter gamma
gdata <- data.frame(y = rgamma(n = 100, shape = exp(1)))
fit1 <- vglm(y ~ 1, gamma1, data = gdata)
fit2 <- vglm(y ~ 1, gamma2, data = gdata, trace = TRUE, crit = "coef")
coef(fit2, matrix = TRUE)
c(Coef(fit2), colMeans(gdata))

Essentially a 2-parameter gamma
gdata <- data.frame(y = rgamma(n = 500, rate = exp(-1), shape = exp(2)))
fit2 <- vglm(y ~ 1, gamma2, data = gdata, trace = TRUE, crit = "coef")
coef(fit2, matrix = TRUE)
c(Coef(fit2), colMeans(gdata))
summary(fit2)

gammahyperbola Gamma Hyperbola Bivariate Distribution

Description

Estimate the parameter of a gamma hyperbola bivariate distribution by maximum likelihood esti-
mation.

Usage

gammahyperbola(ltheta = "loglink", itheta = NULL, expected = FALSE)

Arguments

ltheta Link function applied to the (positive) parameter θ. See Links for more choices.

itheta Initial value for the parameter. The default is to estimate it internally.

expected Logical. FALSE means the Newton-Raphson (using the observed information
matrix) algorithm, otherwise the expected information matrix is used (Fisher
scoring algorithm).

Details

The joint probability density function is given by

f(y1, y2) = exp(−e−θy1/θ − θy2)

for θ > 0, y1 > 0, y2 > 1. The random variables Y1 and Y2 are independent. The marginal
distribution of Y1 is an exponential distribution with rate parameter exp(−θ)/θ. The marginal
distribution of Y2 is an exponential distribution that has been shifted to the right by 1 and with rate
parameter θ. The fitted values are stored in a two-column matrix with the marginal means, which
are θ exp(θ) and 1 + 1/θ.

The default algorithm is Newton-Raphson because Fisher scoring tends to be much slower for this
distribution.

gammaR 341

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two-column matrix.

Author(s)

T. W. Yee

References

Reid, N. (2003). Asymptotics and the theory of inference. Annals of Statistics, 31, 1695–1731.

See Also

exponential.

Examples

gdata <- data.frame(x2 = runif(nn <- 1000))
gdata <- transform(gdata, theta = exp(-2 + x2))
gdata <- transform(gdata, y1 = rexp(nn, rate = exp(-theta)/theta),

y2 = rexp(nn, rate = theta) + 1)
fit <- vglm(cbind(y1, y2) ~ x2, gammahyperbola(expected = TRUE), data = gdata)
coef(fit, matrix = TRUE)
Coef(fit)
head(fitted(fit))
summary(fit)

gammaR 2-parameter Gamma Regression Family Function

Description

Estimates the 2-parameter gamma distribution by maximum likelihood estimation.

Usage

gammaR(lrate = "loglink", lshape = "loglink", irate = NULL,
ishape = NULL, lss = TRUE, zero = "shape")

342 gammaR

Arguments

lrate, lshape Link functions applied to the (positive) rate and shape parameters. See Links
for more choices.

irate, ishape Optional initial values for rate and shape. A NULL means a value is computed
internally. If a failure to converge occurs, try using these arguments.

zero, lss Details at CommonVGAMffArguments.

Details

The density function is given by

f(y; rate, shape) = exp(−rate× y)× yshape−1 × rateshape/Γ(shape)

for shape > 0, rate > 0 and y > 0. Here, Γ(shape) is the gamma function, as in gamma.
The mean of Y is µ = shape/rate (returned as the fitted values) with variance σ2 = µ2/shape =
shape/rate2. By default, the two linear/additive predictors are η1 = log(rate) and η2 = log(shape).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The parameters rate and shape match with the arguments rate and shape of rgamma. The order
of the arguments agree too. Here, scale = 1/rate is used, so one can use negloglink. Multiple
responses are handled.

If rate = 1 use the family function gamma1 to estimate shape.

The reciprocal of a 2-parameter gamma random variate has an inverse gamma distribution. One
might write a VGAM family function called invgammaR() to estimate this, but for now, just feed
in the reciprocal of the response.

Author(s)

T. W. Yee

References

Most standard texts on statistical distributions describe the 2-parameter gamma distribution, e.g.,

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

gamma1 for the 1-parameter gamma distribution, gamma2 for another parameterization of the 2-
parameter gamma distribution, bigamma.mckay for a bivariate gamma distribution, expexpff, simulate.vlm,
rgamma, negloglink.

garma 343

Examples

Essentially a 1-parameter gamma
gdata <- data.frame(y1 = rgamma(n <- 100, shape = exp(1)))
fit1 <- vglm(y1 ~ 1, gamma1, data = gdata, trace = TRUE)
fit2 <- vglm(y1 ~ 1, gammaR, data = gdata, trace = TRUE, crit = "coef")
coef(fit2, matrix = TRUE)
Coef(fit2)

Essentially a 2-parameter gamma
gdata <- data.frame(y2 = rgamma(n = 500, rate = exp(1), shape = exp(2)))
fit2 <- vglm(y2 ~ 1, gammaR, data = gdata, trace = TRUE, crit = "coef")
coef(fit2, matrix = TRUE)
Coef(fit2)
summary(fit2)

garma GARMA (Generalized Autoregressive Moving-Average) Models

Description

Fits GARMA models to time series data.

Usage

garma(link = "identitylink", p.ar.lag = 1, q.ma.lag = 0,
coefstart = NULL, step = 1)

Arguments

link Link function applied to the mean response. The default is suitable for con-
tinuous responses. The link loglink should be chosen if the data are counts.
The link reciprocal can be chosen if the data are counts and the variance as-
sumed for this is µ2. The links logitlink, probitlink, clogloglink, and
cauchitlink are supported and suitable for binary responses.
Note that when the log or logit link is chosen: for log and logit, zero values can
be replaced by bvalue. See loglink and logitlink etc. for specific informa-
tion about each link function.

p.ar.lag A positive integer, the lag for the autoregressive component. Called p below.

q.ma.lag A non-negative integer, the lag for the moving-average component. Called q
below.

coefstart Starting values for the coefficients. Assigning this argument is highly recom-
mended. For technical reasons, the argument coefstart in vglm cannot be
used.

step Numeric. Step length, e.g., 0.5 means half-stepsizing.

344 garma

Details

This function draws heavily on Benjamin et al. (1998). See also Benjamin et al. (2003). GARMA
models extend the ARMA time series model to generalized responses in the exponential family,
e.g., Poisson counts, binary responses. Currently, this function is rudimentary and can handle only
certain continuous, count and binary responses only. The user must choose an appropriate link for
the link argument.

The GARMA(p, q) model is defined by firstly having a response belonging to the exponential family

f(yt|Dt) = exp

{
ytθt − b(θt)

φ/At
+ c(yt, φ/At)

}
where θt and φ are the canonical and scale parameters respectively, andAt are known prior weights.
The mean µt = E(Yt|Dt) = b′(θt) is related to the linear predictor ηt by the link function g.
Here, Dt = {xt, . . . , x1, yt−1, . . . , y1, µt−1, . . . , µ1} is the previous information set. Secondly, the
GARMA(p, q) model is defined by

g(µt) = ηt = xTt β +

p∑
k=1

φk(g(yt−k)− xTt−kβ) +

q∑
k=1

θk(g(yt−k)− ηt−k).

Parameter vectors β, φ and θ are estimated by maximum likelihood.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm.

Warning

This VGAM family function is ’non-standard’ in that the model does need some coercing to get it
into the VGLM framework. Special code is required to get it running. A consequence is that some
methods functions may give wrong results when applied to the fitted object.

Note

This function is unpolished and is requires lots of improvements. In particular, initialization is very
poor. Results appear very sensitive to quality of initial values. A limited amount of experience has
shown that half-stepsizing is often needed for convergence, therefore choosing crit = "coef" is
not recommended.

Overdispersion is not handled. For binomial responses it is currently best to input a vector of 1s and
0s rather than the cbind(successes, failures) because the initialize slot is rudimentary.

Author(s)

T. W. Yee

GenbetaII 345

References

Benjamin, M. A., Rigby, R. A. and Stasinopoulos, M. D. (1998). Fitting Non-Gaussian Time Series
Models. Pages 191–196 in: Proceedings in Computational Statistics COMPSTAT 1998 by Payne,
R. and P. J. Green. Physica-Verlag.

Benjamin, M. A., Rigby, R. A. and Stasinopoulos, M. D. (2003). Generalized Autoregressive Mov-
ing Average Models. Journal of the American Statistical Association, 98: 214–223.

Zeger, S. L. and Qaqish, B. (1988). Markov regression models for time series: a quasi-likelihood
approach. Biometrics, 44: 1019–1031.

Examples

gdata <- data.frame(interspike = c(68, 41, 82, 66, 101, 66, 57, 41, 27, 78,
59, 73, 6, 44, 72, 66, 59, 60, 39, 52,
50, 29, 30, 56, 76, 55, 73, 104, 104, 52,
25, 33, 20, 60, 47, 6, 47, 22, 35, 30,
29, 58, 24, 34, 36, 34, 6, 19, 28, 16,
36, 33, 12, 26, 36, 39, 24, 14, 28, 13,
2, 30, 18, 17, 28, 9, 28, 20, 17, 12,

19, 18, 14, 23, 18, 22, 18, 19, 26, 27,
23, 24, 35, 22, 29, 28, 17, 30, 34, 17,
20, 49, 29, 35, 49, 25, 55, 42, 29, 16)) # See Zeger and Qaqish (1988)
gdata <- transform(gdata, spikenum = seq(interspike))
bvalue <- 0.1 # .Machine$double.xmin # Boundary value
fit <- vglm(interspike ~ 1, trace = TRUE, data = gdata,

garma(loglink(bvalue = bvalue),
p = 2, coefstart = c(4, 0.3, 0.4)))

summary(fit)
coef(fit, matrix = TRUE)
Coef(fit) # A bug here
Not run: with(gdata, plot(interspike, ylim = c(0, 120), las = 1,

xlab = "Spike Number", ylab = "Inter-Spike Time (ms)", col = "blue"))
with(gdata, lines(spikenum[-(1:fit@misc$plag)], fitted(fit), col = "orange"))
abline(h = mean(with(gdata, interspike)), lty = "dashed", col = "gray")
End(Not run)

GenbetaII The Generalized Beta II Distribution

Description

Density for the generalized beta II distribution with shape parameters a and p and q, and scale
parameter scale.

Usage

dgenbetaII(x, scale = 1, shape1.a, shape2.p, shape3.q, log = FALSE)

346 genbetaII

Arguments

x vector of quantiles.
shape1.a, shape2.p, shape3.q

positive shape parameters.

scale positive scale parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

See genbetaII, which is the VGAM family function for estimating the parameters by maximum
likelihood estimation. Several distributions, such as the Singh-Maddala, are special case of this
flexible 4-parameter distribution. The product of shape1.a and shape2.p determines the behaviour
of the density at the origin.

Value

dgenbetaII gives the density.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

genbetaII.

Examples

dgenbetaII(0, shape1.a = 1/4, shape2.p = 4, shape3.q = 3)
dgenbetaII(0, shape1.a = 1/4, shape2.p = 2, shape3.q = 3)
dgenbetaII(0, shape1.a = 1/4, shape2.p = 8, shape3.q = 3)

genbetaII Generalized Beta Distribution of the Second Kind

Description

Maximum likelihood estimation of the 4-parameter generalized beta II distribution.

genbetaII 347

Usage

genbetaII(lscale = "loglink", lshape1.a = "loglink", lshape2.p = "loglink",
lshape3.q = "loglink", iscale = NULL, ishape1.a = NULL,
ishape2.p = NULL, ishape3.q = NULL, lss = TRUE,
gscale = exp(-5:5), gshape1.a = exp(-5:5),
gshape2.p = exp(-5:5), gshape3.q = exp(-5:5),
zero = "shape")

Arguments

lss See CommonVGAMffArguments for important information.
lshape1.a, lscale, lshape2.p, lshape3.q

Parameter link functions applied to the shape parameter a, scale parameter scale,
shape parameter p, and shape parameter q. All four parameters are positive. See
Links for more choices.

iscale, ishape1.a, ishape2.p, ishape3.q

Optional initial values for the parameters. A NULL means a value is computed
internally using the arguments gscale, gshape1.a, etc.

gscale, gshape1.a, gshape2.p, gshape3.q

See CommonVGAMffArguments for information. Replaced by iscale, ishape1.a
etc. if given.

zero The default is to set all the shape parameters to be intercept-only. See CommonVGAMffArguments
for information.

Details

This distribution is most useful for unifying a substantial number of size distributions. For example,
the Singh-Maddala, Dagum, Fisk (log-logistic), Lomax (Pareto type II), inverse Lomax, beta distri-
bution of the second kind distributions are all special cases. Full details can be found in Kleiber and
Kotz (2003), and Brazauskas (2002). The argument names given here are used by other families
that are special cases of this family. Fisher scoring is used here and for the special cases too.

The 4-parameter generalized beta II distribution has density

f(y) = ayap−1/[bapB(p, q){1 + (y/b)a}p+q]

for a > 0, b > 0, p > 0, q > 0, y ≥ 0. Here B is the beta function, and b is the scale parameter
scale, while the others are shape parameters. The mean is

E(Y) = bΓ(p+ 1/a) Γ(q − 1/a)/(Γ(p) Γ(q))

provided −ap < 1 < aq; these are returned as the fitted values.

This family function handles multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

348 genbetaII

Warning

This distribution is very flexible and it is not generally recommended to use this family function
when the sample size is small—numerical problems easily occur with small samples. Probably
several hundred observations at least are needed in order to estimate the parameters with any level
of confidence. Neither is the inclusion of covariates recommended at all—not unless there are
several thousand observations. The mean is finite only when −ap < 1 < aq, and this can be easily
violated by the parameter estimates for small sample sizes. Try fitting some of the special cases of
this distribution (e.g., sinmad, fisk, etc.) first, and then possibly use those models for initial values
for this distribution.

Note

The default is to use a grid search with respect to all four parameters; this is quite costly and is time
consuming. If the self-starting initial values fail, try experimenting with the initial value arguments.
Also, the constraint −ap < 1 < aq may be violated as the iterations progress so it pays to monitor
convergence, e.g., set trace = TRUE. Successful convergence depends on having very good initial
values. This is rather difficult for this distribution so that a grid search is conducted by default. One
suggestion for increasing the estimation reliability is to set stepsize = 0.5 and maxit = 100; see
vglm.control.

Author(s)

T. W. Yee, with help from Victor Miranda.

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

Brazauskas, V. (2002). Fisher information matrix for the Feller-Pareto distribution. Statistics &
Probability Letters, 59, 159–167.

See Also

dgenbetaII, betaff, betaII, dagum, sinmad, fisk, lomax, inv.lomax, paralogistic, inv.paralogistic,
lino, CommonVGAMffArguments, vglm.control.

Examples

Not run:
gdata <- data.frame(y = rsinmad(3000, shape1 = exp(1), scale = exp(2),

shape3 = exp(1))) # A special case!
fit <- vglm(y ~ 1, genbetaII(lss = FALSE), data = gdata, trace = TRUE)
fit <- vglm(y ~ 1, data = gdata, trace = TRUE,

genbetaII(ishape1.a = 3, iscale = 7, ishape3.q = 2.3))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

End(Not run)

gengamma.stacy 349

gengamma.stacy Generalized Gamma distribution family function

Description

Estimation of the 3-parameter generalized gamma distribution proposed by Stacy (1962).

Usage

gengamma.stacy(lscale = "loglink", ld = "loglink", lk = "loglink",
iscale = NULL, id = NULL, ik = NULL, imethod = 1,
gscale.mux = exp((-4:4)/2), gshape1.d = exp((-5:5)/2),
gshape2.k = exp((-5:5)/2), probs.y = 0.3, zero = c("d", "k"))

Arguments

lscale, ld, lk Parameter link function applied to each of the positive parameters b, d and k,
respectively. See Links for more choices.

iscale, id, ik Initial value for b, d and k, respectively. The defaults mean an initial value is
determined internally for each.

gscale.mux, gshape1.d, gshape2.k

See CommonVGAMffArguments for information. Replaced by iscale, id etc. if
given.

imethod, probs.y, zero

See CommonVGAMffArguments for information.

Details

The probability density function can be written

f(y; b, d, k) = db−dkydk−1 exp[−(y/b)d]/Γ(k)

for scale parameter b > 0, and Weibull-type shape parameter d > 0, gamma-type shape parameter
k > 0, and y > 0. The mean of Y is b × Γ(k + 1/d)/Γ(k) (returned as the fitted values), which
equals bk if d = 1.

There are many special cases, as given in Table 1 of Stacey and Mihram (1965). In the fol-
lowing, the parameters are in the order b, d, k. The special cases are: Exponential f(y; b, 1, 1),
Gamma f(y; b, 1, k), Weibull f(y; b, d, 1), Chi Squared f(y; 2, 1, a/2) with a degrees of freedom,
Chi f(y;

√
2, 2, a/2) with a degrees of freedom, Half-normal f(y;

√
2, 2, 1/2), Circular normal

f(y;
√

2, 2, 1), Spherical normal f(y;
√

2, 2, 3/2), Rayleigh f(y; c
√

2, 2, 1) where c > 0. Also the
log-normal distribution corresponds to when k = Inf.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

350 gengamma.stacy

Warning

Several authors have considered maximum likelihood estimation for the generalized gamma dis-
tribution and have found that the Newton-Raphson algorithm does not work very well and that
the existence of solutions to the log-likelihood equations is sometimes in doubt. Although Fisher
scoring is used here, it is likely that the same problems will be encountered. It appears that large
samples are required, for example, the estimator of k became asymptotically normal only with 400
or more observations. It is not uncommon for maximum likelihood estimates to fail to converge
even with two or three hundred observations. With covariates, even more observations are needed
to increase the chances of convergence. Using covariates is not advised unless the sample size is at
least a few thousand, and even if so, modelling 1 or 2 parameters as intercept-only is a very good
idea (e.g., zero = 2:3). Monitoring convergence is also a very good idea (e.g., set trace = TRUE).
Half-stepping is not uncommon, and if this occurs, then the results should be viewed with more
suspicion.

Note

The notation used here differs from Stacy (1962) and Prentice (1974). Poor initial values may result
in failure to converge so if there are covariates and there are convergence problems, try using or
checking the zero argument (e.g., zero = 2:3) or the ik argument or the imethod argument, etc.

Author(s)

T. W. Yee

References

Stacy, E. W. (1962). A generalization of the gamma distribution. Annals of Mathematical Statistics,
33(3), 1187–1192.

Stacy, E. W. and Mihram, G. A. (1965). Parameter estimation for a generalized gamma distribution.
Technometrics, 7, 349–358.

Prentice, R. L. (1974). A log gamma model and its maximum likelihood estimation. Biometrika,
61, 539–544.

See Also

rgengamma.stacy, gamma1, gamma2, prentice74, simulate.vlm, chisq, lognormal, rayleigh,
weibullR.

Examples

k <- exp(-1); Scale <- exp(1); dd <- exp(0.5); set.seed(1)
gdata <- data.frame(y = rgamma(2000, shape = k, scale = Scale))
gfit <- vglm(y ~ 1, gengamma.stacy, data = gdata, trace = TRUE)
coef(gfit, matrix = TRUE)

gengammaUC 351

gengammaUC Generalized Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the generalized gamma
distribution with scale parameter scale, and parameters d and k.

Usage

dgengamma.stacy(x, scale = 1, d, k, log = FALSE)
pgengamma.stacy(q, scale = 1, d, k,

lower.tail = TRUE, log.p = FALSE)
qgengamma.stacy(p, scale = 1, d, k,

lower.tail = TRUE, log.p = FALSE)
rgengamma.stacy(n, scale = 1, d, k)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

scale the (positive) scale parameter b.

d, k the (positive) parameters d and k. Both can be thought of as shape parameters,
where d is of the Weibull-type and k is of the gamma-type.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See gengamma.stacy, the VGAM family function for estimating the generalized gamma distribu-
tion by maximum likelihood estimation, for formulae and other details. Apart from n, all the above
arguments may be vectors and are recyled to the appropriate length if necessary.

Value

dgengamma.stacy gives the density, pgengamma.stacy gives the distribution function, qgengamma.stacy
gives the quantile function, and rgengamma.stacy generates random deviates.

Author(s)

T. W. Yee and Kai Huang

352 Genpois0

References

Stacy, E. W. and Mihram, G. A. (1965). Parameter estimation for a generalized gamma distribution.
Technometrics, 7, 349–358.

See Also

gengamma.stacy.

Examples

Not run: x <- seq(0, 14, by = 0.01); d <- 1.5; Scale <- 2; k <- 6
plot(x, dgengamma.stacy(x, Scale, d = d, k = k), type = "l",

col = "blue", ylim = 0:1,
main = "Blue is density, orange is the CDF",
sub = "Purple are 5,10,...,95 percentiles", las = 1, ylab = "")

abline(h = 0, col = "blue", lty = 2)
lines(qgengamma.stacy(seq(0.05, 0.95, by = 0.05), Scale, d = d, k = k),

dgengamma.stacy(qgengamma.stacy(seq(0.05, 0.95, by = 0.05),
Scale, d = d, k = k),

Scale, d = d, k = k), col = "purple", lty = 3, type = "h")
lines(x, pgengamma.stacy(x, Scale, d = d, k = k), col = "orange")
abline(h = 0, lty = 2)
End(Not run)

Genpois0 Generalized Poisson Distribution (Original Parameterization)

Description

Density, distribution function, quantile function and random generation for the original parameteri-
zation of the generalized Poisson distribution.

Usage

dgenpois0(x, theta, lambda = 0, log = FALSE)
pgenpois0(q, theta, lambda = 0, lower.tail = TRUE)
qgenpois0(p, theta, lambda = 0)
rgenpois0(n, theta, lambda = 0, algorithm = c("qgenpois0",

"inv", "bup","chdn", "napp", "bran"))

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n Similar to runif.

theta, lambda See genpoisson0. The default value of lambda corresponds to an ordinary
Poisson distribution. Nonnegative values of lambda are currently required.

Genpois0 353

lower.tail, log

Similar to Poisson.

algorithm Character. Six choices are available, standing for the qgenpois0, inversion,
build-up, chop-down, normal approximation and branching methods. The first
one is the default and calls qgenpois0 with runif as its first argument. The
value inputted may be abbreviated, e.g., alg = "n". The last 5 algorithms are
a direct implementation of Demirtas (2017) and the relative performance of the
algorithms are described there—however, the vectorization here may render the
comments on relative speed as no longer holding.

Details

Most of the background to these functions are given in genpoisson0. Some warnings relevant to
this distribution are given there. The complicated range of the parameter lambda when negative
is no longer supported because the distribution is not normalized. For other GPD variants see
Genpois1.

Value

dgenpois0 gives the density, pgenpois0 gives the distribution function, qgenpois0 gives the
quantile function, and rgenpois generates random deviates. For some of these functions such
as dgenpois0 and pgenpois0 the value NaN is returned for elements not satisfying the parameter
restrictions, e.g., if λ > 1. For some of these functions such as rgenpois0 the input must not
contain NAs or NaNs, etc. since the implemented algorithms are fragile.

Warning

These have not been tested thoroughly.

For pgentpois0() mapply is called with 0:q as input, hence will be very slow and memory-hungry
for large values of q. Likewise qgentpois0() and rgentpois0() may suffer from the same limi-
tations.

Note

For rgentpois0(): (1). "inv", "bup" and "chdn" appear similar and seem to work okay. (2).
"napp" works only when theta is large, away from 0. It suffers from 0-inflation. (3). "bran" has
a relatively heavy RHS tail and requires positive lambda. More details can be found in Famoye
(1997) and Demirtas (2017).

The function dgenpois0 uses lfactorial, which equals Inf when x is approximately 1e306 on
many machines. So the density is returned as 0 in very extreme cases; see .Machine.

Author(s)

T. W. Yee. For rgenpois0() the last 5 algorithms are based on code written in H. Demirtas (2017)
and vectorized by T. W. Yee; but the "bran" algorithm was rewritten from Famoye (1997).

354 Genpois1

References

Demirtas, H. (2017). On accurate and precise generation of generalized Poisson variates. Commu-
nications in Statistics—Simulation and Computation, 46, 489–499.

Famoye, F. (1997). Generalized Poisson random variate generation. Amer. J. Mathematical and
Management Sciences, 17, 219–237.

See Also

genpoisson0, Genpois1, dpois.

Examples

sum(dgenpois0(0:1000, theta = 2, lambda = 0.5))
Not run: theta <- 2; lambda <- 0.2; y <- 0:10
proby <- dgenpois0(y, theta = theta, lambda = lambda, log = FALSE)
plot(y, proby, type = "h", col = "blue", lwd = 2, ylab = "Pr(Y=y)",

main = paste0("Y ~ GP-0(theta=", theta, ", lambda=",
lambda, ")"), las = 1, ylim = c(0, 0.3),

sub = "Orange is the Poisson probability function")
lines(y + 0.1, dpois(y, theta), type = "h", lwd = 2, col = "orange")
End(Not run)

Genpois1 Generalized Poisson Distribution (GP-1 and GP-2 Parameterizations
of the Mean)

Description

Density, distribution function, quantile function and random generation for two parameterizations
(GP-1 and GP-2) of the generalized Poisson distribution of the mean.

Usage

dgenpois1(x, meanpar, dispind = 1, log = FALSE)
pgenpois1(q, meanpar, dispind = 1, lower.tail = TRUE)
qgenpois1(p, meanpar, dispind = 1)
rgenpois1(n, meanpar, dispind = 1)
dgenpois2(x, meanpar, disppar = 0, log = FALSE)
pgenpois2(q, meanpar, disppar = 0, lower.tail = TRUE)
qgenpois2(p, meanpar, disppar = 0)
rgenpois2(n, meanpar, disppar = 0)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n Similar to runif.

Genpois1 355

meanpar, dispind

The mean and dispersion index (index of dispersion), which are the two param-
eters for the GP-1. The mean is positive while the dispind is ≥ 1. The default
value of dispind corresponds to an ordinary Poisson distribution.

disppar The dispersion parameter for the GP-2: disppar ≥ 0. The default value of
disppar corresponds to an ordinary Poisson distribution.

lower.tail, log

See Genpois0.

Details

These are wrapper functions for those in Genpois0. The first parameter is the mean, therefore both
the GP-1 and GP-2 are recommended for regression and can be compared somewhat to poissonff
and negbinomial. The variance of a GP-1 is µϕ where ϕ = 1/(1− λ)2 is dispind.

The variance of a GP-2 is µ(1 + αµ)2 where θ = µ/(1 + αµ), λ = αµ/(1 + αµ), and is α is the
dispersion parameter disppar. Thus the variance is linear with respect to the mean for GP-1 while
the variance is cubic with respect to the mean for GP-2.

Recall that the index of dispersion (also known as the dispersion index) is the ratio of the variance
and the mean. Also, µ = θ/(1−λ) in the original formulation with variance θ/(1−λ)3. The GP-1
is due to Consul and Famoye (1992). The GP-2 is due to Wang and Famoye (1997).

Value

dgenpois1 and dgenpois2 give the density, pgenpois1 and dgenpois2 give the distribution func-
tion, qgenpois1 and dgenpois2 give the quantile function, and rgenpois1 and dgenpois2 gener-
ate random deviates. See Genpois0 for more information.

Warning

Genpois0 has warnings that should be heeded.

Author(s)

T. W. Yee.

References

Consul, P. C. and Famoye, F. (1992). Generalized Poisson regression model. Comm. Statist.—
Theory and Meth., 2, 89–109.

Wang, W. and Famoye, F. (1997). Modeling household fertility decisions with generalized Poisson
regression. J. Population Econom., 10, 273–283.

See Also

Genpois0.

356 genpoisson0

Examples

sum(dgenpois1(0:1000, meanpar = 5, dispind = 2))
Not run: dispind <- 5; meanpar <- 5; y <- 0:15
proby <- dgenpois1(y, meanpar = meanpar, dispind)
plot(y, proby, type = "h", col = "blue", lwd = 2, ylab = "P[Y=y]",

main = paste0("Y ~ GP-1(meanpar=", meanpar, ", dispind=",
dispind, ")"), las = 1, ylim = c(0, 0.3),

sub = "Orange is the Poisson probability function")
lines(y + 0.1, dpois(y, meanpar), type = "h", lwd = 2, col = "orange")
End(Not run)

genpoisson0 Generalized Poisson Regression (Original Parameterization)

Description

Estimation of the two-parameter generalized Poisson distribution (original parameterization).

Usage

genpoisson0(ltheta = "loglink", llambda = "logitlink",
itheta = NULL, ilambda = NULL, imethod = c(1, 1),
ishrinkage = 0.95, glambda = ppoints(5),
parallel = FALSE, zero = "lambda")

Arguments

ltheta, llambda

Parameter link functions for θ and λ. See Links for more choices. In theory the
λ parameter is allowed to be negative to handle underdispersion, however this is
no longer supported, hence 0 < λ < 1. The θ parameter is positive, therefore
the default is the log link.

itheta, ilambda

Optional initial values for λ and θ. The default is to choose values internally.

imethod See CommonVGAMffArguments for information. Each value is an integer 1 or 2
or 3 which specifies the initialization method for each of the parameters. If fail-
ure to converge occurs try another value and/or else specify a value for ilambda
and/or itheta. The argument is recycled to length 2, and the first value corre-
sponds to theta, etc.

ishrinkage, zero

See CommonVGAMffArguments for information.
glambda, parallel

See CommonVGAMffArguments for information. Argument glambda is similar to
gsigma there and is currently used only if imethod[2] = 1.

genpoisson0 357

Details

The generalized Poisson distribution (GPD) was proposed by Consul and Jain (1973), and it has
PMF

f(y) = θ(θ + λy)y−1 exp(−θ − λy)/y!

for 0 < θ and y = 0, 1, 2, Theoretically, max(−1,−θ/m) ≤ λ ≤ 1 where m (≥ 4) is the
greatest positive integer satisfying θ + mλ > 0 when λ < 0 [and then Pr(Y = y) = 0 for
y > m]. However, there are problems with a negative λ such as it not being normalized, so this
family function restricts λ to (0, 1).

This original parameterization is called the GP-0 by VGAM, partly because there are two other
common parameterizations called the GP-1 and GP-2 (see Yang et al. (2009), genpoisson1 and
genpoisson2) that are more suitable for regression. However, genpoisson() has been simplified
to genpoisson0 by only handling positive parameters, hence only overdispersion relative to the
Poisson is accommodated. Some of the reasons for this are described in Scollnik (1998), e.g., the
probabilities do not sum to unity when lambda is negative. To simply things, VGAM 1.1-4 and
later will only handle positive lambda.

An ordinary Poisson distribution corresponds to λ = 0. The mean (returned as the fitted values) is
E(Y) = θ/(1− λ) and the variance is θ/(1− λ)3 so that the variance is proportional to the mean,
just like the NB-1 and quasi-Poisson.

For more information see Consul and Famoye (2006) for a summary and Consul (1989) for more
details.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

Although this family function is far less fragile compared to what used to be called genpoisson()
it is still a good idea to monitor convergence because equidispersion may result in numerical prob-
lems; try poissonff instead. And underdispersed data will definitely result in numerical problems
and warnings; try quasipoisson instead.

Note

This family function replaces genpoisson(), and some of the major changes are: (i) the swapping
of the linear predictors; (ii) the change from rhobitlink to logitlink in llambda to reflect the
no longer handling of underdispersion; (iii) proper Fisher scoring is implemented to give improved
convergence.

Notationally, and in the literature too, don’t get confused because theta (and not lambda) here
really matches more closely with lambda of dpois.

This family function handles multiple responses. This distribution is potentially useful for disper-
sion modelling. Convergence and numerical problems may occur when lambda becomes very close
to 0 or 1.

358 genpoisson1

Author(s)

T. W. Yee. Easton Huch derived the EIM and it has been implemented in the weights slot.

References

Consul, P. C. and Jain, G. C. (1973). A generalization of the Poisson distribution. Technometrics,
15, 791–799.

Consul, P. C. and Famoye, F. (2006). Lagrangian Probability Distributions, Boston, USA: Birkhauser.

Jorgensen, B. (1997). The Theory of Dispersion Models. London: Chapman & Hall.

Consul, P. C. (1989). Generalized Poisson Distributions: Properties and Applications. New York,
USA: Marcel Dekker.

Yang, Z., Hardin, J. W., Addy, C. L. (2009). A score test for overdispersion in Poisson regression
based on the generalized Poisson-2 model. J. Statist. Plann. Infer., 139, 1514–1521.

Yee, T. W. (2020). On generalized Poisson regression. In preparation.

See Also

Genpois0, genpoisson1, genpoisson2, poissonff, negbinomial, Poisson, quasipoisson.

Examples

gdata <- data.frame(x2 = runif(nn <- 500))
gdata <- transform(gdata, y1 = rgenpois0(nn, theta = exp(2 + x2),

logitlink(1, inverse = TRUE)))
gfit0 <- vglm(y1 ~ x2, genpoisson0, data = gdata, trace = TRUE)
coef(gfit0, matrix = TRUE)
summary(gfit0)

genpoisson1 Generalized Poisson Regression (GP-1 Parameterization)

Description

Estimation of the two-parameter generalized Poisson distribution (GP-1 parameterization) which
has the variance as a linear function of the mean.

Usage

genpoisson1(lmeanpar = "loglink", ldispind = "logloglink",
imeanpar = NULL, idispind = NULL, imethod = c(1, 1),
ishrinkage = 0.95, gdispind = exp(1:5),
parallel = FALSE, zero = "dispind")

genpoisson1 359

Arguments

lmeanpar, ldispind

Parameter link functions for µ and ϕ. They are called the mean parameter and
dispersion index respectively. See Links for more choices. In theory the ϕ
parameter might be allowed to be less than unity to handle underdispersion but
this is not supported. The mean is positive so its default is the log link. The
dispersion index is > 1 so its default is the log-log link.

imeanpar, idispind

Optional initial values for µ and ϕ. The default is to choose values internally.

imethod See CommonVGAMffArguments for information. The argument is recycled to
length 2, and the first value corresponds to µ, etc.

ishrinkage, zero

See CommonVGAMffArguments for information.

gdispind, parallel

See CommonVGAMffArguments for information. Argument gdispind is similar
to gsigma there and is currently used only if imethod[2] = 2.

Details

This is a variant of the generalized Poisson distribution (GPD) and is similar to the GP-1 referred
to by some writers such as Yang, et al. (2009). Compared to the original GP-0 (see genpoisson0
the GP-1 has θ = µ/

√
ϕ and λ = 1− 1/

√
ϕ so that the variance is µϕ. The first linear predictor by

default is η1 = logµ so that the GP-1 is more suitable for regression than the GP-1.

This family function can handle only overdispersion relative to the Poisson. An ordinary Poisson
distribution corresponds to ϕ = 1. The mean (returned as the fitted values) is E(Y) = µ. For
overdispersed data, this GP parameterization is a direct competitor of the NB-1 and quasi-Poisson.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

See genpoisson0 for warnings relevant here, e.g., it is a good idea to monitor convergence because
of equidispersion and underdispersion.

Author(s)

T. W. Yee.

See Also

Genpois1, genpoisson0, genpoisson2, poissonff, negbinomial, Poisson, quasipoisson.

360 genpoisson2

Examples

gdata <- data.frame(x2 = runif(nn <- 500))
gdata <- transform(gdata, y1 = rgenpois1(nn, mean = exp(2 + x2),

logloglink(-1, inverse = TRUE)))
gfit1 <- vglm(y1 ~ x2, genpoisson1, data = gdata, trace = TRUE)
coef(gfit1, matrix = TRUE)
summary(gfit1)

genpoisson2 Generalized Poisson Regression (GP-2 Parameterization)

Description

Estimation of the two-parameter generalized Poisson distribution (GP-2 parameterization) which
has the variance as a cubic function of the mean.

Usage

genpoisson2(lmeanpar = "loglink", ldisppar = "loglink",
imeanpar = NULL, idisppar = NULL, imethod = c(1, 1),
ishrinkage = 0.95, gdisppar = exp(1:5),
parallel = FALSE, zero = "disppar")

Arguments

lmeanpar, ldisppar

Parameter link functions for µ and α. They are called the mean and dispersion
parameters respectively. See Links for more choices. In theory the α param-
eter might be allowed to be negative to handle underdispersion but this is not
supported. All parameters are positive, therefore the defaults are the log link.

imeanpar, idisppar

Optional initial values for µ and α. The default is to choose values internally.
imethod See CommonVGAMffArguments for information. The argument is recycled to

length 2, and the first value corresponds to µ, etc.
ishrinkage, zero

See CommonVGAMffArguments for information.
gdisppar, parallel

See CommonVGAMffArguments for information. Argument gdisppar is similar
to gsigma there and is currently used only if imethod[2] = 2.

Details

This is a variant of the generalized Poisson distribution (GPD) and called GP-2 by some writers
such as Yang, et al. (2009). Compared to the original GP-0 (see genpoisson0 the GP-2 has
θ = µ/(1 + αµ) and λ = αµ/(1 + αµ) so that the variance is µ(1 + αµ)2. The first linear
predictor by default is η1 = logµ so that the GP-2 is more suitable for regression than the GP-0.

This family function can handle only overdispersion relative to the Poisson. An ordinary Poisson
distribution corresponds to α = 0. The mean (returned as the fitted values) is E(Y) = µ.

genray 361

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

See genpoisson0 for warnings relevant here, e.g., it is a good idea to monitor convergence because
of equidispersion and underdispersion.

Author(s)

T. W. Yee.

References

Letac, G. and Mora, M. (1990). Natural real exponential familes with cubic variance functions.
Annals of Statistics 18, 1–37.

See Also

Genpois2, genpoisson0, genpoisson1, poissonff, negbinomial, Poisson, quasipoisson.

Examples

gdata <- data.frame(x2 = runif(nn <- 500))
gdata <- transform(gdata, y1 = rgenpois2(nn, mean = exp(2 + x2),

loglink(-1, inverse = TRUE)))
gfit2 <- vglm(y1 ~ x2, genpoisson2, data = gdata, trace = TRUE)
coef(gfit2, matrix = TRUE)
summary(gfit2)

genray The Generalized Rayleigh Distribution

Description

Density, distribution function, quantile function and random generation for the generalized Rayleigh
distribution.

Usage

dgenray(x, scale = 1, shape, log = FALSE)
pgenray(q, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
qgenray(p, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
rgenray(n, scale = 1, shape)

362 genray

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

scale, shape positive scale and shape parameters.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See genrayleigh, the VGAM family function for estimating the parameters, for the formula of the
probability density function and other details.

Value

dgenray gives the density, pgenray gives the distribution function, qgenray gives the quantile
function, and rgenray generates random deviates.

Note

We define scale as the reciprocal of the scale parameter used by Kundu and Raqab (2005).

Author(s)

Kai Huang and J. G. Lauder and T. W. Yee

See Also

genrayleigh, rayleigh.

Examples

Not run:
shape <- 0.5; Scale <- 1; nn <- 501
x <- seq(-0.10, 3.0, len = nn)
plot(x, dgenray(x, shape, scale = Scale), type = "l", las = 1, ylim = c(0, 1.2),

ylab = paste("[dp]genray(shape = ", shape, ", scale = ", Scale, ")"),
col = "blue", cex.main = 0.8,
main = "Blue is density, orange is cumulative distribution function",
sub = "Purple lines are the 10,20,...,90 percentiles")

lines(x, pgenray(x, shape, scale = Scale), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qgenray(probs, shape, scale = Scale)
lines(Q, dgenray(Q, shape, scale = Scale), col = "purple", lty = 3, type = "h")
lines(Q, pgenray(Q, shape, scale = Scale), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
max(abs(pgenray(Q, shape, scale = Scale) - probs)) # Should be 0

genrayleigh 363

End(Not run)

genrayleigh Generalized Rayleigh Distribution Family Function

Description

Estimates the two parameters of the generalized Rayleigh distribution by maximum likelihood esti-
mation.

Usage

genrayleigh(lscale = "loglink", lshape = "loglink",
iscale = NULL, ishape = NULL,
tol12 = 1e-05, nsimEIM = 300, zero = 2)

Arguments

lscale, lshape Link function for the two positive parameters, scale and shape. See Links for
more choices.

iscale, ishape Numeric. Optional initial values for the scale and shape parameters.

nsimEIM, zero See CommonVGAMffArguments.

tol12 Numeric and positive. Tolerance for testing whether the second shape parameter
is either 1 or 2. If so then the working weights need to handle these singularities.

Details

The generalized Rayleigh distribution has density function

f(y; b = scale, s = shape) = (2sy/b2)e−(y/b)
2

(1− e−(y/b)
2

)s−1

where y > 0 and the two parameters, b and s, are positive. The mean cannot be expressed nicely
so the median is returned as the fitted values. Applications of the generalized Rayleigh distribution
include modeling strength data and general lifetime data. Simulated Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

We define scale as the reciprocal of the scale parameter used by Kundu and Raqab (2005).

Author(s)

J. G. Lauder and T. W. Yee

364 geometric

References

Kundu, D., Raqab, M. C. (2005). Generalized Rayleigh distribution: different methods of estima-
tions. Computational Statistics and Data Analysis, 49, 187–200.

See Also

dgenray, rayleigh.

Examples

Scale <- exp(1); shape <- exp(1)
rdata <- data.frame(y = rgenray(n = 1000, scale = Scale, shape = shape))
fit <- vglm(y ~ 1, genrayleigh, data = rdata, trace = TRUE)
c(with(rdata, mean(y)), head(fitted(fit), 1))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

geometric Geometric (Truncated and Untruncated) Distributions

Description

Maximum likelihood estimation for the geometric and truncated geometric distributions.

Usage

geometric(link = "logitlink", expected = TRUE, imethod = 1,
iprob = NULL, zero = NULL)

truncgeometric(upper.limit = Inf,
link = "logitlink", expected = TRUE, imethod = 1,
iprob = NULL, zero = NULL)

Arguments

link Parameter link function applied to the probability parameter p, which lies in the
unit interval. See Links for more choices.

expected Logical. Fisher scoring is used if expected = TRUE, else Newton-Raphson.

iprob, imethod, zero

See CommonVGAMffArguments for details.

upper.limit Numeric. Upper values. As a vector, it is recycled across responses first. The
default value means both family functions should give the same result.

geometric 365

Details

A random variable Y has a 1-parameter geometric distribution if P (Y = y) = p(1 − p)y for
y = 0, 1, 2, Here, p is the probability of success, and Y is the number of (independent) trials
that are fails until a success occurs. Thus the response Y should be a non-negative integer. The mean
of Y is E(Y) = (1− p)/p and its variance is V ar(Y) = (1− p)/p2. The geometric distribution is
a special case of the negative binomial distribution (see negbinomial). The geometric distribution
is also a special case of the Borel distribution, which is a Lagrangian distribution. If Y has a
geometric distribution with parameter p then Y + 1 has a positive-geometric distribution with the
same parameter. Multiple responses are permitted.

For truncgeometric(), the (upper) truncated geometric distribution can have response integer val-
ues from 0 to upper.limit. It has density prob * (1 - prob)^y / [1-(1-prob)^(1+upper.limit)].

For a generalized truncated geometric distribution with integer values L to U , say, subtract L from
the response and feed in U − L as the upper limit.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Author(s)

T. W. Yee. Help from Viet Hoang Quoc is gratefully acknowledged.

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

negbinomial, Geometric, betageometric, expgeometric, zageometric, zigeometric, rbetageom,
simulate.vlm.

Examples

gdata <- data.frame(x2 = runif(nn <- 1000) - 0.5)
gdata <- transform(gdata, x3 = runif(nn) - 0.5,

x4 = runif(nn) - 0.5)
gdata <- transform(gdata, eta = -1.0 - 1.0 * x2 + 2.0 * x3)
gdata <- transform(gdata, prob = logitlink(eta, inverse = TRUE))
gdata <- transform(gdata, y1 = rgeom(nn, prob))
with(gdata, table(y1))
fit1 <- vglm(y1 ~ x2 + x3 + x4, geometric, data = gdata, trace = TRUE)
coef(fit1, matrix = TRUE)
summary(fit1)

Truncated geometric (between 0 and upper.limit)
upper.limit <- 5
tdata <- subset(gdata, y1 <= upper.limit)
nrow(tdata) # Less than nn

366 get.smart

fit2 <- vglm(y1 ~ x2 + x3 + x4, truncgeometric(upper.limit),
data = tdata, trace = TRUE)

coef(fit2, matrix = TRUE)

Generalized truncated geometric (between lower.limit and upper.limit)
lower.limit <- 1
upper.limit <- 8
gtdata <- subset(gdata, lower.limit <= y1 & y1 <= upper.limit)
with(gtdata, table(y1))
nrow(gtdata) # Less than nn
fit3 <- vglm(y1 - lower.limit ~ x2 + x3 + x4,

truncgeometric(upper.limit - lower.limit),
data = gtdata, trace = TRUE)

coef(fit3, matrix = TRUE)

get.smart Retrieve One Component of “.smart.prediction”

Description

Retrieve one component of the list .smart.prediction from smartpredenv.

Usage

get.smart()

Details

get.smart is used in "read" mode within a smart function: it retrieves parameters saved at the
time of fitting, and is used for prediction. get.smart is only used in smart functions such as
sm.poly; get.smart.prediction is only used in modelling functions such as lm and glm. The
function get.smart gets only a part of .smart.prediction whereas get.smart.prediction gets
the entire .smart.prediction.

Value

Returns with one list component of .smart.prediction from smartpredenv, in fact, .smart.prediction[[.smart.prediction.counter]].
The whole procedure mimics a first-in first-out stack (better known as a queue).

Side Effects

The variable .smart.prediction.counter in smartpredenv is incremented beforehand, and then
written back to smartpredenv.

See Also

get.smart.prediction.

get.smart.prediction 367

Examples

print(sm.min1)

get.smart.prediction Retrieves “.smart.prediction”

Description

Retrieves .smart.prediction from smartpredenv.

Usage

get.smart.prediction()

Details

A smart modelling function such as lm allows smart functions such as sm.bs to write to a data struc-
ture called .smart.prediction in smartpredenv. At the end of fitting, get.smart.prediction
retrieves this data structure. It is then attached to the object, and used for prediction later.

Value

Returns with the list .smart.prediction from smartpredenv.

See Also

get.smart, lm.

Examples

Not run:
fit$smart <- get.smart.prediction() # Put at the end of lm()

End(Not run)

368 gev

gev Generalized Extreme Value Regression Family Function

Description

Maximum likelihood estimation of the 3-parameter generalized extreme value (GEV) distribution.

Usage

gev(llocation = "identitylink", lscale = "loglink",
lshape = logofflink(offset = 0.5), percentiles = c(95, 99),
ilocation = NULL, iscale = NULL, ishape = NULL, imethod = 1,
gprobs.y = (1:9)/10, gscale.mux = exp((-5:5)/6),
gshape = (-5:5) / 11 + 0.01,
iprobs.y = NULL, tolshape0 = 0.001,
type.fitted = c("percentiles", "mean"),
zero = c("scale", "shape"))

gevff(llocation = "identitylink", lscale = "loglink",
lshape = logofflink(offset = 0.5), percentiles = c(95, 99),
ilocation = NULL, iscale = NULL, ishape = NULL, imethod = 1,
gprobs.y = (1:9)/10, gscale.mux = exp((-5:5)/6),
gshape = (-5:5) / 11 + 0.01,
iprobs.y = NULL, tolshape0 = 0.001,
type.fitted = c("percentiles", "mean"), zero = c("scale", "shape"))

Arguments

llocation, lscale, lshape

Parameter link functions for µ, σ and ξ respectively. See Links for more choices.
For the shape parameter, the default logofflink link has an offset called A
below; and then the linear/additive predictor is log(ξ + A) which means that
ξ > −A. For technical reasons (see Details) it is a good idea for A = 0.5.

percentiles Numeric vector of percentiles used for the fitted values. Values should be be-
tween 0 and 100. This argument is ignored if type.fitted = "mean".

type.fitted See CommonVGAMffArguments for information. The default is to use the percentiles
argument. If "mean" is chosen, then the mean µ+σ(Γ(1− ξ)−1)/ξ is returned
as the fitted values, and these are only defined for ξ < 1.

ilocation, iscale, ishape

Numeric. Initial value for the location parameter, σ and ξ. A NULL means a
value is computed internally. The argument ishape is more important than the
other two. If a failure to converge occurs, or even to obtain initial values occurs,
try assigning ishape some value (positive or negative; the sign can be very
important). Also, in general, a larger value of iscale tends to be better than a
smaller value.

imethod Initialization method. Either the value 1 or 2. If both methods fail then try using
ishape. See CommonVGAMffArguments for information.

gev 369

gshape Numeric vector. The values are used for a grid search for an initial value for ξ.
See CommonVGAMffArguments for information.

gprobs.y, gscale.mux, iprobs.y

Numeric vectors, used for the initial values. See CommonVGAMffArguments for
information.

tolshape0 Passed into dgev when computing the log-likelihood.

zero A specifying which linear/additive predictors are modelled as intercepts only.
The values can be from the set {1,2,3} corresponding respectively to µ, σ, ξ.
If zero = NULL then all linear/additive predictors are modelled as a linear com-
bination of the explanatory variables. For many data sets having zero = 3 is a
good idea. See CommonVGAMffArguments for information.

Details

The GEV distribution function can be written

G(y) = exp(−[(y − µ)/σ]
−1/ξ
+)

where σ > 0, −∞ < µ < ∞, and 1 + ξ(y − µ)/σ > 0. Here, x+ = max(x, 0). The µ, σ, ξ are
known as the location, scale and shape parameters respectively. The cases ξ > 0, ξ < 0, ξ = 0
correspond to the Frechet, reverse Weibull, and Gumbel types respectively. It can be noted that
the Gumbel (or Type I) distribution accommodates many commonly-used distributions such as the
normal, lognormal, logistic, gamma, exponential and Weibull.

For the GEV distribution, the kth moment about the mean exists if ξ < 1/k. Provided they exist,
the mean and variance are given by µ + σ{Γ(1 − ξ) − 1}/ξ and σ2{Γ(1 − 2ξ) − Γ2(1 − ξ)}/ξ2
respectively, where Γ is the gamma function.

Smith (1985) established that when ξ > −0.5, the maximum likelihood estimators are completely
regular. To have some control over the estimated ξ try using lshape = logofflink(offset = 0.5),
say, or lshape = extlogitlink(min = -0.5, max = 0.5), say.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

Currently, if an estimate of ξ is too close to 0 then an error may occur for gev() with multivariate
responses. In general, gevff() is more reliable than gev().

Fitting the GEV by maximum likelihood estimation can be numerically fraught. If 1+ξ(y−µ)/σ ≤
0 then some crude evasive action is taken but the estimation process can still fail. This is particularly
the case if vgam with s is used; then smoothing is best done with vglm with regression splines (bs
or ns) because vglm implements half-stepsizing whereas vgam doesn’t (half-stepsizing helps handle
the problem of straying outside the parameter space.)

370 gev

Note

The VGAM family function gev can handle a multivariate (matrix) response, cf. multiple responses.
If so, each row of the matrix is sorted into descending order and NAs are put last. With a vector or
one-column matrix response using gevff will give the same result but be faster and it handles the
ξ = 0 case. The function gev implements Tawn (1988) while gevff implements Prescott and
Walden (1980).

Function egev() has been replaced by the new family function gevff(). It now conforms to the
usual VGAM philosophy of having M1 linear predictors per (independent) response. This is the
usual way multiple responses are handled. Hence vglm(cbind(y1, y2)..., gevff, ...) will
have 6 linear predictors and it is possible to constrain the linear predictors so that the answer is
similar to gev(). Missing values in the response of gevff() will be deleted; this behaviour is the
same as with almost every other VGAM family function.

The shape parameter ξ is difficult to estimate accurately unless there is a lot of data. Convergence
is slow when ξ is near −0.5. Given many explanatory variables, it is often a good idea to make
sure zero = 3. The range restrictions of the parameter ξ are not enforced; thus it is possible for a
violation to occur.

Successful convergence often depends on having a reasonably good initial value for ξ. If failure
occurs try various values for the argument ishape, and if there are covariates, having zero = 3 is
advised.

Author(s)

T. W. Yee

References

Yee, T. W. and Stephenson, A. G. (2007). Vector generalized linear and additive extreme value
models. Extremes, 10, 1–19.

Tawn, J. A. (1988). An extreme-value theory model for dependent observations. Journal of Hydrol-
ogy, 101, 227–250.

Prescott, P. and Walden, A. T. (1980). Maximum likelihood estimation of the parameters of the
generalized extreme-value distribution. Biometrika, 67, 723–724.

Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases. Biometrika,
72, 67–90.

See Also

rgev, gumbel, gumbelff, guplot, rlplot.gevff, gpd, weibullR, frechet, extlogitlink, oxtemp,
venice, CommonVGAMffArguments.

Examples

Not run:
Multivariate example
fit1 <- vgam(cbind(r1, r2) ~ s(year, df = 3), gev(zero = 2:3),

data = venice, trace = TRUE)
coef(fit1, matrix = TRUE)

gevUC 371

head(fitted(fit1))
par(mfrow = c(1, 2), las = 1)
plot(fit1, se = TRUE, lcol = "blue", scol = "forestgreen",

main = "Fitted mu(year) function (centered)", cex.main = 0.8)
with(venice, matplot(year, depvar(fit1)[, 1:2], ylab = "Sea level (cm)",

col = 1:2, main = "Highest 2 annual sea levels", cex.main = 0.8))
with(venice, lines(year, fitted(fit1)[,1], lty = "dashed", col = "blue"))
legend("topleft", lty = "dashed", col = "blue", "Fitted 95 percentile")

Univariate example
(fit <- vglm(maxtemp ~ 1, gevff, data = oxtemp, trace = TRUE))
head(fitted(fit))
coef(fit, matrix = TRUE)
Coef(fit)
vcov(fit)
vcov(fit, untransform = TRUE)
sqrt(diag(vcov(fit))) # Approximate standard errors
rlplot(fit)

End(Not run)

gevUC The Generalized Extreme Value Distribution

Description

Density, distribution function, quantile function and random generation for the generalized extreme
value distribution (GEV) with location parameter location, scale parameter scale and shape pa-
rameter shape.

Usage

dgev(x, location = 0, scale = 1, shape = 0, log = FALSE,
tolshape0 = sqrt(.Machine$double.eps))

pgev(q, location = 0, scale = 1, shape = 0, lower.tail = TRUE, log.p = FALSE)
qgev(p, location = 0, scale = 1, shape = 0, lower.tail = TRUE, log.p = FALSE)
rgev(n, location = 0, scale = 1, shape = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

location the location parameter µ.

scale the (positive) scale parameter σ. Must consist of positive values.

shape the shape parameter ξ.

372 gevUC

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in punif or qunif.

tolshape0 Positive numeric. Threshold/tolerance value for resting whether ξ is zero. If the
absolute value of the estimate of ξ is less than this value then it will be assumed
zero and a Gumbel distribution will be used.

Details

See gev, the VGAM family function for estimating the 3 parameters by maximum likelihood esti-
mation, for formulae and other details. Apart from n, all the above arguments may be vectors and
are recyled to the appropriate length if necessary.

Value

dgev gives the density, pgev gives the distribution function, qgev gives the quantile function, and
rgev generates random deviates.

Note

The default value of ξ = 0 means the default distribution is the Gumbel.

Currently, these functions have different argument names compared with those in the evd package.

Author(s)

T. W. Yee

References

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

See Also

gev, gevff, vglm.control.

Examples

loc <- 2; sigma <- 1; xi <- -0.4
pgev(qgev(seq(0.05, 0.95, by = 0.05), loc, sigma, xi), loc, sigma, xi)
Not run: x <- seq(loc - 3, loc + 3, by = 0.01)
plot(x, dgev(x, loc, sigma, xi), type = "l", col = "blue", ylim = c(0, 1),

main = "Blue is density, orange is the CDF",
sub = "Purple are 10,...,90 percentiles", ylab = "", las = 1)

abline(h = 0, col = "blue", lty = 2)
lines(qgev(seq(0.1, 0.9, by = 0.1), loc, sigma, xi),

dgev(qgev(seq(0.1, 0.9, by = 0.1), loc, sigma, xi), loc, sigma, xi),
col = "purple", lty = 3, type = "h")

lines(x, pgev(x, loc, sigma, xi), type = "l", col = "orange")
abline(h = (0:10)/10, lty = 2, col = "gray50")

gew 373

End(Not run)

gew General Electric and Westinghouse Data

Description

General Electric and Westinghouse capital data.

Usage

data(gew)

Format

A data frame with 20 observations on the following 7 variables. All variables are numeric vectors.
Variables ending in .g correspond to General Electric and those ending in .w are Westinghouse.

year The observations are the years from 1934 to 1953
invest.g, invest.w investment figures. These are I = Gross investment = additions to plant and

equipment plus maintenance and repairs in millions of dollars deflated by P1.
capital.g, capital.w capital stocks. These are C = The stock of plant and equipment = accumu-

lated sum of net additions to plant and equipment deflated by P1 minus depreciation allowance
deflated by P3.

value.g, value.w market values. These are F = Value of the firm = price of common and preferred
shares at December 31 (or average price of December 31 and January 31 of the following
year) times number of common and preferred shares outstanding plus total book value of debt
at December 31 in millions of dollars deflated by P2.

Details

These data are a subset of a table in Boot and de Wit (1960), also known as the Grunfeld data. It is
used a lot in econometrics, e.g., for seemingly unrelated regressions (see SURff).

Here, P1 = Implicit price deflator of producers durable equipment (base 1947), P2 = Implicit price
deflator of G.N.P. (base 1947), P3 = Depreciation expense deflator = ten years moving average of
wholesale price index of metals and metal products (base 1947).

Source

Table 10 of: Boot, J. C. G. and de Wit, G. M. (1960) Investment Demand: An Empirical Contribu-
tion to the Aggregation Problem. International Economic Review, 1, 3–30.

Grunfeld, Y. (1958) The Determinants of Corporate Investment. Unpublished PhD Thesis (Chicago).

References

Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for
aggregation bias. Journal of the American Statistical Association, 57, 348–368.

374 goffset

See Also

SURff, http://statmath.wu.ac.at/~zeileis/grunfeld (the link might now be stale).

Examples

str(gew)

goffset GAITD Offset for the GTE Method

Description

Utility function to create a matrix of log-offset values, to help facilitate the Generally-Truncated-
Expansion method

Usage

goffset(mux, n,
a.mix = NULL, i.mix = NULL, d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, d.mlm = NULL, par1or2 = 1)

Arguments

mux Multiplier. Usually a small positive integer. Must be positive. The value 1
means no change.

n Number of rows. A positive integer, it should be the number of rows of the data
frame containing the data.

a.mix, i.mix, d.mix

See, e.g., gaitdpoisson.
a.mlm, i.mlm, d.mlm

See, e.g., gaitdpoisson.

par1or2 Number of parameters of the parent distribution. Set par1or2 = 2 for gaitdnbinomial,
else the default value should be used.

Details

This function is intended to make the Generally-Truncated-Expansion (GTE) method easier for the
user. It only makes sense if the linear predictors(s) are log of the mean of the parent distribution,
which is the usual case for gaitdpoisson and gaitdnbinomial. However, for gaitdlog and
gaitdzeta one should be using logffMlink and zetaffMlink.

Without this function, the user must do quite a lot of book-keeping to know which columns of the
offset matrix is to be assigned log(mux). This can be rather laborious.

In the fictitional example below the response is underdispersed with respect to a Poisson distribution
and doubling the response achieves approximate equidispersion.

Gompertz 375

Value

A matrix with n rows and the same number of columns that a GAITD regression would produce
for its matrix of linear predictors. The matrix can be inputted into vglm by assigning the offset
argument.

Note

This function is still in a developmental stage. The order of the arguments might change, hence it’s
safest to invoke it with full specification.

See Also

gaitdpoisson, gaitdlog, gaitdzeta, gaitdnbinomial, Trunc, offset.

Examples

i.mix <- c(5, 10, 15, 20); a.mlm <- 13; mymux <- 2
goffset(mymux, 10, i.mix = i.mix, a.mlm = a.mlm)
Not run: org1 <- with(gdata, range(y)) # Original range of the data
vglm(mymux * y ~ 1,

offset = goffset(mymux, nrow(gdata), i.mix = i.mix, a.mlm = a.mlm),
gaitdpoisson(a.mlm = mymux * a.mlm, i.mix = mymux * i.mix,

truncate = Trunc(org1, mymux)),
data = gdata)

End(Not run)

Gompertz Gompertz Distribution

Description

Density, cumulative distribution function, quantile function and random generation for the Gom-
pertz distribution.

Usage

dgompertz(x, scale = 1, shape, log = FALSE)
pgompertz(q, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
qgompertz(p, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
rgompertz(n, scale = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

376 Gompertz

log Logical. If log = TRUE then the logarithm of the density is returned.

lower.tail, log.p

Same meaning as in pnorm or qnorm.

scale, shape positive scale and shape parameters.

Details

See gompertz for details.

Value

dgompertz gives the density, pgompertz gives the cumulative distribution function, qgompertz
gives the quantile function, and rgompertz generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

gompertz, dgumbel, dmakeham.

Examples

probs <- seq(0.01, 0.99, by = 0.01)
Shape <- exp(1); Scale <- exp(1)
max(abs(pgompertz(qgompertz(p = probs, Scale, shape = Shape),

Scale, shape = Shape) - probs)) # Should be 0

Not run: x <- seq(-0.1, 1.0, by = 0.001)
plot(x, dgompertz(x, Scale,shape = Shape), type = "l", las = 1,

main = "Blue is density, orange is the CDF", col = "blue",
sub = "Purple lines are the 10,20,...,90 percentiles",
ylab = "")

abline(h = 0, col = "blue", lty = 2)
lines(x, pgompertz(x, Scale, shape = Shape), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qgompertz(probs, Scale, shape = Shape)
lines(Q, dgompertz(Q, Scale, shape = Shape), col = "purple",

lty = 3, type = "h")
pgompertz(Q, Scale, shape = Shape) - probs # Should be all zero
abline(h = probs, col = "purple", lty = 3)
End(Not run)

gompertz 377

gompertz Gompertz Regression Family Function

Description

Maximum likelihood estimation of the 2-parameter Gompertz distribution.

Usage

gompertz(lscale = "loglink", lshape = "loglink",
iscale = NULL, ishape = NULL,
nsimEIM = 500, zero = NULL, nowarning = FALSE)

Arguments

nowarning Logical. Suppress a warning? Ignored for VGAM 0.9-7 and higher.

lshape, lscale Parameter link functions applied to the shape parameter a, scale parameter scale.
All parameters are positive. See Links for more choices.

ishape, iscale Optional initial values. A NULL means a value is computed internally.

nsimEIM, zero See CommonVGAMffArguments.

Details

The Gompertz distribution has a cumulative distribution function

F (x;α, β) = 1− exp[−(α/β)× (exp(βx)− 1)]

which leads to a probability density function

f(x;α, β) = α exp(βx) exp[−(α/β)× (exp(βx)− 1)]

for α > 0, β > 0, x > 0. Here, β is called the scale parameter scale, and α is called the shape
parameter (one could refer to α as a location parameter and β as a shape parameter—see Lenart
(2012)). The mean is involves an exponential integral function. Simulated Fisher scoring is used
and multiple responses are handled.

The Makeham distibution has an additional parameter compared to the Gompertz distribution. If
X is defined to be the result of sampling from a Gumbel distribution until a negative value Z is
produced, then X = −Z has a Gompertz distribution.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

The same warnings in makeham apply here too.

378 gordlink

Author(s)

T. W. Yee

References

Lenart, A. (2012). The moments of the Gompertz distribution and maximum likelihood estimation
of its parameters. Scandinavian Actuarial Journal, in press.

See Also

dgompertz, makeham, simulate.vlm.

Examples

Not run:
gdata <- data.frame(x2 = runif(nn <- 1000))
gdata <- transform(gdata, eta1 = -1,

eta2 = -1 + 0.2 * x2,
ceta1 = 1,
ceta2 = -1 + 0.2 * x2)

gdata <- transform(gdata, shape1 = exp(eta1),
shape2 = exp(eta2),
scale1 = exp(ceta1),
scale2 = exp(ceta2))

gdata <- transform(gdata, y1 = rgompertz(nn, scale = scale1, shape = shape1),
y2 = rgompertz(nn, scale = scale2, shape = shape2))

fit1 <- vglm(y1 ~ 1, gompertz, data = gdata, trace = TRUE)
fit2 <- vglm(y2 ~ x2, gompertz, data = gdata, trace = TRUE)
coef(fit1, matrix = TRUE)
Coef(fit1)
summary(fit1)
coef(fit2, matrix = TRUE)
summary(fit2)

End(Not run)

gordlink Gamma-Ordinal Link Function

Description

Computes the gamma-ordinal transformation, including its inverse and the first two derivatives.

Usage

gordlink(theta, lambda = 1, cutpoint = NULL,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

gordlink 379

Arguments

theta Numeric or character. See below for further details.
lambda, cutpoint

The former is the shape parameter in gamma2. cutpoint is optional; if NULL
then cutpoint is ignored from the GOLF definition. If given, the cutpoints
should be non-negative integers. If gordlink() is used as the link function in
cumulative then, if the cutpoints are known, then one should choose reverse
= TRUE, parallel = FALSE ~ -1. If the cutpoints are unknown, then choose
reverse = TRUE, parallel = TRUE.

inverse, deriv, short, tag

Details at Links.

Details

The gamma-ordinal link function (GOLF) can be applied to a parameter lying in the unit interval.
Its purpose is to link cumulative probabilities associated with an ordinal response coming from an
underlying 2-parameter gamma distribution.

See Links for general information about VGAM link functions.

Value

See Yee (2019) for details.

Warning

Prediction may not work on vglm or vgam etc. objects if this link function is used.

Note

Numerical values of theta too close to 0 or 1 or out of range result in large positive or negative
values, or maybe 0 depending on the arguments. Although measures have been taken to handle
cases where theta is too close to 1 or 0, numerical instabilities may still arise.

In terms of the threshold approach with cumulative probabilities for an ordinal response this link
function corresponds to the gamma distribution (see gamma2) that has been recorded as an ordinal
response using known cutpoints.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2020). Ordinal ordination with normalizing link functions for count data, (in prepara-
tion).

See Also

Links, gamma2, pordlink, nbordlink, cumulative.

380 gpd

Examples

Not run:
gordlink("p", lambda = 1, short = FALSE)
gordlink("p", lambda = 1, tag = TRUE)

p <- seq(0.02, 0.98, len = 201)
y <- gordlink(p, lambda = 1)
y. <- gordlink(p, lambda = 1, deriv = 1, inverse = TRUE)
max(abs(gordlink(y, lambda = 1, inverse = TRUE) - p)) # Should be 0

#\ dontrun{par(mfrow = c(2, 1), las = 1)
#plot(p, y, type = "l", col = "blue", main = "gordlink()")
#abline(h = 0, v = 0.5, col = "orange", lty = "dashed")
#plot(p, y., type = "l", col = "blue",
main = "(Reciprocal of) first GOLF derivative")
#}

Another example
gdata <- data.frame(x2 = sort(runif(nn <- 1000)))
gdata <- transform(gdata, x3 = runif(nn))
gdata <- transform(gdata, mymu = exp(3 + 1 * x2 - 2 * x3))
lambda <- 4
gdata <- transform(gdata,

y1 = rgamma(nn, shape = lambda, scale = mymu / lambda))
cutpoints <- c(-Inf, 10, 20, Inf)
gdata <- transform(gdata, cuty = Cut(y1, breaks = cutpoints))

#\ dontrun{ par(mfrow = c(1, 1), las = 1)
#with(gdata, plot(x2, x3, col = cuty, pch = as.character(cuty))) }
with(gdata, table(cuty) / sum(table(cuty)))
fit <- vglm(cuty ~ x2 + x3, cumulative(multiple.responses = TRUE,

reverse = TRUE, parallel = FALSE ~ -1,
link = gordlink(cutpoint = cutpoints[2:3], lambda = lambda)),
data = gdata, trace = TRUE)

head(depvar(fit))
head(fitted(fit))
head(predict(fit))
coef(fit)
coef(fit, matrix = TRUE)
constraints(fit)
fit@misc

End(Not run)

gpd Generalized Pareto Distribution Regression Family Function

Description

Maximum likelihood estimation of the 2-parameter generalized Pareto distribution (GPD).

gpd 381

Usage

gpd(threshold = 0, lscale = "loglink", lshape = logofflink(offset = 0.5),
percentiles = c(90, 95), iscale = NULL, ishape = NULL,
tolshape0 = 0.001, type.fitted = c("percentiles", "mean"),
imethod = 1, zero = "shape")

Arguments

threshold Numeric, values are recycled if necessary. The threshold value(s), called µ be-
low.

lscale Parameter link function for the scale parameter σ. See Links for more choices.

lshape Parameter link function for the shape parameter ξ. See Links for more choices.
The default constrains the parameter to be greater than −0.5 because if ξ ≤
−0.5 then Fisher scoring does not work. See the Details section below for more
information.
For the shape parameter, the default logofflink link has an offset called A
below; and then the second linear/additive predictor is log(ξ +A) which means
that ξ > −A. The working weight matrices are positive definite if A = 0.5.

percentiles Numeric vector of percentiles used for the fitted values. Values should be be-
tween 0 and 100. See the example below for illustration. This argument is
ignored if type.fitted = "mean".

type.fitted See CommonVGAMffArguments for information. The default is to use the percentiles
argument. If "mean" is chosen, then the mean µ + σ/(1 − ξ) is returned as the
fitted values, and these are only defined for ξ < 1.

iscale, ishape Numeric. Optional initial values for σ and ξ. The default is to use imethod
and compute a value internally for each parameter. Values of ishape should be
between −0.5 and 1. Values of iscale should be positive.

tolshape0 Passed into dgpd when computing the log-likelihood.

imethod Method of initialization, either 1 or 2. The first is the method of moments, and
the second is a variant of this. If neither work, try assigning values to arguments
ishape and/or iscale.

zero Can be an integer-valued vector specifying which linear/additive predictors are
modelled as intercepts only. For one response, the value should be from the
set {1,2} corresponding respectively to σ and ξ. It is often a good idea for the
σ parameter only to be modelled through a linear combination of the explana-
tory variables because the shape parameter is probably best left as an intercept
only: zero = 2. Setting zero = NULL means both parameters are modelled with
explanatory variables. See CommonVGAMffArguments for more details.

Details

The distribution function of the GPD can be written

G(y) = 1− [1 + ξ(y − µ)/σ]
−1/ξ
+

382 gpd

where µ is the location parameter (known, with value threshold), σ > 0 is the scale parameter, ξ
is the shape parameter, and h+ = max(h, 0). The function 1−G is known as the survivor function.
The limit ξ → 0 gives the shifted exponential as a special case:

G(y) = 1− exp[−(y − µ)/σ].

The support is y > µ for ξ > 0, and µ < y < µ− σ/ξ for ξ < 0.

Smith (1985) showed that if ξ <= −0.5 then this is known as the nonregular case and prob-
lems/difficulties can arise both theoretically and numerically. For the (regular) case ξ > −0.5 the
classical asymptotic theory of maximum likelihood estimators is applicable; this is the default.

Although for ξ < −0.5 the usual asymptotic properties do not apply, the maximum likelihood
estimator generally exists and is superefficient for −1 < ξ < −0.5, so it is “better” than normal.
When ξ < −1 the maximum likelihood estimator generally does not exist as it effectively becomes
a two parameter problem.

The mean of Y does not exist unless ξ < 1, and the variance does not exist unless ξ < 0.5. So if
you want to fit a model with finite variance use lshape = "extlogitlink".

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam. However, for this VGAM family function, vglm is probably preferred over vgam
when there is smoothing.

Warning

Fitting the GPD by maximum likelihood estimation can be numerically fraught. If 1+ξ(y−µ)/σ ≤
0 then some crude evasive action is taken but the estimation process can still fail. This is particularly
the case if vgam with s is used. Then smoothing is best done with vglm with regression splines (bs
or ns) because vglm implements half-stepsizing whereas vgam doesn’t. Half-stepsizing helps handle
the problem of straying outside the parameter space.

Note

The response in the formula of vglm and vgam is y. Internally, y − µ is computed. This VGAM
family function can handle a multiple responses, which is inputted as a matrix. The response stored
on the object is the original uncentred data.

With functions rgpd, dgpd, etc., the argument location matches with the argument threshold
here.

Author(s)

T. W. Yee

References

Yee, T. W. and Stephenson, A. G. (2007). Vector generalized linear and additive extreme value
models. Extremes, 10, 1–19.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

gpd 383

Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases. Biometrika,
72, 67–90.

See Also

rgpd, meplot, gev, paretoff, vglm, vgam, s.

Examples

Simulated data from an exponential distribution (xi = 0)
Threshold <- 0.5
gdata <- data.frame(y1 = Threshold + rexp(n = 3000, rate = 2))
fit <- vglm(y1 ~ 1, gpd(threshold = Threshold), data = gdata, trace = TRUE)
head(fitted(fit))
summary(depvar(fit)) # The original uncentred data
coef(fit, matrix = TRUE) # xi should be close to 0
Coef(fit)
summary(fit)

head(fit@extra$threshold) # Note the threshold is stored here

Check the 90 percentile
ii <- depvar(fit) < fitted(fit)[1, "90%"]
100 * table(ii) / sum(table(ii)) # Should be 90%

Check the 95 percentile
ii <- depvar(fit) < fitted(fit)[1, "95%"]
100 * table(ii) / sum(table(ii)) # Should be 95%

Not run: plot(depvar(fit), col = "blue", las = 1,
main = "Fitted 90% and 95% quantiles")

matlines(1:length(depvar(fit)), fitted(fit), lty = 2:3, lwd = 2)
End(Not run)

Another example
gdata <- data.frame(x2 = runif(nn <- 2000))
Threshold <- 0; xi <- exp(-0.8) - 0.5
gdata <- transform(gdata, y2 = rgpd(nn, scale = exp(1 + 0.1*x2), shape = xi))
fit <- vglm(y2 ~ x2, gpd(Threshold), data = gdata, trace = TRUE)
coef(fit, matrix = TRUE)

Not run: # Nonparametric fits
Not so recommended:
fit1 <- vgam(y2 ~ s(x2), gpd(Threshold), data = gdata, trace = TRUE)
par(mfrow = c(2, 1))
plot(fit1, se = TRUE, scol = "blue")
More recommended:
fit2 <- vglm(y2 ~ sm.bs(x2), gpd(Threshold), data = gdata, trace = TRUE)
plot(as(fit2, "vgam"), se = TRUE, scol = "blue")
End(Not run)

384 gpdUC

gpdUC The Generalized Pareto Distribution

Description

Density, distribution function, quantile function and random generation for the generalized Pareto
distribution (GPD) with location parameter location, scale parameter scale and shape parameter
shape.

Usage

dgpd(x, location = 0, scale = 1, shape = 0, log = FALSE,
tolshape0 = sqrt(.Machine$double.eps))

pgpd(q, location = 0, scale = 1, shape = 0,
lower.tail = TRUE, log.p = FALSE)

qgpd(p, location = 0, scale = 1, shape = 0,
lower.tail = TRUE, log.p = FALSE)

rgpd(n, location = 0, scale = 1, shape = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

location the location parameter µ.

scale the (positive) scale parameter σ.

shape the shape parameter ξ.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in punif or qunif.

tolshape0 Positive numeric. Threshold/tolerance value for resting whether ξ is zero. If the
absolute value of the estimate of ξ is less than this value then it will be assumed
zero and an exponential distribution will be used.

Details

See gpd, the VGAM family function for estimating the two parameters by maximum likelihood
estimation, for formulae and other details. Apart from n, all the above arguments may be vectors
and are recyled to the appropriate length if necessary.

Value

dgpd gives the density, pgpd gives the distribution function, qgpd gives the quantile function, and
rgpd generates random deviates.

grain.us 385

Note

The default values of all three parameters, especially ξ = 0, means the default distribution is the
exponential.

Currently, these functions have different argument names compared with those in the evd package.

Author(s)

T. W. Yee and Kai Huang

References

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

See Also

gpd, Exponential.

Examples

Not run: loc <- 2; sigma <- 1; xi <- -0.4
x <- seq(loc - 0.2, loc + 3, by = 0.01)
plot(x, dgpd(x, loc, sigma, xi), type = "l", col = "blue",

main = "Blue is density, red is the CDF", ylim = c(0, 1),
sub = "Purple are 5,10,...,95 percentiles", ylab = "", las = 1)

abline(h = 0, col = "blue", lty = 2)
lines(qgpd(seq(0.05, 0.95, by = 0.05), loc, sigma, xi),

dgpd(qgpd(seq(0.05, 0.95, by = 0.05), loc, sigma, xi), loc, sigma, xi),
col = "purple", lty = 3, type = "h")

lines(x, pgpd(x, loc, sigma, xi), type = "l", col = "red")
abline(h = 0, lty = 2)

pgpd(qgpd(seq(0.05, 0.95, by = 0.05), loc, sigma, xi), loc, sigma, xi)

End(Not run)

grain.us Grain Prices Data in USA

Description

A 4-column matrix.

Usage

data(grain.us)

386 grc

Format

The columns are:

wheat.flour numeric

corn numeric

wheat numeric

rye numeric

Details

Monthly averages of grain prices in the United States for wheat flour, corn, wheat, and rye for the
period January 1961 through October 1972. The units are US dollars per 100 pound sack for wheat
flour, and per bushel for corn, wheat and rye.

Source

Ahn and Reinsel (1988).

References

Ahn, S. K and Reinsel, G. C. (1988). Nested reduced-rank autoregressive models for multiple time
series. Journal of the American Statistical Association, 83, 849–856.

Examples

Not run:
cgrain <- scale(grain.us, scale = FALSE) # Center the time series only
fit <- vglm(cgrain ~ 1, rrar(Rank = c(4, 1)),

epsilon = 1e-3, stepsize = 0.5, trace = TRUE, maxit = 50)
summary(fit)

End(Not run)

grc Row-Column Interaction Models including Goodman’s RC Associa-
tion Model and Unconstrained Quadratic Ordination

Description

Fits a Goodman’s RC association model (GRC) to a matrix of counts, and more generally, row-
column interaction models (RCIMs). RCIMs allow for unconstrained quadratic ordination (UQO).

grc 387

Usage

grc(y, Rank = 1, Index.corner = 2:(1 + Rank),
str0 = 1, summary.arg = FALSE, h.step = 1e-04, ...)

rcim(y, family = poissonff, Rank = 0, M1 = NULL,
weights = NULL, which.linpred = 1,
Index.corner = ifelse(is.null(str0), 0, max(str0)) + 1:Rank,
rprefix = "Row.", cprefix = "Col.", iprefix = "X2.",
offset = 0, str0 = if (Rank) 1 else NULL,
summary.arg = FALSE, h.step = 0.0001,
rbaseline = 1, cbaseline = 1,
has.intercept = TRUE, M = NULL,
rindex = 2:nrow(y), cindex = 2:ncol(y), iindex = 2:nrow(y), ...)

Arguments

y For grc(): a matrix of counts. For rcim(): a general matrix response depending
on family. Output from table() is acceptable; it is converted into a matrix.
Note that y should be at least 3 by 3 in dimension.

family A VGAM family function. By default, the first linear/additive predictor is fitted
using main effects plus an optional rank-Rank interaction term. Not all family
functions are suitable or make sense. All other linear/additive predictors are fit-
ted using an intercept-only, so it has a common value over all rows and columns.
For example, zipoissonff may be suitable for counts but not zipoisson be-
cause of the ordering of the linear/additive predictors. If the VGAM family
function does not have an infos slot then M1 needs to be inputted (the num-
ber of linear predictors for an ordinary (usually univariate) response, aka M).
The VGAM family function also needs to be able to handle multiple responses
(currently not all of them can do this).

Rank An integer from the set {0,. . . ,min(nrow(y), ncol(y))}. This is the dimension
of the fit in terms of the interaction. For grc() this argument must be positive. A
value of 0 means no interactions (i.e., main effects only); each row and column
is represented by an indicator variable.

weights Prior weights. Fed into rrvglm or vglm.

which.linpred Single integer. Specifies which linear predictor is modelled as the sum of an
intercept, row effect, column effect plus an optional interaction term. It should
be one value from the set 1:M1.

Index.corner A vector of Rank integers. These are used to store the Rank by Rank identity
matrix in the A matrix; corner constraints are used.

rprefix, cprefix, iprefix

Character, for rows and columns and interactions respectively. For labelling the
indicator variables.

offset Numeric. Either a matrix of the right dimension, else a single numeric expanded
into such a matrix.

str0 Ignored if Rank = 0, else an integer from the set {1,. . . ,min(nrow(y), ncol(y))},
specifying the row that is used as the structural zero. Passed into rrvglm.control
if Rank > 0. Set str0 = NULL for none.

388 grc

summary.arg Logical. If TRUE then a summary is returned. If TRUE then y may be the output
(fitted object) of grc().

h.step A small positive value that is passed into summary.rrvglm(). Only used when
summary.arg = TRUE.

... Arguments that are passed into rrvglm.control().

M1 The number of linear predictors of the VGAM family function for an ordi-
nary (univariate) response. Then the number of linear predictors of the rcim()
fit is usually the number of columns of y multiplied by M1. The default is to
evaluate the infos slot of the VGAM family function to try to evaluate it; see
vglmff-class. If this information is not yet supplied by the family function
then the value needs to be inputted manually using this argument.

rbaseline, cbaseline

Baseline reference levels for the rows and columns. Currently stored on the
object but not used.

has.intercept Logical. Include an intercept?

M, cindex M is the usual VGAM M , viz. the number of linear/additive predictors in total.
Also, cindex means column index, and these point to the columns of y which
are part of the vector of linear/additive predictor main effects.
For family = multinomial it is necessary to input these arguments as M = ncol(y)-1
and cindex = 2:(ncol(y)-1).

rindex, iindex rindex means row index, and these are similar to cindex. iindex means inter-
action index, and these are similar to cindex.

Details

Goodman’s RC association model fits a reduced-rank approximation to a table of counts. A Poisson
model is assumed. The log of each cell mean is decomposed as an intercept plus a row effect plus
a column effect plus a reduced-rank component. The latter can be collectively written A %*% t(C),
the product of two ‘thin’ matrices. Indeed, A and C have Rank columns. By default, the first column
and row of the interaction matrix A %*% t(C) is chosen to be structural zeros, because str0 = 1.
This means the first row of A are all zeros.

This function uses options()$contrasts to set up the row and column indicator variables. In
particular, Equation (4.5) of Yee and Hastie (2003) is used. These are called Row. and Col. (by
default) followed by the row or column number.

The function rcim() is more general than grc(). Its default is a no-interaction model of grc(),
i.e., rank-0 and a Poisson distribution. This means that each row and column has a dummy variable
associated with it. The first row and first column are baseline. The power of rcim() is that many
VGAM family functions can be assigned to its family argument. For example, uninormal fits
something in between a 2-way ANOVA with and without interactions, alaplace2 with Rank = 0 is
something like medpolish. Others include zipoissonff and negbinomial. Hopefully one day all
VGAM family functions will work when assigned to the family argument, although the result may
not have meaning.

Unconstrained quadratic ordination (UQO) can be performed using rcim() and grc(). This has
been called unconstrained Gaussian ordination in the literature, however the word Gaussian has
two meanings which is confusing; it is better to use quadratic because the bell-shape response
surface is meant. UQO is similar to CQO (cqo) except there are no environmental/explanatory

grc 389

variables. Here, a GLM is fitted to each column (species) that is a quadratic function of hypothet-
ical latent variables or gradients. Thus each row of the response has an associated site score, and
each column of the response has an associated optimum and tolerance matrix. UQO can be per-
formed here under the assumption that all species have the same tolerance matrices. See Yee and
Hadi (2014) for details. It is not recommended that presence/absence data be inputted because the
information content is so low for each site-species cell. The example below uses Poisson counts.

Value

An object of class "grc", which currently is the same as an "rrvglm" object. Currently, a rank-0
rcim() object is of class rcim0-class, else of class "rcim" (this may change in the future).

Warning

The function rcim() is experimental at this stage and may have bugs. Quite a lot of expertise is
needed when fitting and in its interpretion thereof. For example, the constraint matrices applies the
reduced-rank regression to the first (see which.linpred) linear predictor and the other linear pre-
dictors are intercept-only and have a common value throughout the entire data set. This means that,
by default, family = zipoissonff is appropriate but not family = zipoisson. Else set family
= zipoisson and which.linpred = 2. To understand what is going on, do examine the constraint
matrices of the fitted object, and reconcile this with Equations (4.3) to (4.5) of Yee and Hastie
(2003).

The functions temporarily create a permanent data frame called .grc.df or .rcim.df, which used
to be needed by summary.rrvglm(). Then these data frames are deleted before exiting the function.
If an error occurs then the data frames may be present in the workspace.

Note

These functions set up the indicator variables etc. before calling rrvglm or vglm. The ... is passed
into rrvglm.control or vglm.control, This means, e.g., Rank = 1 is default for grc().

The data should be labelled with rownames and colnames. Setting trace = TRUE is recommended
to monitor convergence. Using criterion = "coefficients" can result in slow convergence.

If summary = TRUE then y can be a "grc" object, in which case a summary can be returned. That
is, grc(y, summary = TRUE) is equivalent to summary(grc(y)). It is not possible to plot a grc(y,
summary = TRUE) or rcim(y, summary = TRUE) object.

Author(s)

Thomas W. Yee, with assistance from Alfian F. Hadi.

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. and Hadi, A. F. (2014). Row-column interaction models, with an R implementation.
Computational Statistics, 29, 1427–1445.

Goodman, L. A. (1981). Association models and canonical correlation in the analysis of cross-
classifications having ordered categories. Journal of the American Statistical Association, 76, 320–
334.

390 grc

See Also

rrvglm, rrvglm.control, rrvglm-class, summary.grc, moffset, Rcim, Select, Qvar, plotrcim0,
cqo, multinomial, alcoff, crashi, auuc, olym08, olym12, poissonff, medpolish.

Examples

Example 1: Undergraduate enrolments at Auckland University in 1990
fitted(grc1 <- grc(auuc))
summary(grc1)

grc2 <- grc(auuc, Rank = 2, Index.corner = c(2, 5))
fitted(grc2)
summary(grc2)

model3 <- rcim(auuc, Rank = 1, fam = multinomial,
M = ncol(auuc)-1, cindex = 2:(ncol(auuc)-1), trace = TRUE)

fitted(model3)
summary(model3)

Median polish but not 100 percent reliable. Maybe call alaplace2()...
Not run:
rcim0 <- rcim(auuc, fam = alaplace1(tau = 0.5), trace=FALSE, maxit = 500)
round(fitted(rcim0), digits = 0)
round(100 * (fitted(rcim0) - auuc) / auuc, digits = 0) # Discrepancy
depvar(rcim0)
round(coef(rcim0, matrix = TRUE), digits = 2)
Coef(rcim0, matrix = TRUE)
constraints(rcim0)
names(constraints(rcim0))

Compare with medpolish():
(med.a <- medpolish(auuc))
fv <- med.a$overall + outer(med.a$row, med.a$col, "+")
round(100 * (fitted(rcim0) - fv) / fv) # Hopefully should be all 0s

End(Not run)

Example 2: 2012 Summer Olympic Games in London
Not run: top10 <- head(olym12, 10)
grc1.oly12 <- with(top10, grc(cbind(gold, silver, bronze)))
round(fitted(grc1.oly12))
round(resid(grc1.oly12, type = "response"), digits = 1) # Resp. resids
summary(grc1.oly12)
Coef(grc1.oly12)

End(Not run)

Example 3: UQO; see Yee and Hadi (2014)
Not run:
n <- 100; p <- 5; S <- 10

gumbel 391

pdata <- rcqo(n, p, S, es.opt = FALSE, eq.max = FALSE,
eq.tol = TRUE, sd.latvar = 0.75) # Poisson counts

true.nu <- attr(pdata, "latvar") # The 'truth'; site scores
attr(pdata, "tolerances") # The 'truth'; tolerances

Y <- Select(pdata, "y", sort = FALSE) # Y matrix (n x S); the "y" vars
uqo.rcim1 <- rcim(Y, Rank = 1,

str0 = NULL, # Delta covers entire n x M matrix
iindex = 1:nrow(Y), # RRR covers the entire Y
has.intercept = FALSE) # Suppress the intercept

Plot 1
par(mfrow = c(2, 2))
plot(attr(pdata, "optimums"), Coef(uqo.rcim1)@A,

col = "blue", type = "p", main = "(a) UQO optimums",
xlab = "True optimums", ylab = "Estimated (UQO) optimums")

mylm <- lm(Coef(uqo.rcim1)@A ~ attr(pdata, "optimums"))
abline(coef = coef(mylm), col = "orange", lty = "dashed")

Plot 2
fill.val <- NULL # Choose this for the new parameterization
plot(attr(pdata, "latvar"), c(fill.val, concoef(uqo.rcim1)),

las = 1, col = "blue", type = "p", main = "(b) UQO site scores",
xlab = "True site scores", ylab = "Estimated (UQO) site scores")

mylm <- lm(c(fill.val, concoef(uqo.rcim1)) ~ attr(pdata, "latvar"))
abline(coef = coef(mylm), col = "orange", lty = "dashed")

Plots 3 and 4
myform <- attr(pdata, "formula")
p1ut <- cqo(myform, family = poissonff,

eq.tol = FALSE, trace = FALSE, data = pdata)
c1ut <- cqo(Select(pdata, "y", sort = FALSE) ~ scale(latvar(uqo.rcim1)),

family = poissonff, eq.tol = FALSE, trace = FALSE, data = pdata)
lvplot(p1ut, lcol = 1:S, y = TRUE, pcol = 1:S, pch = 1:S, pcex = 0.5,

main = "(c) CQO fitted to the original data",
xlab = "Estimated (CQO) site scores")

lvplot(c1ut, lcol = 1:S, y = TRUE, pcol = 1:S, pch = 1:S, pcex = 0.5,
main = "(d) CQO fitted to the scaled UQO site scores",
xlab = "Estimated (UQO) site scores")

End(Not run)

gumbel Gumbel Regression Family Function

Description

Maximum likelihood estimation of the 2-parameter Gumbel distribution.

392 gumbel

Usage

gumbel(llocation = "identitylink", lscale = "loglink",
iscale = NULL, R = NA, percentiles = c(95, 99),
mpv = FALSE, zero = NULL)

gumbelff(llocation = "identitylink", lscale = "loglink",
iscale = NULL, R = NA, percentiles = c(95, 99),
zero = "scale", mpv = FALSE)

Arguments

llocation, lscale

Parameter link functions for µ and σ. See Links for more choices.

iscale Numeric and positive. Optional initial value for σ. Recycled to the appropriate
length. In general, a larger value is better than a smaller value. A NULL means
an initial value is computed internally.

R Numeric. Maximum number of values possible. See Details for more details.

percentiles Numeric vector of percentiles used for the fitted values. Values should be be-
tween 0 and 100. This argument uses the argument R if assigned. If percentiles
= NULL then the mean will be returned as the fitted values.

mpv Logical. If mpv = TRUE then the median predicted value (MPV) is computed and
returned as the (last) column of the fitted values. This argument is ignored if
percentiles = NULL. See Details for more details.

zero A vector specifying which linear/additive predictors are modelled as intercepts
only. The value (possibly values) can be from the set {1, 2} corresponding re-
spectively to µ and σ. By default all linear/additive predictors are modelled as a
linear combination of the explanatory variables. See CommonVGAMffArguments
for more details.

Details

The Gumbel distribution is a generalized extreme value (GEV) distribution with shape parameter
ξ = 0. Consequently it is more easily estimated than the GEV. See gev for more details.

The quantity R is the maximum number of observations possible, for example, in the Venice data
below, the top 10 daily values are recorded for each year, thereforeR = 365 because there are about
365 days per year. The MPV is the value of the response such that the probability of obtaining a
value greater than the MPV is 0.5 out of R observations. For the Venice data, the MPV is the sea
level such that there is an even chance that the highest level for a particular year exceeds the MPV.
If mpv = TRUE then the column labelled "MPV" contains the MPVs when fitted() is applied to the
fitted object.

The formula for the mean of a response Y is µ + σ × Euler where Euler is a constant that
has value approximately equal to 0.5772. The formula for the percentiles are (if R is not given)
µ − σ × log[− log(P/100)] where P is the percentile argument value(s). If R is given then the
percentiles are µ− σ × log[R(1− P/100)].

gumbel 393

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

When R is not given (the default) the fitted percentiles are that of the data, and not of the overall
population. For example, in the example below, the 50 percentile is approximately the running
median through the data, however, the data are the highest sea level measurements recorded each
year (it therefore equates to the median predicted value or MPV).

Note

Like many other usual VGAM family functions, gumbelff() handles (independent) multiple re-
sponses.

gumbel() can handle more of a multivariate response, i.e., a matrix with more than one column.
Each row of the matrix is sorted into descending order. Missing values in the response are allowed
but require na.action = na.pass. The response matrix needs to be padded with any missing val-
ues. With a multivariate response one has a matrix y, say, where y[, 2] contains the second order
statistics, etc.

Author(s)

T. W. Yee

References

Yee, T. W. and Stephenson, A. G. (2007). Vector generalized linear and additive extreme value
models. Extremes, 10, 1–19.

Smith, R. L. (1986). Extreme value theory based on the r largest annual events. Journal of Hydrol-
ogy, 86, 27–43.

Rosen, O. and Cohen, A. (1996). Extreme percentile regression. In: Haerdle, W. and Schimek,
M. G. (eds.), Statistical Theory and Computational Aspects of Smoothing: Proceedings of the
COMPSTAT ’94 Satellite Meeting held in Semmering, Austria, 27–28 August 1994, pp.200–214,
Heidelberg: Physica-Verlag.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

See Also

rgumbel, dgumbelII, cens.gumbel, guplot, gev, gevff, venice.

Examples

Example 1: Simulated data
gdata <- data.frame(y1 = rgumbel(n = 1000, loc = 100, scale = exp(1)))
fit1 <- vglm(y1 ~ 1, gumbelff(perc = NULL), data = gdata, trace = TRUE)
coef(fit1, matrix = TRUE)

394 Gumbel-II

Coef(fit1)
head(fitted(fit1))
with(gdata, mean(y1))

Example 2: Venice data
(fit2 <- vglm(cbind(r1, r2, r3, r4, r5) ~ year, data = venice,

gumbel(R = 365, mpv = TRUE), trace = TRUE))
head(fitted(fit2))
coef(fit2, matrix = TRUE)
sqrt(diag(vcov(summary(fit2)))) # Standard errors

Example 3: Try a nonparametric fit ---------------------
Use the entire data set, including missing values
Same as as.matrix(venice[, paste0("r", 1:10)]):
Y <- Select(venice, "r", sort = FALSE)
fit3 <- vgam(Y ~ s(year, df = 3), gumbel(R = 365, mpv = TRUE),

data = venice, trace = TRUE, na.action = na.pass)
depvar(fit3)[4:5,] # NAs used to pad the matrix

Not run: # Plot the component functions
par(mfrow = c(2, 3), mar = c(6, 4, 1, 2) + 0.3, xpd = TRUE)
plot(fit3, se = TRUE, lcol = "blue", scol = "limegreen", lty = 1,

lwd = 2, slwd = 2, slty = "dashed")

Quantile plot --- plots all the fitted values
qtplot(fit3, mpv = TRUE, lcol = c(1, 2, 5), tcol = c(1, 2, 5), lwd = 2,

pcol = "blue", tadj = 0.1, ylab = "Sea level (cm)")

Plot the 99 percentile only
year <- venice[["year"]]
matplot(year, Y, ylab = "Sea level (cm)", type = "n")
matpoints(year, Y, pch = "*", col = "blue")
lines(year, fitted(fit3)[, "99%"], lwd = 2, col = "orange")

Check the 99 percentiles with a smoothing spline.
Nb. (1-0.99) * 365 = 3.65 is approx. 4, meaning the 4th order
statistic is approximately the 99 percentile.
plot(year, Y[, 4], ylab = "Sea level (cm)", type = "n",

main = "Orange is 99 percentile, Green is a smoothing spline")
points(year, Y[, 4], pch = "4", col = "blue")
lines(year, fitted(fit3)[, "99%"], lty = 1, col = "orange")
lines(smooth.spline(year, Y[, 4], df = 4), col = "limegreen", lty = 2)

End(Not run)

Gumbel-II The Gumbel-II Distribution

Description

Density, cumulative distribution function, quantile function and random generation for the Gumbel-
II distribution.

Gumbel-II 395

Usage

dgumbelII(x, scale = 1, shape, log = FALSE)
pgumbelII(q, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
qgumbelII(p, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
rgumbelII(n, scale = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

shape, scale positive shape and scale parameters.

Details

See gumbelII for details.

Value

dgumbelII gives the density, pgumbelII gives the cumulative distribution function, qgumbelII
gives the quantile function, and rgumbelII generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

gumbelII, dgumbel.

Examples

probs <- seq(0.01, 0.99, by = 0.01)
Scale <- exp(1); Shape <- exp(0.5);
max(abs(pgumbelII(qgumbelII(p = probs, shape = Shape, Scale),

shape = Shape, Scale) - probs)) # Should be 0

Not run: x <- seq(-0.1, 10, by = 0.01);
plot(x, dgumbelII(x, shape = Shape, Scale), type = "l", col = "blue",

main = "Blue is density, orange is the CDF", las = 1,
sub = "Red lines are the 10,20,...,90 percentiles",
ylab = "", ylim = 0:1)

abline(h = 0, col = "blue", lty = 2)
lines(x, pgumbelII(x, shape = Shape, Scale), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qgumbelII(probs, shape = Shape, Scale)

396 gumbelII

lines(Q, dgumbelII(Q, Scale, Shape), col = "red", lty = 3, type = "h")
pgumbelII(Q, shape = Shape, Scale) - probs # Should be all zero
abline(h = probs, col = "red", lty = 3)
End(Not run)

gumbelII Gumbel-II Regression Family Function

Description

Maximum likelihood estimation of the 2-parameter Gumbel-II distribution.

Usage

gumbelII(lscale = "loglink", lshape = "loglink", iscale = NULL, ishape = NULL,
probs.y = c(0.2, 0.5, 0.8), perc.out = NULL, imethod = 1,
zero = "shape", nowarning = FALSE)

Arguments

nowarning Logical. Suppress a warning?

lshape, lscale Parameter link functions applied to the (positive) shape parameter (called s
below) and (positive) scale parameter (called b below). See Links for more
choices.
Parameter link functions applied to the

ishape, iscale Optional initial values for the shape and scale parameters.

imethod See weibullR.

zero, probs.y Details at CommonVGAMffArguments.

perc.out If the fitted values are to be quantiles then set this argument to be the percentiles
of these, e.g., 50 for median.

Details

The Gumbel-II density for a response Y is

f(y; b, s) = sys−1 exp[−(y/b)s]/(bs)

for b > 0, s > 0, y > 0. The cumulative distribution function is

F (y; b, s) = exp[−(y/b)−s].

The mean of Y is bΓ(1 − 1/s) (returned as the fitted values) when s > 1, and the variance is
b2 Γ(1 − 2/s) when s > 2. This distribution looks similar to weibullR, and is due to Gumbel
(1954).

This VGAM family function currently does not handle censored data. Fisher scoring is used to esti-
mate the two parameters. Probably similar regularity conditions hold for this distribution compared
to the Weibull distribution.

gumbelII 397

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

See weibullR. This VGAM family function handles multiple responses.

Author(s)

T. W. Yee

References

Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications. Applied
Mathematics Series, volume 33, U.S. Department of Commerce, National Bureau of Standards,
USA.

See Also

dgumbelII, gumbel, gev.

Examples

gdata <- data.frame(x2 = runif(nn <- 1000))
gdata <- transform(gdata, heta1 = +1,

heta2 = -1 + 0.1 * x2,
ceta1 = 0,
ceta2 = 1)

gdata <- transform(gdata, shape1 = exp(heta1),
shape2 = exp(heta2),
scale1 = exp(ceta1),
scale2 = exp(ceta2))

gdata <- transform(gdata,
y1 = rgumbelII(nn, scale = scale1, shape = shape1),
y2 = rgumbelII(nn, scale = scale2, shape = shape2))

fit <- vglm(cbind(y1, y2) ~ x2,
gumbelII(zero = c(1, 2, 3)), data = gdata, trace = TRUE)

coef(fit, matrix = TRUE)
vcov(fit)
summary(fit)

398 gumbelUC

gumbelUC The Gumbel Distribution

Description

Density, distribution function, quantile function and random generation for the Gumbel distribution
with location parameter location and scale parameter scale.

Usage

dgumbel(x, location = 0, scale = 1, log = FALSE)
pgumbel(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qgumbel(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rgumbel(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1 then the length is taken to be the

number required.
location the location parameter µ. This is not the mean of the Gumbel distribution (see

Details below).
scale the scale parameter σ. This is not the standard deviation of the Gumbel distri-

bution (see Details below).
log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in punif or qunif.

Details

The Gumbel distribution is a special case of the generalized extreme value (GEV) distribution where
the shape parameter ξ = 0. The latter has 3 parameters, so the Gumbel distribution has two. The
Gumbel distribution function is

G(y) = exp

(
− exp

[
−y − µ

σ

])
where −∞ < y <∞, −∞ < µ <∞ and σ > 0. Its mean is

µ− σ ∗ γ

and its variance is
σ2 ∗ π2/6

where γ is Euler’s constant (which can be obtained as -digamma(1)).

See gumbel, the VGAM family function for estimating the two parameters by maximum likelihood
estimation, for formulae and other details. Apart from n, all the above arguments may be vectors
and are recyled to the appropriate length if necessary.

guplot 399

Value

dgumbel gives the density, pgumbel gives the distribution function, qgumbel gives the quantile
function, and rgumbel generates random deviates.

Note

The VGAM family function gumbel can estimate the parameters of a Gumbel distribution using
maximum likelihood estimation.

Author(s)

T. W. Yee

References

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

See Also

gumbel, gumbelff, gev, dgompertz.

Examples

mu <- 1; sigma <- 2;
y <- rgumbel(n = 100, loc = mu, scale = sigma)
c(mean(y), mu - sigma * digamma(1)) # Sample and population means
c(var(y), sigma^2 * pi^2 / 6) # Sample and population variances

Not run: x <- seq(-2.5, 3.5, by = 0.01)
loc <- 0; sigma <- 1
plot(x, dgumbel(x, loc, sigma), type = "l", col = "blue",

main = "Blue is density, red is the CDF", ylim = c(0, 1),
sub = "Purple are 5,10,...,95 percentiles", ylab = "", las = 1)

abline(h = 0, col = "blue", lty = 2)
lines(qgumbel(seq(0.05, 0.95, by = 0.05), loc, sigma),

dgumbel(qgumbel(seq(0.05, 0.95, by = 0.05), loc, sigma), loc, sigma),
col = "purple", lty = 3, type = "h")

lines(x, pgumbel(x, loc, sigma), type = "l", col = "red")
abline(h = 0, lty = 2)
End(Not run)

guplot Gumbel Plot

Description

Produces a Gumbel plot, a diagnostic plot for checking whether the data appears to be from a
Gumbel distribution.

400 guplot

Usage

guplot(object, ...)
guplot.default(y, main = "Gumbel Plot",

xlab = "Reduced data", ylab = "Observed data", type = "p", ...)
guplot.vlm(object, ...)

Arguments

y A numerical vector. NAs etc. are not allowed.

main Character. Overall title for the plot.

xlab Character. Title for the x axis.

ylab Character. Title for the y axis.

type Type of plot. The default means points are plotted.

object An object that inherits class "vlm", usually of class vglm-class or vgam-class.

... Graphical argument passed into plot. See par for an exhaustive list. The argu-
ments xlim and ylim are particularly useful.

Details

If Y has a Gumbel distribution then plotting the sorted values yi versus the reduced values ri should
appear linear. The reduced values are given by

ri = − log(− log(pi))

where pi is the ith plotting position, taken here to be (i − 0.5)/n. Here, n is the number of obser-
vations. Curvature upwards/downwards may indicate a Frechet/Weibull distribution, respectively.
Outliers may also be detected using this plot.

The function guplot is generic, and guplot.default and guplot.vlm are some methods functions
for Gumbel plots.

Value

A list is returned invisibly with the following components.

x The reduced data.

y The sorted y data.

Note

The Gumbel distribution is a special case of the GEV distribution with shape parameter equal to
zero.

Author(s)

T. W. Yee

has.interceptvlm 401

References

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

Gumbel, E. J. (1958). Statistics of Extremes. New York, USA: Columbia University Press.

See Also

gumbel, gumbelff, gev, venice.

Examples

Not run: guplot(rnorm(500), las = 1) -> ii
names(ii)

guplot(with(venice, r1), col = "blue") # Venice sea levels data

End(Not run)

has.interceptvlm Has a Fitted VGLM Got an Intercept Term?

Description

Looks at the formula to see if it has an intercept term.

Usage

has.intercept(object, ...)
has.interceptvlm(object, form.number = 1, ...)

Arguments

object A fitted model object.

form.number Formula number, is 1 or 2. which correspond to the arguments formula and
form2 respectively.

... Arguments that are might be passed from one function to another.

Details

This methods function is a simple way to determine whether a fitted vglm object etc. has an intercept
term or not. It is not entirely foolproof because one might suppress the intercept from the formula
and then add in a variable in the formula that has a constant value.

Value

Returns a single logical.

402 hatvalues

Author(s)

Thomas W. Yee

See Also

formulavlm, termsvlm.

Examples

Example: this is based on a glm example
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3, 1, 9); treatment <- gl(3, 3)
pdata <- data.frame(counts, outcome, treatment) # Better style
vglm.D93 <- vglm(counts ~ outcome + treatment, poissonff, data = pdata)
formula(vglm.D93)
term.names(vglm.D93)
responseName(vglm.D93)
has.intercept(vglm.D93)

hatvalues Hat Values and Regression Deletion Diagnostics

Description

When complete, a suite of functions that can be used to compute some of the regression (leave-one-
out deletion) diagnostics, for the VGLM class.

Usage

hatvalues(model, ...)
hatvaluesvlm(model, type = c("diagonal", "matrix", "centralBlocks"), ...)
hatplot(model, ...)
hatplot.vlm(model, multiplier = c(2, 3), lty = "dashed",

xlab = "Observation", ylab = "Hat values", ylim = NULL, ...)
dfbetavlm(model, maxit.new = 1,

trace.new = FALSE,
smallno = 1.0e-8, ...)

Arguments

model an R object, typically returned by vglm.

type Character. The default is the first choice, which is a nM × nM matrix. If type
= "matrix" then the entire hat matrix is returned. If type = "centralBlocks"
then n central M ×M block matrices, in matrix-band format.

multiplier Numeric, the multiplier. The usual rule-of-thumb is that values greater than
two or three times the average leverage (at least for the linear model) should be
checked.

hatvalues 403

lty, xlab, ylab, ylim

Graphical parameters, see par etc. The default of ylim is c(0, max(hatvalues(model)))
which means that if the horizontal dashed lines cannot be seen then there are no
particularly influential observations.

maxit.new, trace.new, smallno

Having maxit.new = 1 will give a one IRLS step approximation from the ordi-
nary solution (and no warnings!). Else having maxit.new = 10, say, should usu-
ally mean convergence will occur for all observations when they are removed
one-at-a-time. Else having maxit.new = 2, say, should usually mean some lack
of convergence will occur when observations are removed one-at-a-time. Set-
ting trace.new = TRUE will produce some running output at each IRLS iteration
and for each individual row of the model matrix. The argument smallno mul-
tiplies each value of the original prior weight (often unity); setting it identically
to zero will result in an error, but setting a very small value effectively removes
that observation.

... further arguments, for example, graphical parameters for hatplot.vlm().

Details

The invocation hatvalues(vglmObject) should return a n ×M matrix of the diagonal elements
of the hat (projection) matrix of a vglm object. To do this, the QR decomposition of the object is
retrieved or reconstructed, and then straightforward calculations are performed.

The invocation hatplot(vglmObject) should plot the diagonal of the hat matrix for each of the M
linear/additive predictors. By default, two horizontal dashed lines are added; hat values higher than
these ought to be checked.

Note

It is hoped, soon, that the full suite of functions described at influence.measures will be written
for VGLMs. This will enable general regression deletion diagnostics to be available for the entire
VGLM class.

Author(s)

T. W. Yee.

See Also

vglm, cumulative, influence.measures.

Examples

Proportional odds model, p.179, in McCullagh and Nelder (1989)
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, cumulative, data = pneumo)
hatvalues(fit) # n x M matrix, with positive values
all.equal(sum(hatvalues(fit)), fit@rank) # Should be TRUE
Not run: par(mfrow = c(1, 2))
hatplot(fit, ylim = c(0, 1), las = 1, col = "blue")
End(Not run)

404 hdeff

hdeff Hauck-Donner Effects: A Detection Test for Wald Tests

Description

A detection test for the Hauck-Donner effect on each regression coefficient of a VGLM regression
or 2 x 2 table.

Usage

hdeff(object, ...)
hdeff.vglm(object, derivative = NULL, se.arg = FALSE, subset = NULL,

theta0 = 0, hstep = 0.005, fd.only = FALSE, ...)
hdeff.numeric(object, byrow = FALSE, ...)
hdeff.matrix(object, ...)

Arguments

object Usually a vglm object. Although only a limited number of family functions have
an analytical solution to the HDE detection test (binomialff, borel.tanner,
cumulative, erlang, felix, lindley, poissonff, topple, uninormal, zipoissonff,
and zipoisson; hopefully some more will be implemented in the short future!)
the finite-differences (FDs) method can be applied to almost all VGAM family
functions to get a numerical solution.
Alternatively object may represent a 2 x 2 table of positive counts. If so, then
the first row corresponds to x2 = 0 (baseline group) and the second row x2 = 1.
The first column corresponds to y = 0 (failure) and the second column y = 1
(success).
Another alternative is that object is a numerical vector of length 4, representing
a 2 x 2 table of positive counts. If so then it is fed into hdeff.matrix using the
argument byrow, which matches matrix. See the examples below.

derivative Numeric. Either 1 or 2. Currently only a few models having one linear predic-
tor are handled analytically for derivative = 2, e.g., binomialff, poissonff.
However, the numerical method can return the first two derivatives for almost
all models.

se.arg Logical. If TRUE then the derivatives of the standard errors are returned as well,
because usually the derivatives of the Wald statistics are of central interest. Re-
quires derivative to be assigned the value 1 or 2 for this argument to operate.

subset Logical or vector of indices, to select the regression coefficients of interest. The
default is to select all coefficients. Recycled if necessary if logical. If numeric
then they should comprise elements from 1:length(coef(object)). This ar-
gument can be useful for computing the derivatives of a Cox regression (coxph)
fitted using artificially created Poisson data; then there are many coefficients that
are effectively nuisance parameters.

hdeff 405

theta0 Numeric. Vector recycled to the necessary length which is the number of re-
gression coefficients. The null hypotheses for the regression coefficients are that
they equal those respective values, and the alternative hypotheses are all two-
sided. It is not recommended that argument subset be used if a vector of values
is assigned here because theta0[subset] is implied and might not work.

hstep Positive numeric and recycled to length 2; it is the so-called step size when using
finite-differences and is often called h in the calculus literature, e.g., f ′(x) is
approximately (f(x+h)−f(x))/h. For the 2nd-order partial derivatives, there
are two step sizes and hence this argument is recycled to length 2. The default
is to have the same values. The 1st-order derivatives use the first value only. It
is recommended that a few values of this argument be tried because values of
the first and second derivatives can vary accordingly. If any values are too large
then the derivatives may be inaccurate; and if too small then the derivatives may
be unstable and subject to too much round-off/cancellation error (in fact it may
create an error or a NA).

fd.only Logical; if TRUE then finite-differences are used to estimate the derivatives even
if an analytical solution has been coded, By default, finite-differences will be
used when an analytical solution has not been implemented.

It is possible that NAs are returned. If so, and if fd.only = FALSE, then a warning
is issued and a recursive call is made with fd.only = TRUE—this is more likely
to return an answer without any NAs.

byrow Logical; fed into matrix if object is a vector of length 4 so that there are two
choices in the order of the elements.

... currently unused but may be used in the future for further arguments passed into
the other methods functions.

Details

Almost all of statistical inference based on the likelihood assumes that the parameter estimates are
located in the interior of the parameter space. The nonregular case of being located on the boundary
is not considered very much and leads to very different results from the regular case. Practically, an
important question is: how close is close to the boundary? One might answer this as: the parameter
estimates are too close to the boundary when the Hauck-Donner effect (HDE) is present, whereby
the Wald statistic becomes aberrant.

Hauck and Donner (1977) first observed an aberration of the Wald test statistic not monotonically
increasing as a function of increasing distance between the parameter estimate and the null value.
This "disturbing" and "undesirable" underappreciated effect has since been observed in other regres-
sion models by various authors. This function computes the first, and possibly second, derivative of
the Wald statistic for each regression coefficient. A negative value of the first derivative is indica-
tive of the HDE being present. More information can be obtained from hdeffsev regarding HDE
severity: there may be none, faint, weak, moderate, strong and extreme amounts of HDE present.

In general, most models have derivatives that are computed numerically using finite-difference ap-
proximations. The reason is that it takes a lot of work to program in the analytical solution (this
includes a few very common models, such as poissonff and binomialff, where the first two
derivatives have been implemented).

406 hdeff

Value

By default this function returns a labelled logical vector; a TRUE means the HDE is affirmative for
that coefficient (negative slope). Hence ideally all values are FALSE. Any TRUE values suggests
that the MLE is too near the boundary of the parameter space, and that the p-value for that regres-
sion coefficient is biased upwards. When present a highly significant variable might be deemed
nonsignificant, and thus the HDE can create havoc for variable selection. If the HDE is present
then more accurate p-values can generally be obtained by conducting a likelihood ratio test (see
lrt.stat.vlm) or Rao’s score test (see score.stat.vlm); indeed the default of wald.stat.vlm
does not suffer from the HDE.

Setting deriv = 1 returns a numerical vector of first derivatives of the Wald statistics. Setting deriv
= 2 returns a 2-column matrix of first and second derivatives of the Wald statistics. Then setting
se.arg = TRUE returns an additional 1 or 2 columns.

Some 2nd derivatives are NA if only a partial analytic solution has been programmed in.

For those VGAM family functions whose HDE test has not yet been implemented explicitly (the
vast majority of them), finite-difference approximations to the derivatives will be used—see the
arguments hstep and fd.only for getting some control on them.

Note

The function summaryvglm conducts the HDE detection test if possible and prints out a line at
the bottom if the HDE is detected for some regression coefficients. By “if possible”, only a few
family functions are exempt and they have an infos slot with component hadof = FALSE; such
as normal.vcm, rec.normal because it uses the BFGS-IRLS method for computing the working
weights. For these few a NULL is returned by hdeff.

If the second derivatives are of interest then it is recommended that crit = "c" be added to the
fitting so that a slightly more accurate model results (usually one more IRLS iteration). This is
because the FD approximation is very sensitive to values of the working weights, so they need to be
computed accurately. Occasionally, if the coefficient is close to 0, then its Wald statistic’s second
derivative may be unusually large in magnitude (this could be due to something such as roundoff
error).

This function is currently under development and may change a little in the short future. For HDE
severity measures see hdeffsev.

Author(s)

Thomas W. Yee.

References

Hauck, J. W. W. and A. Donner (1977). Wald’s test as applied to hypotheses in logit analysis.
Journal of the American Statistical Association, 72, 851–853. Corrigenda: JASA, 75, 482.

Yee, T. W. (2022) On the Hauck-Donner effect in Wald tests: Detection, tipping points and param-
eter space characterization, Journal of the American Statistical Association, in press.

Yee, T. W. (2021). Some new results concerning the Hauck-Donner effect. Manuscript in prepara-
tion.

hdeffsev 407

See Also

summaryvglm, hdeffsev, vglm, lrt.stat, score.stat, wald.stat, confintvglm, profilevglm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, data = pneumo,

trace = TRUE, crit = "c", # Get some more accuracy
cumulative(reverse = TRUE, parallel = TRUE))

cumulative()@infos()$hadof # Analytical solution implemented
hdeff(fit)
hdeff(fit, deriv = 1) # Analytical solution
hdeff(fit, deriv = 2) # It is a partial analytical solution
hdeff(fit, deriv = 2, se.arg = TRUE,

fd.only = TRUE) # All derivatives solved numerically by FDs

2 x 2 table of counts
R0 <- 25; N0 <- 100 # Hauck Donner (1977) data set
mymat <- c(N0-R0, R0, 8, 92) # HDE present
(mymat <- matrix(mymat, 2, 2, byrow = TRUE))
hdeff(mymat)
hdeff(c(mymat)) # Input is a vector
hdeff(c(t(mymat)), byrow = TRUE) # Reordering of the data

hdeffsev Hauck-Donner Effects: Severity Measures

Description

Computes the severity of the Hauck-Donner effect for each regression coefficient of a VGLM re-
gression.

Usage

hdeffsev(x, y, dy, ddy, allofit = FALSE, tol0 = 0.1,
severity.table = c("None", "Faint", "Weak", "Moderate",

"Strong", "Extreme", "Undetermined"))

Arguments

x, y Numeric vectors; x are the estimates, and y are the Wald statistics.

dy, ddy Numeric vectors; the first and second derivatives of the Wald statistics. They
can be computed by hdeff.

allofit Logical. If TRUE then other quantities are returned in a list. The default is a
vector with elements selected from the argument severity.table.

severity.table Character vector with 7 values. The last value is used for initialization. Usually
users should not assign anything to arguments severity.table or tol0.

408 hdeffsev

tol0 Numeric. Any estimate whose absolute value is less than tol0 is assigned the
first value of the argument severity.table, i.e., none. This is to handle a
singularity at the origin: the estimates might be extremely close to 0.

Details

This function is rough-and-ready. It is possible to use the first two derivatives obtained from hdeff
to categorize the severity of the the Hauck-Donner effect (HDE). It is effectively assumed that,
starting at the origin and going right, the curve is made up of a convex segment followed by a
concave segment and then the convex segment. Midway in the concave segment the derivative is 0,
and beyond that the HDE is really manifest because the derivative is negative.

For "none" the estimate lies on the convex part of the curve near the origin, hence there is no HDE
at all.

For "faint" and "weak" the estimate lies on the concave part of the curve but the Wald statistic is
still increasing as estimate gets away from 0, hence it is only a mild HDE.

For "moderate", "strong" and "extreme" the Wald statistic is decreasing as the estimate gets
away from 0, hence it really does exhibit the HDE. It is recommended that lrt.stat be used to
compute LRT p-values, as they do not suffer from the HDE.

Value

By default this function returns a labelled vector with elements selected from severity.table.
If allofit = TRUE then Yee (2018) gives details about the other list components: a quantity called
zeta is the normal line projected onto the x-axis, and its first derivative gives additional information
about the position of the estimate along the curve.

Note

This function is likely to change in the short future because it is experimental and far from complete.
Improvements are intended.

See hdeff; Yee (2018) gives details on VGLM HDE detection, severity measures, two tipping
points (1/4 and 3/5), parameter space partitioning into several regions, and a bound for the HDE for
1-parameter binary regression, etc.

Author(s)

Thomas W. Yee.

References

Yee, T. W. (2022). On the Hauck-Donner effect in Wald tests: Detection, tipping points and param-
eter space characterization. Journal of the American Statistical Association, in press.

Yee, T. W. (2021). Some new results concerning the Hauck-Donner effect. Manuscript in prepara-
tion.

See Also

seglines, hdeff.

hormone 409

Examples

deg <- 4 # myfun is a function that approximates the HDE
myfun <- function(x, deriv = 0) switch(as.character(deriv),

'0' = x^deg * exp(-x),
'1' = (deg * x^(deg-1) - x^deg) * exp(-x),
'2' = (deg*(deg-1)*x^(deg-2) - 2*deg*x^(deg-1) + x^deg)*exp(-x))

xgrid <- seq(0, 10, length = 101)
ansm <- hdeffsev(xgrid, myfun(xgrid), myfun(xgrid, deriv = 1),

myfun(xgrid, deriv = 2), allofit = TRUE)
digg <- 4
cbind(severity = ansm$sev,

fun = round(myfun(xgrid), digg),
deriv1 = round(myfun(xgrid, deriv = 1), digg),
deriv2 = round(myfun(xgrid, deriv = 2), digg),
zderiv1 = round(1 + (myfun(xgrid, deriv = 1))^2 +

myfun(xgrid, deriv = 2) * myfun(xgrid), digg))

hormone Hormone Assay Data

Description

A hormone assay data set from Carroll and Ruppert (1988).

Usage

data(hormone)

Format

A data frame with 85 observations on the following 2 variables.

X a numeric vector, suitable as the x-axis in a scatter plot. The reference method.

Y a numeric vector, suitable as the y-axis in a scatter plot. The test method.

Details

The data is given in Table 2.4 of Carroll and Ruppert (1988), and was downloaded from http://www.stat.tamu.edu/~carroll
prior to 2019. The book describes the data as follows. The data are the results of two assay methods
for hormone data; the scale of the data as presented is not particularly meaningful, and the original
source of the data refused permission to divulge further information. As in a similar example of
Leurgans (1980), the old or reference method is being used to predict the new or test method. The
overall goal is to see whether we can reproduce the test-method measurements with the reference-
method measurements. Thus calibration might be of interest for the data.

410 hormone

References

Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression. New York,
USA: Chapman & Hall.

Leurgans, S. (1980). Evaluating laboratory measurement techniques. Biostatistics Casebook. Eds.:
Miller, R. G. Jr., and Efron, B. and Brown, B. W. Jr., and Moses, L. New York, USA: Wiley.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

See Also

uninormal, rrvglm.

Examples

Not run:
data(hormone)
summary(hormone)

modelI <-rrvglm(Y ~ 1 + X, data = hormone, trace = TRUE,
uninormal(zero = NULL, lsd = "identitylink", imethod = 2))

Alternative way to fit modelI
modelI.other <- vglm(Y ~ 1 + X, data = hormone, trace = TRUE,

uninormal(zero = NULL, lsd = "identitylink"))

Inferior to modelI
modelII <- vglm(Y ~ 1 + X, data = hormone, trace = TRUE,

family = uninormal(zero = NULL))

logLik(modelI)
logLik(modelII) # Less than logLik(modelI)

Reproduce the top 3 equations on p.65 of Carroll and Ruppert (1988).
They are called Equations (1)--(3) here.

Equation (1)
hormone <- transform(hormone, rX = 1 / X)
clist <- list("(Intercept)" = diag(2), X = diag(2), rX = rbind(0, 1))
fit1 <- vglm(Y ~ 1 + X + rX, family = uninormal(zero = NULL),

constraints = clist, data = hormone, trace = TRUE)
coef(fit1, matrix = TRUE)
summary(fit1) # Actually, the intercepts do not seem significant
plot(Y ~ X, hormone, col = "blue")
lines(fitted(fit1) ~ X, hormone, col = "orange")

Equation (2)
fit2 <- rrvglm(Y ~ 1 + X, uninormal(zero = NULL), hormone, trace = TRUE)
coef(fit2, matrix = TRUE)
plot(Y ~ X, hormone, col = "blue")
lines(fitted(fit2) ~ X, hormone, col = "red")

hspider 411

Add +- 2 SEs
lines(fitted(fit2) + 2 * exp(predict(fit2)[, "loglink(sd)"]) ~ X,

hormone, col = "orange")
lines(fitted(fit2) - 2 * exp(predict(fit2)[, "loglink(sd)"]) ~ X,

hormone, col = "orange")

Equation (3)
Does not fit well because the loglink link for the mean is not good.
fit3 <- rrvglm(Y ~ 1 + X, maxit = 300, data = hormone, trace = TRUE,

uninormal(lmean = "loglink", zero = NULL))
coef(fit3, matrix = TRUE)
plot(Y ~ X, hormone, col = "blue") # Does not look okay.
lines(exp(predict(fit3)[, 1]) ~ X, hormone, col = "red")
Add +- 2 SEs
lines(fitted(fit3) + 2 * exp(predict(fit3)[, "loglink(sd)"]) ~ X,

hormone, col = "orange")
lines(fitted(fit3) - 2 * exp(predict(fit3)[, "loglink(sd)"]) ~ X,

hormone, col = "orange")

End(Not run)

hspider Hunting Spider Data

Description

Abundance of hunting spiders in a Dutch dune area.

Usage

data(hspider)

Format

A data frame with 28 observations (sites) on the following 18 variables.

WaterCon Log percentage of soil dry mass.

BareSand Log percentage cover of bare sand.

FallTwig Log percentage cover of fallen leaves and twigs.

CoveMoss Log percentage cover of the moss layer.

CoveHerb Log percentage cover of the herb layer.

ReflLux Reflection of the soil surface with cloudless sky.

Alopacce Abundance of Alopecosa accentuata.

Alopcune Abundance of Alopecosa cuneata.

Alopfabr Abundance of Alopecosa fabrilis.

Arctlute Abundance of Arctosa lutetiana.

412 hspider

Arctperi Abundance of Arctosa perita.

Auloalbi Abundance of Aulonia albimana.

Pardlugu Abundance of Pardosa lugubris.

Pardmont Abundance of Pardosa monticola.

Pardnigr Abundance of Pardosa nigriceps.

Pardpull Abundance of Pardosa pullata.

Trocterr Abundance of Trochosa terricola.

Zoraspin Abundance of Zora spinimana.

Details

The data, which originally came from Van der Aart and Smeek-Enserink (1975) consists of abun-
dances (numbers trapped over a 60 week period) and 6 environmental variables. There were 28
sites.

This data set has been often used to illustrate ordination, e.g., using canonical correspondence
analysis (CCA). In the example below, the data is used for constrained quadratic ordination (CQO;
formerly called canonical Gaussian ordination or CGO), a numerically intensive method that has
many superior qualities. See cqo for details.

References

Van der Aart, P. J. M. and Smeek-Enserink, N. (1975). Correlations between distributions of hunting
spiders (Lycosidae, Ctenidae) and environmental characteristics in a dune area. Netherlands Journal
of Zoology, 25, 1–45.

Examples

summary(hspider)

Not run:
Standardize the environmental variables:
hspider[, 1:6] <- scale(subset(hspider, select = WaterCon:ReflLux))

Fit a rank-1 binomial CAO
hsbin <- hspider # Binary species data
hsbin[, -(1:6)] <- as.numeric(hsbin[, -(1:6)] > 0)
set.seed(123)
ahsb1 <- cao(cbind(Alopcune, Arctlute, Auloalbi, Zoraspin) ~

WaterCon + ReflLux,
family = binomialff(multiple.responses = TRUE),
df1.nl = 2.2, Bestof = 3, data = hsbin)

par(mfrow = 2:1, las = 1)
lvplot(ahsb1, type = "predictors", llwd = 2,

ylab = "logitlink(p)", lcol = 1:9)
persp(ahsb1, rug = TRUE, col = 1:10, lwd = 2)
coef(ahsb1)

End(Not run)

huber2 413

huber2 Huber’s Least Favourable Distribution Family Function

Description

M-estimation of the two parameters of Huber’s least favourable distribution. The one parameter
case is also implemented.

Usage

huber1(llocation = "identitylink", k = 0.862, imethod = 1)
huber2(llocation = "identitylink", lscale = "loglink",

k = 0.862, imethod = 1, zero = "scale")

Arguments

llocation, lscale

Link functions applied to the location and scale parameters. See Links for more
choices.

k Tuning constant. See rhuber for more information.

imethod, zero See CommonVGAMffArguments for information. The default value of zero means
the scale parameter is modelled as intercept-only.

Details

Huber’s least favourable distribution family function is popular for resistant/robust regression. The
center of the distribution is normal and its tails are double exponential.

By default, the mean is the first linear/additive predictor (returned as the fitted values; this is the
location parameter), and the log of the scale parameter is the second linear/additive predictor. The
Fisher information matrix is diagonal; Fisher scoring is implemented.

The VGAM family function huber1() estimates only the location parameter. It assumes a scale
parameter of unit value.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

Warning: actually, huber2() may be erroneous since the first derivative is not continuous when
there are two parameters to estimate. huber1() is fine in this respect.

The response should be univariate.

Author(s)

T. W. Yee. Help was given by Arash Ardalan.

414 Huggins89.t1

References

Huber, P. J. and Ronchetti, E. (2009). Robust Statistics, 2nd ed. New York: Wiley.

See Also

rhuber, uninormal, laplace, CommonVGAMffArguments.

Examples

set.seed(1231); NN <- 30; coef1 <- 1; coef2 <- 10
hdata <- data.frame(x2 = sort(runif(NN)))
hdata <- transform(hdata, y = rhuber(NN, mu = coef1 + coef2 * x2))

hdata$x2[1] <- 0.0 # Add an outlier
hdata$y[1] <- 10

fit.huber2 <- vglm(y ~ x2, huber2(imethod = 3), hdata, trace = TRUE)
fit.huber1 <- vglm(y ~ x2, huber1(imethod = 3), hdata, trace = TRUE)

coef(fit.huber2, matrix = TRUE)
summary(fit.huber2)

Not run: # Plot the results
plot(y ~ x2, data = hdata, col = "blue", las = 1)
lines(fitted(fit.huber2) ~ x2, data = hdata, col = "darkgreen", lwd = 2)

fit.lm <- lm(y ~ x2, hdata) # Compare to a LM:
lines(fitted(fit.lm) ~ x2, data = hdata, col = "lavender", lwd = 3)

Compare to truth:
lines(coef1 + coef2 * x2 ~ x2, data = hdata, col = "orange",

lwd = 2, lty = "dashed")

legend("bottomright", legend = c("truth", "huber", "lm"),
col = c("orange", "darkgreen", "lavender"),
lty = c("dashed", "solid", "solid"), lwd = c(2, 2, 3))

End(Not run)

Huggins89.t1 Table 1 of Huggins (1989)

Description

Simulated capture data set for the linear logistic model depending on an occasion covariate and an
individual covariate for 10 trapping occasions and 20 individuals.

Huggins89.t1 415

Usage

data(Huggins89table1)
data(Huggins89.t1)

Format

The format is a data frame.

Details

Table 1 of Huggins (1989) gives this toy data set. Note that variables t1,. . . ,t10 are occasion-
specific variables. They correspond to the response variables y1,. . . ,y10 which have values 1 for
capture and 0 for not captured.

Both Huggins89table1 and Huggins89.t1 are identical. The latter used variables beginning with
z, not t, and may be withdrawn very soon.

References

Huggins, R. M. (1989). On the statistical analysis of capture experiments. Biometrika, 76, 133–140.

Examples

Huggins89table1 <- transform(Huggins89table1, x3.tij = t01,
T02 = t02, T03 = t03, T04 = t04, T05 = t05, T06 = t06,
T07 = t07, T08 = t08, T09 = t09, T10 = t10)

small.table1 <- subset(Huggins89table1,
y01 + y02 + y03 + y04 + y05 + y06 + y07 + y08 + y09 + y10 > 0)

fit.tbh is the bottom equation on p.133.
It is a M_tbh model.
fit.tbh <-

vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2 + x3.tij,
xij = list(x3.tij ~ t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 + t09 + t10 +

T02 + T03 + T04 + T05 + T06 + T07 + T08 + T09 + T10 - 1),
posbernoulli.tb(parallel.t = TRUE ~ x2 + x3.tij),
data = small.table1, trace = TRUE,
form2 = ~ x2 + x3.tij +

t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 + t09 + t10 +
T02 + T03 + T04 + T05 + T06 + T07 + T08 + T09 + T10)

These results differ a bit from Huggins (1989), probably because
two animals had to be removed here (they were never caught):
coef(fit.tbh) # First element is the behavioural effect
sqrt(diag(vcov(fit.tbh))) # SEs
constraints(fit.tbh, matrix = TRUE)
summary(fit.tbh, presid = FALSE)
fit.tbh@extra$N.hat # Estimate of the population site N; cf. 20.86
fit.tbh@extra$SE.N.hat # Its standard error; cf. 1.87 or 4.51

fit.th <- vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2,
posbernoulli.t, data = small.table1, trace = TRUE)

coef(fit.th)

416 hunua

constraints(fit.th)
coef(fit.th, matrix = TRUE) # M_th model
summary(fit.th, presid = FALSE)
fit.th@extra$N.hat # Estimate of the population size N
fit.th@extra$SE.N.hat # Its standard error

fit.bh <- vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2,
posbernoulli.b(I2 = FALSE), data = small.table1, trace = TRUE)

coef(fit.bh)
constraints(fit.bh)
coef(fit.bh, matrix = TRUE) # M_bh model
summary(fit.bh, presid = FALSE)
fit.bh@extra$N.hat
fit.bh@extra$SE.N.hat

fit.h <- vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2,
posbernoulli.b, data = small.table1, trace = TRUE)

coef(fit.h, matrix = TRUE) # M_h model (version 1)
coef(fit.h)
summary(fit.h, presid = FALSE)
fit.h@extra$N.hat
fit.h@extra$SE.N.hat

Fit.h <- vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2,
posbernoulli.t(parallel.t = TRUE ~ x2),
data = small.table1, trace = TRUE)

coef(Fit.h)
coef(Fit.h, matrix = TRUE) # M_h model (version 2)
summary(Fit.h, presid = FALSE)
Fit.h@extra$N.hat
Fit.h@extra$SE.N.hat

hunua Hunua Ranges Data

Description

The hunua data frame has 392 rows and 18 columns. Altitude is explanatory, and there are binary
responses (presence/absence = 1/0 respectively) for 17 plant species.

Usage

data(hunua)

Format

This data frame contains the following columns:

agaaus Agathis australis, or Kauri

beitaw Beilschmiedia tawa, or Tawa

hunua 417

corlae Corynocarpus laevigatus

cyadea Cyathea dealbata

cyamed Cyathea medullaris

daccup Dacrydium cupressinum

dacdac Dacrycarpus dacrydioides

eladen Elaecarpus dentatus

hedarb Hedycarya arborea

hohpop Species name unknown

kniexc Knightia excelsa, or Rewarewa

kuneri Kunzea ericoides

lepsco Leptospermum scoparium

metrob Metrosideros robusta

neslan Nestegis lanceolata

rhosap Rhopalostylis sapida

vitluc Vitex lucens, or Puriri

altitude meters above sea level

Details

These were collected from the Hunua Ranges, a small forest in southern Auckland, New Zealand.
At 392 sites in the forest, the presence/absence of 17 plant species was recorded, as well as the
altitude. Each site was of area size 200m2.

Source

Dr Neil Mitchell, University of Auckland.

See Also

waitakere.

Examples

Fit a GAM using vgam() and compare it with the Waitakere Ranges one
fit.h <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = hunua)
Not run:
plot(fit.h, se = TRUE, lcol = "orange", scol = "orange",

llwd = 2, slwd = 2, main = "Orange is Hunua, Blue is Waitakere")
End(Not run)
head(predict(fit.h, hunua, type = "response"))

fit.w <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = waitakere)
Not run:
plot(fit.w, se = TRUE, lcol = "blue", scol = "blue", add = TRUE)
End(Not run)
head(predict(fit.w, hunua, type = "response")) # Same as above?

418 hyperg

hyperg Hypergeometric Family Function

Description

Family function for a hypergeometric distribution where either the number of white balls or the total
number of white and black balls are unknown.

Usage

hyperg(N = NULL, D = NULL, lprob = "logitlink", iprob = NULL)

Arguments

N Total number of white and black balls in the urn. Must be a vector with positive
values, and is recycled, if necessary, to the same length as the response. One of
N and D must be specified.

D Number of white balls in the urn. Must be a vector with positive values, and is
recycled, if necessary, to the same length as the response. One of N and D must
be specified.

lprob Link function for the probabilities. See Links for more choices.

iprob Optional initial value for the probabilities. The default is to choose initial values
internally.

Details

Consider the scenario from dhyper where there are N = m + n balls in an urn, where m are
white and n are black. A simple random sample (i.e., without replacement) of k balls is taken. The
response here is the sample proportion of white balls. In this document, N is N = m + n, D is
m (for the number of “defectives”, in quality control terminology, or equivalently, the number of
marked individuals). The parameter to be estimated is the population proportion of white balls, viz.
prob = m/(m+ n).

Depending on which one of N and D is inputted, the estimate of the other parameter can be obtained
from the equation prob = m/(m+ n), or equivalently, prob = D/N. However, the log-factorials are
computed using lgamma and both m and n are not restricted to being integer. Thus if an integer N
is to be estimated, it will be necessary to evaluate the likelihood function at integer values about the
estimate, i.e., at trunc(Nhat) and ceiling(Nhat) where Nhat is the (real) estimate of N .

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, vgam, rrvglm, cqo, and cao.

Warning

No checking is done to ensure that certain values are within range, e.g., k ≤ N .

hypersecant 419

Note

The response can be of one of three formats: a factor (first level taken as success), a vector of
proportions of success, or a 2-column matrix (first column = successes) of counts. The argument
weights in the modelling function can also be specified. In particular, for a general vector of
proportions, you will need to specify weights because the number of trials is needed.

Author(s)

Thomas W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

dhyper, binomialff.

Examples

nn <- 100
m <- 5 # Number of white balls in the population
k <- rep(4, len = nn) # Sample sizes
n <- 4 # Number of black balls in the population
y <- rhyper(nn = nn, m = m, n = n, k = k)
yprop <- y / k # Sample proportions

N is unknown, D is known. Both models are equivalent:
fit <- vglm(cbind(y,k-y) ~ 1, hyperg(D = m), trace = TRUE, crit = "c")
fit <- vglm(yprop ~ 1, hyperg(D = m), weight = k, trace = TRUE, crit = "c")

N is known, D is unknown. Both models are equivalent:
fit <- vglm(cbind(y, k-y) ~ 1, hyperg(N = m+n), trace = TRUE, crit = "l")
fit <- vglm(yprop ~ 1, hyperg(N = m+n), weight = k, trace = TRUE, crit = "l")

coef(fit, matrix = TRUE)
Coef(fit) # Should be equal to the true population proportion
unique(m / (m+n)) # The true population proportion
fit@extra
head(fitted(fit))
summary(fit)

hypersecant Hyperbolic Secant Regression Family Function

Description

Estimation of the parameter of the hyperbolic secant distribution.

420 hypersecant

Usage

hypersecant(link.theta = extlogitlink(min = -pi/2, max = pi/2),
init.theta = NULL)

hypersecant01(link.theta = extlogitlink(min = -pi/2, max = pi/2),
init.theta = NULL)

Arguments

link.theta Parameter link function applied to the parameter θ. See Links for more choices.

init.theta Optional initial value for θ. If failure to converge occurs, try some other value.
The default means an initial value is determined internally.

Details

The probability density function of the hyperbolic secant distribution is given by

f(y; θ) = exp(θy + log(cos(θ)))/(2 cosh(πy/2)),

for parameter −π/2 < θ < π/2 and all real y. The mean of Y is tan(θ) (returned as the fitted
values). Morris (1982) calls this model NEF-HS (Natural Exponential Family-Hyperbolic Secant).
It is used to generate NEFs, giving rise to the class of NEF-GHS (G for Generalized).

Another parameterization is used for hypersecant01(): let Y = (logitU)/π. Then this uses

f(u; θ) = (cos(θ)/π)× u−0.5+θ/π × (1− u)−0.5−θ/π,

for parameter −π/2 < θ < π/2 and 0 < u < 1. Then the mean of U is 0.5 + θ/π (returned as the
fitted values) and the variance is (π2 − 4θ2)/(8π2).

For both parameterizations Newton-Raphson is same as Fisher scoring.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Author(s)

T. W. Yee

References

Jorgensen, B. (1997). The Theory of Dispersion Models. London: Chapman & Hall.

Morris, C. N. (1982). Natural exponential families with quadratic variance functions. The Annals
of Statistics, 10(1), 65–80.

See Also

extlogitlink.

Hzeta 421

Examples

hdata <- data.frame(x2 = rnorm(nn <- 200))
hdata <- transform(hdata, y = rnorm(nn)) # Not very good data!
fit1 <- vglm(y ~ x2, hypersecant, hdata, trace = TRUE, crit = "c")
coef(fit1, matrix = TRUE)
fit1@misc$earg

Not recommended:
fit2 <- vglm(y ~ x2, hypersecant(link = "identitylink"), hdata)
coef(fit2, matrix = TRUE)
fit2@misc$earg

Hzeta Haight’s Zeta Distribution

Description

Density, distribution function, quantile function and random generation for Haight’s zeta distribu-
tion with parameter shape.

Usage

dhzeta(x, shape, log = FALSE)
phzeta(q, shape, log.p = FALSE)
qhzeta(p, shape)
rhzeta(n, shape)

Arguments

x, q, p, n Same meaning as runif.

shape The positive shape parameter. Called α below.

log,log.p Same meaning as in pnorm or qnorm.

Details

The probability function is

f(x) = (2x− 1)(−α) − (2x+ 1)(−α),

where α > 0 and x = 1, 2,

Value

dhzeta gives the density, phzeta gives the distribution function, qhzeta gives the quantile function,
and rhzeta generates random deviates.

Note

Given some response data, the VGAM family function hzeta estimates the parameter shape.

422 hzeta

Author(s)

T. W. Yee and Kai Huang

See Also

hzeta, zeta, zetaff, simulate.vlm.

Examples

dhzeta(1:20, 2.1)
rhzeta(20, 2.1)

round(1000 * dhzeta(1:8, 2))
table(rhzeta(1000, 2))

Not run: shape <- 1.1; x <- 1:10
plot(x, dhzeta(x, shape = shape), type = "h", ylim = 0:1,

sub = paste("shape =", shape), las = 1, col = "blue",
ylab = "Probability", lwd = 2,
main = "Haight's zeta: blue = density; orange = CDF")

lines(x+0.1, phzeta(x, shape = shape), col = "orange", lty = 3, lwd = 2,
type = "h")

End(Not run)

hzeta Haight’s Zeta Family Function

Description

Estimating the parameter of Haight’s zeta distribution

Usage

hzeta(lshape = "logloglink", ishape = NULL, nsimEIM = 100)

Arguments

lshape Parameter link function for the parameter, called α below. See Links for more
choices. Here, a log-log link keeps the parameter greater than one, meaning the
mean is finite.

ishape,nsimEIM See CommonVGAMffArguments for more information.

iam 423

Details

The probability function is

f(y) = (2y − 1)(−α) − (2y + 1)(−α),

where the parameter α > 0 and y = 1, 2, The function dhzeta computes this probability
function. The mean of Y , which is returned as fitted values, is (1 − 2−α)ζ(α) provided α > 1,
where ζ is Riemann’s zeta function. The mean is a decreasing function of α. The mean is infinite if
α ≤ 1, and the variance is infinite if α ≤ 2.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Author(s)

T. W. Yee

References

Johnson N. L., Kemp, A. W. and Kotz S. (2005). Univariate Discrete Distributions, 3rd edition,
pp.533–4. Hoboken, New Jersey: Wiley.

See Also

Hzeta, zeta, zetaff, loglog, simulate.vlm.

Examples

shape <- exp(exp(-0.1)) # The parameter
hdata <- data.frame(y = rhzeta(n = 1000, shape))
fit <- vglm(y ~ 1, hzeta, data = hdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit) # Useful for intercept-only models; should be same as shape
c(with(hdata, mean(y)), head(fitted(fit), 1))
summary(fit)

iam Index from Array to Matrix

Description

Maps the elements of an array containing symmetric positive-definite matrices to a matrix with
sufficient columns to hold them (called matrix-band format.)

Usage

iam(j, k, M, both = FALSE, diag = TRUE)

424 iam

Arguments

j Usually an integer from the set {1:M} giving the row number of an element.
However, the argument can also be a vector of length M, for selecting an entire
row or column, e.g., iam(1:M, 1, M) or iam(1, 1:M, M).

k An integer from the set {1:M} giving the column number of an element.

M The number of linear/additive predictors. This is the dimension of each positive-
definite symmetric matrix.

both Logical. Return both the row and column indices? See below for more details.

diag Logical. Return the indices for the diagonal elements? If FALSE then only the
strictly upper triangular part of the matrix elements are used.

Details

Suppose we have n symmetric positive-definite square matrices, eachM byM , and these are stored
in an array of dimension c(n,M,M). Then these can be more compactly represented by a matrix
of dimension c(n,K) where K is an integer between M and M*(M+1)/2 inclusive. The mapping
between these two representations is given by this function. It firstly enumerates by the diagonal
elements, followed by the band immediately above the diagonal, then the band above that one, etc.
The last element is (1,M). This function performs the mapping from elements (j,k) of symmetric
positive-definite square matrices to the columns of another matrix representing such. This is called
the matrix-band format and is used by the VGAM package.

Value

This function has a dual purpose depending on the value of both. If both = FALSE then the column
number corresponding to the j-k element of the matrix is returned. If both = TRUE then j and k are
ignored and a list with the following components are returned.

row.index The row indices of the upper triangular part of the matrix (This may or may not
include the diagonal elements, depending on the argument diagonal).

col.index The column indices of the upper triangular part of the matrix (This may or may
not include the diagonal elements, depending on the argument diagonal).

Note

This function is used in the weight slot of many VGAM family functions (see vglmff-class),
especially those whose M is determined by the data, e.g., dirichlet, multinomial.

Author(s)

T. W. Yee

See Also

vglmff-class.

identitylink 425

Examples

iam(1, 2, M = 3) # The 4th coln represents elt (1,2) of a 3x3 matrix
iam(NULL, NULL, M = 3, both = TRUE) # Return the row & column indices

dirichlet()@weight

M <- 4
temp1 <- iam(NA, NA, M = M, both = TRUE)
mat1 <- matrix(NA, M, M)
mat1[cbind(temp1$row, temp1$col)] = 1:length(temp1$row)
mat1 # More commonly used

temp2 <- iam(NA, NA, M = M, both = TRUE, diag = FALSE)
mat2 <- matrix(NA, M, M)
mat2[cbind(temp2$row, temp2$col)] = 1:length(temp2$row)
mat2 # Rarely used

identitylink Identity Link Function

Description

Computes the identity transformation, including its inverse and the first two derivatives.

Usage

identitylink(theta, inverse = FALSE, deriv = 0, short = TRUE,
tag = FALSE)

negidentitylink(theta, inverse = FALSE, deriv = 0, short = TRUE,
tag = FALSE)

Arguments

theta Numeric or character. See below for further details.
inverse, deriv, short, tag

Details at Links.

Details

The identity link function g(θ) = θ should be available to every parameter estimated by the VGAM
library. However, it usually results in numerical problems because the estimates lie outside the
permitted range. Consequently, the result may contain Inf, -Inf, NA or NaN.

The function negidentitylink is the negative-identity link function and corresponds to g(θ) =
−θ. This is useful for some models, e.g., in the literature supporting the gevff function it seems
that half of the authors use ξ = −k for the shape parameter and the other half use k instead of ξ.

426 Influence

Value

For identitylink(): for deriv = 0, the identity of theta, i.e., theta when inverse = FALSE,
and if inverse = TRUE then theta. For deriv = 1, then the function returns d eta / d theta as a
function of theta if inverse = FALSE, else if inverse = TRUE then it returns the reciprocal.

For negidentitylink(): the results are similar to identitylink() except for a sign change in
most cases.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, loglink, logitlink, probitlink, powerlink.

Examples

identitylink((-5):5)
identitylink((-5):5, deriv = 1)
identitylink((-5):5, deriv = 2)
negidentitylink((-5):5)
negidentitylink((-5):5, deriv = 1)
negidentitylink((-5):5, deriv = 2)

Influence Influence Function (S4 generic) of a Fitted Model

Description

Returns a matrix containing the influence function of a fitted model, e.g., a "vglm" object.

Usage

Influence(object, ...)
Influence.vglm(object, weighted = TRUE, ...)

Arguments

object an object, especially that of class "vglm"—see vglm-class. Currently other
classes such as "vgam" are not yet implemented.

weighted Logical. Include the prior weights? Currently only TRUE is accepted. This might
change in the future and/or the default value might change.

... any additional arguments such as to allow or disallow the prior weights.

inv.binomial 427

Details

Influence functions are useful in fields such as sample survey theory, e.g., survey. For each i =
1, . . . , n, the formula is approximately−IU where I is the weighted Fisher information matrix and
U is the ith score vector.

Value

An n by p.vlm matrix.

Warning

This function is currently experimental and defaults may change. Use with caution! The functions
here should not be confused with lm.influence.

See Also

vglm, vglm-class, survey.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, acat, data = pneumo)
coef(fit) # 8-vector
Influence(fit) # 8 x 4
all(abs(colSums(Influence(fit))) < 1e-6) # TRUE

inv.binomial Inverse Binomial Distribution Family Function

Description

Estimates the two parameters of an inverse binomial distribution by maximum likelihood estima-
tion.

Usage

inv.binomial(lrho = extlogitlink(min = 0.5, max = 1),
llambda = "loglink", irho = NULL, ilambda = NULL, zero = NULL)

Arguments

lrho, llambda Link function for the ρ and λ parameters. See Links for more choices.

irho, ilambda Numeric. Optional initial values for ρ and λ.

zero See CommonVGAMffArguments.

428 inv.binomial

Details

The inverse binomial distribution of Yanagimoto (1989) has density function

f(y; ρ, λ) =
λΓ(2y + λ)

Γ(y + 1) Γ(y + λ+ 1)
{ρ(1− ρ)}yρλ

where y = 0, 1, 2, . . . and 1
2 < ρ < 1, and λ > 0. The first two moments exist for ρ > 1

2 ; then the
mean is λ(1− ρ)/(2ρ− 1) (returned as the fitted values) and the variance is λρ(1− ρ)/(2ρ− 1)3.
The inverse binomial distribution is a special case of the generalized negative binomial distribution
of Jain and Consul (1971). It holds that V ar(Y) > E(Y) so that the inverse binomial distribution
is overdispersed compared with the Poisson distribution.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

This VGAM family function only works reasonably well with intercept-only models. Good initial
values are needed; if convergence failure occurs use irho and/or ilambda.

Some elements of the working weight matrices use the expected information matrix while other
elements use the observed information matrix. Yet to do: using the mean and the reciprocal of λ
results in an EIM that is diagonal.

Author(s)

T. W. Yee

References

Yanagimoto, T. (1989). The inverse binomial distribution as a statistical model. Communications
in Statistics: Theory and Methods, 18, 3625–3633.

Jain, G. C. and Consul, P. C. (1971). A generalized negative binomial distribution. SIAM Journal
on Applied Mathematics, 21, 501–513.

Jorgensen, B. (1997). The Theory of Dispersion Models. London: Chapman & Hall

See Also

negbinomial, poissonff.

Examples

idata <- data.frame(y = rnbinom(n <- 1000, mu = exp(3), size = exp(1)))
fit <- vglm(y ~ 1, inv.binomial, data = idata, trace = TRUE)
with(idata, c(mean(y), head(fitted(fit), 1)))
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit)

Inv.gaussian 429

sum(weights(fit)) # Sum of the prior weights
sum(weights(fit, type = "work")) # Sum of the working weights

Inv.gaussian The Inverse Gaussian Distribution

Description

Density, distribution function and random generation for the inverse Gaussian distribution.

Usage

dinv.gaussian(x, mu, lambda, log = FALSE)
pinv.gaussian(q, mu, lambda)
rinv.gaussian(n, mu, lambda)

Arguments

x, q vector of quantiles.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

mu the mean parameter.

lambda the λ parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

See inv.gaussianff, the VGAM family function for estimating both parameters by maximum
likelihood estimation, for the formula of the probability density function.

Value

dinv.gaussian gives the density, pinv.gaussian gives the distribution function, and rinv.gaussian
generates random deviates.

Note

Currently qinv.gaussian is unavailable.

Author(s)

T. W. Yee

430 inv.gaussianff

References

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd
edition, Volume 1, New York: Wiley.

Taraldsen, G. and Lindqvist, B. H. (2005). The multiple roots simulation algorithm, the inverse
Gaussian distribution, and the sufficient conditional Monte Carlo method. Preprint Statistics No.
4/2005, Norwegian University of Science and Technology, Trondheim, Norway.

See Also

inv.gaussianff, waldff.

Examples

Not run: x <- seq(-0.05, 4, len = 300)
plot(x, dinv.gaussian(x, mu = 1, lambda = 1), type = "l",

col = "blue",las = 1, main =
"blue is density, orange is cumulative distribution function")

abline(h = 0, col = "gray", lty = 2)
lines(x, pinv.gaussian(x, mu = 1, lambda = 1), type = "l", col = "orange")
End(Not run)

inv.gaussianff Inverse Gaussian Distribution Family Function

Description

Estimates the two parameters of the inverse Gaussian distribution by maximum likelihood estima-
tion.

Usage

inv.gaussianff(lmu = "loglink", llambda = "loglink",
imethod = 1, ilambda = NULL,
parallel = FALSE, ishrinkage = 0.99, zero = NULL)

Arguments

lmu, llambda Parameter link functions for the µ and λ parameters. See Links for more
choices.

ilambda, parallel

See CommonVGAMffArguments for more information. If parallel = TRUE then
the constraint is not applied to the intercept.

imethod, ishrinkage, zero

See CommonVGAMffArguments for information.

inv.gaussianff 431

Details

The standard (“canonical”) form of the inverse Gaussian distribution has a density that can be
written as

f(y;µ, λ) =
√
λ/(2πy3) exp

(
−λ(y − µ)2/(2yµ2)

)
where y > 0, µ > 0, and λ > 0. The mean of Y is µ and its variance is µ3/λ. By default,
η1 = log(µ) and η2 = log(λ). The mean is returned as the fitted values. This VGAM family
function can handle multiple responses (inputted as a matrix).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

The inverse Gaussian distribution can be fitted (to a certain extent) using the usual GLM framework
involving a scale parameter. This family function is different from that approach in that it estimates
both parameters by full maximum likelihood estimation.

Author(s)

T. W. Yee

References

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd
edition, Volume 1, New York: Wiley.

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

Inv.gaussian, waldff, bisa.

The R package SuppDists has several functions for evaluating the density, distribution function,
quantile function and generating random numbers from the inverse Gaussian distribution.

Examples

idata <- data.frame(x2 = runif(nn <- 1000))
idata <- transform(idata, mymu = exp(2 + 1 * x2),

Lambda = exp(2 + 1 * x2))
idata <- transform(idata, y = rinv.gaussian(nn, mu = mymu, Lambda))
fit1 <- vglm(y ~ x2, inv.gaussianff, data = idata, trace = TRUE)
rrig <- rrvglm(y ~ x2, inv.gaussianff, data = idata, trace = TRUE)
coef(fit1, matrix = TRUE)
coef(rrig, matrix = TRUE)
Coef(rrig)
summary(fit1)

432 Inv.lomax

Inv.lomax The Inverse Lomax Distribution

Description

Density, distribution function, quantile function and random generation for the inverse Lomax dis-
tribution with shape parameter p and scale parameter scale.

Usage

dinv.lomax(x, scale = 1, shape2.p, log = FALSE)
pinv.lomax(q, scale = 1, shape2.p, lower.tail = TRUE, log.p = FALSE)
qinv.lomax(p, scale = 1, shape2.p, lower.tail = TRUE, log.p = FALSE)
rinv.lomax(n, scale = 1, shape2.p)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

shape2.p shape parameter.

scale scale parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See inv.lomax, which is the VGAM family function for estimating the parameters by maximum
likelihood estimation.

Value

dinv.lomax gives the density, pinv.lomax gives the distribution function, qinv.lomax gives the
quantile function, and rinv.lomax generates random deviates.

Note

The inverse Lomax distribution is a special case of the 4-parameter generalized beta II distribution.

Author(s)

T. W. Yee

inv.lomax 433

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

inv.lomax, genbetaII.

Examples

idata <- data.frame(y = rinv.lomax(n = 1000, exp(2), exp(1)))
fit <- vglm(y ~ 1, inv.lomax, idata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)

inv.lomax Inverse Lomax Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter inverse Lomax distribution.

Usage

inv.lomax(lscale = "loglink", lshape2.p = "loglink", iscale = NULL,
ishape2.p = NULL, imethod = 1, gscale = exp(-5:5),
gshape2.p = exp(-5:5), probs.y = c(0.25, 0.5, 0.75),
zero = "shape2.p")

Arguments

lscale, lshape2.p

Parameter link functions applied to the (positive) parameters b, and p. See Links
for more choices.

iscale, ishape2.p, imethod, zero

See CommonVGAMffArguments for information. For imethod = 2 a good initial
value for ishape2.p is needed to obtain a good estimate for the other parameter.

gscale, gshape2.p

See CommonVGAMffArguments for information.

probs.y See CommonVGAMffArguments for information.

434 inv.lomax

Details

The 2-parameter inverse Lomax distribution is the 4-parameter generalized beta II distribution with
shape parameters a = q = 1. It is also the 3-parameter Dagum distribution with shape parameter
a = 1, as well as the beta distribution of the second kind with q = 1. More details can be found in
Kleiber and Kotz (2003).

The inverse Lomax distribution has density

f(y) = pyp−1/[bp{1 + y/b}p+1]

for b > 0, p > 0, y ≥ 0. Here, b is the scale parameter scale, and p is a shape parameter. The mean
does not seem to exist; the median is returned as the fitted values. This family function handles
multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

See the notes in genbetaII.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

inv.lomax, genbetaII, betaII, dagum, sinmad, fisk, lomax, paralogistic, inv.paralogistic,
simulate.vlm.

Examples

idata <- data.frame(y = rinv.lomax(2000, sc = exp(2), exp(1)))
fit <- vglm(y ~ 1, inv.lomax, data = idata, trace = TRUE)
fit <- vglm(y ~ 1, inv.lomax(iscale = exp(3)), data = idata,

trace = TRUE, epsilon = 1e-8, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

Inv.paralogistic 435

Inv.paralogistic The Inverse Paralogistic Distribution

Description

Density, distribution function, quantile function and random generation for the inverse paralogistic
distribution with shape parameters a and p, and scale parameter scale.

Usage

dinv.paralogistic(x, scale = 1, shape1.a, log = FALSE)
pinv.paralogistic(q, scale = 1, shape1.a, lower.tail = TRUE,

log.p = FALSE)
qinv.paralogistic(p, scale = 1, shape1.a, lower.tail = TRUE,

log.p = FALSE)
rinv.paralogistic(n, scale = 1, shape1.a)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

shape1.a shape parameter.

scale scale parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See inv.paralogistic, which is the VGAM family function for estimating the parameters by
maximum likelihood estimation.

Value

dinv.paralogistic gives the density, pinv.paralogistic gives the distribution function, qinv.paralogistic
gives the quantile function, and rinv.paralogistic generates random deviates.

Note

The inverse paralogistic distribution is a special case of the 4-parameter generalized beta II distri-
bution.

Author(s)

T. W. Yee

436 inv.paralogistic

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

inv.paralogistic, genbetaII.

Examples

idata <- data.frame(y = rinv.paralogistic(3000, exp(1), sc = exp(2)))
fit <- vglm(y ~ 1, inv.paralogistic(lss = FALSE, ishape1.a = 2.1),

data = idata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)

inv.paralogistic Inverse Paralogistic Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter inverse paralogistic distribution.

Usage

inv.paralogistic(lscale = "loglink", lshape1.a = "loglink",
iscale = NULL, ishape1.a = NULL, imethod = 1,
lss = TRUE, gscale = exp(-5:5),
gshape1.a = seq(0.75, 4, by = 0.25), probs.y = c(0.25, 0.5,
0.75), zero = "shape")

Arguments

lss See CommonVGAMffArguments for important information.

lshape1.a, lscale

Parameter link functions applied to the (positive) parameters a and scale. See
Links for more choices.

iscale, ishape1.a, imethod, zero

See CommonVGAMffArguments for information. For imethod = 2 a good initial
value for ishape1.a is needed to obtain a good estimate for the other parameter.

gscale, gshape1.a

See CommonVGAMffArguments for information.

probs.y See CommonVGAMffArguments for information.

inv.paralogistic 437

Details

The 2-parameter inverse paralogistic distribution is the 4-parameter generalized beta II distribution
with shape parameter q = 1 and a = p. It is the 3-parameter Dagum distribution with a = p. More
details can be found in Kleiber and Kotz (2003).

The inverse paralogistic distribution has density

f(y) = a2ya
2−1/[ba

2

{1 + (y/b)a}a+1]

for a > 0, b > 0, y ≥ 0. Here, b is the scale parameter scale, and a is the shape parameter. The
mean is

E(Y) = bΓ(a+ 1/a) Γ(1− 1/a)/Γ(a)

provided a > 1; these are returned as the fitted values. This family function handles multiple
responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

See the notes in genbetaII.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Inv.paralogistic, genbetaII, betaII, dagum, sinmad, fisk, inv.lomax, lomax, paralogistic,
simulate.vlm.

Examples

idata <- data.frame(y = rinv.paralogistic(3000, exp(1), sc = exp(2)))
fit <- vglm(y ~ 1, inv.paralogistic(lss = FALSE), idata, trace = TRUE)
fit <- vglm(y ~ 1, inv.paralogistic(imethod = 2, ishape1.a = 4),

data = idata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

438 is.buggy

is.buggy Does the Fitted Object Suffer from a Known Bug?

Description

Checks to see if a fitted object suffers from some known bug.

Usage

is.buggy(object, ...)
is.buggy.vlm(object, each.term = FALSE, ...)

Arguments

object A fitted VGAM object, e.g., from vgam.

each.term Logical. If TRUE then a logical is returned for each term.

... Unused for now.

Details

It is known that vgam with s terms do not correctly handle constraint matrices (cmat, say) when
crossprod(cmat) is not diagonal. This function detects whether this is so or not. Note that proba-
bly all VGAM family functions have defaults where all crossprod(cmat)s are diagonal, therefore
do not suffer from this bug. It is more likely to occur if the user inputs constraint matrices using the
constraints argument (and setting zero = NULL if necessary).

Second-generation VGAMs based on sm.ps are a modern alternative to using s. It does not suffer
from this bug. However, G2-VGAMs require a reasonably large sample size in order to work more
reliably.

Value

The default is a single logical (TRUE if any term is TRUE), otherwise a vector of such with each
element corresponding to a term. If the value is TRUE then I suggest replacing the VGAM by a
similar model fitted by vglm and using regression splines, e.g., bs, ns.

Note

When the bug is fixed this function may be withdrawn, otherwise always return FALSEs!

Author(s)

T. W. Yee

See Also

vgam. vglm, s, sm.ps, bs, ns.

is.crossing 439

Examples

fit1 <- vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(3, 4)),
binomialff(multiple.responses = TRUE), data = hunua)

is.buggy(fit1) # Okay
is.buggy(fit1, each.term = TRUE) # No terms are buggy
fit2 <-

vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(3, 4)),
binomialff(multiple.responses = TRUE), data = hunua,
constraints =
list("(Intercept)" = diag(2),

"s(altitude, df = c(3, 4))" = matrix(c(1, 1, 0, 1), 2, 2)))
is.buggy(fit2) # TRUE
is.buggy(fit2, each.term = TRUE)
constraints(fit2)

fit2b is an approximate alternative to fit2:
fit2b <-

vglm(cbind(agaaus, kniexc) ~ bs(altitude, df=3) + bs(altitude, df=4),
binomialff(multiple.responses = TRUE), data = hunua,
constraints =

list("(Intercept)" = diag(2),
"bs(altitude, df = 3)" = rbind(1, 1),
"bs(altitude, df = 4)" = rbind(0, 1)))

is.buggy(fit2b) # Okay
is.buggy(fit2b, each.term = TRUE)
constraints(fit2b)

is.crossing Quantile Crossing Detection

Description

Returns a logical from testing whether an object such as an extlogF1() VGLM object has crossing
quantiles.

Usage

is.crossing.vglm(object, ...)

Arguments

object an object such as a vglm object with family function extlogF1.
... additional optional arguments. Currently unused.

Details

This function was specifically written for a vglm with family function extlogF1. It examines the
fitted quantiles to see if any cross. Note that if one uses regression splines such as bs and ns then
it is possible that they cross at values of the covariate space that are not represented by actual data.
One could use linear interpolation between fitted values to get around this problem.

440 is.parallel

Value

A logical. If TRUE then one can try fit a similar model by combining columns of the constraint
matrices so that crossing no longer holds; see fix.crossing. For LMS-Box-Cox type quantile
regression models it is impossible for the quantiles to cross, by definition, hence FALSE is returned;
see lms.bcn.

See Also

extlogF1, fix.crossing, lms.bcn. vglm.

Examples

Not run: ooo <- with(bmi.nz, order(age))
bmi.nz <- bmi.nz[ooo,] # Sort by age
with(bmi.nz, plot(age, BMI, col = "blue"))
mytau <- c(50, 93, 95, 97) / 100 # Some quantiles are quite close
fit1 <- vglm(BMI ~ ns(age, 7), extlogF1(mytau), bmi.nz, trace = TRUE)
plot(BMI ~ age, bmi.nz, col = "blue", las = 1,

main = "Partially parallel (darkgreen) & nonparallel quantiles",
sub = "Crossing quantiles are orange")

is.crossing(fit1)
matlines(with(bmi.nz, age), fitted(fit1), lty = 1, col = "orange")
End(Not run)

is.parallel Parallelism Constraint Matrices

Description

Returns a logical vector from a test of whether an object such as a matrix or VGLM object corre-
sponds to a parallelism assumption.

Usage

is.parallel.matrix(object, ...)
is.parallel.vglm(object, type = c("term", "lm"), ...)

Arguments

object an object such as a constraint matrix or a vglm object.

type passed into constraints.

... additional optional arguments. Currently unused.

Details

These functions may be useful for categorical models such as propodds, cumulative, acat, cratio,
sratio, multinomial.

is.smart 441

Value

A vector of logicals, testing whether each constraint matrix is a one-column matrix of ones. Note
that parallelism can still be thought of as holding if the constraint matrix has a non-zero but constant
values, however, this is currently not implemented. No checking is done that the constraint matrices
have the same number of rows.

See Also

constraints, vglm.

Examples

Not run: require("VGAMdata")
fit <- vglm(educ ~ sm.bs(age) * sex + ethnicity,

cumulative(parallel = TRUE), head(xs.nz, 200))
is.parallel(fit)
is.parallel(fit, type = "lm") # For each column of the LM matrix

End(Not run)

is.smart Test For a Smart Object

Description

Tests an object to see if it is smart.

Usage

is.smart(object)

Arguments

object a function or a fitted model.

Details

If object is a function then this function looks to see whether object has the logical attribute
"smart". If so then this is returned, else FALSE.

If object is a fitted model then this function looks to see whether object@smart.prediction or
object\$smart.prediction exists. If it does and it is not equal to list(smart.arg=FALSE) then
a TRUE is returned, else FALSE. The reason for this is because, e.g., lm(...,smart=FALSE) and
vglm(...,smart=FALSE), will return such a specific list.

Writers of smart functions manually have to assign this attribute to their smart function after it has
been written.

442 is.zero

Value

Returns TRUE or FALSE, according to whether the object is smart or not.

Examples

is.smart(sm.min1) # TRUE
is.smart(sm.poly) # TRUE
library(splines)
is.smart(sm.bs) # TRUE
is.smart(sm.ns) # TRUE
is.smart(tan) # FALSE
Not run:
udata <- data.frame(x2 = rnorm(9))
fit1 <- vglm(rnorm(9) ~ x2, uninormal, data = udata)
is.smart(fit1) # TRUE
fit2 <- vglm(rnorm(9) ~ x2, uninormal, data = udata, smart = FALSE)
is.smart(fit2) # FALSE
fit2@smart.prediction

End(Not run)

is.zero Zero Constraint Matrices

Description

Returns a logical vector from a test of whether an object such as a matrix or VGLM object corre-
sponds to a ’zero’ assumption.

Usage

is.zero.matrix(object, ...)
is.zero.vglm(object, ...)

Arguments

object an object such as a coefficient matrix of a vglm object, or a vglm object.
... additional optional arguments. Currently unused.

Details

These functions test the effect of the zero argument on a vglm object or the coefficient matrix of a
vglm object. The latter is obtained by coef(vglmObject, matrix = TRUE).

Value

A vector of logicals, testing whether each linear/additive predictor has the zero argument applied
to it. It is TRUE if that linear/additive predictor is intercept-only, i.e., all other regression coefficients
are set to zero.

No checking is done for the intercept term at all, i.e., that it was estimated in the first place.

kendall.tau 443

See Also

constraints, vglm.

Examples

coalminers <- transform(coalminers, Age = (age - 42) / 5)
fit <- vglm(cbind(nBnW,nBW,BnW,BW) ~ Age, binom2.or(zero = NULL),

data = coalminers)
is.zero(fit)
is.zero(coef(fit, matrix = TRUE))

kendall.tau Kendall’s Tau Statistic

Description

Computes Kendall’s Tau, which is a rank-based correlation measure, between two vectors.

Usage

kendall.tau(x, y, exact = FALSE, max.n = 3000)

Arguments

x, y Numeric vectors. Must be of equal length. Ideally their values are continuous
and not too discrete. Let length(x) be N , say.

exact Logical. If TRUE then the exact value is computed.

max.n Numeric. If exact = FALSE and length(x) is more than max.n then a random
sample of max.n pairs are chosen.

Details

Kendall’s tau is a measure of dependency in a bivariate distribution. Loosely, two random vari-
ables are concordant if large values of one random variable are associated with large values of the
other random variable. Similarly, two random variables are disconcordant if large values of one
random variable are associated with small values of the other random variable. More formally, if
(x[i] - x[j])*(y[i] - y[j]) > 0 then that comparison is concordant (i 6= j). And if (x[i] -
x[j])*(y[i] - y[j]) < 0 then that comparison is disconcordant (i 6= j). Out of choose(N, 2)
comparisons, let c and d be the number of concordant and disconcordant pairs. Then Kendall’s tau
can be estimated by (c− d)/(c+ d). If there are ties then half the ties are deemed concordant and
half disconcordant so that (c− d)/(c+ d+ t) is used.

Value

Kendall’s tau, which lies between −1 and 1.

444 KLD

Warning

If length(x) is large then the cost is O(N2), which is expensive! Under these circumstances it is
not advisable to set exact = TRUE or max.n to a very large number.

See Also

binormalcop, cor.

Examples

N <- 5000; x <- 1:N; y <- runif(N)
true.rho <- -0.8
ymat <- rbinorm(N, cov12 = true.rho) # Bivariate normal, aka N_2
x <- ymat[, 1]
y <- ymat[, 2]

Not run: plot(x, y, col = "blue")

kendall.tau(x, y) # A random sample is taken here
kendall.tau(x, y) # A random sample is taken here

kendall.tau(x, y, exact = TRUE) # Costly if length(x) is large
kendall.tau(x, y, max.n = N) # Same as exact = TRUE

(rhohat <- sin(kendall.tau(x, y) * pi / 2)) # Holds for N_2 actually
true.rho # rhohat should be near this value

KLD Kullback-Leibler Divergence

Description

Calculates the Kullback-Leibler divergence for certain fitted model objects

Usage

KLD(object, ...)
KLDvglm(object, ...)

Arguments

object Some VGAM object, for example, having class vglm-class. Currently object
must be intercept-only.

... Other possible arguments fed into KLDvglm in order to compute the KLD.

KLD 445

Details

The Kullback-Leibler divergence (KLD), or relative entropy, is a measure of how one probability
distribution differs from a second reference probability distribution. Currently the VGAM package
computes the KLD for GAITD regression models (e.g., see gaitdpoisson and gaitdnbinomial)
where the reference distribution is the (unscaled) parent or base distribution. For such, the formula
for the KLD simplifies somewhat. Hence one can obtain a quantitative measure for the overall effect
of altering, inflating, truncating and deflating certain (special) values.

Value

Returns a numeric nonnegative value with the corresponding KLD. A 0 value means no difference
between an ordinary parent or base distribution.

Warning

Numerical problems might occur if any of the evaluated probabilities of the unscaled parent distri-
bution are very close to 0.

Author(s)

T. W. Yee.

References

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical
Statistics, 22, 79–86.

M’Kendrick, A. G. (1925). Applications of mathematics to medical problems. Proc. Edinb. Math.
Soc., 44, 98–130.

See Also

gaitdpoisson, gaitdnbinomial.

Examples

McKendrick (1925): Data from 223 Indian village households
cholera <- data.frame(ncases = 0:4, # Number of cholera cases,

wfreq = c(168, 32, 16, 6, 1)) # Frequencies
fit7 <- vglm(ncases ~ 1, gaitdpoisson(i.mlm = 0, ilambda.p = 1),

weight = wfreq, data = cholera, trace = TRUE)
coef(fit7, matrix = TRUE)
KLD(fit7)

446 Kumar

Kumar The Kumaraswamy Distribution

Description

Density, distribution function, quantile function and random generation for the Kumaraswamy dis-
tribution.

Usage

dkumar(x, shape1, shape2, log = FALSE)
pkumar(q, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
qkumar(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rkumar(n, shape1, shape2)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

shape1, shape2 positive shape parameters.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See kumar, the VGAM family function for estimating the parameters, for the formula of the proba-
bility density function and other details.

Value

dkumar gives the density, pkumar gives the distribution function, qkumar gives the quantile function,
and rkumar generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

kumar.

kumar 447

Examples

Not run:
shape1 <- 2; shape2 <- 2; nn <- 201; # shape1 <- shape2 <- 0.5;
x <- seq(-0.05, 1.05, len = nn)
plot(x, dkumar(x, shape1, shape2), type = "l", las = 1,

ylab = paste("dkumar(shape1 = ", shape1,
", shape2 = ", shape2, ")"),

col = "blue", cex.main = 0.8, ylim = c(0,1.5),
main = "Blue is density, orange is the CDF",
sub = "Red lines are the 10,20,...,90 percentiles")

lines(x, pkumar(x, shape1, shape2), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qkumar(probs, shape1, shape2)
lines(Q, dkumar(Q, shape1, shape2), col = "red", lty = 3, type = "h")
lines(Q, pkumar(Q, shape1, shape2), col = "red", lty = 3, type = "h")
abline(h = probs, col = "red", lty = 3)
max(abs(pkumar(Q, shape1, shape2) - probs)) # Should be 0

End(Not run)

kumar Kumaraswamy Regression Family Function

Description

Estimates the two parameters of the Kumaraswamy distribution by maximum likelihood estimation.

Usage

kumar(lshape1 = "loglink", lshape2 = "loglink",
ishape1 = NULL, ishape2 = NULL,
gshape1 = exp(2*ppoints(5) - 1), tol12 = 1.0e-4, zero = NULL)

Arguments

lshape1, lshape2

Link function for the two positive shape parameters, respectively, called a and b
below. See Links for more choices.

ishape1, ishape2

Numeric. Optional initial values for the two positive shape parameters.

tol12 Numeric and positive. Tolerance for testing whether the second shape parameter
is either 1 or 2. If so then the working weights need to handle these singularities.

gshape1 Values for a grid search for the first shape parameter. See CommonVGAMffArguments
for more information.

zero See CommonVGAMffArguments.

448 lakeO

Details

The Kumaraswamy distribution has density function

f(y; a = shape1, b = shape2) = abya−1(1− ya)b−1

where 0 < y < 1 and the two shape parameters, a and b, are positive. The mean is b × Beta(1 +
1/a, b) (returned as the fitted values) and the variance is b × Beta(1 + 2/a, b) − (b × Beta(1 +
1/a, b))2. Applications of the Kumaraswamy distribution include the storage volume of a water
reservoir. Fisher scoring is implemented. Handles multiple responses (matrix input).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Author(s)

T. W. Yee

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46, 79–88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6, 70–81.

See Also

dkumar, betaff, simulate.vlm.

Examples

shape1 <- exp(1); shape2 <- exp(2)
kdata <- data.frame(y = rkumar(n = 1000, shape1, shape2))
fit <- vglm(y ~ 1, kumar, data = kdata, trace = TRUE)
c(with(kdata, mean(y)), head(fitted(fit), 1))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

lakeO Annual catches on Lake Otamangakau from October 1974 to October
1989

Description

Rainbow and brown trout catches by a Mr Swainson at Lake Otamangakau in the central North
Island of New Zealand during the 1970s and 1980s.

lakeO 449

Usage

data(lakeO)

Format

A data frame with 15 observations on the following 5 variables.

year a numeric vector, the season began on 1 October of the year and ended 12 months later.

total.fish a numeric vector, the total number of fish caught during the season. Simply the sum
of brown and rainbow trout.

brown a numeric vector, the number of brown trout (Salmo trutta) caught.

rainbow a numeric vector, the number of rainbow trout (Oncorhynchus mykiss) caught.

visits a numeric vector, the number of visits during the season that the angler made to the lake.
It is necessary to assume that the visits were of an equal time length in order to interpret the
usual Poisson regressions.

Details

The data was extracted from the season summaries at Lake Otamangakau by Anthony Swainson for
the seasons 1974–75 to 1988–89.

Mr Swainson was one of a small group of regular fly fishing anglers and kept a diary of his catches.
Lake Otamangakau is a lake of area 1.8 squared km and has a maximum depth of about 12m,
and is located in the central North Island of New Zealand. It is trout-infested and known for its
trophy-sized fish.

See also trapO.

Source

Table 7.2 of the reference below. Thanks to Dr Michel Dedual for a copy of the report and for help
reading the final year’s data. The report is available from TWY on request.

References

Dedual, M. and MacLean, G. and Rowe, D. and Cudby, E., The Trout Population and Fishery
of Lake Otamangakau—Interim Report. National Institute of Water and Atmospheric Research,
Hamilton, New Zealand. Consultancy Report Project No. ELE70207, (Dec 1996).

Examples

data(lakeO)
lakeO
summary(lakeO)

450 lambertW

lambertW The Lambert W Function

Description

Computes the Lambert W function for real values.

Usage

lambertW(x, tolerance = 1e-10, maxit = 50)

Arguments

x A vector of reals.

tolerance Accuracy desired.

maxit Maximum number of iterations of third-order Halley’s method.

Details

The Lambert W function is the root of the equation W (z) exp(W (z)) = z for complex z. If z is
real and −1/e < z < 0 then it has two possible real values, and currently only the upper branch
(often called W0) is computed so that a value that is ≥ −1 is returned.

Value

This function returns the principal branch of the W function for real z. It returns W (z) ≥ −1, and
NA for z < −1/e.

Note

If convergence does not occur then increase the value of maxit and/or tolerance.

Yet to do: add an argument lbranch = TRUE to return the lower branch (often called W−1) for real
−1/e ≤ z < 0; this would give W (z) ≤ −1.

Author(s)

T. W. Yee

References

Corless, R. M. and Gonnet, G. H. and Hare, D. E. G. and Jeffrey, D. J. and Knuth, D. E. (1996). On
the Lambert W function. Advances in Computational Mathematics, 5(4), 329–359.

See Also

log, exp, bell. There is also a package called LambertW.

laplace 451

Examples

Not run:
curve(lambertW, -exp(-1), 3, xlim = c(-1, 3), ylim = c(-2, 1),

las = 1, col = "orange", n = 1001)
abline(v = -exp(-1), h = -1, lwd = 2, lty = "dotted", col = "gray")
abline(h = 0, v = 0, lty = "dashed", col = "blue")
End(Not run)

laplace Laplace Regression Family Function

Description

Maximum likelihood estimation of the 2-parameter classical Laplace distribution.

Usage

laplace(llocation = "identitylink", lscale = "loglink",
ilocation = NULL, iscale = NULL, imethod = 1, zero = "scale")

Arguments

llocation, lscale

Character. Parameter link functions for location parameter a and scale parameter
b. See Links for more choices.

ilocation, iscale

Optional initial values. If given, it must be numeric and values are recycled to
the appropriate length. The default is to choose the value internally.

imethod Initialization method. Either the value 1 or 2.

zero See CommonVGAMffArguments for information.

Details

The Laplace distribution is often known as the double-exponential distribution and, for modelling,
has heavier tail than the normal distribution. The Laplace density function is

f(y) =
1

2b
exp

(
−|y − a|

b

)
where −∞ < y < ∞, −∞ < a < ∞ and b > 0. Its mean is a and its variance is 2b2. This
parameterization is called the classical Laplace distribution by Kotz et al. (2001), and the density
is symmetric about a.

For y ~ 1 (where y is the response) the maximum likelihood estimate (MLE) for the location pa-
rameter is the sample median, and the MLE for b is mean(abs(y-location)) (replace location by
its MLE if unknown).

452 laplace

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

This family function has not been fully tested. The MLE regularity conditions do not hold for this
distribution, therefore misleading inferences may result, e.g., in the summary and vcov of the object.
Hence this family function might be withdrawn from VGAM in the future.

Note

This family function uses Fisher scoring. Convergence may be slow for non-intercept-only models;
half-stepping is frequently required.

Author(s)

T. W. Yee

References

Kotz, S., Kozubowski, T. J. and Podgorski, K. (2001). The Laplace distribution and generaliza-
tions: a revisit with applications to communications, economics, engineering, and finance, Boston:
Birkhauser.

See Also

rlaplace, alaplace2 (which differs slightly from this parameterization), exponential, median.

Examples

ldata <- data.frame(y = rlaplace(nn <- 100, 2, scale = exp(1)))
fit <- vglm(y ~ 1, laplace, ldata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
with(ldata, median(y))

ldata <- data.frame(x = runif(nn <- 1001))
ldata <- transform(ldata, y = rlaplace(nn, 2, scale = exp(-1 + 1*x)))
coef(vglm(y ~ x, laplace(iloc = 0.2, imethod = 2, zero = 1), ldata,

trace = TRUE), matrix = TRUE)

laplaceUC 453

laplaceUC The Laplace Distribution

Description

Density, distribution function, quantile function and random generation for the Laplace distribution
with location parameter location and scale parameter scale.

Usage

dlaplace(x, location = 0, scale = 1, log = FALSE)
plaplace(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlaplace(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlaplace(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

location the location parameter a, which is the mean.

scale the scale parameter b. Must consist of positive values.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

The Laplace distribution is often known as the double-exponential distribution and, for modelling,
has heavier tail than the normal distribution. The Laplace density function is

f(y) =
1

2b
exp

(
−|y − a|

b

)
where −∞ < y <∞, −∞ < a <∞ and b > 0. The mean is a and the variance is 2b2.

See laplace, the VGAM family function for estimating the two parameters by maximum likelihood
estimation, for formulae and details. Apart from n, all the above arguments may be vectors and are
recyled to the appropriate length if necessary.

Value

dlaplace gives the density, plaplace gives the distribution function, qlaplace gives the quantile
function, and rlaplace generates random deviates.

Author(s)

T. W. Yee and Kai Huang

454 latvar

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

laplace.

Examples

loc <- 1; b <- 2
y <- rlaplace(n = 100, loc = loc, scale = b)
mean(y) # sample mean
loc # population mean
var(y) # sample variance
2 * b^2 # population variance

Not run: loc <- 0; b <- 1.5; x <- seq(-5, 5, by = 0.01)
plot(x, dlaplace(x, loc, b), type = "l", col = "blue",

main = "Blue is density, orange is the CDF", ylim = c(0,1),
sub = "Purple are 5,10,...,95 percentiles", las = 1, ylab = "")

abline(h = 0, col = "blue", lty = 2)
lines(qlaplace(seq(0.05,0.95,by = 0.05), loc, b),

dlaplace(qlaplace(seq(0.05, 0.95, by = 0.05), loc, b), loc, b),
col = "purple", lty = 3, type = "h")

lines(x, plaplace(x, loc, b), type = "l", col = "orange")
abline(h = 0, lty = 2)
End(Not run)

plaplace(qlaplace(seq(0.05, 0.95, by = 0.05), loc, b), loc, b)

latvar Latent Variables

Description

Generic function for the latent variables of a model.

Usage

latvar(object, ...)
lv(object, ...)

Arguments

object An object for which the extraction of latent variables is meaningful.

... Other arguments fed into the specific methods function of the model. Sometimes
they are fed into the methods function for Coef.

latvar 455

Details

Latent variables occur in reduced-rank regression models, as well as in quadratic and additive ordi-
nation models. For the latter two, latent variable values are often called site scores by ecologists.
Latent variables are linear combinations of the explanatory variables.

Value

The value returned depends specifically on the methods function invoked.

Warning

latvar and lv are identical, but the latter will be deprecated soon.

Latent variables are not really applicable to vglm/vgam models.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

latvar.qrrvglm, latvar.rrvglm, latvar.cao, lvplot.

Examples

Not run:
hspider[, 1:6] <- scale(hspider[, 1:6]) # Standardized environmental vars
set.seed(123)
p1 <- cao(cbind(Pardlugu, Pardmont, Pardnigr, Pardpull, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider, Rank = 1, df1.nl =
c(Zoraspin = 2.5, 3), Bestof = 3, Crow1positive = TRUE)

var(latvar(p1)) # Scaled to unit variance # Scaled to unit variance
c(latvar(p1)) # Estimated site scores

End(Not run)

456 leipnik

leipnik Leipnik Regression Family Function

Description

Estimates the two parameters of a (transformed) Leipnik distribution by maximum likelihood esti-
mation.

Usage

leipnik(lmu = "logitlink", llambda = logofflink(offset = 1),
imu = NULL, ilambda = NULL)

Arguments

lmu, llambda Link function for the µ and λ parameters. See Links for more choices.

imu, ilambda Numeric. Optional initial values for µ and λ.

Details

The (transformed) Leipnik distribution has density function

f(y;µ, λ) =
{y(1− y)}− 1

2

Beta(λ+1
2 , 12)

[
1 +

(y − µ)2

y(1− y)

]−λ2
where 0 < y < 1 and λ > −1. The mean is µ (returned as the fitted values) and the variance is
1/λ.

Jorgensen (1997) calls the above the transformed Leipnik distribution, and if y = (x + 1)/2
and µ = (θ + 1)/2, then the distribution of X as a function of x and θ is known as the the
(untransformed) Leipnik distribution. Here, both x and θ are in (−1, 1).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

Convergence may be slow or fail. Until better initial value estimates are forthcoming try assigning
the argument ilambda some numerical value if it fails to converge. Currently, Newton-Raphson
is implemented, not Fisher scoring. Currently, this family function probably only really works for
intercept-only models, i.e., y ~ 1 in the formula.

Author(s)

T. W. Yee

lerch 457

References

Jorgensen, B. (1997). The Theory of Dispersion Models. London: Chapman & Hall

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2nd
edition, Volume 2, New York: Wiley. (pages 612–617).

See Also

mccullagh89.

Examples

ldata <- data.frame(y = rnorm(2000, 0.5, 0.1)) # Improper data
fit <- vglm(y ~ 1, leipnik(ilambda = 1), ldata, trace = TRUE)
head(fitted(fit))
with(ldata, mean(y))
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit)

sum(weights(fit)) # Sum of the prior weights
sum(weights(fit, type = "work")) # Sum of the working weights

lerch Lerch Phi Function

Description

Computes the Lerch Phi function.

Usage

lerch(x, s, v, tolerance = 1.0e-10, iter = 100)

Arguments

x, s, v Numeric. This function recyles values of x, s, and v if necessary.

tolerance Numeric. Accuracy required, must be positive and less than 0.01.

iter Maximum number of iterations allowed to obtain convergence. If iter is too
small then a result of NA may occur; if so, try increasing its value.

Details

Also known as the Lerch transcendent, it can be defined by an integral involving analytical contin-
uation. An alternative definition is the series

Φ(x, s, v) =

∞∑
n=0

xn

(n+ v)s

458 lerch

which converges for |x| < 1 as well as for |x| = 1 with s > 1. The series is undefined for integers
v <= 0. Actually, x may be complex but this function only works for real x. The algorithm used is
based on the relation

Φ(x, s, v) = xmΦ(x, s, v +m) +

m−1∑
n=0

xn

(n+ v)s
.

See the URL below for more information. This function is a wrapper function for the C code
described below.

Value

Returns the value of the function evaluated at the values of x, s, v. If the above ranges of x and
v are not satisfied, or some numeric problems occur, then this function will return an NA for those
values. (The C code returns 6 possible return codes, but this is not passed back up to the R level.)

Warning

This function has not been thoroughly tested and contains limitations, for example, the zeta function
cannot be computed with this function even though ζ(s) = Φ(x = 1, s, v = 1). Several numerical
problems can arise, such as lack of convergence, overflow and underflow, especially near singular-
ities. If any problems occur then an NA will be returned. For example, if |x| = 1 and s > 1 then
convergence may be so slow that changing tolerance and/or iter may be needed to get an answer
(that is treated cautiously).

Note

There are a number of special cases, e.g., the Riemann zeta-function is ζ(s) = Φ(x = 1, s, v = 1).
Another example is the Hurwitz zeta function ζ(s, v) = Φ(x = 1, s, v = v). The special case
of s = 1 corresponds to the hypergeometric 2F1, and this is implemented in the gsl package.
The Lerch Phi function should not be confused with the Lerch zeta function though they are quite
similar.

Author(s)

S. V. Aksenov and U. D. Jentschura wrote the C code (called Version 1.00). The R wrapper function
was written by T. Yee.

References

Originally the code was found at http://aksenov.freeshell.org/lerchphi/source/lerchphi.c.

Bateman, H. (1953). Higher Transcendental Functions. Volume 1. McGraw-Hill, NY, USA.

See Also

zeta.

levy 459

Examples

Not run:
s <- 2; v <- 1; x <- seq(-1.1, 1.1, length = 201)
plot(x, lerch(x, s = s, v = v), type = "l", col = "blue",

las = 1, main = paste0("lerch(x, s = ", s,", v = ", v, ")"))
abline(v = 0, h = 1, lty = "dashed", col = "gray")

End(Not run)

leukemia Acute Myelogenous Leukemia Survival Data

Description

Survival in patients with Acute Myelogenous Leukemia

Usage

data(leukemia)

Format

time: survival or censoring time
status: censoring status
x: maintenance chemotherapy given? (factor)

Note

This data set has been transferred from survival and renamed from aml to leukemia.

Source

Rupert G. Miller (1997). Survival Analysis. John Wiley & Sons.

levy Levy Distribution Family Function

Description

Estimates the scale parameter of the Levy distribution by maximum likelihood estimation.

460 levy

Usage

levy(location = 0, lscale = "loglink", iscale = NULL)

Arguments

location Location parameter. Must have a known value. Called a below.

lscale Parameter link function for the (positive) scale parameter b. See Links for more
choices.

iscale Initial value for the b parameter. By default, an initial value is chosen internally.

Details

The Levy distribution is one of three stable distributions whose density function has a tractable
form. The formula for the density is

f(y; b) =

√
b

2π
exp

(
−b

2(y − a)

)
/(y − a)3/2

where a < y <∞ and b > 0. Note that if a is very close to min(y) (where y is the response), then
numerical problem will occur. The mean does not exist. The median is returned as the fitted values.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Author(s)

T. W. Yee

References

Nolan, J. P. (2005). Stable Distributions: Models for Heavy Tailed Data.

See Also

The Nolan article was at http://academic2.american.edu/~jpnolan/stable/chap1.pdf.

Examples

nn <- 1000; loc1 <- 0; loc2 <- 10
myscale <- 1 # log link ==> 0 is the answer
ldata <-

data.frame(y1 = loc1 + myscale/rnorm(nn)^2, # Levy(myscale, a)
y2 = rlevy(nn, loc = loc2, scale = exp(+2)))

Cf. Table 1.1 of Nolan for Levy(1,0)
with(ldata, sum(y1 > 1) / length(y1)) # Should be 0.6827
with(ldata, sum(y1 > 2) / length(y1)) # Should be 0.5205

fit1 <- vglm(y1 ~ 1, levy(location = loc1), ldata, trace = TRUE)

lgamma1 461

coef(fit1, matrix = TRUE)
Coef(fit1)
summary(fit1)
head(weights(fit1, type = "work"))

fit2 <- vglm(y2 ~ 1, levy(location = loc2), ldata, trace = TRUE)
coef(fit2, matrix = TRUE)
Coef(fit2)
c(median = with(ldata, median(y2)),

fitted.median = head(fitted(fit2), 1))

lgamma1 Log-gamma Distribution Family Function

Description

Estimation of the parameter of the standard and nonstandard log-gamma distribution.

Usage

lgamma1(lshape = "loglink", ishape = NULL)
lgamma3(llocation = "identitylink", lscale = "loglink",

lshape = "loglink", ilocation = NULL, iscale = NULL, ishape = 1,
zero = c("scale", "shape"))

Arguments

llocation, lscale

Parameter link function applied to the location parameter a and the positive scale
parameter b. See Links for more choices.

lshape Parameter link function applied to the positive shape parameter k. See Links
for more choices.

ishape Initial value for k. If given, it must be positive. If failure to converge occurs, try
some other value. The default means an initial value is determined internally.

ilocation, iscale

Initial value for a and b. The defaults mean an initial value is determined inter-
nally for each.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The values must be from the set {1,2,3}. The default
value means none are modelled as intercept-only terms. See CommonVGAMffArguments
for more information.

462 lgamma1

Details

The probability density function of the standard log-gamma distribution is given by

f(y; k) = exp[ky − exp(y)]/Γ(k),

for parameter k > 0 and all real y. The mean of Y is digamma(k) (returned as the fitted values)
and its variance is trigamma(k).

For the non-standard log-gamma distribution, one replaces y by (y − a)/b, where a is the location
parameter and b is the positive scale parameter. Then the density function is

f(y) = exp[k(y − a)/b− exp((y − a)/b)]/(bΓ(k)).

The mean and variance of Y are a + b*digamma(k) (returned as the fitted values) and b^2 * trigamma(k),
respectively.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The standard log-gamma distribution can be viewed as a generalization of the standard type 1 ex-
treme value density: when k = 1 the distribution of −Y is the standard type 1 extreme value
distribution.

The standard log-gamma distribution is fitted with lgamma1 and the non-standard (3-parameter)
log-gamma distribution is fitted with lgamma3.

Author(s)

T. W. Yee

References

Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications, pages
48–49, London: Imperial College Press.

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2nd
edition, Volume 2, p.89, New York: Wiley.

See Also

rlgamma, gengamma.stacy, prentice74, gamma1, lgamma.

Examples

ldata <- data.frame(y = rlgamma(100, shape = exp(1)))
fit <- vglm(y ~ 1, lgamma1, ldata, trace = TRUE, crit = "coef")
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit)

lgammaUC 463

ldata <- data.frame(x2 = runif(nn <- 5000)) # Another example
ldata <- transform(ldata, loc = -1 + 2 * x2, Scale = exp(1))
ldata <- transform(ldata, y = rlgamma(nn, loc, sc = Scale, sh = exp(0)))
fit2 <- vglm(y ~ x2, lgamma3, data = ldata, trace = TRUE, crit = "c")
coef(fit2, matrix = TRUE)

lgammaUC The Log-Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the log-gamma distri-
bution with location parameter location, scale parameter scale and shape parameter k.

Usage

dlgamma(x, location = 0, scale = 1, shape = 1, log = FALSE)
plgamma(q, location = 0, scale = 1, shape = 1,

lower.tail = TRUE, log.p = FALSE)
qlgamma(p, location = 0, scale = 1, shape = 1,

lower.tail = TRUE, log.p = FALSE)
rlgamma(n, location = 0, scale = 1, shape = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as runif.

location the location parameter a.

scale the (positive) scale parameter b.

shape the (positive) shape parameter k.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See lgamma1, the VGAM family function for estimating the one parameter standard log-gamma
distribution by maximum likelihood estimation, for formulae and other details. Apart from n, all
the above arguments may be vectors and are recyled to the appropriate length if necessary.

Value

dlgamma gives the density, plgamma gives the distribution function, qlgamma gives the quantile
function, and rlgamma generates random deviates.

464 Lindley

Note

The VGAM family function lgamma3 is for the three parameter (nonstandard) log-gamma distribu-
tion.

Author(s)

T. W. Yee and Kai Huang

References

Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications, pages
48–49, London: Imperial College Press.

See Also

lgamma1, prentice74.

Examples

Not run: loc <- 1; Scale <- 1.5; shape <- 1.4
x <- seq(-3.2, 5, by = 0.01)
plot(x, dlgamma(x, loc = loc, Scale, shape = shape), type = "l",

col = "blue", ylim = 0:1,
main = "Blue is density, orange is the CDF",
sub = "Red are 5,10,...,95 percentiles", las = 1, ylab = "")

abline(h = 0, col = "blue", lty = 2)
lines(qlgamma(seq(0.05, 0.95, by = 0.05), loc = loc, Scale, sh = shape),

dlgamma(qlgamma(seq(0.05, 0.95, by = 0.05), loc = loc, sc = Scale,
shape = shape),

loc = loc, Scale, shape = shape), col = "red", lty = 3, type = "h")
lines(x, plgamma(x, loc = loc, Scale, shape = shape), col = "orange")
abline(h = 0, lty = 2)
End(Not run)

Lindley The Lindley Distribution

Description

Density, cumulative distribution function, and random generation for the Lindley distribution.

Usage

dlind(x, theta, log = FALSE)
plind(q, theta, lower.tail = TRUE, log.p = FALSE)
rlind(n, theta)

lindley 465

Arguments

x, q vector of quantiles.

n number of observations. Same as in runif.

log Logical. If log = TRUE then the logarithm of the density is returned.

theta positive parameter.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See lindley for details.

Value

dlind gives the density, plind gives the cumulative distribution function, and rlind generates
random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

lindley.

Examples

theta <- exp(-1); x <- seq(0.0, 17, length = 700)
dlind(0:10, theta)
Not run:
plot(x, dlind(x, theta), type = "l", las = 1, col = "blue",

main = "dlind(x, theta = exp(-1))")
abline(h = 1, col = "grey", lty = "dashed")
End(Not run)

lindley 1-parameter Gamma Distribution

Description

Estimates the (1-parameter) Lindley distribution by maximum likelihood estimation.

Usage

lindley(link = "loglink", itheta = NULL, zero = NULL)

466 lindley

Arguments

link Link function applied to the (positive) parameter. See Links for more choices.

itheta, zero See CommonVGAMffArguments for information.

Details

The density function is given by

f(y; θ) = θ2(1 + y) exp(−θy)/(1 + θ)

for θ > 0 and y > 0. The mean of Y (returned as the fitted values) is µ = (θ + 2)/(θ(θ + 1)). The
variance is (θ2 + 4θ + 2)/(θ(θ + 1))2.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

This VGAM family function can handle multiple responses (inputted as a matrix). Fisher scoring
is implemented.

Author(s)

T. W. Yee

References

Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical
Society, Series B, Methodological, 20, 102–107.

Ghitany, M. E. and Atieh, B. and Nadarajah, S. (2008). Lindley distribution and its application.
Math. Comput. Simul., 78, 493–506.

See Also

dlind, gammaR, simulate.vlm.

Examples

ldata <- data.frame(y = rlind(n = 1000, theta = exp(3)))
fit <- vglm(y ~ 1, lindley, data = ldata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

linkfun 467

linkfun Link Functions for VGLMs

Description

Returns the link functions, and parameter names, for vector generalized linear models (VGLMs).

Usage

linkfun(object, ...)
linkfunvlm(object, earg = FALSE, ...)

Arguments

object An object which has parameter link functions, e.g., has class "vglm".

earg Logical. Return the extra arguments associated with each link function? If TRUE
then a list is returned.

... Arguments that might be used in the future.

Details

All fitted VGLMs have a link function applied to each parameter. This function returns these, and
optionally, the extra arguments associated with them.

Value

Usually just a (named) character string, with the link functions in order. It is named with the
parameter names. If earg = TRUE then a list with the following components.

link The default output.

earg The extra arguments, in order.

Note

Presently, the multinomial logit model has only one link function, multilogitlink, so a warning
is not issued for that link. For other models, if the number of link functions does not equal M then
a warning may be issued.

Author(s)

Thomas W. Yee

See Also

linkfun, multilogitlink, vglm.

468 Links

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit1 <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo)
coef(fit1, matrix = TRUE)
linkfun(fit1)
linkfun(fit1, earg = TRUE)

fit2 <- vglm(cbind(normal, mild, severe) ~ let, multinomial, data = pneumo)
coef(fit2, matrix = TRUE)
linkfun(fit2)
linkfun(fit2, earg = TRUE)

Links Link functions for VGLM/VGAM/etc. families

Description

The VGAM package provides a number of (parameter) link functions which are described in gen-
eral here. Collectively, they offer the user considerable choice and flexibility for modelling data.

Usage

TypicalVGAMlink(theta, someParameter = 0, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is usually θ (default) but can sometimes be η, de-
pending on the other arguments. If theta is character then inverse and deriv
are ignored. The name theta should always be the name of the first argument.

someParameter Some parameter, e.g., an offset.

bvalue Boundary value, positive if given. If 0 < theta then values of theta which are
less than or equal to 0 can be replaced by bvalue before computing the link
function value. Values of theta which are greater than or equal to 1 can be re-
placed by 1 minus bvalue before computing the link function value. The value
bvalue = .Machine$double.eps is sometimes a reasonable value, or some-
thing slightly higher.

inverse Logical. If TRUE and deriv = 0 then the inverse link value θ is returned, hence
the argument theta is really η. In all other cases, the argument theta is really
θ.

deriv Integer. Either 0, 1, or 2, specifying the order of the derivative. Some link
functions handle values up to 3 or 4.

short, tag Logical. These are used for labelling the blurb slot of a vglmff-class object.
These arguments are used only if theta is character, and gives the formula for
the link in character form. If tag = TRUE then the result is preceeded by a little
more information.

Links 469

Details

Almost all VGAM link functions have something similar to the argument list as given above. In this
help file we have η = g(θ) where g is the link function, θ is the parameter and η is the linear/additive
predictor. The link g must be strictly monotonic and twice-differentiable in its range.

The following is a brief enumeration of all VGAM link functions.

For parameters lying between 0 and 1 (e.g., probabilities): logitlink, probitlink, clogloglink,
cauchitlink, foldsqrtlink, logclink, gordlink, pordlink, nbordlink.

For positive parameters (i.e., greater than 0): loglink, negloglink, powerlink.

For parameters greater than 1: logloglink, loglogloglink (greater than e).

For parameters between −1 and 1: fisherzlink, rhobitlink.

For parameters between A and B: extlogitlink, logofflink (B =∞).

For unrestricted parameters (i.e., any value): identitylink, negidentitylink, reciprocallink,
negreciprocallink.

Value

Returns one of: the link function value or its first or second derivative, the inverse link or its first or
second derivative, or a character description of the link.

Here are the general details. If inverse = FALSE and deriv = 0 (default) then the ordinary link
function η = g(θ) is returned.

If inverse = TRUE and deriv = 0 then the inverse link function value is returned, hence theta is
really η (the only occasion this happens).

If inverse = FALSE and deriv = 1 then it is dη/dθ as a function of θ. If inverse = FALSE and
deriv = 2 then it is d2η/dθ2 as a function of θ.

If inverse = TRUE and deriv = 1 then it is dθ/dη as a function of θ. If inverse = TRUE and deriv
= 2 then it is d2θ/dη2 as a function of θ.

It is only when deriv = 1 that linkfun(theta, deriv = 1, inverse = TRUE) and linkfun(theta,
deriv = 1, inverse = FALSE) are reciprocals of each other. In particular, linkfun(theta, deriv
= 2, inverse = TRUE) and linkfun(theta, deriv = 2, inverse = FALSE) are not reciprocals of
each other in general.

Warning

The output of link functions changed at VGAM 0.9-9 (date was around 2015-07). Formerly,
linkfun(theta, deriv = 1) is now linkfun(theta, deriv = 1, inverse = TRUE), or equivalently,
1 / linkfun(theta, deriv = 1, inverse = TRUE). Also, formerly, linkfun(theta, deriv = 2)
was 1 / linkfun(theta, deriv = 2, inverse = TRUE). This was a bug. Altogether, these are big
changes and the user should beware!

In VGAM 1.0-7 (January 2019) all link function names were made to end in the characters "link",
e.g., loglink replaces loge, logitlink replaces logit. For this most of them were renamed.
Upward compatability holds for older link function names, however, users should adopt the new
names immediately.

470 Links

Note

VGAM link functions are generally not compatible with other functions outside the package. In
particular, they won’t work with glm or any other package for fitting GAMs.

From October 2006 onwards, all VGAM family functions will only contain one default value for
each link argument rather than giving a vector of choices. For example, rather than binomialff(link
= c("logitlink", "probitlink", "clogloglink", "cauchitlink", "identitylink"), ...) it
is now binomialff(link = "logitlink", ...). No checking will be done to see if the user’s
choice is reasonable. This means that the user can write his/her own VGAM link function and use
it within any VGAM family function. Altogether this provides greater flexibility. The downside is
that the user must specify the full name of the link function, by either assigning the link argument
the full name as a character string, or just the name itself. See the examples below.

From August 2012 onwards, a major change in link functions occurred. Argument esigma (and the
like such as earg) used to be in VGAM prior to version 0.9-0 (released during the 2nd half of 2012).
The major change is that arguments such as offset that used to be passed in via those arguments
can done directly through the link function. For example, gev(lshape = "logofflink", eshape
= list(offset = 0.5)) is replaced by gev(lshape = logofflink(offset = 0.5)). The @misc
slot no longer has link and earg components, but two other components replace these. Functions
such as dtheta.deta(), d2theta.deta2(), d3theta.deta3(), eta2theta(), theta2eta() are
modified.

From January 2019 onwards, all link function names ended in "link". See above for details.

Author(s)

T. W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

TypicalVGAMfamilyFunction, linkfun, vglm, vgam, rrvglm. cqo, cao.

Examples

logitlink("a")
logitlink("a", short = FALSE)
logitlink("a", short = FALSE, tag = TRUE)

logofflink(1:5, offset = 1) # Same as log(1:5 + 1)
powerlink(1:5, power = 2) # Same as (1:5)^2

Not run: # This is old and no longer works:
logofflink(1:5, earg = list(offset = 1))
powerlink(1:5, earg = list(power = 2))

End(Not run)

Lino 471

fit1 <- vgam(agaaus ~ altitude,
binomialff(link = "clogloglink"), hunua) # best

fit2 <- vgam(agaaus ~ altitude,
binomialff(link = clogloglink), hunua) # okay

Not run:
This no longer works since "clog" is not a valid VGAM link function:
fit3 <- vgam(agaaus ~ altitude,

binomialff(link = "clog"), hunua) # not okay

No matter what the link, the estimated var-cov matrix is the same
y <- rbeta(n = 1000, shape1 = exp(0), shape2 = exp(1))
fit1 <- vglm(y ~ 1, betaR(lshape1 = "identitylink",

lshape2 = "identitylink"),
trace = TRUE, crit = "coef")

fit2 <- vglm(y ~ 1, betaR(lshape1 = logofflink(offset = 1.1),
lshape2 = logofflink(offset = 1.1)), trace=TRUE)

vcov(fit1, untransform = TRUE)
vcov(fit1, untransform = TRUE) -
vcov(fit2, untransform = TRUE) # Should be all 0s
\dontrun{ # This is old:
fit1@misc$earg # Some 'special' parameters
fit2@misc$earg # Some 'special' parameters are here
}

par(mfrow = c(2, 2))
p <- seq(0.05, 0.95, len = 200) # A rather restricted range
x <- seq(-4, 4, len = 200)
plot(p, logitlink(p), type = "l", col = "blue")
plot(x, logitlink(x, inverse = TRUE), type = "l", col = "blue")
plot(p, logitlink(p, deriv=1), type="l", col="blue") # 1 / (p*(1-p))
plot(p, logitlink(p, deriv=2), type="l", col="blue") # (2*p-1)/(p*(1-p))^2

End(Not run)

Lino The Generalized Beta Distribution (Libby and Novick, 1982)

Description

Density, distribution function, quantile function and random generation for the generalized beta
distribution, as proposed by Libby and Novick (1982).

Usage

dlino(x, shape1, shape2, lambda = 1, log = FALSE)
plino(q, shape1, shape2, lambda = 1, lower.tail = TRUE, log.p = FALSE)
qlino(p, shape1, shape2, lambda = 1, lower.tail = TRUE, log.p = FALSE)
rlino(n, shape1, shape2, lambda = 1)

472 Lino

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.
shape1, shape2, lambda

see lino.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See lino, the VGAM family function for estimating the parameters, for the formula of the proba-
bility density function and other details.

Value

dlino gives the density, plino gives the distribution function, qlino gives the quantile function,
and rlino generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

lino.

Examples

Not run: lambda <- 0.4; shape1 <- exp(1.3); shape2 <- exp(1.3)
x <- seq(0.0, 1.0, len = 101)
plot(x, dlino(x, shape1 = shape1, shape2 = shape2, lambda = lambda),

type = "l", col = "blue", las = 1, ylab = "",
main = "Blue is PDF, orange is the CDF",
sub = "Purple lines are the 10,20,...,90 percentiles")

abline(h = 0, col = "blue", lty = 2)
lines(x, plino(x, shape1, shape2, lambda = lambda), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qlino(probs, shape1 = shape1, shape2 = shape2, lambda = lambda)
lines(Q, dlino(Q, shape1 = shape1, shape2 = shape2, lambda = lambda),

col = "purple", lty = 3, type = "h")
plino(Q, shape1, shape2, lambda = lambda) - probs # Should be all 0

End(Not run)

lino 473

lino Generalized Beta Distribution Family Function

Description

Maximum likelihood estimation of the 3-parameter generalized beta distribution as proposed by
Libby and Novick (1982).

Usage

lino(lshape1 = "loglink", lshape2 = "loglink", llambda = "loglink",
ishape1 = NULL, ishape2 = NULL, ilambda = 1, zero = NULL)

Arguments

lshape1, lshape2

Parameter link functions applied to the two (positive) shape parameters a and b.
See Links for more choices.

llambda Parameter link function applied to the parameter λ. See Links for more choices.
ishape1, ishape2, ilambda

Initial values for the parameters. A NULL value means one is computed inter-
nally. The argument ilambda must be numeric, and the default corresponds to a
standard beta distribution.

zero Can be an integer-valued vector specifying which linear/additive predictors are
modelled as intercepts only. Here, the values must be from the set {1,2,3} which
correspond to a, b, λ, respectively. See CommonVGAMffArguments for more in-
formation.

Details

Proposed by Libby and Novick (1982), this distribution has density

f(y; a, b, λ) =
λaya−1(1− y)b−1

B(a, b){1− (1− λ)y}a+b

for a > 0, b > 0, λ > 0, 0 < y < 1. Here B is the beta function (see beta). The mean is a
complicated function involving the Gauss hypergeometric function. If X has a lino distribution
with parameters shape1, shape2, lambda, then Y = λX/(1 − (1 − λ)X) has a standard beta
distribution with parameters shape1, shape2.

Since log(λ) = 0 corresponds to the standard beta distribution, a summary of the fitted model
performs a t-test for whether the data belongs to a standard beta distribution (provided the loglink
link for λ is used; this is the default).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

474 lino

Note

The fitted values, which is usually the mean, have not been implemented yet. Currently the median
is returned as the fitted values.

Although Fisher scoring is used, the working weight matrices are positive-definite only in a certain
region of the parameter space. Problems with this indicate poor initial values or an ill-conditioned
model or insufficient data etc.

This model is can be difficult to fit. A reasonably good value of ilambda seems to be needed so if
the self-starting initial values fail, try experimenting with the initial value arguments. Experience
suggests ilambda is better a little larger, rather than smaller, compared to the true value.

Author(s)

T. W. Yee

References

Libby, D. L. and Novick, M. R. (1982). Multivariate generalized beta distributions with applications
to utility assessment. Journal of Educational Statistics, 7, 271–294.

Gupta, A. K. and Nadarajah, S. (2004). Handbook of Beta Distribution and Its Applications, NY:
Marcel Dekker, Inc.

See Also

Lino, genbetaII.

Examples

ldata <- data.frame(y1 = rbeta(n = 1000, exp(0.5), exp(1))) # Std beta
fit <- vglm(y1 ~ 1, lino, data = ldata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fitted(fit))
summary(fit)

Nonstandard beta distribution
ldata <- transform(ldata, y2 = rlino(1000, shape1 = exp(1),

shape2 = exp(2), lambda = exp(1)))
fit2 <- vglm(y2 ~ 1,

lino(lshape1 = "identitylink", lshape2 = "identitylink",
ilamb = 10), data = ldata, trace = TRUE)

coef(fit2, matrix = TRUE)

lirat 475

lirat Low-iron Rat Teratology Data

Description

Low-iron rat teratology data.

Usage

data(lirat)

Format

A data frame with 58 observations on the following 4 variables.

N Litter size.

R Number of dead fetuses.

hb Hemoglobin level.

grp Group number. Group 1 is the untreated (low-iron) group, group 2 received injections on day
7 or day 10 only, group 3 received injections on days 0 and 7, and group 4 received injections
weekly.

Details

The following description comes from Moore and Tsiatis (1991). The data comes from the experi-
mental setup from Shepard et al. (1980), which is typical of studies of the effects of chemical agents
or dietary regimens on fetal development in laboratory rats.

Female rats were put in iron-deficient diets and divided into 4 groups. One group of controls was
given weekly injections of iron supplement to bring their iron intake to normal levels, while another
group was given only placebo injections. Two other groups were given fewer iron-supplement
injections than the controls. The rats were made pregnant, sacrificed 3 weeks later, and the total
number of fetuses and the number of dead fetuses in each litter were counted.

For each litter the number of dead fetuses may be considered to be Binomial(N, p) where N is the
litter size and p is the probability of a fetus dying. The parameter p is expected to vary from litter to
litter, therefore the total variance of the proportions will be greater than that predicted by a binomial
model, even when the covariates for hemoglobin level and experimental group are accounted for.

Source

Moore, D. F. and Tsiatis, A. (1991) Robust Estimation of the Variance in Moment Methods for
Extra-binomial and Extra-Poisson Variation. Biometrics, 47, 383–401.

References

Shepard, T. H., Mackler, B. and Finch, C. A. (1980). Reproductive studies in the iron-deficient rat.
Teratology, 22, 329–334.

476 lms.bcg

Examples

Not run:
cf. Figure 3 of Moore and Tsiatis (1991)
plot(R / N ~ hb, data = lirat, pch = as.character(grp), col = grp,

las = 1, xlab = "Hemoglobin level", ylab = "Proportion Dead")
End(Not run)

lms.bcg LMS Quantile Regression with a Box-Cox transformation to a Gamma
Distribution

Description

LMS quantile regression with the Box-Cox transformation to the gamma distribution.

Usage

lms.bcg(percentiles = c(25, 50, 75), zero = c("lambda", "sigma"),
llambda = "identitylink", lmu = "identitylink", lsigma = "loglink",
idf.mu = 4, idf.sigma = 2, ilambda = 1, isigma = NULL)

Arguments

percentiles A numerical vector containing values between 0 and 100, which are the quan-
tiles. They will be returned as ‘fitted values’.

zero See lms.bcn.
llambda, lmu, lsigma

See lms.bcn.
idf.mu, idf.sigma

See lms.bcn.
ilambda, isigma

See lms.bcn.

Details

Given a value of the covariate, this function applies a Box-Cox transformation to the response to
best obtain a gamma distribution. The parameters chosen to do this are estimated by maximum
likelihood or penalized maximum likelihood. Similar details can be found at lms.bcn.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

This VGAM family function comes with the same warnings as lms.bcn. Also, the expected value
of the second derivative with respect to lambda may be incorrect (my calculations do not agree with
the Lopatatzidis and Green manuscript.)

lms.bcg 477

Note

Similar notes can be found at lms.bcn.

Author(s)

Thomas W. Yee

References

Lopatatzidis A. and Green, P. J. (unpublished manuscript). Semiparametric quantile regression
using the gamma distribution.

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

See Also

lms.bcn, lms.yjn, qtplot.lmscreg, deplot.lmscreg, cdf.lmscreg, bmi.nz, amlexponential.

Examples

This converges, but deplot(fit) and qtplot(fit) do not work
fit0 <- vglm(BMI ~ sm.bs(age, df = 4), lms.bcg, bmi.nz, trace = TRUE)
coef(fit0, matrix = TRUE)
Not run:
par(mfrow = c(1, 1))
plotvgam(fit0, se = TRUE) # Plot mu function (only)

End(Not run)

Use a trick: fit0 is used for initial values for fit1.
fit1 <- vgam(BMI ~ s(age, df = c(4, 2)), etastart = predict(fit0),

lms.bcg(zero = 1), bmi.nz, trace = TRUE)

Difficult to get a model that converges. Here, we prematurely
stop iterations because it fails near the solution.
fit2 <- vgam(BMI ~ s(age, df = c(4, 2)), maxit = 4,

lms.bcg(zero = 1, ilam = 3), bmi.nz, trace = TRUE)
summary(fit1)
head(predict(fit1))
head(fitted(fit1))
head(bmi.nz)
Person 1 is near the lower quartile of BMI amongst people his age
head(cdf(fit1))

Not run:
Quantile plot
par(bty = "l", mar=c(5, 4, 4, 3) + 0.1, xpd = TRUE)
qtplot(fit1, percentiles=c(5, 50, 90, 99), main = "Quantiles",

xlim = c(15, 90), las = 1, ylab = "BMI", lwd = 2, lcol = 4)

Density plot

478 lms.bcn

ygrid <- seq(15, 43, len = 100) # BMI ranges
par(mfrow = c(1, 1), lwd = 2)
(aa <- deplot(fit1, x0 = 20, y = ygrid, xlab = "BMI", col = "black",

main = "PDFs at Age = 20 (black), 42 (red) and 55 (blue)"))
aa <- deplot(fit1, x0 = 42, y = ygrid, add=TRUE, llty=2, col="red")
aa <- deplot(fit1, x0 = 55, y = ygrid, add=TRUE, llty=4, col="blue",

Attach = TRUE)
aa@post$deplot # Contains density function values

End(Not run)

lms.bcn LMS Quantile Regression with a Box-Cox Transformation to Normal-
ity

Description

LMS quantile regression with the Box-Cox transformation to normality.

Usage

lms.bcn(percentiles = c(25, 50, 75), zero = c("lambda", "sigma"),
llambda = "identitylink", lmu = "identitylink",
lsigma = "loglink", idf.mu = 4, idf.sigma = 2, ilambda = 1,
isigma = NULL, tol0 = 0.001)

Arguments

percentiles A numerical vector containing values between 0 and 100, which are the quan-
tiles. They will be returned as ‘fitted values’.

zero Can be an integer-valued vector specifying which linear/additive predictors are
modelled as intercepts only. The values must be from the set {1,2,3}. The de-
fault value usually increases the chance of successful convergence. Setting zero
= NULL means they all are functions of the covariates. For more information see
CommonVGAMffArguments.

llambda, lmu, lsigma

Parameter link functions applied to the first, second and third linear/additive
predictors. See Links for more choices, and CommonVGAMffArguments.

idf.mu Degrees of freedom for the cubic smoothing spline fit applied to get an initial
estimate of mu. See vsmooth.spline.

idf.sigma Degrees of freedom for the cubic smoothing spline fit applied to get an initial
estimate of sigma. See vsmooth.spline. This argument may be assigned NULL
to get an initial value using some other algorithm.

ilambda Initial value for lambda. If necessary, it is recycled to be a vector of length n
where n is the number of (independent) observations.

lms.bcn 479

isigma Optional initial value for sigma. If necessary, it is recycled to be a vector of
length n. The default value, NULL, means an initial value is computed in the
@initialize slot of the family function.

tol0 Small positive number, the tolerance for testing if lambda is equal to zero.

Details

Given a value of the covariate, this function applies a Box-Cox transformation to the response to
best obtain normality. The parameters chosen to do this are estimated by maximum likelihood or
penalized maximum likelihood.

In more detail, the basic idea behind this method is that, for a fixed value of x, a Box-Cox transfor-
mation of the response Y is applied to obtain standard normality. The 3 parameters (λ, µ, σ, which
start with the letters “L-M-S” respectively, hence its name) are chosen to maximize a penalized
log-likelihood (with vgam). Then the appropriate quantiles of the standard normal distribution are
back-transformed onto the original scale to get the desired quantiles. The three parameters may
vary as a smooth function of x.

The Box-Cox power transformation here of the Y , given x, is

Z = [(Y/µ(x))λ(x) − 1]/(σ(x)λ(x))

for λ(x) 6= 0. (The singularity at λ(x) = 0 is handled by a simple function involving a logarithm.)
Then Z is assumed to have a standard normal distribution. The parameter σ(x) must be positive,
therefore VGAM chooses η(x)T = (λ(x), µ(x), log(σ(x))) by default. The parameter µ is also
positive, but while log(µ) is available, it is not the default because µ is more directly interpretable.
Given the estimated linear/additive predictors, the 100α percentile can be estimated by inverting the
Box-Cox power transformation at the 100α percentile of the standard normal distribution.

Of the three functions, it is often a good idea to allow µ(x) to be more flexible because the functions
λ(x) and σ(x) usually vary more smoothly with x. This is somewhat reflected in the default value
for the argument zero, viz. zero = c(1, 3).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

The computations are not simple, therefore convergence may fail. Set trace = TRUE to monitor
convergence if it isn’t set already. Convergence failure will occur if, e.g., the response is bimodal
at any particular value of x. In case of convergence failure, try different starting values. Also, the
estimate may diverge quickly near the solution, in which case try prematurely stopping the iterations
by assigning maxits to be the iteration number corresponding to the highest likelihood value.

One trick is to fit a simple model and use it to provide initial values for a more complex model; see
in the examples below.

480 lms.bcn

Note

The response must be positive because the Box-Cox transformation cannot handle negative values.
In theory, the LMS-Yeo-Johnson-normal method can handle both positive and negative values.

In general, the lambda and sigma functions should be more smoother than the mean function. Hav-
ing zero = 1, zero = 3 or zero = c(1, 3) is often a good idea. See the example below.

Author(s)

Thomas W. Yee

References

Cole, T. J. and Green, P. J. (1992). Smoothing Reference Centile Curves: The LMS Method and
Penalized Likelihood. Statistics in Medicine, 11, 1305–1319.

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Mod-
els: A Roughness Penalty Approach, London: Chapman & Hall.

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

See Also

lms.bcg, lms.yjn, qtplot.lmscreg, deplot.lmscreg, cdf.lmscreg, eCDF, extlogF1, alaplace1,
amlnormal, denorm, CommonVGAMffArguments.

Examples

Not run: require("VGAMdata")
mysub <- subset(xs.nz, sex == "M" & ethnicity == "Maori" & study1)
mysub <- transform(mysub, BMI = weight / height^2)
BMIdata <- na.omit(mysub)
BMIdata <- subset(BMIdata, BMI < 80 & age < 65,

select = c(age, BMI)) # Delete an outlier
summary(BMIdata)

fit <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero = 1), BMIdata)

par(mfrow = c(1, 2))
plot(fit, scol = "blue", se = TRUE) # The two centered smooths

head(predict(fit))
head(fitted(fit))
head(BMIdata)
head(cdf(fit)) # Person 46 is probably overweight, given his age
100 * colMeans(c(depvar(fit)) < fitted(fit)) # Empirical proportions

Correct for "vgam" objects but not very elegant:
fit@family@linkinv(eta = predict(fit, data.frame(age = 60)),

extra = list(percentiles = c(10, 50)))

if (FALSE) {

lms.yjn 481

These work for "vglm" objects:
fit2 <- vglm(BMI ~ bs(age, df = 4), lms.bcn(zero = 3), BMIdata)
predict(fit2, percentiles = c(10, 50),

newdata = data.frame(age = 60), type = "response")
head(fitted(fit2, percentiles = c(10, 50))) # Different percentiles
}

Convergence problems? Use fit0 for initial values for fit1
fit0 <- vgam(BMI ~ s(age, df = 4), lms.bcn(zero = c(1, 3)), BMIdata)
fit1 <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero = 1), BMIdata,

etastart = predict(fit0))

End(Not run)

Not run: # Quantile plot
par(bty = "l", mar = c(5, 4, 4, 3) + 0.1, xpd = TRUE)
qtplot(fit, percentiles = c(5, 50, 90, 99), main = "Quantiles",

xlim = c(15, 66), las = 1, ylab = "BMI", lwd = 2, lcol = 4)

Density plot
ygrid <- seq(15, 43, len = 100) # BMI ranges
par(mfrow = c(1, 1), lwd = 2)
(aa <- deplot(fit, x0 = 20, y = ygrid, xlab = "BMI", col = "black",

main = "PDFs at Age = 20 (black), 42 (red) and 55 (blue)"))
aa <- deplot(fit, x0 = 42, y = ygrid, add = TRUE, llty = 2, col = "red")
aa <- deplot(fit, x0 = 55, y = ygrid, add = TRUE, llty = 4, col = "blue",

Attach = TRUE)
aa@post$deplot # Contains density function values

End(Not run)

lms.yjn LMS Quantile Regression with a Yeo-Johnson Transformation to Nor-
mality

Description

LMS quantile regression with the Yeo-Johnson transformation to normality. This family function is
experimental and the LMS-BCN family function is recommended instead.

Usage

lms.yjn(percentiles = c(25, 50, 75), zero = c("lambda", "sigma"),
llambda = "identitylink", lsigma = "loglink",
idf.mu = 4, idf.sigma = 2,
ilambda = 1, isigma = NULL, rule = c(10, 5),
yoffset = NULL, diagW = FALSE, iters.diagW = 6)

lms.yjn2(percentiles = c(25, 50, 75), zero = c("lambda", "sigma"),
llambda = "identitylink", lmu = "identitylink", lsigma = "loglink",
idf.mu = 4, idf.sigma = 2, ilambda = 1.0,
isigma = NULL, yoffset = NULL, nsimEIM = 250)

482 lms.yjn

Arguments

percentiles A numerical vector containing values between 0 and 100, which are the quan-
tiles. They will be returned as ‘fitted values’.

zero See lms.bcn.
llambda, lmu, lsigma

See lms.bcn.
idf.mu, idf.sigma

See lms.bcn.
ilambda, isigma

See lms.bcn.

rule Number of abscissae used in the Gaussian integration scheme to work out ele-
ments of the weight matrices. The values given are the possible choices, with
the first value being the default. The larger the value, the more accurate the
approximation is likely to be but involving more computational expense.

yoffset A value to be added to the response y, for the purpose of centering the response
before fitting the model to the data. The default value, NULL, means -median(y)
is used, so that the response actually used has median zero. The yoffset is
saved on the object and used during prediction.

diagW Logical. This argument is offered because the expected information matrix may
not be positive-definite. Using the diagonal elements of this matrix results in
a higher chance of it being positive-definite, however convergence will be very
slow.
If TRUE, then the first iters.diagW iterations will use the diagonal of the ex-
pected information matrix. The default is FALSE, meaning faster convergence.

iters.diagW Integer. Number of iterations in which the diagonal elements of the expected
information matrix are used. Only used if diagW = TRUE.

nsimEIM See CommonVGAMffArguments for more information.

Details

Given a value of the covariate, this function applies a Yeo-Johnson transformation to the response
to best obtain normality. The parameters chosen to do this are estimated by maximum likelihood or
penalized maximum likelihood. The function lms.yjn2() estimates the expected information ma-
trices using simulation (and is consequently slower) while lms.yjn() uses numerical integration.
Try the other if one function fails.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

The computations are not simple, therefore convergence may fail. In that case, try different starting
values.

The generic function predict, when applied to a lms.yjn fit, does not add back the yoffset value.

lms.yjn 483

As described above, this family function is experimental and the LMS-BCN family function is
recommended instead.

Note

The response may contain both positive and negative values. In contrast, the LMS-Box-Cox-normal
and LMS-Box-Cox-gamma methods only handle a positive response because the Box-Cox trans-
formation cannot handle negative values.

Some other notes can be found at lms.bcn.

Author(s)

Thomas W. Yee

References

Yeo, I.-K. and Johnson, R. A. (2000). A new family of power transformations to improve normality
or symmetry. Biometrika, 87, 954–959.

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

Yee, T. W. (2002). An Implementation for Regression Quantile Estimation. Pages 3–14. In: Haer-
dle, W. and Ronz, B., Proceedings in Computational Statistics COMPSTAT 2002. Heidelberg:
Physica-Verlag.

See Also

lms.bcn, lms.bcg, qtplot.lmscreg, deplot.lmscreg, cdf.lmscreg, bmi.nz, amlnormal.

Examples

fit <- vgam(BMI ~ s(age, df = 4), lms.yjn, bmi.nz, trace = TRUE)
head(predict(fit))
head(fitted(fit))
head(bmi.nz)
Person 1 is near the lower quartile of BMI amongst people his age
head(cdf(fit))

Not run:
Quantile plot
par(bty = "l", mar = c(5, 4, 4, 3) + 0.1, xpd = TRUE)
qtplot(fit, percentiles = c(5, 50, 90, 99), main = "Quantiles",

xlim = c(15, 90), las = 1, ylab = "BMI", lwd = 2, lcol = 4)

Density plot
ygrid <- seq(15, 43, len = 100) # BMI ranges
par(mfrow = c(1, 1), lwd = 2)
(Z <- deplot(fit, x0 = 20, y = ygrid, xlab = "BMI", col = "black",

main = "PDFs at Age = 20 (black), 42 (red) and 55 (blue)"))
Z <- deplot(fit, x0 = 42, y = ygrid, add = TRUE, llty = 2, col = "red")
Z <- deplot(fit, x0 = 55, y = ygrid, add = TRUE, llty = 4, col = "blue",

484 Log

Attach = TRUE)
with(Z@post, deplot) # Contains PDF values; == a@post$deplot

End(Not run)

Log Logarithmic Distribution

Description

Density, distribution function, quantile function, and random generation for the logarithmic distri-
bution.

Usage

dlog(x, shape, log = FALSE)
plog(q, shape, lower.tail = TRUE, log.p = FALSE)
qlog(p, shape)
rlog(n, shape)

Arguments

x, q, p, n, lower.tail

Same interpretation as in runif.

shape The shape parameter value c described in in logff.

log, log.p Logical. If log.p = TRUE then all probabilities p are given as log(p).

Details

The details are given in logff.

Value

dlog gives the density, plog gives the distribution function, qlog gives the quantile function, and
rlog generates random deviates.

Note

Given some response data, the VGAM family function logff estimates the parameter shape. For
plog(), if argument q contains large values and/or q is long in length then the memory requirements
may be very high. Very large values in q are handled by an approximation by Owen (1965).

Author(s)

T. W. Yee

log1mexp 485

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

logff, Gaitdlog, Oilog. Otlog.

Examples

dlog(1:20, 0.5)
rlog(20, 0.5)

Not run: shape <- 0.8; x <- 1:10
plot(x, dlog(x, shape = shape), type = "h", ylim = 0:1,

sub = "shape=0.8", las = 1, col = "blue", ylab = "shape",
main = "Logarithmic distribution: blue=PDF; orange=CDF")

lines(x + 0.1, plog(x, shape), col = "orange", lty = 3, type = "h")
End(Not run)

log1mexp Logarithms with an Unit Offset and Exponential Term

Description

Computes log(1 + exp(x)) and log(1 - exp(-x)) accurately.

Usage

log1mexp(x)
log1pexp(x)

Arguments

x A vector of reals (numeric). Complex numbers not allowed since expm1 and
log1p do not handle these.

Details

Computes log(1 + exp(x)) and log(1 - exp(-x)) accurately. An adjustment is made when x is
away from 0 in value.

Value

log1mexp(x) gives the value of log(1− exp(−x)).

log1pexp(x) gives the value of log(1 + exp(x)).

486 logclink

Note

If NA or NaN is present in the input, the corresponding output will be NA.

Author(s)

This is a direct translation of the function in Martin Maechler’s (2012) paper by Xiangjie Xue and
T. W. Yee.

References

Maechler, Martin (2012). Accurately Computing log(1-exp(-|a|)). Assessed from the Rmpfr pack-
age.

See Also

log1p, expm1, exp, log

Examples

x <- c(10, 50, 100, 200, 400, 500, 800, 1000, 1e4, 1e5, 1e20, Inf, NA)
log1pexp(x)
log(1 + exp(x)) # Naive; suffers from overflow
log1mexp(x)
log(1 - exp(-x))
y <- -x
log1pexp(y)
log(1 + exp(y)) # Naive; suffers from inaccuracy

logclink Complementary-log Link Function

Description

Computes the Complementary-log Transformation, Including its Inverse and the First Two Deriva-
tives.

Usage

logclink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

bvalue See Links.
inverse, deriv, short, tag

Details at Links.

logF 487

Details

The complementary-log link function is suitable for parameters that are less than unity. Numerical
values of theta close to 1 or out of range result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the log of theta, i.e., log(1-theta) when inverse = FALSE, and if inverse =
TRUE then 1-exp(theta).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

Note

Numerical instability may occur when theta is close to 1. One way of overcoming this is to use
bvalue.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, loglink, clogloglink, logloglink, logofflink.

Examples

Not run:
logclink(seq(-0.2, 1.1, by = 0.1)) # Has NAs

End(Not run)
logclink(seq(-0.2,1.1,by=0.1),bvalue=1-.Machine$double.eps) # Has no NAs

logF Natural Exponential Family Generalized Hyperbolic Secant Distribu-
tion Family Function

Description

Maximum likelihood estimation of the 2-parameter log F distribution.

488 logF

Usage

logF(lshape1 = "loglink", lshape2 = "loglink",
ishape1 = NULL, ishape2 = 1, imethod = 1)

Arguments

lshape1, lshape2

Parameter link functions for the shape parameters. Called α and β respectively.
See Links for more choices.

ishape1, ishape2

Optional initial values for the shape parameters. If given, it must be numeric
and values are recycled to the appropriate length. The default is to choose the
value internally. See CommonVGAMffArguments for more information.

imethod Initialization method. Either the value 1, 2, or See CommonVGAMffArguments
for more information.

Details

The density for this distribution is

f(y;α, β) = exp(αy)/[B(α, β)(1 + ey)α+β]

where y is real, α > 0, β > 0, B(., .) is the beta function beta.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Author(s)

Thomas W. Yee

References

Jones, M. C. (2008). On a class of distributions with simple exponential tails. Statistica Sinica,
18(3), 1101–1110.

See Also

dlogF, extlogF1, logff.

Examples

nn <- 1000
ldata <- data.frame(y1 = rnorm(nn, +1, sd = exp(2)), # Not proper data

x2 = rnorm(nn, -1, sd = exp(2)),
y2 = rnorm(nn, -1, sd = exp(2))) # Not proper data

fit1 <- vglm(y1 ~ 1 , logF, ldata, trace = TRUE)
fit2 <- vglm(y2 ~ x2, logF, ldata, trace = TRUE)

logff 489

coef(fit2, matrix = TRUE)
summary(fit2)
vcov(fit2)

head(fitted(fit1))
with(ldata, mean(y1))
max(abs(head(fitted(fit1)) - with(ldata, mean(y1))))

logff Logarithmic Distribution

Description

Estimating the (single) parameter of the logarithmic distribution.

Usage

logff(lshape = "logitlink", gshape = -expm1(-7 * ppoints(4)), zero = NULL)

Arguments

lshape Parameter link function for the parameter c, which lies between 0 and 1. See
Links for more choices and information. Soon logfflink() will hopefully be
available for event-rate data.

gshape, zero Details at CommonVGAMffArguments. Practical experience shows that having the
initial value for c being close to the solution is quite important.

Details

The logarithmic distribution is a generalized power series distribution that is based specifically on
the logarithmic series (scaled to a probability function). Its probability function is f(y) = acy/y,
for y = 1, 2, 3, . . ., where 0 < c < 1 (called shape), and a = −1/ log(1 − c). The mean is
ac/(1 − c) (returned as the fitted values) and variance is ac(1 − ac)/(1 − c)2. When the sample
mean is large, the value of c tends to be very close to 1, hence it could be argued that logitlink is
not the best choice.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The function log computes the natural logarithm. In the VGAM library, a link function with option
loglink corresponds to this.

Multiple responses are permitted.

The “logarithmic distribution” has various meanings in the literature. Sometimes it is also called
the log-series distribution. Some others call some continuous distribution on [a, b] by the name
“logarithmic distribution”.

490 logistic

Author(s)

T. W. Yee

References

Johnson N. L., Kemp, A. W. and Kotz S. (2005). Univariate Discrete Distributions, 3rd edition,
ch.7. Hoboken, New Jersey: Wiley.

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011) Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

Log, gaitdlog, oalog, oilog, otlog, log, loglink, logofflink, explogff, simulate.vlm.

Examples

nn <- 1000
ldata <- data.frame(y = rlog(nn, shape = logitlink(0.2, inv = TRUE)))
fit <- vglm(y ~ 1, logff, data = ldata, trace = TRUE, crit = "c")
coef(fit, matrix = TRUE)
Coef(fit)
Not run: with(ldata, spikeplot(y, col = "blue", capped = TRUE))
x <- seq(1, with(ldata, max(y)), by = 1)
with(ldata, lines(x + 0.1, dlog(x, Coef(fit)[1]), col = "orange",

type = "h", lwd = 2))
End(Not run)

Example: Corbet (1943) butterfly Malaya data
corbet <- data.frame(nindiv = 1:24,

ofreq = c(118, 74, 44, 24, 29, 22, 20, 19, 20, 15, 12,
14, 6, 12, 6, 9, 9, 6, 10, 10, 11, 5, 3, 3))

fit <- vglm(nindiv ~ 1, logff, data = corbet, weights = ofreq)
coef(fit, matrix = TRUE)
shapehat <- Coef(fit)["shape"]
pdf2 <- dlog(x = with(corbet, nindiv), shape = shapehat)
print(with(corbet, cbind(nindiv, ofreq, fitted = pdf2 * sum(ofreq))),

digits = 1)

logistic Logistic Distribution Family Function

Description

Estimates the location and scale parameters of the logistic distribution by maximum likelihood
estimation.

logistic 491

Usage

logistic1(llocation = "identitylink", scale.arg = 1, imethod = 1)
logistic(llocation = "identitylink", lscale = "loglink",

ilocation = NULL, iscale = NULL, imethod = 1, zero = "scale")

Arguments

llocation, lscale

Parameter link functions applied to the location parameter l and scale param-
eter s. See Links for more choices, and CommonVGAMffArguments for more
information.

scale.arg Known positive scale parameter (called s below).

ilocation, iscale

See CommonVGAMffArguments for information.

imethod, zero See CommonVGAMffArguments for information.

Details

The two-parameter logistic distribution has a density that can be written as

f(y; l, s) =
exp[−(y − l)/s]

s (1 + exp[−(y − l)/s])2

where s > 0 is the scale parameter, and l is the location parameter. The response −∞ < y < ∞.
The mean of Y (which is the fitted value) is l and its variance is π2s2/3.

A logistic distribution with scale = 0.65 (see dlogis) resembles dt with df = 7; see logistic1
and studentt.

logistic1 estimates the location parameter only while logistic estimates both parameters. By
default, η1 = l and η2 = log(s) for logistic.

logistic can handle multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

Fisher scoring is used, and the Fisher information matrix is diagonal.

Author(s)

T. W. Yee

492 logitlink

References

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd
edition, Volume 1, New York: Wiley. Chapter 15.

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

Castillo, E., Hadi, A. S., Balakrishnan, N. and Sarabia, J. S. (2005). Extreme Value and Related
Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience,
p.130.

deCani, J. S. and Stine, R. A. (1986). A Note on Deriving the Information Matrix for a Logistic
Distribution, The American Statistician, 40, 220–222.

See Also

rlogis, CommonVGAMffArguments, logitlink, cumulative, bilogistic, simulate.vlm.

Examples

Location unknown, scale known
ldata <- data.frame(x2 = runif(nn <- 500))
ldata <- transform(ldata, y1 = rlogis(nn, loc = 1+5*x2, sc = exp(2)))
fit1 <- vglm(y1 ~ x2, logistic1(scale = exp(2)), ldata, trace = TRUE)
coef(fit1, matrix = TRUE)

Both location and scale unknown
ldata <- transform(ldata, y2 = rlogis(nn, loc = 1 + 5*x2, exp(x2)))
fit2 <- vglm(cbind(y1, y2) ~ x2, logistic, data = ldata, trace = TRUE)
coef(fit2, matrix = TRUE)
vcov(fit2)
summary(fit2)

logitlink Logit Link Function

Description

Computes the logit transformation, including its inverse and the first two derivatives.

Usage

logitlink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

extlogitlink(theta, min = 0, max = 1, bminvalue = NULL,
bmaxvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

logitlink 493

Arguments

theta Numeric or character. See below for further details.
bvalue, bminvalue, bmaxvalue

See Links. These are boundary values. For extlogitlink, values of theta less
than or equal to A or greater than or equal to B can be replaced by bminvalue
and bmaxvalue.

min, max For extlogitlink, min gives A, max gives B, and for out of range values,
bminvalue and bmaxvalue.

inverse, deriv, short, tag

Details at Links.

Details

The logit link function is very commonly used for parameters that lie in the unit interval. It is the
inverse CDF of the logistic distribution. Numerical values of theta close to 0 or 1 or out of range
result in Inf, -Inf, NA or NaN.

The extended logit link function extlogitlink should be used more generally for parameters that
lie in the interval (A,B), say. The formula is

log((θ −A)/(B − θ))

and the default values for A and B correspond to the ordinary logit function. Numerical values of
theta close toA orB or out of range result in Inf, -Inf, NA or NaN. However these can be replaced
by values bminvalue and bmaxvalue first before computing the link function.

Value

For logitlink with deriv = 0, the logit of theta, i.e., log(theta/(1-theta)) when inverse =
FALSE, and if inverse = TRUE then exp(theta)/(1+exp(theta)).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

Note

Numerical instability may occur when theta is close to 1 or 0 (for logitlink), or close to A or B
for extlogitlink. One way of overcoming this is to use, e.g., bvalue.

In terms of the threshold approach with cumulative probabilities for an ordinal response this link
function corresponds to the univariate logistic distribution (see logistic).

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

494 logitlink

See Also

Links, logitoffsetlink, probitlink, clogloglink, cauchitlink, logistic1, loglink, Logistic,
multilogitlink.

Examples

p <- seq(0.01, 0.99, by = 0.01)
logitlink(p)
max(abs(logitlink(logitlink(p), inverse = TRUE) - p)) # 0?

p <- c(seq(-0.02, 0.02, by = 0.01), seq(0.97, 1.02, by = 0.01))
logitlink(p) # Has NAs
logitlink(p, bvalue = .Machine$double.eps) # Has no NAs

p <- seq(0.9, 2.2, by = 0.1)
extlogitlink(p, min = 1, max = 2,

bminvalue = 1 + .Machine$double.eps,
bmaxvalue = 2 - .Machine$double.eps) # Has no NAs

Not run: par(mfrow = c(2,2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)
p <- seq(0.01, 0.99, by = 0.01)
for (d in 0:1) {

myinv <- (d > 0)
matplot(p, cbind(logitlink(p, deriv = d, inv = myinv),

probitlink(p, deriv = d, inv = myinv)), las = 1,
type = "n", col = "purple", ylab = "transformation",
main = if (d == 0) "Some probability link functions"
else "1 / first derivative")

lines(p, logitlink(p, deriv = d, inverse = myinv), col = "limegreen")
lines(p, probitlink(p, deriv = d, inverse = myinv), col = "purple")
lines(p, clogloglink(p, deriv = d, inverse = myinv), col = "chocolate")
lines(p, cauchitlink(p, deriv = d, inverse = myinv), col = "tan")
if (d == 0) {

abline(v = 0.5, h = 0, lty = "dashed")
legend(0, 4.5, c("logitlink", "probitlink",

"clogloglink", "cauchitlink"), col = c("limegreen", "purple",
"chocolate", "tan"), lwd = mylwd)

} else
abline(v = 0.5, lty = "dashed")

}

for (d in 0) {
matplot(y, cbind(logitlink(y, deriv = d, inverse = TRUE),

probitlink(y, deriv = d, inverse = TRUE)), las = 1,
type = "n", col = "purple", xlab = "transformation", ylab = "p",
main = if (d == 0) "Some inverse probability link functions"
else "First derivative")

lines(y, logitlink(y, deriv = d, inv = TRUE), col = "limegreen")
lines(y, probitlink(y, deriv = d, inv = TRUE), col = "purple")
lines(y, clogloglink(y, deriv = d, inv = TRUE), col = "chocolate")
lines(y, cauchitlink(y, deriv = d, inv = TRUE), col = "tan")

logitoffsetlink 495

if (d == 0) {
abline(h = 0.5, v = 0, lty = "dashed")
legend(-4, 1, c("logitlink", "probitlink", "clogloglink",

"cauchitlink"), col = c("limegreen", "purple",
"chocolate", "tan"), lwd = mylwd)

}
}

p <- seq(0.21, 0.59, by = 0.01)
plot(p, extlogitlink(p, min = 0.2, max = 0.6), xlim = c(0, 1),

type = "l", col = "black", ylab = "transformation",
las = 1, main = "extlogitlink(p, min = 0.2, max = 0.6)")

par(lwd = 1)

End(Not run)

logitoffsetlink Logit-with-an-Offset Link Function

Description

Computes the logitoffsetlink transformation, including its inverse and the first two derivatives.

Usage

logitoffsetlink(theta, offset = 0, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

offset The offset value(s), which must be non-negative. It is called K below.

inverse, deriv, short, tag

Details at Links.

Details

This link function allows for some asymmetry compared to the ordinary logitlink link. The
formula is

log(θ/(1− θ)−K)

and the default value for the offsetK is corresponds to the ordinary logitlink link. When inverse
= TRUE will mean that the value will lie in the interval (K/(1 +K), 1).

496 loglaplace

Value

For logitoffsetlink with deriv = 0, the logitoffsetlink of theta, i.e., log(theta/(1-theta) -
K) when inverse = FALSE, and if inverse = TRUE then (K + exp(theta))/(1 + exp(theta) + K).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

Note

This function is numerical less stability than logitlink.

Author(s)

Thomas W. Yee

References

Komori, O. and Eguchi, S. et al., 2016. An asymmetric logistic model for ecological data. Methods
in Ecology and Evolution, 7.

See Also

Links, logitlink.

Examples

p <- seq(0.05, 0.99, by = 0.01); myoff <- 0.05
logitoffsetlink(p, myoff)
max(abs(logitoffsetlink(logitoffsetlink(p, myoff),

myoff, inverse = TRUE) - p)) # Should be 0

loglaplace Log-Laplace and Logit-Laplace Distribution Family Functions

Description

Maximum likelihood estimation of the 1-parameter log-Laplace and the 1-parameter logit-Laplace
distributions. These may be used for quantile regression for counts and proportions respectively.

Usage

loglaplace1(tau = NULL, llocation = "loglink",
ilocation = NULL, kappa = sqrt(tau/(1 - tau)), Scale.arg = 1,
ishrinkage = 0.95, parallel.locat = FALSE, digt = 4,
idf.mu = 3, rep0 = 0.5, minquantile = 0, maxquantile = Inf,
imethod = 1, zero = NULL)

logitlaplace1(tau = NULL, llocation = "logitlink",

loglaplace 497

ilocation = NULL, kappa = sqrt(tau/(1 - tau)),
Scale.arg = 1, ishrinkage = 0.95, parallel.locat = FALSE,
digt = 4, idf.mu = 3, rep01 = 0.5, imethod = 1, zero = NULL)

Arguments

tau, kappa See alaplace1.

llocation Character. Parameter link functions for location parameter ξ. See Links for
more choices. However, this argument should be left unchanged with count data
because it restricts the quantiles to be positive. With proportions data llocation
can be assigned a link such as logitlink, probitlink, clogloglink, etc.

ilocation Optional initial values. If given, it must be numeric and values are recycled to
the appropriate length. The default is to choose the value internally.

parallel.locat Logical. Should the quantiles be parallel on the transformed scale (argument
llocation)? Assigning this argument to TRUE circumvents the seriously em-
barrassing quantile crossing problem.

imethod Initialization method. Either the value 1, 2, or
idf.mu, ishrinkage, Scale.arg, digt, zero

See alaplace1.

rep0, rep01 Numeric, positive. Replacement values for 0s and 1s respectively. For count
data, values of the response whose value is 0 are replaced by rep0; it avoids
computing log(0). For proportions data values of the response whose value is
0 or 1 are replaced by min(rangey01[1]/2, rep01/w[y< = 0]) and max((1 +
rangey01[2])/2, 1-rep01/w[y >= 1]) respectively; e.g., it avoids computing
logitlink(0) or logitlink(1). Here, rangey01 is the 2-vector range(y[(y
> 0) & (y < 1)]) of the response.

minquantile, maxquantile

Numeric. The minimum and maximum values possible in the quantiles. These
argument are effectively ignored by default since loglink keeps all quantiles
positive. However, if llocation = logofflink(offset = 1) then it is possible
that the fitted quantiles have value 0 because minquantile = 0.

Details

These VGAM family functions implement translations of the asymmetric Laplace distribution
(ALD). The resulting variants may be suitable for quantile regression for count data or sample
proportions. For example, a log link applied to count data is assumed to follow an ALD. Another
example is a logit link applied to proportions data so as to follow an ALD. A positive random vari-
able Y is said to have a log-Laplace distribution if Y = eW where W has an ALD. There are many
variants of ALDs and the one used here is described in alaplace1.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

In the extra slot of the fitted object are some list components which are useful. For example, the
sample proportion of values which are less than the fitted quantile curves, which is sum(wprior[y

498 loglaplace

<= location]) / sum(wprior) internally. Here, wprior are the prior weights (called ssize be-
low), y is the response and location is a fitted quantile curve. This definition comes about naturally
from the transformed ALD data.

Warning

The VGAM family function logitlaplace1 will not handle a vector of just 0s and 1s as the re-
sponse; it will only work satisfactorily if the number of trials is large.

See alaplace1 for other warnings. Care is needed with tau values which are too small, e.g., for
count data the sample proportion of zeros must be less than all values in tau. Similarly, this also
holds with logitlaplace1, which also requires all tau values to be less than the sample proportion
of ones.

Note

The form of input for logitlaplace1 as response is a vector of proportions (values in [0, 1]) and
the number of trials is entered into the weights argument of vglm/vgam. See Example 2 below. See
alaplace1 for other notes in general.

Author(s)

Thomas W. Yee

References

Kotz, S., Kozubowski, T. J. and Podgorski, K. (2001). The Laplace distribution and generaliza-
tions: a revisit with applications to communications, economics, engineering, and finance, Boston:
Birkhauser.

Kozubowski, T. J. and Podgorski, K. (2003). Log-Laplace distributions. International Mathemati-
cal Journal, 3, 467–495.

Yee, T. W. (2020). Quantile regression for counts and proportions. In preparation.

See Also

alaplace1, dloglap.

Examples

Example 1: quantile regression of counts with regression splines
set.seed(123); my.k <- exp(0)
adata <- data.frame(x2 = sort(runif(n <- 500)))
mymu <- function(x) exp(1 + 3*sin(2*x) / (x+0.5)^2)
adata <- transform(adata, y = rnbinom(n, mu = mymu(x2), my.k))
mytau <- c(0.1, 0.25, 0.5, 0.75, 0.9); mydof = 3
halfstepping is usual:
fitp <- vglm(y ~ sm.bs(x2, df = mydof), data = adata, trace = TRUE,

loglaplace1(tau = mytau, parallel.locat = TRUE))

Not run: par(las = 1) # Plot on a log1p() scale
mylwd <- 1.5

loglaplace 499

plot(jitter(log1p(y), factor = 1.5) ~ x2, adata, col = "red",
pch = "o", cex = 0.75,
main = "Example 1; green=truth, blue=estimated")

with(adata, matlines(x2, log1p(fitted(fitp)), col = "blue",
lty = 1, lwd = mylwd))

finexgrid <- seq(0, 1, len = 201)
for (ii in 1:length(mytau))

lines(finexgrid, col = "green", lwd = mylwd,
log1p(qnbinom(mytau[ii], mu = mymu(finexgrid), my.k)))

End(Not run)
fitp@extra # Contains useful information

Example 2: sample proportions
set.seed(123); nnn <- 1000; ssize <- 100 # ssize = 1 wont work!
adata <- data.frame(x2 = sort(runif(nnn)))
mymu <- function(x) logitlink(1.0 + 4*x, inv = TRUE)
adata <- transform(adata, ssize = ssize,

y2 = rbinom(nnn, ssize, prob = mymu(x2)) / ssize)

mytau <- c(0.25, 0.50, 0.75)
fit1 <- vglm(y2 ~ sm.bs(x2, df = 3),

logitlaplace1(tau = mytau, lloc = "clogloglink", paral = TRUE),
data = adata, weights = ssize, trace = TRUE)

Not run:
Check the solution. Note: this is like comparing apples with oranges.
plotvgam(fit1, se = TRUE, scol = "red", lcol = "blue",

main = "Truth = 'green'")
Centered approximately !
linkFunctionChar <- as.character(fit1@misc$link)
adata <- transform(adata, trueFunction =

theta2eta(theta = mymu(x2), link = linkFunctionChar))
with(adata, lines(x2, trueFunction - mean(trueFunction), col = "green"))

Plot the data + fitted quantiles (on the original scale)
myylim <- with(adata, range(y2))
plot(y2 ~ x2, adata, col = "blue", ylim = myylim, las = 1,

pch = ".", cex = 2.5)
with(adata, matplot(x2, fitted(fit1), add = TRUE, lwd = 3, type = "l"))
truecol <- rep(1:3, len = fit1@misc$M) # Add the 'truth'
smallxgrid <- seq(0, 1, len = 501)
for (ii in 1:length(mytau))

lines(smallxgrid, col = truecol[ii], lwd = 2,
qbinom(mytau[ii], pr = mymu(smallxgrid), si = ssize) / ssize)

Plot on the eta (== logitlink()/probit()/...) scale
with(adata, matplot(x2, predict(fit1), lwd = 3, type = "l"))

Add the 'truth'
for (ii in 1:length(mytau)) {

true.quant <- qbinom(mytau[ii], prob = mymu(smallxgrid),

500 loglapUC

size = ssize) / ssize
lines(smallxgrid, theta2eta(true.quant, link = linkFunctionChar),

col = truecol[ii], lwd = 2)
}
End(Not run)

loglapUC The Log-Laplace Distribution

Description

Density, distribution function, quantile function and random generation for the 3-parameter log-
Laplace distribution with location parameter location.ald, scale parameter scale.ald (on the
log scale), and asymmetry parameter kappa.

Usage

dloglap(x, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau)), log = FALSE)

ploglap(q, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau)), lower.tail = TRUE, log.p = FALSE)

qloglap(p, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau)), lower.tail = TRUE, log.p = FALSE)

rloglap(n, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau)))

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

location.ald, scale.ald

the location parameter ξ and the (positive) scale parameter σ, on the log scale.

tau the quantile parameter τ . Must consist of values in (0, 1). This argument is used
to specify kappa and is ignored if kappa is assigned.

kappa the asymmetry parameter κ. Must consist of positive values.

log if TRUE, probabilities p are given as log(p).
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

A positive random variable Y is said to have a log-Laplace distribution if log(Y) has an asymmetric
Laplace distribution (ALD). There are many variants of ALDs and the one used here is described
in alaplace3.

logLik.vlm 501

Value

dloglap gives the density, ploglap gives the distribution function, qloglap gives the quantile
function, and rloglap generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Kozubowski, T. J. and Podgorski, K. (2003). Log-Laplace distributions. International Mathemati-
cal Journal, 3, 467–495.

See Also

dalap, alaplace3, loglaplace1.

Examples

loc <- 0; sigma <- exp(0.5); kappa <- 1
x <- seq(-0.2, 5, by = 0.01)
Not run: plot(x, dloglap(x, loc, sigma, kappa = kappa),

type = "l", col = "blue", ylim = c(0,1),
main = "Blue is density, red is the CDF",
sub = "Purple are 5,10,...,95 percentiles", las = 1, ylab = "")

abline(h = 0, col = "blue", lty = 2)
lines(qloglap(seq(0.05,0.95,by = 0.05), loc, sigma, kappa = kappa),

dloglap(qloglap(seq(0.05,0.95,by = 0.05), loc, sigma, kappa = kappa),
loc, sigma, kappa = kappa),

col = "purple", lty = 3, type = "h")
lines(x, ploglap(x, loc, sigma, kappa = kappa), type = "l", col = 2)
abline(h = 0, lty = 2)

End(Not run)
ploglap(qloglap(seq(0.05,0.95,by = 0.05), loc, sigma, kappa = kappa),

loc, sigma, kappa = kappa)

logLik.vlm Extract Log-likelihood for VGLMs/VGAMs/etc.

Description

Calculates the log-likelihood value or the element-by-element contributions of the log-likelihood.

Usage

S3 method for class 'vlm'
logLik(object, summation = TRUE, ...)

502 logLik.vlm

Arguments

object Some VGAM object, for example, having class vglmff-class.

summation Logical, apply sum? If FALSE then a n-vector or n-row matrix (with the num-
ber of responses as the number of columns) is returned. Each element is the
contribution to the log-likelihood.

... Currently unused. In the future: other possible arguments fed into logLik in
order to compute the log-likelihood.

Details

By default, this function returns the log-likelihood of the object. Thus this code relies on the log-
likelihood being defined, and computed, for the object.

Value

Returns the log-likelihood of the object. If summation = FALSE then a n-vector or n-row matrix
(with the number of responses as the number of columns) is returned. Each element is the contribu-
tion to the log-likelihood. The prior weights are assimulated within the answer.

Warning

Not all VGAM family functions have had the summation checked.

Note

Not all VGAM family functions currently have the summation argument implemented.

Author(s)

T. W. Yee.

See Also

VGLMs are described in vglm-class; VGAMs are described in vgam-class; RR-VGLMs are
described in rrvglm-class; AIC; anova.vglm.

Examples

zdata <- data.frame(x2 = runif(nn <- 50))
zdata <- transform(zdata, Ps01 = logitlink(-0.5 , inverse = TRUE),

Ps02 = logitlink(0.5 , inverse = TRUE),
lambda1 = loglink(-0.5 + 2*x2, inverse = TRUE),
lambda2 = loglink(0.5 + 2*x2, inverse = TRUE))

zdata <- transform(zdata, y1 = rzipois(nn, lambda = lambda1, pstr0 = Ps01),
y2 = rzipois(nn, lambda = lambda2, pstr0 = Ps02))

with(zdata, table(y1)) # Eyeball the data
with(zdata, table(y2))
fit2 <- vglm(cbind(y1, y2) ~ x2, zipoisson(zero = NULL), data = zdata)

loglinb2 503

logLik(fit2) # Summed over the two responses
sum(logLik(fit2, sum = FALSE)) # For checking purposes
(ll.matrix <- logLik(fit2, sum = FALSE)) # nn x 2 matrix
colSums(ll.matrix) # log-likelihood for each response

loglinb2 Loglinear Model for Two Binary Responses

Description

Fits a loglinear model to two binary responses.

Usage

loglinb2(exchangeable = FALSE, zero = "u12")

Arguments

exchangeable Logical. If TRUE, the two marginal probabilities are constrained to be equal.
Should be set TRUE for ears, eyes, etc. data.

zero Which linear/additive predictors are modelled as intercept-only? A NULL means
none of them. See CommonVGAMffArguments for more information.

Details

The model is
P (Y1 = y1, Y2 = y2) = exp(u0 + u1y1 + u2y2 + u12y1y2)

where y1 and y2 are 0 or 1, and the parameters are u1, u2, u12. The normalizing parameter u0 can
be expressed as a function of the other parameters, viz.,

u0 = − log[1 + exp(u1) + exp(u2) + exp(u1 + u2 + u12)].

The linear/additive predictors are (η1, η2, η3)T = (u1, u2, u12)T .

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

When fitted, the fitted.values slot of the object contains the four joint probabilities, labelled as
(Y1, Y2) = (0,0), (0,1), (1,0), (1,1), respectively.

Note

The response must be a two-column matrix of ones and zeros only. This is more restrictive than
binom2.or, which can handle more types of input formats. Note that each of the 4 combinations
of the multivariate response need to appear in the data set. After estimation, the response attached
to the object is also a two-column matrix; possibly in the future it might change into a four-column
matrix.

504 loglinb3

Author(s)

Thomas W. Yee

References

Yee, T. W. and Wild, C. J. (2001). Discussion to: “Smoothing spline ANOVA for multivari-
ate Bernoulli observations, with application to ophthalmology data (with discussion)” by Gao, F.,
Wahba, G., Klein, R., Klein, B. Journal of the American Statistical Association, 96, 127–160.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

binom2.or, binom2.rho, loglinb3.

Examples

coalminers <- transform(coalminers, Age = (age - 42) / 5)
Get the n x 4 matrix of counts
fit0 <- vglm(cbind(nBnW,nBW,BnW,BW) ~ Age, binom2.or, coalminers)
counts <- round(c(weights(fit0, type = "prior")) * depvar(fit0))
Create a n x 2 matrix response for loglinb2()
bwmat <- matrix(c(0,0, 0,1, 1,0, 1,1), 4, 2, byrow = TRUE)
bwmat <- cbind(bln = c(0,0,1,1), wheeze = c(0,1,0,1))
matof1 <- matrix(1, nrow(counts), 1)
newminers <-

data.frame(bln = kronecker(matof1, bwmat[, 1]),
wheeze = kronecker(matof1, bwmat[, 2]),
wt = c(t(counts)),
Age = with(coalminers, rep(age, rep(4, length(age)))))

newminers <- newminers[with(newminers, wt) > 0,]

fit <- vglm(cbind(bln,wheeze) ~ Age, loglinb2(zero = NULL),
weight = wt, data = newminers)

coef(fit, matrix = TRUE) # Same! (at least for the log odds-ratio)
summary(fit)

Try reconcile this with McCullagh and Nelder (1989), p.234
(0.166-0.131) / 0.027458 # 1.275 is approximately 1.25

loglinb3 Loglinear Model for Three Binary Responses

Description

Fits a loglinear model to three binary responses.

loglinb3 505

Usage

loglinb3(exchangeable = FALSE, zero = c("u12", "u13", "u23"))

Arguments

exchangeable Logical. If TRUE, the three marginal probabilities are constrained to be equal.

zero Which linear/additive predictors are modelled as intercept-only? A NULL means
none. See CommonVGAMffArguments for further information.

Details

The model is P (Y1 = y1, Y2 = y2, Y3 = y3) =

exp(u0 + u1y1 + u2y2 + u3y3 + u12y1y2 + u13y1y3 + u23y2y3)

where y1, y2 and y3 are 0 or 1, and the parameters are u1, u2, u3, u12, u13, u23. The normaliz-
ing parameter u0 can be expressed as a function of the other parameters. Note that a third-order
association parameter, u123 for the product y1y2y3, is assumed to be zero for this family function.

The linear/additive predictors are (η1, η2, . . . , η6)T = (u1, u2, u3, u12, u13, u23)T .

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

When fitted, the fitted.values slot of the object contains the eight joint probabilities, labelled as
(Y1, Y2, Y3) = (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1), respectively.

Note

The response must be a 3-column matrix of ones and zeros only. Note that each of the 8 combina-
tions of the multivariate response need to appear in the data set, therefore data sets will need to be
large in order for this family function to work. After estimation, the response attached to the object
is also a 3-column matrix; possibly in the future it might change into a 8-column matrix.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Wild, C. J. (2001). Discussion to: “Smoothing spline ANOVA for multivari-
ate Bernoulli observations, with application to ophthalmology data (with discussion)” by Gao, F.,
Wahba, G., Klein, R., Klein, B. Journal of the American Statistical Association, 96, 127–160.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

loglinb2, hunua.

506 loglink

Examples

lfit <- vglm(cbind(cyadea, beitaw, kniexc) ~ altitude, loglinb3,
data = hunua, trace = TRUE)

coef(lfit, matrix = TRUE)
head(fitted(lfit))
summary(lfit)

loglink Log Link Function, and Variants

Description

Computes the log transformation, including its inverse and the first two derivatives.

Usage

loglink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

negloglink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

logneglink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

bvalue See Links.
inverse, deriv, short, tag

Details at Links.

Details

The log link function is very commonly used for parameters that are positive. Here, all logarithms
are natural logarithms, i.e., to base e. Numerical values of theta close to 0 or out of range result in
Inf, -Inf, NA or NaN.

The function loglink computes log(θ) whereas negloglink computes − log(θ) = log(1/θ).

The function logneglink computes log(−θ), hence is suitable for parameters that are negative,
e.g., a trap-shy effect in posbernoulli.b.

Value

The following concerns loglink. For deriv = 0, the log of theta, i.e., log(theta) when inverse
= FALSE, and if inverse = TRUE then exp(theta). For deriv = 1, then the function returns d eta
/ d theta as a function of theta if inverse = FALSE, else if inverse = TRUE then it returns the
reciprocal.

logloglink 507

Note

This function was called loge to avoid conflict with the log function. Numerical instability may
occur when theta is close to 0 unless bvalue is used.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, explink, logitlink, logclink, logloglink, log, logofflink, lambertW, posbernoulli.b.

Examples

Not run: loglink(seq(-0.2, 0.5, by = 0.1))
loglink(seq(-0.2, 0.5, by = 0.1), bvalue = .Machine$double.xmin)
negloglink(seq(-0.2, 0.5, by = 0.1))
negloglink(seq(-0.2, 0.5, by = 0.1), bvalue = .Machine$double.xmin)
End(Not run)
logneglink(seq(-0.5, -0.2, by = 0.1))

logloglink Log-log and Log-log-log Link Functions

Description

Computes the two transformations, including their inverse and the first two derivatives.

Usage

logloglink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

loglogloglink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

bvalue Values of theta which are less than or equal to 1 or e can be replaced by bvalue
before computing the link function value. The component name bvalue stands
for “boundary value”. See Links for more information.

inverse, deriv, short, tag

Details at Links.

508 logloglink

Details

The log-log link function is commonly used for parameters that are greater than unity. Similarly,
the log-log-log link function is applicable for parameters that are greater than e. Numerical values
of theta close to 1 or e or out of range result in Inf, -Inf, NA or NaN. One possible application
of loglogloglink() is to the k parameter (also called size) of negbinomial to Poisson-like data
but with only a small amount of overdispersion; then k is a large number relative to munb. In such
situations a loglink or loglog link may not be sufficient to draw the estimate toward the interior
of the parameter space. Using a more stronger link function can help mitigate the Hauck-Donner
effect hdeff.

Value

For logloglink(): for deriv = 0, the log of log(theta), i.e., log(log(theta)) when inverse
= FALSE, and if inverse = TRUE then exp(exp(theta)).

For loglogloglink(): for deriv = 0, the log of log(log(theta)), i.e., log(log(log(theta)))
when inverse = FALSE, and if inverse = TRUE then exp(exp(exp(theta))).

For deriv = 1, then the function returns d theta / d eta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

Note

Numerical instability may occur when theta is close to 1 or e unless bvalue is used.

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, loglink, logofflink.

Examples

x <- seq(0.8, 1.5, by = 0.1)
logloglink(x) # Has NAs
logloglink(x, bvalue = 1.0 + .Machine$double.eps) # Has no NAs

x <- seq(1.01, 10, len = 100)
logloglink(x)
max(abs(logloglink(logloglink(x), inverse = TRUE) - x)) # 0?

lognormal 509

lognormal Lognormal Distribution

Description

Maximum likelihood estimation of the (univariate) lognormal distribution.

Usage

lognormal(lmeanlog = "identitylink", lsdlog = "loglink", zero = "sdlog")

Arguments

lmeanlog, lsdlog

Parameter link functions applied to the mean and (positive) σ (standard devia-
tion) parameter. Both of these are on the log scale. See Links for more choices.

zero Specifies which linear/additive predictor is modelled as intercept-only. For lognormal(),
the values can be from the set {1,2} which correspond to mu, sigma, respectively.
See CommonVGAMffArguments for more information.

Details

A random variable Y has a 2-parameter lognormal distribution if log(Y) is distributed N(µ, σ2).
The expected value of Y , which is

E(Y) = exp(µ+ 0.5σ2)

and not µ, make up the fitted values. The variance of Y is

V ar(Y) = [exp(σ2)− 1] exp(2µ+ σ2).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Lognormal, uninormal, CommonVGAMffArguments, simulate.vlm.

510 logofflink

Examples

ldata2 <- data.frame(x2 = runif(nn <- 1000))
ldata2 <- transform(ldata2, y1 = rlnorm(nn, 1 + 2 * x2, sd = exp(-1)),

y2 = rlnorm(nn, 1, sd = exp(-1 + x2)))
fit1 <- vglm(y1 ~ x2, lognormal(zero = 2), data = ldata2, trace = TRUE)
fit2 <- vglm(y2 ~ x2, lognormal(zero = 1), data = ldata2, trace = TRUE)
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)

logofflink Log Link Function with an Offset

Description

Computes the log transformation with an offset, including its inverse and the first two derivatives.

Usage

logofflink(theta, offset = 0, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

offset Offset value. See Links.
inverse, deriv, short, tag

Details at Links.

Details

The log-offset link function is very commonly used for parameters that are greater than a certain
value. In particular, it is defined by log(theta + offset) where offset is the offset value. For
example, if offset = 0.5 then the value of theta is restricted to be greater than −0.5.

Numerical values of theta close to -offset or out of range result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the log of theta+offset, i.e., log(theta+offset) when inverse = FALSE, and if
inverse = TRUE then exp(theta)-offset.

For deriv = 1, then the function returns d theta / d eta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

Note

The default means this function is identical to loglink.

Numerical instability may occur when theta is close to -offset.

Lomax 511

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, loglink.

Examples

Not run:
logofflink(seq(-0.2, 0.5, by = 0.1))
logofflink(seq(-0.2, 0.5, by = 0.1), offset = 0.5)

log(seq(-0.2, 0.5, by = 0.1) + 0.5)
End(Not run)

Lomax The Lomax Distribution

Description

Density, distribution function, quantile function and random generation for the Lomax distribution
with scale parameter scale and shape parameter q.

Usage

dlomax(x, scale = 1, shape3.q, log = FALSE)
plomax(q, scale = 1, shape3.q, lower.tail = TRUE, log.p = FALSE)
qlomax(p, scale = 1, shape3.q, lower.tail = TRUE, log.p = FALSE)
rlomax(n, scale = 1, shape3.q)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

scale scale parameter.

shape3.q shape parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

512 Lomax

Details

See lomax, which is the VGAM family function for estimating the parameters by maximum likeli-
hood estimation.

Value

dlomax gives the density, plomax gives the distribution function, qlomax gives the quantile function,
and rlomax generates random deviates.

Note

The Lomax distribution is a special case of the 4-parameter generalized beta II distribution.

Author(s)

T. W. Yee and Kai Huang

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

lomax, genbetaII.

Examples

probs <- seq(0.1, 0.9, by = 0.1)
max(abs(plomax(qlomax(p = probs, shape3.q = 1),

shape3.q = 1) - probs)) # Should be 0

Not run: par(mfrow = c(1, 2))
x <- seq(-0.01, 5, len = 401)
plot(x, dexp(x), type = "l", col = "black", ylab = "", ylim = c(0, 3),

main = "Black is std exponential, others are dlomax(x, shape3.q)")
lines(x, dlomax(x, shape3.q = 1), col = "orange")
lines(x, dlomax(x, shape3.q = 2), col = "blue")
lines(x, dlomax(x, shape3.q = 5), col = "green")
legend("topright", col = c("orange","blue","green"), lty = rep(1, 3),

legend = paste("shape3.q =", c(1, 2, 5)))

plot(x, pexp(x), type = "l", col = "black", ylab = "", las = 1,
main = "Black is std exponential, others are plomax(x, shape3.q)")

lines(x, plomax(x, shape3.q = 1), col = "orange")
lines(x, plomax(x, shape3.q = 2), col = "blue")
lines(x, plomax(x, shape3.q = 5), col = "green")
legend("bottomright", col = c("orange","blue","green"), lty = rep(1, 3),

legend = paste("shape3.q =", c(1, 2, 5)))

End(Not run)

lomax 513

lomax Lomax Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter Lomax distribution.

Usage

lomax(lscale = "loglink", lshape3.q = "loglink", iscale = NULL,
ishape3.q = NULL, imethod = 1, gscale = exp(-5:5),
gshape3.q = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")

Arguments

lscale, lshape3.q

Parameter link function applied to the (positive) parameters scale and q. See
Links for more choices.

iscale, ishape3.q, imethod

See CommonVGAMffArguments for information. For imethod = 2 a good initial
value for iscale is needed to obtain a good estimate for the other parameter.

gscale, gshape3.q, zero, probs.y

See CommonVGAMffArguments.

Details

The 2-parameter Lomax distribution is the 4-parameter generalized beta II distribution with shape
parameters a = p = 1. It is probably more widely known as the Pareto (II) distribution. It is
also the 3-parameter Singh-Maddala distribution with shape parameter a = 1, as well as the beta
distribution of the second kind with p = 1. More details can be found in Kleiber and Kotz (2003).

The Lomax distribution has density

f(y) = q/[b{1 + y/b}1+q]

for b > 0, q > 0, y ≥ 0. Here, b is the scale parameter scale, and q is a shape parameter. The
cumulative distribution function is

F (y) = 1− [1 + (y/b)]−q.

The mean is
E(Y) = b/(q − 1)

provided q > 1; these are returned as the fitted values. This family function handles multiple
responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

514 lpossums

Note

See the notes in genbetaII.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Lomax, genbetaII, betaII, dagum, sinmad, fisk, inv.lomax, paralogistic, inv.paralogistic,
simulate.vlm.

Examples

ldata <- data.frame(y = rlomax(n = 1000, scale = exp(1), exp(2)))
fit <- vglm(y ~ 1, lomax, data = ldata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

lpossums Leadbeater’s Possums

Description

Abundance of Leadbeater’s Possums observed in the field.

Usage

data(lpossums)

Format

A data frame with the following variables.

number Values between 0 and 10 excluding 6.

ofreq Observed frequency, i.e., the number of sites.

Details

A small data set recording the abundance of Leadbeater’s Possums Gymnobelideus leadbeateri
observed in the montane ash forests of the Central Highlands of Victoria, in south-eastern Australia.
There are 151 3-hectare sites. The data has more 0s than usual relative to the Poisson, as well as
exhibiting overdispersion too.

lqnorm 515

Source

Welsh, A. H., Cunningham, R. B., Donnelly, C. F. and Lindenmayer, D. B. (1996). Modelling the
abundances of rare species: statistical models for counts with extra zeros. Ecological Modelling,
88, 297–308.

See Also

zipoissonff.

Examples

lpossums
(samplemean <- with(lpossums, weighted.mean(number, ofreq)))
with(lpossums, var(rep(number, times = ofreq)) / samplemean)
sum(with(lpossums, ofreq))
Not run: spikeplot(with(lpossums, rep(number, times = ofreq)),

main = "Leadbeater's possums", col = "blue", xlab = "Number")
End(Not run)

lqnorm Minimizing the L-q norm Family Function

Description

Minimizes the L-q norm of residuals in a linear model.

Usage

lqnorm(qpower = 2, link = "identitylink",
imethod = 1, imu = NULL, ishrinkage = 0.95)

Arguments

qpower A single numeric, must be greater than one, called q below. The absolute value
of residuals are raised to the power of this argument, and then summed. This
quantity is minimized with respect to the regression coefficients.

link Link function applied to the ‘mean’ µ. See Links for more details.

imethod Must be 1, 2 or 3. See CommonVGAMffArguments for more information. Ignored
if imu is specified.

imu Numeric, optional initial values used for the fitted values. The default is to use
imethod = 1.

ishrinkage How much shrinkage is used when initializing the fitted values. The value must
be between 0 and 1 inclusive, and a value of 0 means the individual response
values are used, and a value of 1 means the median or mean is used. This
argument is used in conjunction with imethod = 3.

516 lqnorm

Details

This function minimizes the objective function

n∑
i=1

wi(|yi − µi|)q

where q is the argument qpower, ηi = g(µi) where g is the link function, and ηi is the vector of
linear/additive predictors. The prior weights wi can be inputted using the weights argument of
vlm/vglm/vgam etc.; it should be just a vector here since this function handles only a single vector
or one-column response.

Numerical problem will occur when q is too close to one. Probably reasonable values range from
1.5 and up, say. The value q = 2 corresponds to ordinary least squares while q = 1 corresponds to
the MLE of a double exponential (Laplace) distibution. The procedure becomes more sensitive to
outliers the larger the value of q.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

Convergence failure is common, therefore the user is advised to be cautious and monitor conver-
gence!

Note

This VGAM family function is an initial attempt to provide a more robust alternative for regression
and/or offer a little more flexibility than least squares. The @misc slot of the fitted object contains a
list component called objectiveFunction which is the value of the objective function at the final
iteration.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

See Also

uninormal.

lrt.stat 517

Examples

set.seed(123)
ldata <- data.frame(x = sort(runif(nn <- 10)))
realfun <- function(x) 4 + 5*x
ldata <- transform(ldata, y = realfun(x) + rnorm(nn, sd = exp(-1)))
Make the first observation an outlier
ldata <- transform(ldata, y = c(4*y[1], y[-1]), x = c(-1, x[-1]))
fit <- vglm(y ~ x, lqnorm(qpower = 1.2), data = ldata)
coef(fit, matrix = TRUE)
head(fitted(fit))
fit@misc$qpower
fit@misc$objectiveFunction

Not run:
Graphical check
with(ldata, plot(x, y,

main = paste0("LS = red, lqnorm = blue (qpower = ",
fit@misc$qpower, "), truth = black"), col = "blue"))

lmfit <- lm(y ~ x, data = ldata)
with(ldata, lines(x, fitted(fit), col = "blue"))
with(ldata, lines(x, lmfit$fitted, col = "red"))
with(ldata, lines(x, realfun(x), col = "black"))
End(Not run)

lrt.stat Likelihood Ratio Test Statistics Evaluated at the Null Values

Description

Generic function that computes likelihood ratio test (LRT) statistics evaluated at the null values
(consequently they do not suffer from the Hauck-Donner effect).

Usage

lrt.stat(object, ...)
lrt.stat.vlm(object, values0 = 0, subset = NULL, omit1s = TRUE,

all.out = FALSE, trace = FALSE, ...)

Arguments

object, values0, subset

Same as in wald.stat.vlm.
omit1s, all.out, trace

Same as in wald.stat.vlm.

... Ignored for now.

518 lrt.stat

Details

When summary() is applied to a vglm object a 4-column Wald table is produced. The corresponding
p-values are generally viewed as inferior to those from a likelihood ratio test (LRT). For example,
the Hauck and Donner (1977) effect (HDE) produces p-values that are biased upwards (see hdeff).
Other reasons are that the Wald test is often less accurate (especially in small samples) and is not
invariant to parameterization. By default, this function returns p-values based on the LRT by delet-
ing one column at a time from the big VLM matrix and then restarting IRLS to obtain convergence
(hopefully). Twice the difference between the log-likelihoods (or equivalently, the difference in the
deviances if they are defined) is asymptotically chi-squared with 1 degree of freedom. One might
expect the p-values from this function therefore to be more accurate and not suffer from the HDE.
Thus this function is a recommended alternative (if it works) to summaryvglm for testing for the
significance of a regression coefficient.

Value

By default, a vector of signed square root of the LRT statistics; these are asymptotically standard
normal under the null hypotheses. If all.out = TRUE then a list is returned with the following
components: lrt.stat the signed LRT statistics, pvalues the 2-sided p-values, Lrt.stat2 the
usual LRT statistic, values0 the null values.

Warning

See wald.stat.vlm.

Author(s)

T. W. Yee.

See Also

score.stat, wald.stat, summaryvglm, anova.vglm, vglm, lrtest, confintvglm, pchisq, profilevglm,
hdeff.

Examples

set.seed(1)
pneumo <- transform(pneumo, let = log(exposure.time),

x3 = rnorm(nrow(pneumo)))
fit <- vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo)
cbind(coef(summary(fit)),

"signed LRT stat" = lrt.stat(fit, omit1s = FALSE))
summary(fit, lrt0 = TRUE) # Easy way to get it

lrtest 519

lrtest Likelihood Ratio Test of Nested Models

Description

lrtest is a generic function for carrying out likelihood ratio tests. The default method can be
employed for comparing nested VGLMs (see details below).

Usage

lrtest(object, ...)

lrtest_vglm(object, ..., no.warning = FALSE, name = NULL)

Arguments

object a vglm object. See below for details.

... further object specifications passed to methods. See below for details.

no.warning logical; if TRUE then no warning is issued. For example, setting TRUE might be a
good idea when testing for linearity of a variable for a "pvgam" object.

name a function for extracting a suitable name/description from a fitted model object.
By default the name is queried by calling formula.

Details

lrtest is intended to be a generic function for comparisons of models via asymptotic likelihood
ratio tests. The default method consecutively compares the fitted model object object with the
models passed in Instead of passing the fitted model objects in ..., several other specifications
are possible. The updating mechanism is the same as for waldtest() in lmtest: the models in ...
can be specified as integers, characters (both for terms that should be eliminated from the previous
model), update formulas or fitted model objects. Except for the last case, the existence of an update
method is assumed. See waldtest() in lmtest for details.

Subsequently, an asymptotic likelihood ratio test for each two consecutive models is carried out:
Twice the difference in log-likelihoods (as derived by the logLik methods) is compared with a
Chi-squared distribution.

Value

An object of class "VGAManova" which contains a slot with the log-likelihood, degrees of freedom,
the difference in degrees of freedom, likelihood ratio Chi-squared statistic and corresponding p
value. These are printed by stats:::print.anova(); see anova.

Warning

Several VGAM family functions implement distributions which do not satisfying the usual regular-
ity conditions needed for the LRT to work. No checking or warning is given for these.

520 lvplot

Note

The code was adapted directly from lmtest (written by T. Hothorn, A. Zeileis, G. Millo, D. Mitchell)
and made to work for VGLMs and S4. This help file also was adapted from lmtest.
Approximate LRTs might be applied to VGAMs, as produced by vgam, but it is probably better in
inference to use vglm with regression splines (bs and ns). This methods function should not be
applied to other models such as those produced by rrvglm, by cqo, by cao.

See Also

lmtest, vglm, lrt.stat.vlm, score.stat.vlm, wald.stat.vlm, anova.vglm.

Examples

set.seed(1)
pneumo <- transform(pneumo, let = log(exposure.time),

x3 = runif(nrow(pneumo)))
fit1 <- vglm(cbind(normal, mild, severe) ~ let , propodds, pneumo)
fit2 <- vglm(cbind(normal, mild, severe) ~ let + x3, propodds, pneumo)
fit3 <- vglm(cbind(normal, mild, severe) ~ let , cumulative, pneumo)
Various equivalent specifications of the LR test for testing x3
(ans1 <- lrtest(fit2, fit1))
ans2 <- lrtest(fit2, 2)
ans3 <- lrtest(fit2, "x3")
ans4 <- lrtest(fit2, . ~ . - x3)
c(all.equal(ans1, ans2), all.equal(ans1, ans3), all.equal(ans1, ans4))

Doing it manually
(testStatistic <- 2 * (logLik(fit2) - logLik(fit1)))
(pval <- pchisq(testStatistic, df = df.residual(fit1) - df.residual(fit2),

lower.tail = FALSE))

(ans4 <- lrtest(fit3, fit1)) # Test PO (parallelism) assumption

lvplot Latent Variable Plot

Description

Generic function for a latent variable plot (also known as an ordination diagram by ecologists).

Usage

lvplot(object, ...)

Arguments

object An object for a latent variable plot is meaningful.
... Other arguments fed into the specific methods function of the model. They

usually are graphical parameters, and sometimes they are fed into the methods
function for Coef.

lvplot 521

Details

Latent variables occur in reduced-rank regression models, as well as in quadratic and additive or-
dination. For the latter, latent variables are often called the site scores. Latent variable plots were
coined by Yee (2004), and have the latent variable as at least one of its axes.

Value

The value returned depends specifically on the methods function invoked.

Note

Latent variables are not really applicable to vglm/vgam models.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

lvplot.qrrvglm, lvplot.cao, latvar, trplot.

Examples

Not run:
hspider[,1:6] <- scale(hspider[,1:6]) # Stdz environmental vars
set.seed(123)
p1 <- cao(cbind(Pardlugu, Pardmont, Pardnigr, Pardpull, Zoraspin) ~

WaterCon + BareSand + FallTwig +
CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider, Bestof = 3,
df1.nl = c(Zoraspin = 2.5, 3), Crow1positive = TRUE)

index <- 1:ncol(depvar(p1))
lvplot(p1, lcol = index, pcol = index, y = TRUE, las = 1)

End(Not run)

522 lvplot.qrrvglm

lvplot.qrrvglm Latent Variable Plot for QO models

Description

Produces an ordination diagram (latent variable plot) for quadratic ordination (QO) models. For
rank-1 models, the x-axis is the first ordination/constrained/canonical axis. For rank-2 models, the
x- and y-axis are the first and second ordination axes respectively.

Usage

lvplot.qrrvglm(object, varI.latvar = FALSE, refResponse = NULL,
add = FALSE, show.plot = TRUE,
rug = TRUE, y = FALSE, type = c("fitted.values", "predictors"),
xlab = paste0("Latent Variable", if (Rank == 1) "" else " 1"),
ylab = if (Rank == 1) switch(type, predictors = "Predictors",
fitted.values = "Fitted values") else "Latent Variable 2",
pcex = par()$cex, pcol = par()$col, pch = par()$pch,
llty = par()$lty, lcol = par()$col, llwd = par()$lwd,
label.arg = FALSE, adj.arg = -0.1,
ellipse = 0.95, Absolute = FALSE, elty = par()$lty,
ecol = par()$col, elwd = par()$lwd, egrid = 200,
chull.arg = FALSE, clty = 2, ccol = par()$col, clwd = par()$lwd,
cpch = " ",
C = FALSE, OriginC = c("origin", "mean"),
Clty = par()$lty, Ccol = par()$col, Clwd = par()$lwd,
Ccex = par()$cex, Cadj.arg = -0.1, stretchC = 1,
sites = FALSE, spch = NULL, scol = par()$col, scex = par()$cex,
sfont = par()$font, check.ok = TRUE, jitter.y = FALSE, ...)

Arguments

object A CQO object.

varI.latvar Logical that is fed into Coef.qrrvglm.

refResponse Integer or character that is fed into Coef.qrrvglm.

add Logical. Add to an existing plot? If FALSE, a new plot is made.

show.plot Logical. Plot it?

rug Logical. If TRUE, a rug plot is plotted at the foot of the plot (applies to rank-1
models only). These values are jittered to expose ties.

y Logical. If TRUE, the responses will be plotted (applies only to rank-1 models
and if type = "fitted.values".)

type Either "fitted.values" or "predictors", specifies whether the y-axis is on
the response or eta-scales respectively.

xlab Caption for the x-axis. See par.

lvplot.qrrvglm 523

ylab Caption for the y-axis. See par.
pcex Character expansion of the points. Here, for rank-1 models, points are the re-

sponse y data. For rank-2 models, points are the optimums. See the cex argu-
ment in par.

pcol Color of the points. See the col argument in par.
pch Either an integer specifying a symbol or a single character to be used as the

default in plotting points. See par. The pch argument can be of length M , the
number of species.

llty Line type. Rank-1 models only. See the lty argument of par.
lcol Line color. Rank-1 models only. See the col argument of par.
llwd Line width. Rank-1 models only. See the lwd argument of par.
label.arg Logical. Label the optimums and C? (applies only to rank-2 models only).
adj.arg Justification of text strings for labelling the optimums (applies only to rank-2

models only). See the adj argument of par.
ellipse Numerical, of length 0 or 1 (applies only to rank-2 models only). If Absolute

is TRUE then ellipse should be assigned a value that is used for the elliptical
contouring. If Absolute is FALSE then ellipse should be assigned a value
between 0 and 1, for example, setting ellipse = 0.9 means an ellipse with
contour = 90% of the maximum will be plotted about each optimum. If ellipse
is a negative value, then the function checks that the model is an equal-tolerances
model and varI.latvar = FALSE, and if so, plots circles with radius -ellipse.
For example, setting ellipse = -1 will result in circular contours that have unit
radius (in latent variable units). If ellipse is NULL or FALSE then no ellipse is
drawn around the optimums.

Absolute Logical. If TRUE, the contours corresponding to ellipse are on an absolute
scale. If FALSE, the contours corresponding to ellipse are on a relative scale.

elty Line type of the ellipses. See the lty argument of par.
ecol Line color of the ellipses. See the col argument of par.
elwd Line width of the ellipses. See the lwd argument of par.
egrid Numerical. Line resolution of the ellipses. Choosing a larger value will result in

smoother ellipses. Useful when ellipses are large.
chull.arg Logical. Add a convex hull around the site scores?
clty Line type of the convex hull. See the lty argument of par.
ccol Line color of the convex hull. See the col argument of par.
clwd Line width of the convex hull. See the lwd argument of par.
cpch Character to be plotted at the intersection points of the convex hull. Having

white spaces means that site labels are not obscured there. See the pch argument
of par.

C Logical. Add C (represented by arrows emanating from OriginC) to the plot?
OriginC Character or numeric. Where the arrows representing C emanate from. If char-

acter, it must be one of the choices given. By default the first is chosen. The
value "origin" means c(0,0). The value "mean" means the sample mean of
the latent variables (centroid). Alternatively, the user may specify a numerical
vector of length 2.

524 lvplot.qrrvglm

Clty Line type of the arrows representing C. See the lty argument of par.

Ccol Line color of the arrows representing C. See the col argument of par.

Clwd Line width of the arrows representing C. See the lwd argument of par.

Ccex Numeric. Character expansion of the labelling of C. See the cex argument of
par.

Cadj.arg Justification of text strings when labelling C. See the adj argument of par.

stretchC Numerical. Stretching factor for C. Instead of using C, stretchC * C is used.

sites Logical. Add the site scores (aka latent variable values, nu’s) to the plot? (ap-
plies only to rank-2 models only).

spch Plotting character of the site scores. The default value of NULL means the row
labels of the data frame are used. They often are the site numbers. See the pch
argument of par.

scol Color of the site scores. See the col argument of par.

scex Character expansion of the site scores. See the cex argument of par.

sfont Font used for the site scores. See the font argument of par.

check.ok Logical. Whether a check is performed to see that noRRR = ~ 1 was used. It
doesn’t make sense to have a latent variable plot unless this is so.

jitter.y Logical. If y is plotted, jitter it first? This may be useful for counts and propor-
tions.

... Arguments passed into the plot function when setting up the entire plot. Useful
arguments here include xlim and ylim.

Details

This function only works for rank-1 and rank-2 QRR-VGLMs with argument noRRR = ~ 1.

For unequal-tolerances models, the latent variable axes can be rotated so that at least one of the
tolerance matrices is diagonal; see Coef.qrrvglm for details.

Arguments beginning with “p” correspond to the points e.g., pcex and pcol correspond to the size
and color of the points. Such “p” arguments should be vectors of length 1, or n, the number of sites.
For the rank-2 model, arguments beginning with “p” correspond to the optimums.

Value

Returns a matrix of latent variables (site scores) regardless of whether a plot was produced or not.

Warning

Interpretation of a latent variable plot (CQO diagram) is potentially very misleading in terms of dis-
tances if (i) the tolerance matrices of the species are unequal and (ii) the contours of these tolerance
matrices are not included in the ordination diagram.

lvplot.qrrvglm 525

Note

A species which does not have an optimum will not have an ellipse drawn even if requested, i.e., if
its tolerance matrix is not positive-definite.

Plotting C gives a visual display of the weights (loadings) of each of the variables used in the linear
combination defining each latent variable.

The arguments elty, ecol and elwd, may be replaced in the future by llty, lcol and llwd,
respectively.

For rank-1 models, a similar function to this one is perspqrrvglm. It plots the fitted values on a
more fine grid rather than at the actual site scores here. The result is a collection of smooth bell-
shaped curves. However, it has the weakness that the plot is more divorced from the data; the user
thinks it is the truth without an appreciation of the statistical variability in the estimates.

In the example below, the data comes from an equal-tolerances model. The species’ tolerance
matrices are all the identity matrix, and the optimums are at (0,0), (1,1) and (-2,0) for species 1, 2,
3 respectively.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

See Also

lvplot, perspqrrvglm, Coef.qrrvglm, par, cqo.

Examples

set.seed(123); nn <- 200
cdata <- data.frame(x2 = rnorm(nn), # Mean 0 (needed when I.tol=TRUE)

x3 = rnorm(nn), # Mean 0 (needed when I.tol=TRUE)
x4 = rnorm(nn)) # Mean 0 (needed when I.tol=TRUE)

cdata <- transform(cdata, latvar1 = x2 + x3 - 2*x4,
latvar2 = -x2 + x3 + 0*x4)

Nb. latvar2 is weakly correlated with latvar1
cdata <- transform(cdata,

lambda1 = exp(6 - 0.5 * (latvar1-0)^2 - 0.5 * (latvar2-0)^2),
lambda2 = exp(5 - 0.5 * (latvar1-1)^2 - 0.5 * (latvar2-1)^2),
lambda3 = exp(5 - 0.5 * (latvar1+2)^2 - 0.5 * (latvar2-0)^2))

cdata <- transform(cdata,
spp1 = rpois(nn, lambda1),
spp2 = rpois(nn, lambda2),
spp3 = rpois(nn, lambda3))

set.seed(111)
Not run:
p2 <- cqo(cbind(spp1, spp2, spp3) ~ x2 + x3 + x4, poissonff,

data = cdata, Rank = 2, I.tolerances = TRUE,

526 lvplot.rrvglm

Crow1positive = c(TRUE, FALSE)) # deviance = 505.81
if (deviance(p2) > 506) stop("suboptimal fit obtained")
sort(deviance(p2, history = TRUE)) # A history of the iterations
Coef(p2)

End(Not run)

Not run:
lvplot(p2, sites = TRUE, spch = "*", scol = "darkgreen", scex = 1.5,

chull = TRUE, label = TRUE, Absolute = TRUE, ellipse = 140,
adj = -0.5, pcol = "blue", pcex = 1.3, las = 1, Ccol = "orange",
C = TRUE, Cadj = c(-0.3, -0.3, 1), Clwd = 2, Ccex = 1.4,
main = paste("Contours at Abundance = 140 with",

"convex hull of the site scores"))
End(Not run)
Not run:
var(latvar(p2)) # A diagonal matrix, i.e., uncorrelated latent vars
var(latvar(p2, varI.latvar = TRUE)) # Identity matrix
Tol(p2)[, , 1:2] # Identity matrix
Tol(p2, varI.latvar = TRUE)[, , 1:2] # A diagonal matrix

End(Not run)

lvplot.rrvglm Latent Variable Plot for RR-VGLMs

Description

Produces an ordination diagram (also known as a biplot or latent variable plot) for reduced-rank
vector generalized linear models (RR-VGLMs). For rank-2 models only, the x- and y-axis are the
first and second canonical axes respectively.

Usage

lvplot.rrvglm(object,
A = TRUE, C = TRUE, scores = FALSE, show.plot = TRUE,
groups = rep(1, n), gapC = sqrt(sum(par()$cxy^2)),
scaleA = 1,
xlab = "Latent Variable 1", ylab = "Latent Variable 2",
Alabels = if (length(object@misc$predictors.names))
object@misc$predictors.names else param.names("LP", M),
Aadj = par()$adj, Acex = par()$cex, Acol = par()$col,
Apch = NULL,
Clabels = rownames(Cmat), Cadj = par()$adj,
Ccex = par()$cex, Ccol = par()$col, Clty = par()$lty,
Clwd = par()$lwd,
chull.arg = FALSE, ccex = par()$cex, ccol = par()$col,
clty = par()$lty, clwd = par()$lwd,
spch = NULL, scex = par()$cex, scol = par()$col,
slabels = rownames(x2mat), ...)

lvplot.rrvglm 527

Arguments

object Object of class "rrvglm".

A Logical. Allow the plotting of A?

C Logical. Allow the plotting of C? If TRUE then C is represented by arrows eme-
nating from the origin.

scores Logical. Allow the plotting of the n scores? The scores are the values of the
latent variables for each observation.

show.plot Logical. Plot it? If FALSE, no plot is produced and the matrix of scores (n latent
variable values) is returned. If TRUE, the rank of object need not be 2.

groups A vector whose distinct values indicate which group the observation belongs
to. By default, all the observations belong to a single group. Useful for the
multinomial logit model (see multinomial.

gapC The gap between the end of the arrow and the text labelling of C, in latent
variable units.

scaleA Numerical value that is multiplied by A, so that C is divided by this value.

xlab Caption for the x-axis. See par.

ylab Caption for the y-axis. See par.

Alabels Character vector to label A. Must be of length M .

Aadj Justification of text strings for labelling A. See the adj argument of par.

Acex Numeric. Character expansion of the labelling of A. See the cex argument of
par.

Acol Line color of the arrows representing C. See the col argument of par.

Apch Either an integer specifying a symbol or a single character to be used as the
default in plotting points. See par. The pch argument can be of length M , the
number of species.

Clabels Character vector to label C. Must be of length p2.

Cadj Justification of text strings for labelling C. See the adj argument of par.

Ccex Numeric. Character expansion of the labelling of C. See the cex argument of
par.

Ccol Line color of the arrows representing C. See the col argument of par.

Clty Line type of the arrows representing C. See the lty argument of par.

Clwd Line width of the arrows representing C. See the lwd argument of par.

chull.arg Logical. Plot the convex hull of the scores? This is done for each group (see the
group argument).

ccex Numeric. Character expansion of the labelling of the convex hull. See the cex
argument of par.

ccol Line color of the convex hull. See the col argument of par.

clty Line type of the convex hull. See the lty argument of par.

clwd Line width of the convex hull. See the lwd argument of par.

528 lvplot.rrvglm

spch Either an integer specifying a symbol or a single character to be used as the
default in plotting points. See par. The spch argument can be of length M ,
number of species.

scex Numeric. Character expansion of the labelling of the scores. See the cex argu-
ment of par.

scol Line color of the arrows representing C. See the col argument of par.

slabels Character vector to label the scores. Must be of length n.

... Arguments passed into the plot function when setting up the entire plot. Useful
arguments here include xlim and ylim.

Details

For RR-VGLMs, a biplot and a latent variable plot coincide. In general, many of the arguments
starting with “A” refer to A (of length M), “C” to C (of length p2), “c” to the convex hull (of length
length(unique(groups))), and “s” to scores (of length n).

As the result is a biplot, its interpretation is based on the inner product.

Value

The matrix of scores (n latent variable values) is returned regardless of whether a plot was produced
or not.

Note

The functions lvplot.rrvglm and biplot.rrvglm are equivalent.

In the example below the predictor variables are centered, which is a good idea.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

lvplot, par, rrvglm, Coef.rrvglm, rrvglm.control.

Examples

nn <- nrow(pneumo) # x1, x2 and x3 are some unrelated covariates
pneumo <-

transform(pneumo, slet = scale(log(exposure.time)),
x1 = rnorm(nn), x2 = rnorm(nn), x3 = rnorm(nn))

fit <- rrvglm(cbind(normal, mild, severe) ~ slet + x1 + x2 + x3,
multinomial, data = pneumo, Rank = 2,
Corner = FALSE, Uncorrel = TRUE)

machinists 529

Not run:
lvplot(fit, chull = TRUE, scores = TRUE, clty = 2, ccol = "blue",

scol = "red", Ccol = "darkgreen", Clwd = 2, Ccex = 2,
main = "Biplot of some fictitional data")

End(Not run)

machinists Machinists Accidents

Description

A small count data set involving 414 machinists from a three months study, of accidents around the
end of WWI.

Usage

data(machinists)

Format

A data frame with the following variables.

accidents The number of accidents

ofreq Observed frequency, i.e., the number of machinists with that many accidents

Details

The data was collected over a period of three months. There were 414 machinists in total. Also,
there were data collected over six months, but it is not given here.

Source

Incidence of Industrial Accidents. Report No. 4 (Industrial Fatigue Research Board), Stationery
Office, London, 1919.

References

Greenwood, M. and Yule, G. U. (1920). An Inquiry into the Nature of Frequency Distributions
Representative of Multiple Happenings with Particular Reference to the Occurrence of Multiple
Attacks of Disease or of Repeated Accidents. Journal of the Royal Statistical Society, 83, 255–279.

See Also

negbinomial, poissonff.

530 Makeham

Examples

machinists
mean(with(machinists, rep(accidents, times = ofreq)))
var(with(machinists, rep(accidents, times = ofreq)))

Not run: barplot(with(machinists, ofreq),
names.arg = as.character(with(machinists, accidents)),
main = "Machinists accidents",
col = "lightblue", las = 1,
ylab = "Frequency", xlab = "accidents")

End(Not run)

Makeham The Makeham Distribution

Description

Density, cumulative distribution function, quantile function and random generation for the Make-
ham distribution.

Usage

dmakeham(x, scale = 1, shape, epsilon = 0, log = FALSE)
pmakeham(q, scale = 1, shape, epsilon = 0, lower.tail = TRUE,

log.p = FALSE)
qmakeham(p, scale = 1, shape, epsilon = 0, lower.tail = TRUE,

log.p = FALSE)
rmakeham(n, scale = 1, shape, epsilon = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

scale, shape positive scale and shape parameters.

epsilon another parameter. Must be non-negative. See below.

Details

See makeham for details. The default value of epsilon = 0 corresponds to the Gompertz distribution.
The function pmakeham uses lambertW.

makeham 531

Value

dmakeham gives the density, pmakeham gives the cumulative distribution function, qmakeham gives
the quantile function, and rmakeham generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Jodra, P. (2009). A closed-form expression for the quantile function of the Gompertz-Makeham
distribution. Mathematics and Computers in Simulation, 79, 3069–3075.

See Also

makeham, lambertW.

Examples

probs <- seq(0.01, 0.99, by = 0.01)
Shape <- exp(-1); Scale <- exp(1); eps = Epsilon <- exp(-1)
max(abs(pmakeham(qmakeham(probs, sca = Scale, Shape, eps = Epsilon),

sca = Scale, Shape, eps = Epsilon) - probs)) # Should be 0

Not run: x <- seq(-0.1, 2.0, by = 0.01);
plot(x, dmakeham(x, sca = Scale, Shape, eps = Epsilon), type = "l",

main = "Blue is density, orange is the CDF",
sub = "Purple lines are the 10,20,...,90 percentiles",
col = "blue", las = 1, ylab = "")

abline(h = 0, col = "blue", lty = 2)
lines(x, pmakeham(x, sca = Scale, Shape, eps = Epsilon), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qmakeham(probs, sca = Scale, Shape, eps = Epsilon)
lines(Q, dmakeham(Q, sca = Scale, Shape, eps = Epsilon),

col = "purple", lty = 3, type = "h")
pmakeham(Q, sca = Scale, Shape, eps = Epsilon) - probs # Should be all 0
abline(h = probs, col = "purple", lty = 3)
End(Not run)

makeham Makeham Regression Family Function

Description

Maximum likelihood estimation of the 3-parameter Makeham distribution.

532 makeham

Usage

makeham(lscale = "loglink", lshape = "loglink", lepsilon = "loglink",
iscale = NULL, ishape = NULL, iepsilon = NULL,
gscale = exp(-5:5),gshape = exp(-5:5), gepsilon = exp(-4:1),
nsimEIM = 500, oim.mean = TRUE, zero = NULL, nowarning = FALSE)

Arguments

nowarning Logical. Suppress a warning? Ignored for VGAM 0.9-7 and higher.

lshape, lscale, lepsilon

Parameter link functions applied to the shape parameter shape, scale parameter
scale, and other parameter epsilon. All parameters are treated as positive here
(cf. dmakeham allows epsilon = 0, etc.). See Links for more choices.

ishape, iscale, iepsilon

Optional initial values. A NULL means a value is computed internally. A value
must be given for iepsilon currently, and this is a sensitive parameter!

gshape, gscale, gepsilon

See CommonVGAMffArguments.

nsimEIM, zero See CommonVGAMffArguments. Argument probs.y is used only when imethod
= 2.

oim.mean To be currently ignored.

Details

The Makeham distribution, which adds another parameter to the Gompertz distribution, has cumu-
lative distribution function

F (y;α, β, ε) = 1− exp

{
−yε+

α

β

[
1− eβy

]}
which leads to a probability density function

f(y;α, β, ε) =
[
ε+ αeβy

]
exp

{
−yε+

α

β

[
1− eβy

]}
,

for α > 0, β > 0, ε ≥ 0, y > 0. Here, β is called the scale parameter scale, and α is called a
shape parameter. The moments for this distribution do not appear to be available in closed form.

Simulated Fisher scoring is used and multiple responses are handled.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

margeff 533

Warning

A lot of care is needed because this is a rather difficult distribution for parameter estimation, espe-
cially when the shape parameter is large relative to the scale parameter. If the self-starting initial
values fail then try experimenting with the initial value arguments, especially iepsilon. Successful
convergence depends on having very good initial values. More improvements could be made here.
Also, monitor convergence by setting trace = TRUE.

A trick is to fit a gompertz distribution and use it for initial values; see below. However, this family
function is currently numerically fraught.

Author(s)

T. W. Yee

See Also

dmakeham, gompertz, simulate.vlm.

Examples

Not run: set.seed(123)
mdata <- data.frame(x2 = runif(nn <- 1000))
mdata <- transform(mdata, eta1 = -1,

ceta1 = 1,
eeta1 = -2)

mdata <- transform(mdata, shape1 = exp(eta1),
scale1 = exp(ceta1),
epsil1 = exp(eeta1))

mdata <- transform(mdata,
y1 = rmakeham(nn, shape = shape1, scale = scale1, eps = epsil1))

A trick is to fit a Gompertz distribution first
fit0 <- vglm(y1 ~ 1, gompertz, data = mdata, trace = TRUE)
fit1 <- vglm(y1 ~ 1, makeham, data = mdata,

etastart = cbind(predict(fit0), log(0.1)), trace = TRUE)

coef(fit1, matrix = TRUE)
summary(fit1)

End(Not run)

margeff Marginal Effects for Several Categorical Response Models

Description

Marginal effects for the multinomial logit model and cumulative logit/probit/... models and contin-
uation ratio models and stopping ratio models and adjacent categories models: the derivative of the
fitted probabilities with respect to each explanatory variable.

534 margeff

Usage

margeff(object, subset = NULL, ...)

Arguments

object A vglm object, with one of the following family functions: multinomial, cumulative,
cratio, sratio or acat.

subset Numerical or logical vector, denoting the required observation(s). Recycling is
used if possible. The default means all observations.

... further arguments passed into the other methods functions.

Details

Computes the derivative of the fitted probabilities of the categorical response model with respect to
each explanatory variable. Formerly one big function, this function now uses S4 dispatch to break
up the computations.

The function margeff() is not generic. However, it calls the function margeffS4VGAM() which
is. This is based on the class of the VGAMff argument, and it uses the S4 function setMethod to
correctly dispatch to the required methods function. The inheritance is given by the vfamily slot
of the VGAM family function.

Value

A p by M + 1 by n array, where p is the number of explanatory variables and the (hopefully)
nominal response has M + 1 levels, and there are n observations.

In general, if is.numeric(subset) and length(subset) == 1 then a p byM+1 matrix is returned.

Warning

Care is needed in interpretation, e.g., the change is not universally accurate for a unit change in each
explanatory variable because eventually the ‘new’ probabilities may become negative or greater than
unity. Also, the ‘new’ probabilities will not sum to one.

This function is not applicable for models with data-dependent terms such as bs and poly. Also
the function should not be applied to models with any terms that have generated more than one
column of the LM model matrix, such as bs and poly. For such try using numerical methods such
as finite-differences. The formula in object should comprise of simple terms of the form ~ x2 +
x3 + x4, etc.

Some numerical problems may occur if the fitted values are close to 0 or 1 for the cratio and
sratio models. Models with offsets may result in an incorrect answer.

Note

For multinomial this function should handle any value of refLevel and also any constraint matri-
ces. However, it does not currently handle the xij or form2 arguments, nor vgam objects.

If marginal effects are to be computed for some values not equal to those used in the training set,
then the @x and the @predictors slots both need to be assigned. See Example 3 below.

Some other limitations are imposed, e.g., for acat models only a loglink link is allowed.

marital.nz 535

Author(s)

T. W. Yee, with some help and motivation from Stasha Rmandic.

See Also

multinomial, cumulative, propodds, acat, cratio, sratio, vglm.

Examples

Not a good example for multinomial() since the response is ordinal!!
ii <- 3; hh <- 1/100
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, multinomial, pneumo)
fit <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(reverse = TRUE, parallel = TRUE),
data = pneumo)

fitted(fit)[ii,]

mynewdata <- with(pneumo, data.frame(let = let[ii] + hh))
(newp <- predict(fit, newdata = mynewdata, type = "response"))

Compare the difference. Should be the same as hh --> 0.
round((newp-fitted(fit)[ii,]) / hh, 3) # Finite-diff approxn
round(margeff(fit, subset = ii)["let",], 3)

Other examples
round(margeff(fit), 3)
round(margeff(fit, subset = 2)["let",], 3)
round(margeff(fit, subset = c(FALSE, TRUE))["let",,], 3) # Recycling
round(margeff(fit, subset = c(2, 4, 6, 8))["let",,], 3)

Example 3; margeffs at a new value
mynewdata2a <- data.frame(let = 2) # New value
mynewdata2b <- data.frame(let = 2 + hh) # For finite-diff approxn
(neweta2 <- predict(fit, newdata = mynewdata2a))
fit@x[1,] <- c(1, unlist(mynewdata2a))
fit@predictors[1,] <- neweta2 # Needed
max(abs(margeff(fit, subset = 1)["let",] - (

predict(fit, newdata = mynewdata2b, type = "response") -
predict(fit, newdata = mynewdata2a, type = "response")) / hh

)) # Should be 0

marital.nz New Zealand Marital Data

Description

Some marital data mainly from a large NZ company collected in the early 1990s.

536 Max

Usage

data(marital.nz)

Format

A data frame with 6053 observations on the following 3 variables.

age a numeric vector, age in years

ethnicity a factor with levels European Maori Other Polynesian. Only Europeans are included
in the data set.

mstatus a factor with levels Divorced/Separated, Married/Partnered, Single, Widowed.

Details

This is a subset of a data set collected from a self-administered questionnaire administered in a large
New Zealand workforce observational study conducted during 1992–3. The data were augmented
by a second study consisting of retirees. The data can be considered a reasonable representation of
the white male New Zealand population in the early 1990s.

Source

Clinical Trials Research Unit, University of Auckland, New Zealand.

References

See bmi.nz and chest.nz.

Examples

summary(marital.nz)

Max Maximums

Description

Generic function for the maximums (maxima) of a model.

Usage

Max(object, ...)

Arguments

object An object for which the computation or extraction of a maximum (or maxi-
mums) is meaningful.

... Other arguments fed into the specific methods function of the model. Sometimes
they are fed into the methods function for Coef.

Max 537

Details

Different models can define a maximum in different ways. Many models have no such notion or
definition.

Maximums occur in quadratic and additive ordination, e.g., CQO or CAO. For these models the
maximum is the fitted value at the optimum. For quadratic ordination models there is a formula for
the optimum but for additive ordination models the optimum must be searched for numerically. If
it occurs on the boundary, then the optimum is undefined. For a valid optimum, the fitted value at
the optimum is the maximum.

Value

The value returned depends specifically on the methods function invoked.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

Max.qrrvglm, Tol, Opt.

Examples

Not run:
set.seed(111) # This leads to the global solution
hspider[,1:6] <- scale(hspider[,1:6]) # Standardized environmental vars
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, Bestof = 2, data = hspider, Crow1positive = FALSE)

Max(p1)

index <- 1:ncol(depvar(p1))
persp(p1, col = index, las = 1, llwd = 2)
abline(h = Max(p1), lty = 2, col = index)

End(Not run)

538 Maxwell

Maxwell The Maxwell Distribution

Description

Density, distribution function, quantile function and random generation for the Maxwell distribu-
tion.

Usage

dmaxwell(x, rate, log = FALSE)
pmaxwell(q, rate, lower.tail = TRUE, log.p = FALSE)
qmaxwell(p, rate, lower.tail = TRUE, log.p = FALSE)
rmaxwell(n, rate)

Arguments

x, q, p, n Same as Uniform.

rate the (rate) parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See maxwell, the VGAM family function for estimating the (rate) parameter a by maximum likeli-
hood estimation, for the formula of the probability density function.

Value

dmaxwell gives the density, pmaxwell gives the distribution function, qmaxwell gives the quantile
function, and rmaxwell generates random deviates.

Note

The Maxwell distribution is related to the Rayleigh distribution.

Author(s)

T. W. Yee and Kai Huang

References

Balakrishnan, N. and Nevzorov, V. B. (2003). A Primer on Statistical Distributions. Hoboken, New
Jersey: Wiley.

maxwell 539

See Also

maxwell, Rayleigh, rayleigh.

Examples

Not run: rate <- 3; x <- seq(-0.5, 3, length = 100)
plot(x, dmaxwell(x, rate = rate), type = "l", col = "blue",

main = "Blue is density, orange is CDF", ylab = "", las = 1,
sub = "Purple lines are the 10,20,...,90 percentiles")

abline(h = 0, col = "blue", lty = 2)
lines(x, pmaxwell(x, rate = rate), type = "l", col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qmaxwell(probs, rate = rate)
lines(Q, dmaxwell(Q, rate), col = "purple", lty = 3, type = "h")
lines(Q, pmaxwell(Q, rate), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
max(abs(pmaxwell(Q, rate) - probs)) # Should be zero

End(Not run)

maxwell Maxwell Regression Family Function

Description

Estimating the parameter of the Maxwell distribution by maximum likelihood estimation.

Usage

maxwell(link = "loglink", zero = NULL, parallel = FALSE,
type.fitted = c("mean", "percentiles", "Qlink"),
percentiles = 50)

Arguments

link Parameter link function applied to a, which is called the parameter rate. See
Links for more choices and information; a log link is the default because the
parameter is positive. More information is at CommonVGAMffArguments.

zero, parallel See CommonVGAMffArguments.

type.fitted, percentiles

See CommonVGAMffArguments for information. Using "Qlink" is for quantile-
links in VGAMextra.

540 mccullagh89

Details

The Maxwell distribution, which is used in the area of thermodynamics, has a probability density
function that can be written

f(y; a) =
√

2/πa3/2y2 exp(−0.5ay2)

for y > 0 and a > 0. The mean of Y is
√

8/(aπ) (returned as the fitted values), and its variance is
(3π − 8)/(πa).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

Fisher-scoring and Newton-Raphson are the same here. A related distribution is the Rayleigh dis-
tribution. This VGAM family function handles multiple responses. This VGAM family function
can be mimicked by poisson.points(ostatistic = 1.5, dimension = 2).

Author(s)

T. W. Yee

References

von Seggern, D. H. (1993). CRC Standard Curves and Surfaces, Boca Raton, FL, USA: CRC Press.

See Also

Maxwell, rayleigh, poisson.points.

Examples

mdata <- data.frame(y = rmaxwell(1000, rate = exp(2)))
fit <- vglm(y ~ 1, maxwell, mdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)

mccullagh89 McCullagh (1989) Distribution Family Function

Description

Estimates the two parameters of the McCullagh (1989) distribution by maximum likelihood estima-
tion.

mccullagh89 541

Usage

mccullagh89(ltheta = "rhobitlink", lnu = logofflink(offset = 0.5),
itheta = NULL, inu = NULL, zero = NULL)

Arguments

ltheta, lnu Link functions for the θ and ν parameters. See Links for general information.

itheta, inu Numeric. Optional initial values for θ and ν. The default is to internally compute
them.

zero See CommonVGAMffArguments for information.

Details

The McCullagh (1989) distribution has density function

f(y; θ, ν) =
{1− y2}ν− 1

2

(1− 2θy + θ2)νBeta(ν + 1
2 ,

1
2)

where −1 < y < 1 and −1 < θ < 1. This distribution is equation (1) in that paper. The parameter
ν satisfies ν > −1/2, therefore the default is to use an log-offset link with offset equal to 0.5, i.e.,
η2 = log(ν + 0.5). The mean is of Y is νθ/(1 + ν), and these are returned as the fitted values.

This distribution is related to the Leipnik distribution (see Johnson et al. (1995)), is related to ultra-
spherical functions, and under certain conditions, arises as exit distributions for Brownian motion.
Fisher scoring is implemented here and it uses a diagonal matrix so the parameters are globally
orthogonal in the Fisher information sense. McCullagh (1989) also states that, to some extent, θ
and ν have the properties of a location parameter and a precision parameter, respectively.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

Convergence may be slow or fail unless the initial values are reasonably close. If a failure occurs,
try assigning the argument inu and/or itheta. Figure 1 of McCullagh (1989) gives a broad range
of densities for different values of θ and ν, and this could be consulted for obtaining reasonable
initial values if all else fails.

Author(s)

T. W. Yee

References

McCullagh, P. (1989). Some statistical properties of a family of continuous univariate distributions.
Journal of the American Statistical Association, 84, 125–129.

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2nd
edition, Volume 2, New York: Wiley. (pages 612–617).

542 meangaitd

See Also

leipnik, rhobitlink, logofflink.

Examples

Limit as theta = 0, nu = Inf:
mdata <- data.frame(y = rnorm(1000, sd = 0.2))
fit <- vglm(y ~ 1, mccullagh89, data = mdata, trace = TRUE)
head(fitted(fit))
with(mdata, mean(y))
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit)

meangaitd Mean of the GAITD Combo Density

Description

Returns the mean of a 1- or 2-parameter GAITD combo probability mass function.

Usage

meangaitd(theta.p, fam = c("pois", "log", "zeta"),
a.mix = NULL, i.mix = NULL, d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, pobs.mlm = 0,
pstr.mix = 0, pstr.mlm = 0,
pdip.mix = 0, pdip.mlm = 0, byrow.aid = FALSE,
theta.a = theta.p, theta.i = theta.p, theta.d = theta.p, ...)

Arguments

theta.p Same as dgaitdplot; usually of length 1 but may be of length 2.

fam Same as dgaitdplot. The default is the first one. All other choices are listed in
that vector.

a.mix, i.mix, a.mlm, i.mlm

Same as dgaitdplot.

d.mix, d.mlm Same as dgaitdplot.
truncate, max.support

Same as dgaitdplot.
pobs.mix, pobs.mlm, byrow.aid

Same as dgaitdplot.
pstr.mix, pstr.mlm, pdip.mix, pdip.mlm

Same as dgaitdplot.

melbmaxtemp 543

theta.a, theta.i, theta.d

Same as dgaitdplot.

... Currently unused.

Details

This function returns the mean of the PMF of the GAITD combo model. Many of its arguments
are the same as dgaitdplot. More functionality may be added in the future, such as returning the
variance.

Value

The mean.

Note

This utility function may change a lot in the future.

Author(s)

T. W. Yee.

See Also

dgaitdplot, Gaitdpois, gaitdpoisson.

Examples

i.mix <- seq(0, 15, by = 5)
lambda.p <- 10
meangaitd(lambda.p, a.mix = i.mix + 1, i.mix = i.mix,

max.support = 17, pobs.mix = 0.1, pstr.mix = 0.1)

melbmaxtemp Melbourne Daily Maximum Temperatures

Description

Melbourne daily maximum temperatures in degrees Celsius over the ten-year period 1981–1990.

Usage

data(melbmaxtemp)

Format

A vector with 3650 observations.

544 meplot

Details

This is a time series data from Melbourne, Australia. It is commonly used to give a difficult quantile
regression problem since the data is bimodal. That is, a hot day is likely to be followed by either an
equally hot day or one much cooler. However, an independence assumption is typically made.

References

Hyndman, R. J. and Bashtannyk, D. M. and Grunwald, G. K. (1996). Estimating and visualizing
conditional densities. J. Comput. Graph. Statist., 5(4), 315–336.

See Also

lms.bcn.

Examples

summary(melbmaxtemp)
Not run:
melb <- data.frame(today = melbmaxtemp[-1],

yesterday = melbmaxtemp[-length(melbmaxtemp)])
plot(today ~ yesterday, data = melb,

xlab = "Yesterday's Max Temperature",
ylab = "Today's Max Temperature", cex = 1.4, type = "n")

points(today ~ yesterday, melb, pch = 0, cex = 0.50, col = "blue")
abline(a = 0, b = 1, lty = 3)

End(Not run)

meplot Mean Excess Plot

Description

Mean excess plot (also known as a mean residual life plot), a diagnostic plot for the generalized
Pareto distribution (GPD).

Usage

meplot(object, ...)
meplot.default(y, main = "Mean Excess Plot",

xlab = "Threshold", ylab = "Mean Excess", lty = c(2, 1:2),
conf = 0.95, col = c("blue", "black", "blue"), type = "l", ...)

meplot.vlm(object, ...)

meplot 545

Arguments

y A numerical vector. NAs etc. are not allowed.
main, xlab, ylab

Character. Overall title for the plot, and titles for the x- and y-axes.

lty Line type. The second value is for the mean excess value, the first and third
values are for the envelope surrounding the confidence interval.

conf Confidence level. The default results in approximate 95 percent confidence in-
tervals for each mean excess value.

col Colour of the three lines.

type Type of plot. The default means lines are joined between the mean excesses and
also the upper and lower limits of the confidence intervals.

object An object that inherits class "vlm", usually of class vglm-class or vgam-class.

... Graphical argument passed into plot. See par for an exhaustive list. The argu-
ments xlim and ylim are particularly useful.

Details

If Y has a GPD with scale parameter σ and shape parameter ξ < 1, and if y > 0, then

E(Y − u|Y > u) =
σ + ξu

1− ξ
.

It is a linear function in u, the threshold. Note that Y − u is called the excess and values of Y
greater than u are called exceedances. The empirical versions used by these functions is to use
sample means to estimate the left hand side of the equation. Values of u in the plot are the values
of y itself. If the plot is roughly a straight line then the GPD is a good fit; this plot can be used
to select an appropriate threshold value. See gpd for more details. If the plot is flat then the data
may be exponential, and if it is curved then it may be Weibull or gamma. There is often a lot of
variance/fluctuation at the RHS of the plot due to fewer observations.

The function meplot is generic, and meplot.default and meplot.vlm are some methods functions
for mean excess plots.

Value

A list is returned invisibly with the following components.

threshold The x axis values.

meanExcess The y axis values. Each value is a sample mean minus a value u.

plusminus The amount which is added or subtracted from the mean excess to give the
confidence interval. The last value is a NA because it is based on one observation.

Note

The function is designed for speed and not accuracy, therefore huge data sets with extremely large
values may cause failure (the function cumsum is used.) Ties may not be well handled.

546 micmen

Author(s)

T. W. Yee

References

Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discus-
sion). Journal of the Royal Statistical Society, Series B, Methodological, 52, 393–442.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

See Also

gpd.

Examples

Not run: meplot(with(venice90, sealevel), las = 1) -> ii
names(ii)
abline(h = ii$meanExcess[1], col = "orange", lty = "dashed")

par(mfrow = c(2, 2))
for (ii in 1:4)

meplot(rgpd(1000), col = c("orange", "blue", "orange"))

End(Not run)

micmen Michaelis-Menten Model

Description

Fits a Michaelis-Menten nonlinear regression model.

Usage

micmen(rpar = 0.001, divisor = 10, init1 = NULL, init2 = NULL,
imethod = 1, oim = TRUE, link1 = "identitylink",
link2 = "identitylink", firstDeriv = c("nsimEIM", "rpar"),
probs.x = c(0.15, 0.85), nsimEIM = 500, dispersion = 0,
zero = NULL)

Arguments

rpar Numeric. Initial positive ridge parameter. This is used to create positive-definite
weight matrices.

divisor Numerical. The divisor used to divide the ridge parameter at each iteration until
it is very small but still positive. The value of divisor should be greater than
one.

micmen 547

init1, init2 Numerical. Optional initial value for the first and second parameters, respec-
tively. The default is to use a self-starting value.

link1, link2 Parameter link function applied to the first and second parameters, respectively.
See Links for more choices.

dispersion Numerical. Dispersion parameter.

firstDeriv Character. Algorithm for computing the first derivatives and working weights.
The first is the default.

imethod, probs.x

See CommonVGAMffArguments for information.

nsimEIM, zero See CommonVGAMffArguments for information.

oim Use the OIM? See CommonVGAMffArguments for information.

Details

The Michaelis-Menten model is given by

E(Yi) = (θ1ui)/(θ2 + ui)

where θ1 and θ2 are the two parameters.

The relationship between iteratively reweighted least squares and the Gauss-Newton algorithm is
given in Wedderburn (1974). However, the algorithm used by this family function is different.
Details are given at the Author’s web site.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

This function is not (nor could ever be) entirely reliable. Plotting the fitted function and monitoring
convergence is recommended.

Note

The regressor values ui are inputted as the RHS of the form2 argument. It should just be a simple
term; no smart prediction is used. It should just a single vector, therefore omit the intercept term.
The LHS of the formula form2 is ignored.

To predict the response at new values of ui one must assign the @extra$Xm2 slot in the fitted object
these values, e.g., see the example below.

Numerical problems may occur. If so, try setting some initial values for the parameters. In the
future, several self-starting initial values will be implemented.

Author(s)

T. W. Yee

548 mills.ratio

References

Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression, New York: Wiley.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the
Gauss-Newton method. Biometrika, 61, 439–447.

Bates, D. M. and Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications, New
York: Wiley.

See Also

enzyme.

Examples

mfit <- vglm(velocity ~ 1, micmen, data = enzyme, trace = TRUE,
crit = "coef", form2 = ~ conc - 1)

summary(mfit)

Not run:
plot(velocity ~ conc, enzyme, xlab = "concentration", las = 1,

col = "blue",
main = "Michaelis-Menten equation for the enzyme data",
ylim = c(0, max(velocity)), xlim = c(0, max(conc)))

points(fitted(mfit) ~ conc, enzyme, col = 2, pch = "+", cex = 2)

This predicts the response at a finer grid:
newenzyme <- data.frame(conc = seq(0, max(with(enzyme, conc)),

len = 200))
mfit@extra$Xm2 <- newenzyme$conc # This is needed for prediction
lines(predict(mfit, newenzyme, "response") ~ conc, newenzyme,

col = "red")
End(Not run)

mills.ratio Mills Ratio

Description

Computes the Mills ratio.

Usage

mills.ratio(x)
mills.ratio2(x)

Arguments

x Numeric (real).

mix2exp 549

Details

The Mills ratio here is dnorm(x) / pnorm(x) (some use (1 - pnorm(x)) / dnorm(x)). Some care
is needed as x approaches -Inf; when x is very negative then its value approaches −x.

Value

mills.ratio returns the Mills ratio, and mills.ratio2 returns dnorm(x) * dnorm(x) / pnorm(x).

Author(s)

T. W. Yee

References

Mills, J. P. (1926). Table of the ratio: area to bounding ordinate, for any portion of normal curve.
Biometrika. 18(3/4), 395–400.

See Also

Normal, tobit, cens.poisson.

Examples

Not run:
curve(mills.ratio, -5, 5, col = "orange", las = 1)
curve(mills.ratio, -5, 5, col = "orange", las = 1, log = "y")

End(Not run)

mix2exp Mixture of Two Exponential Distributions

Description

Estimates the three parameters of a mixture of two exponential distributions by maximum likelihood
estimation.

Usage

mix2exp(lphi = "logitlink", llambda = "loglink", iphi = 0.5,
il1 = NULL, il2 = NULL, qmu = c(0.8, 0.2), nsimEIM = 100,
zero = "phi")

550 mix2exp

Arguments

lphi, llambda Link functions for the parameters φ and λ. The latter is the rate parameter and
note that the mean of an ordinary exponential distribution is 1/λ. See Links for
more choices.

iphi, il1, il2 Initial value for φ, and optional initial value for λ1 and λ2. The last two have
values that must be positive. The default is to compute initial values internally
using the argument qmu.

qmu Vector with two values giving the probabilities relating to the sample quantiles
for obtaining initial values for λ1 and λ2. The two values are fed in as the probs
argument into quantile.

nsimEIM, zero See CommonVGAMffArguments.

Details

The probability density function can be loosely written as

f(y) = φExponential(λ1) + (1− φ)Exponential(λ2)

where φ is the probability an observation belongs to the first group, and y > 0. The parameter φ
satisfies 0 < φ < 1. The mean of Y is φ/λ1 + (1− φ)/λ2 and this is returned as the fitted values.
By default, the three linear/additive predictors are (logit(φ), log(λ1), log(λ2))T .

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

This VGAM family function requires care for a successful application. In particular, good initial
values are required because of the presence of local solutions. Therefore running this function with
several different combinations of arguments such as iphi, il1, il2, qmu is highly recommended.
Graphical methods such as hist can be used as an aid.

This VGAM family function is experimental and should be used with care.

Note

Fitting this model successfully to data can be difficult due to local solutions, uniqueness problems
and ill-conditioned data. It pays to fit the model several times with different initial values and check
that the best fit looks reasonable. Plotting the results is recommended. This function works better
as λ1 and λ2 become more different. The default control argument trace = TRUE is to encourage
monitoring convergence.

Author(s)

T. W. Yee

mix2normal 551

See Also

rexp, exponential, mix2poisson.

Examples

Not run: lambda1 <- exp(1); lambda2 <- exp(3)
(phi <- logitlink(-1, inverse = TRUE))
mdata <- data.frame(y1 = rexp(nn <- 1000, lambda1))
mdata <- transform(mdata, y2 = rexp(nn, lambda2))
mdata <- transform(mdata, Y = ifelse(runif(nn) < phi, y1, y2))
fit <- vglm(Y ~ 1, mix2exp, data = mdata, trace = TRUE)
coef(fit, matrix = TRUE)

Compare the results with the truth
round(rbind('Estimated' = Coef(fit),

'Truth' = c(phi, lambda1, lambda2)), digits = 2)

with(mdata, hist(Y, prob = TRUE, main = "Orange=estimate, blue=truth"))
abline(v = 1 / Coef(fit)[c(2, 3)], lty = 2, col = "orange", lwd = 2)
abline(v = 1 / c(lambda1, lambda2), lty = 2, col = "blue", lwd = 2)

End(Not run)

mix2normal Mixture of Two Univariate Normal Distributions

Description

Estimates the five parameters of a mixture of two univariate normal distributions by maximum
likelihood estimation.

Usage

mix2normal(lphi = "logitlink", lmu = "identitylink", lsd =
"loglink", iphi = 0.5, imu1 = NULL, imu2 = NULL, isd1 =
NULL, isd2 = NULL, qmu = c(0.2, 0.8), eq.sd = TRUE,
nsimEIM = 100, zero = "phi")

Arguments

lphi,lmu,lsd Link functions for the parameters φ, µ, and σ. See Links for more choices.

iphi Initial value for φ, whose value must lie between 0 and 1.

imu1, imu2 Optional initial value for µ1 and µ2. The default is to compute initial values
internally using the argument qmu.

isd1, isd2 Optional initial value for σ1 and σ2. The default is to compute initial values
internally based on the argument qmu. Currently these are not great, therefore
using these arguments where practical is a good idea.

552 mix2normal

qmu Vector with two values giving the probabilities relating to the sample quantiles
for obtaining initial values for µ1 and µ2. The two values are fed in as the probs
argument into quantile.

eq.sd Logical indicating whether the two standard deviations should be constrained to
be equal. If TRUE then the appropriate constraint matrices will be used.

nsimEIM See CommonVGAMffArguments.

zero May be an integer vector specifying which linear/additive predictors are mod-
elled as intercept-only. If given, the value or values can be from the set {1, 2, . . . , 5}.
The default is the first one only, meaning φ is a single parameter even when there
are explanatory variables. Set zero = NULL to model all linear/additive predic-
tors as functions of the explanatory variables. See CommonVGAMffArguments for
more information.

Details

The probability density function can be loosely written as

f(y) = φN(µ1, σ1) + (1− φ)N(µ2, σ2)

where φ is the probability an observation belongs to the first group. The parameters µ1 and µ2

are the means, and σ1 and σ2 are the standard deviations. The parameter φ satisfies 0 < φ < 1.
The mean of Y is φµ1 + (1 − φ)µ2 and this is returned as the fitted values. By default, the five
linear/additive predictors are (logit(φ), µ1, log(σ1), µ2, log(σ2))T . If eq.sd = TRUE then σ1 = σ2
is enforced.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

Numerical problems can occur and half-stepping is not uncommon. If failure to converge occurs,
try inputting better initial values, e.g., by using iphi, qmu, imu1, imu2, isd1, isd2, etc.

This VGAM family function is experimental and should be used with care.

Note

Fitting this model successfully to data can be difficult due to numerical problems and ill-conditioned
data. It pays to fit the model several times with different initial values and check that the best fit
looks reasonable. Plotting the results is recommended. This function works better as µ1 and µ2

become more different.

Convergence can be slow, especially when the two component distributions are not well separated.
The default control argument trace = TRUE is to encourage monitoring convergence. Having eq.sd
= TRUE often makes the overall optimization problem easier.

Author(s)

T. W. Yee

mix2poisson 553

References

McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. New York: Wiley.

Everitt, B. S. and Hand, D. J. (1981). Finite Mixture Distributions. London: Chapman & Hall.

See Also

uninormal, Normal, mix2poisson.

Examples

Not run: mu1 <- 99; mu2 <- 150; nn <- 1000
sd1 <- sd2 <- exp(3)
(phi <- logitlink(-1, inverse = TRUE))
rrn <- runif(nn)
mdata <- data.frame(y = ifelse(rrn < phi, rnorm(nn, mu1, sd1),

rnorm(nn, mu2, sd2)))
fit <- vglm(y ~ 1, mix2normal(eq.sd = TRUE), data = mdata)

Compare the results
cfit <- coef(fit)
round(rbind('Estimated' = c(logitlink(cfit[1], inverse = TRUE),

cfit[2], exp(cfit[3]), cfit[4]),
'Truth' = c(phi, mu1, sd1, mu2)), digits = 2)

Plot the results
xx <- with(mdata, seq(min(y), max(y), len = 200))
plot(xx, (1-phi) * dnorm(xx, mu2, sd2), type = "l", xlab = "y",

main = "red = estimate, blue = truth",
col = "blue", ylab = "Density")

phi.est <- logitlink(coef(fit)[1], inverse = TRUE)
sd.est <- exp(coef(fit)[3])
lines(xx, phi*dnorm(xx, mu1, sd1), col = "blue")
lines(xx, phi.est * dnorm(xx, Coef(fit)[2], sd.est), col = "red")
lines(xx, (1-phi.est)*dnorm(xx, Coef(fit)[4], sd.est), col="red")
abline(v = Coef(fit)[c(2,4)], lty = 2, col = "red")
abline(v = c(mu1, mu2), lty = 2, col = "blue")

End(Not run)

mix2poisson Mixture of Two Poisson Distributions

Description

Estimates the three parameters of a mixture of two Poisson distributions by maximum likelihood
estimation.

554 mix2poisson

Usage

mix2poisson(lphi = "logitlink", llambda = "loglink",
iphi = 0.5, il1 = NULL, il2 = NULL,
qmu = c(0.2, 0.8), nsimEIM = 100, zero = "phi")

Arguments

lphi, llambda Link functions for the parameter φ and λ. See Links for more choices.
iphi Initial value for φ, whose value must lie between 0 and 1.
il1, il2 Optional initial value for λ1 and λ2. These values must be positive. The default

is to compute initial values internally using the argument qmu.
qmu Vector with two values giving the probabilities relating to the sample quantiles

for obtaining initial values for λ1 and λ2. The two values are fed in as the probs
argument into quantile.

nsimEIM, zero See CommonVGAMffArguments.

Details

The probability function can be loosely written as

P (Y = y) = φPoisson(λ1) + (1− φ)Poisson(λ2)

where φ is the probability an observation belongs to the first group, and y = 0, 1, 2, The
parameter φ satisfies 0 < φ < 1. The mean of Y is φλ1 + (1 − φ)λ2 and this is returned as the
fitted values. By default, the three linear/additive predictors are (logit(φ), log(λ1), log(λ2))T .

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

This VGAM family function requires care for a successful application. In particular, good initial
values are required because of the presence of local solutions. Therefore running this function with
several different combinations of arguments such as iphi, il1, il2, qmu is highly recommended.
Graphical methods such as hist can be used as an aid.

With grouped data (i.e., using the weights argument) one has to use a large value of nsimEIM; see
the example below.

This VGAM family function is experimental and should be used with care.

Note

The response must be integer-valued since dpois is invoked.

Fitting this model successfully to data can be difficult due to local solutions and ill-conditioned
data. It pays to fit the model several times with different initial values, and check that the best fit
looks reasonable. Plotting the results is recommended. This function works better as λ1 and λ2
become more different. The default control argument trace = TRUE is to encourage monitoring
convergence.

MNSs 555

Author(s)

T. W. Yee

See Also

rpois, poissonff, mix2normal.

Examples

Not run: # Example 1: simulated data
nn <- 1000
mu1 <- exp(2.5) # Also known as lambda1
mu2 <- exp(3)
(phi <- logitlink(-0.5, inverse = TRUE))
mdata <- data.frame(y = rpois(nn, ifelse(runif(nn) < phi, mu1, mu2)))
mfit <- vglm(y ~ 1, mix2poisson, data = mdata)
coef(mfit, matrix = TRUE)

Compare the results with the truth
round(rbind('Estimated' = Coef(mfit), 'Truth' = c(phi, mu1, mu2)), 2)

ty <- with(mdata, table(y))
plot(names(ty), ty, type = "h", main = "Orange=estimate, blue=truth",

ylab = "Frequency", xlab = "y")
abline(v = Coef(mfit)[-1], lty = 2, col = "orange", lwd = 2)
abline(v = c(mu1, mu2), lty = 2, col = "blue", lwd = 2)

Example 2: London Times data (Lange, 1997, p.31)
ltdata1 <- data.frame(deaths = 0:9,

freq = c(162,267,271, 185,111,61,27,8,3,1))
ltdata2 <- data.frame(y = with(ltdata1, rep(deaths, freq)))

Usually this does not work well unless nsimEIM is large
Mfit <- vglm(deaths ~ 1, weight = freq, data = ltdata1,

mix2poisson(iphi=0.3, il1=1, il2=2.5, nsimEIM=5000))

This works better in general
Mfit = vglm(y ~ 1, mix2poisson(iphi=0.3, il1=1, il2=2.5), ltdata2)
coef(Mfit, matrix = TRUE)
Coef(Mfit)

End(Not run)

MNSs The MNSs Blood Group System

Description

Estimates the three independent parameters of the the MNSs blood group system.

556 MNSs

Usage

MNSs(link = "logitlink", imS = NULL, ims = NULL, inS = NULL)

Arguments

link Link function applied to the three parameters. See Links for more choices.

imS, ims, inS Optional initial value for mS, ms and nS respectively. A NULL means they are
computed internally.

Details

There are three independent parameters: m_S, m_s, n_S, say, so that n_s = 1 - m_S - m_s - n_S. We
let the eta vector (transposed) be (g(m_S), g(m_s), g(n_S)) where g is the link function.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The input can be a 6-column matrix of counts, where the columns are MS, Ms, MNS, MNs, NS, Ns
(in order). Alternatively, the input can be a 6-column matrix of proportions (so each row adds to 1)
and the weights argument is used to specify the total number of counts for each row.

Author(s)

T. W. Yee

References

Elandt-Johnson, R. C. (1971). Probability Models and Statistical Methods in Genetics, New York:
Wiley.

See Also

AA.Aa.aa, AB.Ab.aB.ab, ABO, A1A2A3.

Examples

Order matters only:
y <- cbind(MS = 295, Ms = 107, MNS = 379, MNs = 322, NS = 102, Ns = 214)
fit <- vglm(y ~ 1, MNSs("logitlink", .25, .28, .08), trace = TRUE)
fit <- vglm(y ~ 1, MNSs(link = logitlink), trace = TRUE, crit = "coef")
Coef(fit)
rbind(y, sum(y)*fitted(fit))
sqrt(diag(vcov(fit)))

model.framevlm 557

model.framevlm Construct the Model Frame of a VLM Object

Description

This function returns a data.frame with the variables. It is applied to an object which inherits from
class "vlm" (e.g., a fitted model of class "vglm").

Usage

model.framevlm(object, setupsmart = TRUE, wrapupsmart = TRUE, ...)

Arguments

object a model object from the VGAM R package that inherits from a vector linear
model (VLM), e.g., a model of class "vglm".

... further arguments such as data, na.action, subset. See model.frame for
more information on these.

setupsmart, wrapupsmart

Logical. Arguments to determine whether to use smart prediction.

Details

Since object is an object which inherits from class "vlm" (e.g., a fitted model of class "vglm"),
the method will either returned the saved model frame used when fitting the model (if any, selected
by argument model = TRUE) or pass the call used when fitting on to the default method.

This code implements smart prediction (see smartpred).

Value

A data.frame containing the variables used in the object plus those specified in

References

Chambers, J. M. (1992). Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.frame, model.matrixvlm, predictvglm, smartpred.

558 model.matrixqrrvglm

Examples

Illustrates smart prediction
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal,mild, severe) ~ poly(c(scale(let)), 2),

multinomial, pneumo, trace = TRUE, x = FALSE)
class(fit)

check1 <- head(model.frame(fit))
check1
check2 <- model.frame(fit, data = head(pneumo))
check2
all.equal(unlist(check1), unlist(check2)) # Should be TRUE

q0 <- head(predict(fit))
q1 <- head(predict(fit, newdata = pneumo))
q2 <- predict(fit, newdata = head(pneumo))
all.equal(q0, q1) # Should be TRUE
all.equal(q1, q2) # Should be TRUE

model.matrixqrrvglm Construct the Model Matrix of a QRR-VGLM Object

Description

Creates a model matrix. Two types can be returned: a large one (class "vlm" or one that inherits
from this such as "vglm") or a small one (such as returned if it were of class "lm").

Usage

model.matrixqrrvglm(object, type = c("latvar", "lm", "vlm"), ...)

Arguments

object an object of a class "qrrvglm", i.e., a cqo object.

type Type of model (or design) matrix returned. The first is the default. The value
"latvar" is model matrix mainly comprising of the latent variable values (some-
times called the site scores). The value "lm" is the LM matrix directly corre-
sponding to the formula argument. The value "vlm" is the big VLM model
matrix given C.

... further arguments passed to or from other methods.

Details

This function creates one of several design matrices from object. For example, this can be a small
LM object or a big VLM object.

When type = "vlm" this function calls fnumat2R() to construct the big model matrix given C. That
is, the constrained coefficients are assumed known, so that something like a large Poisson or logistic

model.matrixvlm 559

regression is set up. This is because all responses are fitted simultaneously here. The columns are
labelled in the following order and with the following prefixes: "A" for the A matrix (linear in the
latent variables), "D" for the D matrix (quadratic in the latent variables), "x1." for the B1 matrix
(usually contains the intercept; see the argument noRRR in qrrvglm.control).

Value

The design matrix after scaling for a regression model with the specified formula and data. By after
scaling, it is meant that it matches the output of coef(qrrvglmObject) rather than the original
scaling of the fitted object.

See Also

model.matrixvlm, cqo, vcovqrrvglm.

Examples

Not run:
set.seed(1); n <- 40; p <- 3; S <- 4; myrank <- 1
mydata <- rcqo(n, p, S, Rank = myrank, es.opt = TRUE, eq.max = TRUE)
(myform <- attr(mydata, "formula"))
mycqo <- cqo(myform, poissonff, data = mydata,

I.tol = TRUE, Rank = myrank, Bestof = 5)
model.matrix(mycqo, type = "latvar")
model.matrix(mycqo, type = "lm")
model.matrix(mycqo, type = "vlm")

End(Not run)

model.matrixvlm Construct the Design Matrix of a VLM Object

Description

Creates a design matrix. Two types can be returned: a large one (class "vlm" or one that inherits
from this such as "vglm") or a small one (such as returned if it were of class "lm").

Usage

model.matrixvlm(object, type = c("vlm", "lm", "lm2", "bothlmlm2"),
linpred.index = NULL, label.it = TRUE, ...)

Arguments

object an object of a class that inherits from the vector linear model (VLM).
type Type of design matrix returned. The first is the default. The value "vlm" is the

VLM model matrix corresponding to the formula argument. The value "lm" is
the LM model matrix corresponding to the formula argument. The value "lm2"
is the second (LM) model matrix corresponding to the form2 argument. The
value "bothlmlm2" means both LM and VLM model matrices.

560 model.matrixvlm

linpred.index Vector of integers. The index for a linear/additive predictor, it must have values
from the set 1:M. Also, if length(linpred.index) == 1 then type = "lm" must
be assigned, whereas if length(linpred.index) > 1 then type = "vlm" must
be assigned, Then it returns a subset of the VLM matrix corresponding to the
linpred.indexth linear/additive predictor(s); this is a LM-type matrix when it
is of unit length. Currently some attributes are returned, but these may change
in value in the future because of ongoing development work.

label.it Logical. Label the row and columns with character names? If FALSE, time and
memory might be saved if the big model matrix is very large. The argument is
only used when type = "vlm".

... further arguments passed to or from other methods. These include data (which
is a data frame created with model.framevlm), contrasts.arg, and xlev. See
model.matrix for more information.

Details

This function creates a design matrix from object. This can be a small LM object or a big VLM
object (default). The latter is constructed from the former and the constraint matrices.

This code implements smart prediction (see smartpred).

Value

The design matrix for a regression model with the specified formula and data. If type = "bothlmlm2"
then a list is returned with components "X" and "Xm2".

Sometimes (especially if x = TRUE when calling vglm) the model matrix has attributes: "assign"
("lm"-type) and "vassign" ("vlm"-type) and "orig.assign.lm" ("lm"-type). These are used
internally a lot for bookkeeping, especially regarding the columns of both types of model matri-
ces. In particular, constraint matrices and variable selection relies on this information a lot. The
"orig.assign.lm" is the ordinary "assign" attribute for lm and glm objects.

References

Chambers, J. M. (1992). Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.matrix, model.framevlm, predictvglm, smartpred, constraints.vlm, trim.constraints,
add1.vglm, drop1.vglm, step4vglm.

Examples

(I) Illustrates smart prediction ,,,,,,,,,,,,,,,,,,,,,,,
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~

sm.poly(c(sm.scale(let)), 2),
multinomial, data = pneumo, trace = TRUE, x = FALSE)

class(fit)
fit@smart.prediction # Data-dependent parameters

moffset 561

fit@x # Not saved on the object
model.matrix(fit)
model.matrix(fit, linpred.index = 1, type = "lm")
model.matrix(fit, linpred.index = 2, type = "lm")

(Check1 <- head(model.matrix(fit, type = "lm")))
(Check2 <- model.matrix(fit, data = head(pneumo), type = "lm"))
all.equal(c(Check1), c(Check2)) # Should be TRUE

q0 <- head(predict(fit))
q1 <- head(predict(fit, newdata = pneumo))
q2 <- predict(fit, newdata = head(pneumo))
all.equal(q0, q1) # Should be TRUE
all.equal(q1, q2) # Should be TRUE

(II) Attributes ,,
fit2 <- vglm(cbind(normal, mild, severe) ~ let, # x = TRUE

multinomial, data = pneumo, trace = TRUE)
fit2@x # "lm"-type; saved on the object; note the attributes
model.matrix(fit2, type = "lm") # Note the attributes
model.matrix(fit2, type = "vlm") # Note the attributes

moffset Matrix Offset

Description

Modify a matrix by shifting successive elements.

Usage

moffset(mat, roffset = 0, coffset = 0, postfix = "",
rprefix = "Row.", cprefix = "Col.")

Arguments

mat Data frame or matrix. This ought to have at least three rows and three columns.
The elements are shifted in the order of c(mat), i.e., going down successive
columns, as the columns go from left to right. Wrapping of values is done.

roffset, coffset

Numeric or character. If numeric, the amount of shift (offset) for each row and
column. The default is no change to mat. If character, the offset is computed
by matching with the row or column names. For example, for the alcoff, put
roffset = "6" means that we make an effective day’s dataset start from 6:00
am, and this wraps around to include midnight to 05.59 am on the next day.

postfix Character. Modified rows and columns are renamed by pasting this argument to
the end of each name. The default is no change.

rprefix, cprefix

Same as rcim.

562 moffset

Details

This function allows a matrix to be rearranged so that element (roffset + 1, coffset + 1) becomes
the (1, 1) element. The elements are assumed to be ordered in the same way as the elements of
c(mat),

This function is applicable to, e.g., alcoff, where it is useful to define the effective day as starting at
some other hour than midnight, e.g., 6.00am. This is because partying on Friday night continues on
into Saturday morning, therefore it is more interpretable to use the effective day when considering
a daily effect.

This is a data preprocessing function for rcim and plotrcim0. The differences between Rcim and
moffset is that Rcim only reorders the level of the rows and columns so that the data is shifted but
not moved. That is, a value in one row stays in that row, and ditto for column. But in moffset
values in one column can be moved to a previous column. See the examples below.

Value

A matrix of the same dimensional as its input.

Note

The input mat should have row names and column names.

Author(s)

T. W. Yee, Alfian F. Hadi.

See Also

Rcim, rcim, plotrcim0, alcoff, crashi.

Examples

Some day's data is moved to previous day:
moffset(alcoff, 3, 2, "*")
Rcim(alcoff, 3 + 1, 2 + 1) # Data does not move as much.
alcoff # Original data
moffset(alcoff, 3, 2, "*") -
Rcim(alcoff, 3+1, 2+1) # Note the differences

An 'effective day' data set:
alcoff.e <- moffset(alcoff, roffset = "6", postfix = "*")
fit.o <- rcim(alcoff) # default baselines are 1st row and col
fit.e <- rcim(alcoff.e) # default baselines are 1st row and col

Not run: par(mfrow = c(2, 2), mar = c(9, 4, 2, 1))
plot(fit.o, rsub = "Not very interpretable",

csub = "Not very interpretable")
plot(fit.e, rsub = "More interpretable",

csub = "More interpretable")

End(Not run)

multilogitlink 563

Some checking
all.equal(moffset(alcoff), alcoff) # Should be no change
moffset(alcoff, 1, 1, "*")
moffset(alcoff, 2, 3, "*")
moffset(alcoff, 1, 0, "*")
moffset(alcoff, 0, 1, "*")
moffset(alcoff, "6", "Mon", "*") # This one is good

Customise row and column baselines
fit2 <- rcim(Rcim(alcoff.e, rbaseline = "11", cbaseline = "Mon*"))

multilogitlink Multi-logit Link Function

Description

Computes the multilogit transformation, including its inverse and the first two derivatives.

Usage

multilogitlink(theta, refLevel = "(Last)", M = NULL, whitespace = FALSE,
bvalue = NULL, inverse = FALSE, deriv = 0, all.derivs = FALSE,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.
refLevel, M, whitespace

See multinomial.
bvalue See Links.
all.derivs Logical. This is currently experimental only.
inverse, deriv, short, tag

Details at Links.

Details

The multilogitlink() link function is a generalization of the logitlink link toM levels/classes.
It forms the basis of the multinomial logit model. It is sometimes called the multi-logit link or the
multinomial logit link; some people use softmax too. When its inverse function is computed it
returns values which are positive and add to unity.

Value

For multilogitlink with deriv = 0, the multilogit of theta, i.e., log(theta[, j]/theta[, M+1])
when inverse = FALSE, and if inverse = TRUE then exp(theta[, j])/(1+rowSums(exp(theta))).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Here, all logarithms are natural logarithms, i.e., to base e.

564 multinomial

Note

Numerical instability may occur when theta is close to 1 or 0 (for multilogitlink). One way of
overcoming this is to use, e.g., bvalue. Currently care.exp() is used to avoid NAs being returned
if the probability is too close to 1.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, multinomial, logitlink, gaitdpoisson, normal.vcm, CommonVGAMffArguments.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, # For illustration only!

multinomial, trace = TRUE, data = pneumo)
fitted(fit)
predict(fit)

multilogitlink(fitted(fit))
multilogitlink(fitted(fit)) - predict(fit) # Should be all 0s

multilogitlink(predict(fit), inverse = TRUE) # rowSums() add to unity
multilogitlink(predict(fit), inverse = TRUE, refLevel = 1)
multilogitlink(predict(fit), inverse = TRUE) -
fitted(fit) # Should be all 0s

multilogitlink(fitted(fit), deriv = 1)
multilogitlink(fitted(fit), deriv = 2)

multinomial Multinomial Logit Model

Description

Fits a multinomial logit model (MLM) to a (preferably unordered) factor response.

Usage

multinomial(zero = NULL, parallel = FALSE, nointercept = NULL,
refLevel = "(Last)", imethod = 1, imu = NULL,
byrow.arg = FALSE, whitespace = FALSE)

multinomial 565

Arguments

zero Can be an integer-valued vector specifying which linear/additive predictors are
modelled as intercepts only. Any values must be from the set {1,2,. . . ,M}. The
default value means none are modelled as intercept-only terms. See CommonVGAMffArguments
for more information.

parallel A logical, or formula specifying which terms have equal/unequal coefficients.
nointercept, whitespace

See CommonVGAMffArguments for details.

imu, byrow.arg See CommonVGAMffArguments for details.

refLevel Either a (1) single positive integer or (2) a value of the factor or (3) a charac-
ter string. If inputted as an integer then it specifies which column of the re-
sponse matrix is the reference or baseline level. The default is the last one (the
(M + 1)th one). If used, this argument will be usually assigned the value 1. If
inputted as a value of a factor then beware of missing values of certain levels
of the factor (drop.unused.levels = TRUE or drop.unused.levels = FALSE).
See the example below. If inputted as a character string then this should be equal
to (A) one of the levels of the factor response, else (B) one of the column names
of the matrix response of counts; e.g., vglm(cbind(normal, mild, severe) ~
let, multinomial(refLevel = "severe"), data = pneumo) if it was (incor-
rectly because the response is ordinal) applied to the pneumo data set. Another
example is vglm(ethnicity ~ age, multinomial(refLevel = "European"),
data = xs.nz) if it was applied to the xs.nz data set.

imethod Choosing 2 will use the mean sample proportions of each column of the re-
sponse matrix, which corresponds to the MLEs for intercept-only models. See
CommonVGAMffArguments for more details.

Details

In this help file the response Y is assumed to be a factor with unordered values 1, 2, . . . ,M + 1, so
that M is the number of linear/additive predictors ηj .

The default model can be written

ηj = log(P [Y = j]/P [Y = M + 1])

where ηj is the jth linear/additive predictor. Here, j = 1, . . . ,M , and ηM+1 is 0 by definition.
That is, the last level of the factor, or last column of the response matrix, is taken as the reference
level or baseline—this is for identifiability of the parameters. The reference or baseline level can be
changed with the refLevel argument.

In almost all the literature, the constraint matrices associated with this family of models are known.
For example, setting parallel = TRUE will make all constraint matrices (including the intercept)
equal to a vector of M 1’s; to suppress the intercepts from being parallel then set parallel =
FALSE ~ 1. If the constraint matrices are unknown and to be estimated, then this can be achieved
by fitting the model as a reduced-rank vector generalized linear model (RR-VGLM; see rrvglm).
In particular, a multinomial logit model with unknown constraint matrices is known as a stereotype
model (Anderson, 1984), and can be fitted with rrvglm.

The above details correspond to the ordinary MLM where all the levels are altered (in the terminol-
ogy of GAITD regression).

566 multinomial

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

No check is made to verify that the response is nominal.

See CommonVGAMffArguments for more warnings.

Note

The response should be either a matrix of counts (with row sums that are all positive), or a factor.
In both cases, the y slot returned by vglm/vgam/rrvglm is the matrix of sample proportions.

The multinomial logit model is more appropriate for a nominal (unordered) factor response than
for an ordinal (ordered) factor response. Models more suited for the latter include those based on
cumulative probabilities, e.g., cumulative.

multinomial is prone to numerical difficulties if the groups are separable and/or the fitted proba-
bilities are close to 0 or 1. The fitted values returned are estimates of the probabilities P [Y = j] for
j = 1, . . . ,M + 1. See safeBinaryRegression for the logistic regression case.

Here is an example of the usage of the parallel argument. If there are covariates x2, x3 and
x4, then parallel = TRUE ~ x2 + x3 - 1 and parallel = FALSE ~ x4 are equivalent. This would
constrain the regression coefficients for x2 and x3 to be equal; those of the intercepts and x4 would
be different.

In Example 4 below, a conditional logit model is fitted to an artificial data set that explores how cost
and travel time affect people’s decision about how to travel to work. Walking is the baseline group.
The variable Cost.car is the difference between the cost of travel to work by car and walking,
etc. The variable Time.car is the difference between the travel duration/time to work by car and
walking, etc. For other details about the xij argument see vglm.control and fill1.

The multinom function in the nnet package uses the first level of the factor as baseline, whereas the
last level of the factor is used here. Consequently the estimated regression coefficients differ.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1–34. doi:10.18637/jss.v032.i10.

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. and Ma, C. (2022). Generally–altered, –inflated, –truncated and –deflated regression,
with application to heaped and seeped data. In preparation.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Hoboken, NJ, USA: Wiley.

https://doi.org/10.18637/jss.v032.i10

multinomial 567

Hastie, T. J., Tibshirani, R. J. and Friedman, J. H. (2009). The Elements of Statistical Learning:
Data Mining, Inference and Prediction, 2nd ed. New York, USA: Springer-Verlag.

Anderson, J. A. (1984). Regression and ordered categorical variables. Journal of the Royal Statis-
tical Society, Series B, Methodological, 46, 1–30.

Tutz, G. (2012). Regression for Categorical Data, Cambridge: Cambridge University Press.

See Also

multilogitlink, margeff, cumulative, acat, cratio, sratio, dirichlet, dirmultinomial,
rrvglm, fill1, Multinomial, gaitdpoisson, Gaitdpois, iris.

Examples

Example 1: fit a MLM to Edgar Anderson's iris data
data(iris)
Not run: fit <- vglm(Species ~ ., multinomial, iris)
coef(fit, matrix = TRUE)
End(Not run)

Example 2a: a simple example
ycounts <- t(rmultinom(10, size = 20, prob = c(0.1, 0.2, 0.8)))
fit <- vglm(ycounts ~ 1, multinomial)
head(fitted(fit)) # Proportions
fit@prior.weights # NOT recommended for the prior weights
weights(fit, type = "prior", matrix = FALSE) # The better method
depvar(fit) # Sample proportions; same as fit@y
constraints(fit) # Constraint matrices

Example 2b: Different reference level used as the baseline
fit2 <- vglm(ycounts ~ 1, multinomial(refLevel = 2))
coef(fit2, matrix = TRUE)
coef(fit , matrix = TRUE) # Easy to reconcile this output with fit2

Example 3: The response is a factor.
nn <- 10
dframe3 <- data.frame(yfac = gl(3, nn, labels = c("Ctrl",

"Trt1", "Trt2")),
x2 = runif(3 * nn))

myrefLevel <- with(dframe3, yfac[12])
fit3a <- vglm(yfac ~ x2, multinomial(refLevel = myrefLevel), dframe3)
fit3b <- vglm(yfac ~ x2, multinomial(refLevel = 2), dframe3)
coef(fit3a, matrix = TRUE) # "Trt1" is the reference level
coef(fit3b, matrix = TRUE) # "Trt1" is the reference level
margeff(fit3b)

Example 4: Fit a rank-1 stereotype model
fit4 <- rrvglm(Country ~ Width + Height + HP, multinomial, car.all)
coef(fit4) # Contains the C matrix
constraints(fit4)$HP # The A matrix
coef(fit4, matrix = TRUE) # The B matrix
Coef(fit4)@C # The C matrix
concoef(fit4) # Better to get the C matrix this way

568 Nakagami

Coef(fit4)@A # The A matrix
svd(coef(fit4, matrix = TRUE)[-1,])$d # Has rank 1; = C %*% t(A)
Classification (but watch out for NAs in some of the variables):
apply(fitted(fit4), 1, which.max) # Classification
Classification:
colnames(fitted(fit4))[apply(fitted(fit4), 1, which.max)]
apply(predict(fit4, car.all, type = "response"),

1, which.max) # Ditto

Example 5: Using the xij argument (aka conditional logit model)
set.seed(111)
nn <- 100 # Number of people who travel to work
M <- 3 # There are M+1 models of transport to go to work
ycounts <- matrix(0, nn, M+1)
ycounts[cbind(1:nn, sample(x = M+1, size = nn, replace = TRUE))] = 1
dimnames(ycounts) <- list(NULL, c("bus","train","car","walk"))
gotowork <- data.frame(cost.bus = runif(nn), time.bus = runif(nn),

cost.train= runif(nn), time.train= runif(nn),
cost.car = runif(nn), time.car = runif(nn),
cost.walk = runif(nn), time.walk = runif(nn))

gotowork <- round(gotowork, digits = 2) # For convenience
gotowork <- transform(gotowork,

Cost.bus = cost.bus - cost.walk,
Cost.car = cost.car - cost.walk,
Cost.train = cost.train - cost.walk,
Cost = cost.train - cost.walk, # for labelling
Time.bus = time.bus - time.walk,
Time.car = time.car - time.walk,
Time.train = time.train - time.walk,
Time = time.train - time.walk) # for labelling

fit <- vglm(ycounts ~ Cost + Time,
multinomial(parall = TRUE ~ Cost + Time - 1),
xij = list(Cost ~ Cost.bus + Cost.train + Cost.car,

Time ~ Time.bus + Time.train + Time.car),
form2 = ~ Cost + Cost.bus + Cost.train + Cost.car +

Time + Time.bus + Time.train + Time.car,
data = gotowork, trace = TRUE)

head(model.matrix(fit, type = "lm")) # LM model matrix
head(model.matrix(fit, type = "vlm")) # Big VLM model matrix
coef(fit)
coef(fit, matrix = TRUE)
constraints(fit)
summary(fit)
max(abs(predict(fit) - predict(fit, new = gotowork))) # Should be 0

Nakagami Nakagami Distribution

Nakagami 569

Description

Density, cumulative distribution function, quantile function and random generation for the Nak-
agami distribution.

Usage

dnaka(x, scale = 1, shape, log = FALSE)
pnaka(q, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
qnaka(p, scale = 1, shape, ...)
rnaka(n, scale = 1, shape, Smallno = 1.0e-6)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

scale, shape arguments for the parameters of the distribution. See nakagami for more details.
For rnaka, arguments shape and scale must be of length 1.

Smallno Numeric, a small value used by the rejection method for determining the upper
limit of the distribution. That is, pnaka(U) > 1-Smallno where U is the upper
limit.

... Arguments that can be passed into uniroot.

log Logical. If log = TRUE then the logarithm of the density is returned.

lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See nakagami for more details.

Value

dnaka gives the density, pnaka gives the cumulative distribution function, qnaka gives the quantile
function, and rnaka generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

nakagami.

570 nakagami

Examples

Not run: x <- seq(0, 3.2, len = 200)
plot(x, dgamma(x, shape = 1), type = "n", col = "black", ylab = "",

ylim = c(0,1.5), main = "dnaka(x, shape = shape)")
lines(x, dnaka(x, shape = 1), col = "orange")
lines(x, dnaka(x, shape = 2), col = "blue")
lines(x, dnaka(x, shape = 3), col = "green")
legend(2, 1.0, col = c("orange","blue","green"), lty = rep(1, len = 3),

legend = paste("shape =", c(1, 2, 3)))

plot(x, pnorm(x), type = "n", col = "black", ylab = "",
ylim = 0:1, main = "pnaka(x, shape = shape)")

lines(x, pnaka(x, shape = 1), col = "orange")
lines(x, pnaka(x, shape = 2), col = "blue")
lines(x, pnaka(x, shape = 3), col = "green")
legend(2, 0.6, col = c("orange","blue","green"), lty = rep(1, len = 3),

legend = paste("shape =", c(1, 2, 3)))
End(Not run)

probs <- seq(0.1, 0.9, by = 0.1)
pnaka(qnaka(p = probs, shape = 2), shape = 2) - probs # Should be all 0

nakagami Nakagami Regression Family Function

Description

Estimation of the two parameters of the Nakagami distribution by maximum likelihood estimation.

Usage

nakagami(lscale = "loglink", lshape = "loglink", iscale = 1, ishape = NULL,
nowarning = FALSE)

Arguments

nowarning Logical. Suppress a warning?

lscale, lshape Parameter link functions applied to the scale and shape parameters. Log links
ensure they are positive. See Links for more choices and information.

iscale, ishape Optional initial values for the shape and scale parameters. For ishape, a NULL
value means it is obtained in the initialize slot based on the value of iscale.
For iscale, assigning a NULL means a value is obtained in the initialize slot,
however, setting another numerical value is recommended if convergence fails
or is too slow.

nakagami 571

Details

The Nakagami distribution, which is useful for modelling wireless systems such as radio links, can
be written

f(y) = 2(shape/scale)shapey2×shape−1 exp(−shape× y2/scale)/Γ(shape)

for y > 0, shape > 0, scale > 0. The mean of Y is
√
scale/shape× Γ(shape+ 0.5)/Γ(shape)

and these are returned as the fitted values. By default, the linear/additive predictors are η1 =
log(scale) and η2 = log(shape). Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The Nakagami distribution is also known as the Nakagami-m distribution, where m = shape here.
Special cases: m = 0.5 is a one-sided Gaussian distribution and m = 1 is a Rayleigh distribution.
The second moment is E(Y 2) = m.

If Y has a Nakagami distribution with parameters shape and scale then Y 2 has a gamma distribution
with shape parameter shape and scale parameter scale/shape.

Author(s)

T. W. Yee

References

Nakagami, M. (1960). The m-distribution: a general formula of intensity distribution of rapid
fading, pp.3–36 in: Statistical Methods in Radio Wave Propagation. W. C. Hoffman, Ed., New
York: Pergamon.

See Also

rnaka, gamma2, rayleigh.

Examples

nn <- 1000; shape <- exp(0); Scale <- exp(1)
ndata <- data.frame(y1 = sqrt(rgamma(nn, shape = shape, scale = Scale/shape)))
nfit <- vglm(y1 ~ 1, nakagami, data = ndata, trace = TRUE, crit = "coef")
ndata <- transform(ndata, y2 = rnaka(nn, scale = Scale, shape = shape))
nfit <- vglm(y2 ~ 1, nakagami(iscale = 3), data = ndata, trace = TRUE)
head(fitted(nfit))
with(ndata, mean(y2))
coef(nfit, matrix = TRUE)
(Cfit <- Coef(nfit))
Not run: sy <- with(ndata, sort(y2))
hist(with(ndata, y2), prob = TRUE, main = "", xlab = "y", ylim = c(0, 0.6),

572 nbcanlink

col = "lightblue")
lines(dnaka(sy, scale = Cfit["scale"], shape = Cfit["shape"]) ~ sy,

data = ndata, col = "orange")
End(Not run)

nbcanlink Negative Binomial Canonical Link Function

Description

Computes the negative binomial canonical link transformation, including its inverse and the first
two derivatives.

Usage

nbcanlink(theta, size = NULL, wrt.param = NULL, bvalue = NULL,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. Typically the mean of a negative binomial distribution
(NBD). See below for further details.

size, wrt.param

size contains the k matrix which must be of a conformable dimension as theta.
Also, if deriv > 0 then wrt.param is either 1 or 2 (1 for with respect to the first
parameter, and 2 for with respect to the second parameter (size)).

bvalue Details at Links.
inverse, deriv, short, tag

Details at Links.

Details

The NBD canonical link is log(θ/(θ + k)) where θ is the NBD mean. The canonical link is used
for theoretically relating the NBD to GLM class.

This link function was specifically written for negbinomial and negbinomial.size, and should
not be used elsewhere (these VGAM family functions have code that specifically handles nbcanlink().)

Value

For deriv = 0, the above equation when inverse = FALSE, and if inverse = TRUE then kmatrix /
expm1(-theta) where theta ie really eta. For deriv = 1, then the function returns d eta / d theta
as a function of theta if inverse = FALSE, else if inverse = TRUE then it returns the reciprocal.

nbcanlink 573

Warning

This function works with negbinomial but care is needed because it is numerically fraught. In
particular, the first linear/additive predictor must have negative values, and finding good initial
values may be difficult, leading to it crashing at the start. Hence the NB-C model is sensitive to
the initial values and may converge to a local solution. Pages 210 and 309 of Hilbe (2011) notes
convergence difficulties (of Newton-Raphson type algorithms), and some of that this applies here.
Setting trace = TRUE is a good idea, as is trying various values of imethod in negbinomial.

Note

While theoretically nice, this function is not recommended in general since its value is always
negative (linear predictors ought to be unbounded in general). A loglink link for argument lmu is
recommended instead.

Numerical instability may occur when theta is close to 0 or 1. Values of theta which are less than
or equal to 0 can be replaced by bvalue before computing the link function value. See Links.

Author(s)

Victor Miranda and Thomas W. Yee.

References

Miranda, V. S. and Yee, T. W. (2018). On mean function modelling for several one-parameter
discrete distributions. Manuscript in preparation.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

Hilbe, J. M. (2011). Negative Binomial Regression, 2nd Edition. Cambridge: Cambridge University
Press.

See Also

negbinomial, negbinomial.size.

Examples

nbcanlink("mu", short = FALSE)

mymu <- 1:10 # Test some basic operations:
kmatrix <- cbind(runif(length(mymu)))
eta1 <- nbcanlink(mymu, size = kmatrix)
ans2 <- nbcanlink(eta1, size = kmatrix, inverse = TRUE)
max(abs(ans2 - mymu)) # Should be 0

Not run: mymu <- seq(0.5, 10, length = 101)
kmatrix <- matrix(10, length(mymu), 1)
plot(nbcanlink(mymu, size = kmatrix) ~ mymu, las = 1,

type = "l", col = "blue", xlab = expression({mu}))

End(Not run)

574 nbordlink

Estimate the parameters from some simulated data
ndata <- data.frame(x2 = runif(nn <- 100))
ndata <- transform(ndata, eta1 = -1 - 1 * x2, # eta1 < 0

size1 = exp(1),
size2 = exp(2))

ndata <- transform(ndata,
mu1 = nbcanlink(eta1, size = size1, inverse = TRUE),
mu2 = nbcanlink(eta1, size = size2, inverse = TRUE))

ndata <- transform(ndata, y1 = rnbinom(nn, mu = mu1, size = size1),
y2 = rnbinom(nn, mu = mu2, size = size2))

summary(ndata)

nbcfit <- vglm(cbind(y1, y2) ~ x2,
negbinomial(lmu = "nbcanlink", imethod = 1), # Try this

negbinomial(lmu = "nbcanlink", imethod = 2), # Try this
data = ndata, trace = TRUE)

coef(nbcfit, matrix = TRUE)
summary(nbcfit)

nbordlink Negative Binomial-Ordinal Link Function

Description

Computes the negative binomial-ordinal transformation, including its inverse and the first two
derivatives.

Usage

nbordlink(theta, cutpoint = NULL, k = NULL,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

cutpoint, k Here, k is the k parameter associated with the negative binomial distribution; see
negbinomial. The cutpoints should be non-negative integers. If nbordlink()
is used as the link function in cumulative then one should choose reverse =
TRUE, parallel = TRUE.

inverse, deriv, short, tag

Details at Links.

Details

The negative binomial-ordinal link function (NBOLF) can be applied to a parameter lying in the
unit interval. Its purpose is to link cumulative probabilities associated with an ordinal response
coming from an underlying negative binomial distribution.

See Links for general information about VGAM link functions.

nbordlink 575

Value

See Yee (2018) for details.

Warning

Prediction may not work on vglm or vgam etc. objects if this link function is used.

Note

Numerical values of theta too close to 0 or 1 or out of range result in large positive or negative
values, or maybe 0 depending on the arguments. Although measures have been taken to handle
cases where theta is too close to 1 or 0, numerical instabilities may still arise.

In terms of the threshold approach with cumulative probabilities for an ordinal response this link
function corresponds to the negative binomial distribution (see negbinomial) that has been recorded
as an ordinal response using known cutpoints.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2020). Ordinal ordination with normalizing link functions for count data, (in prepara-
tion).

See Also

Links, negbinomial, pordlink, gordlink, nbord2link, cumulative, CommonVGAMffArguments.

Examples

Not run:
nbordlink("p", cutpoint = 2, k = 1, short = FALSE)
nbordlink("p", cutpoint = 2, k = 1, tag = TRUE)

p <- seq(0.02, 0.98, by = 0.01)
y <- nbordlink(p,cutpoint = 2, k = 1)
y. <- nbordlink(p,cutpoint = 2, k = 1, deriv = 1)
max(abs(nbordlink(y,cutpoint = 2, k = 1, inv = TRUE) - p)) # Should be 0

#\ dontrun{ par(mfrow = c(2, 1), las = 1)
#plot(p, y, type = "l", col = "blue", main = "nbordlink()")
#abline(h = 0, v = 0.5, col = "red", lty = "dashed")
#
#plot(p, y., type = "l", col = "blue",
main = "(Reciprocal of) first NBOLF derivative") }

Another example
nn <- 1000
x2 <- sort(runif(nn))
x3 <- runif(nn)

576 negbinomial

mymu <- exp(3 + 1 * x2 - 2 * x3)
k <- 4
y1 <- rnbinom(nn, mu = mymu, size = k)
cutpoints <- c(-Inf, 10, 20, Inf)
cuty <- Cut(y1, breaks = cutpoints)
#\ dontrun{ plot(x2, x3, col = cuty, pch = as.character(cuty)) }
table(cuty) / sum(table(cuty))
fit <- vglm(cuty ~ x2 + x3, trace = TRUE,

cumulative(reverse = TRUE, multiple.responses = TRUE,
parallel = TRUE,
link = nbordlink(cutpoint = cutpoints[2:3], k = k)))

head(depvar(fit))
head(fitted(fit))
head(predict(fit))
coef(fit)
coef(fit, matrix = TRUE)
constraints(fit)
fit@misc

End(Not run)

negbinomial Negative Binomial Distribution Family Function

Description

Maximum likelihood estimation of the two parameters of a negative binomial distribution.

Usage

negbinomial(zero = "size", parallel = FALSE, deviance.arg = FALSE,
type.fitted = c("mean", "quantiles"),
percentiles = c(25, 50, 75),
mds.min = 1e-3, nsimEIM = 500, cutoff.prob = 0.999,
eps.trig = 1e-7, max.support = 4000, max.chunk.MB = 30,
lmu = "loglink", lsize = "loglink",
imethod = 1, imu = NULL, iprobs.y = NULL,
gprobs.y = ppoints(6), isize = NULL,
gsize.mux = exp(c(-30, -20, -15, -10, -6:3)))

polya(zero = "size", type.fitted = c("mean", "prob"),
mds.min = 1e-3, nsimEIM = 500, cutoff.prob = 0.999,
eps.trig = 1e-7, max.support = 4000, max.chunk.MB = 30,
lprob = "logitlink", lsize = "loglink", imethod = 1, iprob = NULL,
iprobs.y = NULL, gprobs.y = ppoints(6), isize = NULL,
gsize.mux = exp(c(-30, -20, -15, -10, -6:3)), imunb = NULL)

polyaR(zero = "size", type.fitted = c("mean", "prob"),
mds.min = 1e-3, nsimEIM = 500, cutoff.prob = 0.999,
eps.trig = 1e-7, max.support = 4000, max.chunk.MB = 30,
lsize = "loglink", lprob = "logitlink", imethod = 1, iprob = NULL,

negbinomial 577

iprobs.y = NULL, gprobs.y = ppoints(6), isize = NULL,
gsize.mux = exp(c(-30, -20, -15, -10, -6:3)), imunb = NULL)

Arguments

zero Can be an integer-valued vector, and if so, then it is usually assigned −2 or 2.
Specifies which of the two linear/additive predictors are modelled as an intercept
only. By default, the k parameter (after lsize is applied) is modelled as a
single unknown number that is estimated. It can be modelled as a function
of the explanatory variables by setting zero = NULL; this has been called a NB-
H model by Hilbe (2011). A negative value means that the value is recycled,
so setting −2 means all k are intercept-only. See CommonVGAMffArguments for
more information.

lmu, lsize, lprob

Link functions applied to the µ, k and p parameters. See Links for more choices.
Note that the µ, k and p parameters are the mu, size and prob arguments of
rnbinom respectively. Common alternatives for lsize are negloglink and
reciprocallink, and logloglink (if k > 1).

imu, imunb, isize, iprob

Optional initial values for the mean and k and p. For k, if failure to con-
verge occurs then try different values (and/or use imethod). For a S-column
response, isize can be of length S. A value NULL means an initial value for
each response is computed internally using a gridsearch based on gsize.mux.
The last argument is ignored if used within cqo; see the iKvector argument of
qrrvglm.control instead. In the future isize and iprob might be depreciated.

nsimEIM This argument is used for computing the diagonal element of the expected infor-
mation matrix (EIM) corresponding to k based on the simulated Fisher scoring
(SFS) algorithm. See CommonVGAMffArguments for more information and the
notes below. SFS is one of two algorithms for computing the EIM elements (so
that both algorithms may be used on a given data set). SFS is faster than the
exact method when Qmax is large.

cutoff.prob Fed into the p argument of qnbinom in order to obtain an upper limit for the
approximate support of the distribution, called Qmax, say. Similarly, the value
1-p is fed into the p argument of qnbinom in order to obtain a lower limit for
the approximate support of the distribution, called Qmin, say. Hence the approx-
imate support is Qmin:Qmax. This argument should be a numeric and close to
1 but never exactly 1. Used to specify how many terms of the infinite series
for computing the second diagonal element of the EIM are actually used. The
closer this argument is to 1, the more accurate the standard errors of the regres-
sion coefficients will be. If this argument is too small, convergence will take
longer.

max.chunk.MB, max.support

max.support is used to describe the eligibility of individual observations to
have their EIM computed by the exact method. Here, we are concerned about
computing the EIM wrt k. The exact method algorithm operates separately on
each response variable, and it constructs a large matrix provided that the number
of columns is less than max.support. If so, then the computations are done in
chunks, so that no more than about max.chunk.MB megabytes of memory is used

578 negbinomial

at a time (actually, it is proportional to this amount). Regarding eligibility of this
algorithm, each observation must have the length of the vector, starting from the
1-cutoff.prob quantile and finishing up at the cutoff.prob quantile, less than
max.support (as its approximate support). If you have abundant memory then
you might try setting max.chunk.MB = Inf, but then the computations might
take a very long time. Setting max.chunk.MB = 0 or max.support = 0 will force
the EIM to be computed using the SFS algorithm only (this used to be the default
method for all the observations). When the fitted values of the model are large
and k is small, the computation of the EIM will be costly with respect to time and
memory if the exact method is used. Hence the argument max.support limits
the cost in terms of time. For intercept-only models max.support is multiplied
by a number (such as 10) because only one inner product needs be computed.
Note: max.support is an upper bound and limits the number of terms dictated
by the eps.trig argument.

mds.min Numeric. Minimum value of the NBD mean divided by size parameter. The
closer this ratio is to 0, the closer the distribution is to a Poisson. Iterations will
stop when an estimate of k is so large, relative to the mean, than it is below this
threshold (this is treated as a boundary of the parameter space).

eps.trig Numeric. A small positive value used in the computation of the EIMs. It fo-
cusses on the denominator of the terms of a series. Each term in the series
(that is used to approximate an infinite series) has a value greater than size
/ sqrt(eps.trig), thus very small terms are ignored. It’s a good idea to set
a smaller value that will result in more accuracy, but it will require a greater
computing time (when k is close to 0). And adjustment to max.support may
be needed. In particular, the quantity computed by special means is ψ′(k) −
E[ψ′(Y + k)], which is the difference between two trigamma. functions. It is
part of the calculation of the EIM with respect to the size parameter.

gsize.mux Similar to gsigma in CommonVGAMffArguments. However, this grid is multiplied
by the initial estimates of the NBD mean parameter. That is, it is on a relative
scale rather than on an absolute scale. If the counts are very large in value then
convergence fail might occur; if so, then try a smaller value such as gsize.mux
= exp(-40).

type.fitted, percentiles

See CommonVGAMffArguments for more information.

deviance.arg Logical. If TRUE, the deviance is computed after convergence. It only works
in the NB-2 model. It is also necessary to set criterion = "coefficients"
or half.step = FALSE since one cannot use that criterion properly for the min-
imization within the IRLS algorithm. It should be set TRUE when used with cqo
under the fast algorithm.

imethod An integer with value 1 or 2 etc. which specifies the initialization method for the
µ parameter. If failure to converge occurs try another value and/or else specify
a value for iprobs.y and/or else specify a value for isize.

parallel See CommonVGAMffArguments for more information. Setting parallel = TRUE
is useful in order to get something similar to quasipoisson or what is known
as NB-1. If parallel = TRUE then the parallelism constraint does not apply to
any intercept term. You should set zero = NULL too if parallel = TRUE to avoid
a conflict.

negbinomial 579

gprobs.y A vector representing a grid; passed into the probs argument of quantile when
imethod = 1 to obtain an initial value for the mean of each response. Is over-
written by any value of iprobs.y.

iprobs.y Passed into the probs argument of quantile when imethod = 1 to obtain an
initial value for the mean of each response. Overwrites any value of gprobs.y.
This argument might be deleted in the future.

Details

The negative binomial distribution (NBD) can be motivated in several ways, e.g., as a Poisson
distribution with a mean that is gamma distributed. There are several common parametrizations of
the NBD. The one used by negbinomial() uses the mean µ and an index parameter k, both which
are positive. Specifically, the density of a random variable Y is

f(y;µ, k) =

(
y + k − 1

y

) (
µ

µ+ k

)y (
k

k + µ

)k
where y = 0, 1, 2, . . ., and µ > 0 and k > 0. Note that the dispersion parameter is 1/k, so that
as k approaches infinity the NBD approaches a Poisson distribution. The response has variance
V ar(Y) = µ + µ2/k. When fitted, the fitted.values slot of the object contains the estimated
value of the µ parameter, i.e., of the mean E(Y). It is common for some to use α = 1/k as
the ancillary or heterogeneity parameter; so common alternatives for lsize are negloglink and
reciprocallink.

For polya the density is

f(y; p, k) =

(
y + k − 1

y

)
(1− p)y pk

where y = 0, 1, 2, . . ., and k > 0 and 0 < p < 1.

Family function polyaR() is the same as polya() except the order of the two parameters are
switched. The reason is that polyaR() tries to match with rnbinom closely in terms of the ar-
gument order, etc. Should the probability parameter be of primary interest, probably, users will
prefer using polya() rather than polyaR(). Possibly polyaR() will be decommissioned one day.

The NBD can be coerced into the classical GLM framework with one of the parameters being
of interest and the other treated as a nuisance/scale parameter (this is implemented in the MASS
library). The VGAM family function negbinomial() treats both parameters on the same footing,
and estimates them both by full maximum likelihood estimation.

The parameters µ and k are independent (diagonal EIM), and the confidence region for k is ex-
tremely skewed so that its standard error is often of no practical use. The parameter 1/k has been
used as a measure of aggregation. For the NB-C the EIM is not diagonal.

These VGAM family functions handle multiple responses, so that a response matrix can be inputted.
The number of columns is the number of species, say, and setting zero = -2 means that all species
have a k equalling a (different) intercept only.

Conlisk, et al. (2007) show that fitting the NBD to presence-absence data will result in identifiability
problems. However, the model is identifiable if the response values include 0, 1 and 2.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

580 negbinomial

Warning

Poisson regression corresponds to k equalling infinity. If the data is Poisson or close to Poisson,
numerical problems may occur. Some corrective measures are taken, e.g., k is effectively capped
(relative to the mean) during estimation to some large value and a warning is issued. And setting
stepsize = 0.5 for half stepping is probably a good idea too when the data is extreme.

The NBD is a strictly unimodal distribution. Any data set that does not exhibit a mode (somewhere
in the middle) makes the estimation problem difficult. Set trace = TRUE to monitor convergence.

These functions are fragile; the maximum likelihood estimate of the index parameter is fraught (see
Lawless, 1987). Other alternatives to negbinomial are to fit a NB-1 or RR-NB (aka NB-P) model;
see Yee (2014). Also available are the NB-C, NB-H and NB-G. Assigning values to the isize
argument may lead to a local solution, and smaller values are preferred over large values when
using this argument.

If one wants to force SFS to be used on all observations, then set max.support = 0 or max.chunk.MB
= 0. If one wants to force the exact method to be used for all observations, then set max.support =
Inf. If the computer has much memory, then trying max.chunk.MB = Inf and max.support = Inf
may provide a small speed increase. If SFS is used at all, then the working weights (@weights) slot
of the fitted object will be a matrix; otherwise that slot will be a 0 x 0 matrix.

An alternative to the NBD is the generalized Poisson distribution, genpoisson1, genpoisson2 and
genpoisson0, since that also handles overdispersion wrt Poisson. It has one advantage in that its
EIM can be computed straightforwardly.

Yet to do: write a family function which uses the methods of moments estimator for k.

Note

These 3 functions implement 2 common parameterizations of the negative binomial (NB). Some
people called the NB with integer k the Pascal distribution, whereas if k is real then this is the Polya
distribution. I don’t. The one matching the details of rnbinom in terms of p and k is polya().

For polya() the code may fail when p is close to 0 or 1. It is not yet compatible with cqo or cao.

Suppose the response is called ymat. For negbinomial() the diagonal element of the expected in-
formation matrix (EIM) for parameter k involves an infinite series; consequently SFS (see nsimEIM)
is used as the backup algorithm only. SFS should be better if max(ymat) is large, e.g., max(ymat) >
1000, or if there are any outliers in ymat. The default algorithm involves a finite series approxima-
tion to the support 0:Inf; the arguments max.memory, min.size and cutoff.prob are pertinent.

Regardless of the algorithm used, convergence problems may occur, especially when the response
has large outliers or is large in magnitude. If convergence failure occurs, try using arguments
(in recommended decreasing order) max.support, nsimEIM, cutoff.prob, iprobs.y, imethod,
isize, zero, max.chunk.MB.

The function negbinomial can be used by the fast algorithm in cqo, however, setting eq.tolerances
= TRUE and I.tolerances = FALSE is recommended.

In the first example below (Bliss and Fisher, 1953), from each of 6 McIntosh apple trees in an
orchard that had been sprayed, 25 leaves were randomly selected. On each of the leaves, the number
of adult female European red mites were counted.

There are two special uses of negbinomial for handling count data. Firstly, when used by rrvglm
this results in a continuum of models in between and inclusive of quasi-Poisson and negative bi-
nomial regression. This is known as a reduced-rank negative binomial model (RR-NB). It fits a

negbinomial 581

negative binomial log-linear regression with variance function V ar(Y) = µ+ δ1µ
δ2 where δ1 and

δ2 are parameters to be estimated by MLE. Confidence intervals are available for δ2, therefore it
can be decided upon whether the data are quasi-Poisson or negative binomial, if any.

Secondly, the use of negbinomial with parallel = TRUE inside vglm can result in a model similar
to quasipoisson. This is named the NB-1 model. The dispersion parameter is estimated by MLE
whereas glm uses the method of moments. In particular, it fits a negative binomial log-linear re-
gression with variance function V ar(Y) = φ0µ where φ0 is a parameter to be estimated by MLE.
Confidence intervals are available for φ0.

Author(s)

Thomas W. Yee, and with a lot of help by Victor Miranda to get it going with nbcanlink (NB-C).

References

Lawless, J. F. (1987). Negative binomial and mixed Poisson regression. The Canadian Journal of
Statistics 15, 209–225.

Hilbe, J. M. (2011). Negative Binomial Regression, 2nd Edition. Cambridge: Cambridge University
Press.

Bliss, C. and Fisher, R. A. (1953). Fitting the negative binomial distribution to biological data.
Biometrics 9, 174–200.

Conlisk, E. and Conlisk, J. and Harte, J. (2007). The impossibility of estimating a negative binomial
clustering parameter from presence-absence data: A comment on He and Gaston. The American
Naturalist 170, 651–654.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

Yee, T. W. (2020). The VGAM package for negative binomial regression. Australian and New
Zealand Journal of Statistics, 62, 116–131.

See Also

quasipoisson, gaitdnbinomial, poissonff, zinegbinomial, negbinomial.size (e.g., NB-G),
nbcanlink (NB-C), posnegbinomial, genpoisson1, genpoisson2, genpoisson0, inv.binomial,
NegBinomial, nbordlink, rrvglm, cao, cqo, CommonVGAMffArguments, simulate.vlm, ppoints,

Examples

Example 1: apple tree data (Bliss and Fisher, 1953)
appletree <- data.frame(y = 0:7, w = c(70, 38, 17, 10, 9, 3, 2, 1))
fit <- vglm(y ~ 1, negbinomial(deviance = TRUE), data = appletree,

weights = w, crit = "coef") # Obtain the deviance
fit <- vglm(y ~ 1, negbinomial(deviance = TRUE), data = appletree,

weights = w, half.step = FALSE) # Alternative method
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit) # For intercept-only models
deviance(fit) # NB2 only; needs 'crit="coef"' & 'deviance=T' above

582 negbinomial.size

Example 2: simulated data with multiple responses
Not run:
ndata <- data.frame(x2 = runif(nn <- 200))
ndata <- transform(ndata, y1 = rnbinom(nn, exp(1), mu = exp(3+x2)),

y2 = rnbinom(nn, exp(0), mu = exp(2-x2)))
fit1 <- vglm(cbind(y1, y2) ~ x2, negbinomial, ndata, trace = TRUE)
coef(fit1, matrix = TRUE)

End(Not run)

Example 3: large counts implies SFS is used
Not run:
ndata <- transform(ndata, y3 = rnbinom(nn, exp(1), mu = exp(10+x2)))
with(ndata, range(y3)) # Large counts
fit2 <- vglm(y3 ~ x2, negbinomial, data = ndata, trace = TRUE)
coef(fit2, matrix = TRUE)
head(weights(fit2, type = "working")) # Non-empty; SFS was used

End(Not run)

Example 4: a NB-1 to estimate a NB with Var(Y)=phi0*mu
nn <- 200 # Number of observations
phi0 <- 10 # Specify this; should be greater than unity
delta0 <- 1 / (phi0 - 1)
mydata <- data.frame(x2 = runif(nn), x3 = runif(nn))
mydata <- transform(mydata, mu = exp(2 + 3 * x2 + 0 * x3))
mydata <- transform(mydata, y3 = rnbinom(nn, delta0 * mu, mu = mu))
Not run:
plot(y3 ~ x2, data = mydata, pch = "+", col = "blue",

main = paste("Var(Y) = ", phi0, " * mu", sep = ""), las = 1)
End(Not run)
nb1 <- vglm(y3 ~ x2 + x3, negbinomial(parallel = TRUE, zero = NULL),

data = mydata, trace = TRUE)
Extracting out some quantities:
cnb1 <- coef(nb1, matrix = TRUE)
mydiff <- (cnb1["(Intercept)", "loglink(size)"] -

cnb1["(Intercept)", "loglink(mu)"])
delta0.hat <- exp(mydiff)
(phi.hat <- 1 + 1 / delta0.hat) # MLE of phi
summary(nb1)
Obtain a 95 percent confidence interval for phi0:
myvec <- rbind(-1, 1, 0, 0)
(se.mydiff <- sqrt(t(myvec) %*% vcov(nb1) %*% myvec))
ci.mydiff <- mydiff + c(-1.96, 1.96) * c(se.mydiff)
ci.delta0 <- ci.exp.mydiff <- exp(ci.mydiff)
(ci.phi0 <- 1 + 1 / rev(ci.delta0)) # The 95% confint for phi0
Confint.nb1(nb1) # Quick way to get it
cf. moment estimator:
summary(glm(y3 ~ x2 + x3, quasipoisson, mydata))$disper

negbinomial.size Negative Binomial Distribution Family Function With Known Size

negbinomial.size 583

Description

Maximum likelihood estimation of the mean parameter of a negative binomial distribution with
known size parameter.

Usage

negbinomial.size(size = Inf, lmu = "loglink", imu = NULL,
iprobs.y = 0.35, imethod = 1,
ishrinkage = 0.95, zero = NULL)

Arguments

size Numeric, positive. Same as argument size of rnbinom. If the response is a
matrix then this is recycled to a matrix of the same dimension, by row (matrix
with byrow = TRUE).

lmu, imu Same as negbinomial.
iprobs.y, imethod

Same as negbinomial.
zero, ishrinkage

Same as negbinomial.

Details

This VGAM family function estimates only the mean parameter of the negative binomial distribu-
tion. See negbinomial for general information. Setting size = 1 gives what might be called the
NB-G (geometric model; see Hilbe (2011)). The default, size = Inf, corresponds to the Poisson
distribution.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

If lmu = "nbcanlink" in negbinomial.size() then the size argument here should be assigned
and these values are recycled.

Author(s)

Thomas W. Yee

References

Hilbe, J. M. (2011). Negative Binomial Regression, 2nd Edition. Cambridge: Cambridge University
Press.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

584 normal.vcm

See Also

negbinomial, nbcanlink (NB-C model), poissonff, rnbinom, simulate.vlm.

Examples

Simulated data with various multiple responses
size1 <- exp(1); size2 <- exp(2); size3 <- exp(0); size4 <- Inf
ndata <- data.frame(x2 = runif(nn <- 1000))
ndata <- transform(ndata, eta1 = -1 - 2 * x2, # eta1 must be negative

size1 = size1)
ndata <- transform(ndata,

mu1 = nbcanlink(eta1, size = size1, inv = TRUE))
ndata <- transform(ndata,

y1 = rnbinom(nn, mu = mu1, size = size1), # NB-C
y2 = rnbinom(nn, mu = exp(2 - x2), size = size2),
y3 = rnbinom(nn, mu = exp(3 + x2), size = size3), # NB-G
y4 = rpois(nn, lambda = exp(1 + x2)))

Also known as NB-C with size known (Hilbe, 2011)
fit1 <- vglm(y1 ~ x2, negbinomial.size(size = size1, lmu = "nbcanlink"),

data = ndata, trace = TRUE)
coef(fit1, matrix = TRUE)
head(fit1@misc$size) # size saved here

fit2 <- vglm(cbind(y2, y3, y4) ~ x2, data = ndata, trace = TRUE,
negbinomial.size(size = c(size2, size3, size4)))

coef(fit2, matrix = TRUE)
head(fit2@misc$size) # size saved here

normal.vcm Univariate Normal Distribution as a Varying-Coefficient Model

Description

Maximum likelihood estimation of all the coefficients of a LM where each of the usual regression
coefficients is modelled with other explanatory variables via parameter link functions. Thus this is
a basic varying-coefficient model.

Usage

normal.vcm(link.list = list("(Default)" = "identitylink"),
earg.list = list("(Default)" = list()),
lsd = "loglink", lvar = "loglink",
esd = list(), evar = list(),
var.arg = FALSE, imethod = 1,
icoefficients = NULL, isd = NULL, zero = "sd",
sd.inflation.factor = 2.5)

normal.vcm 585

Arguments

link.list, earg.list

Link functions and extra arguments applied to the coefficients of the LM, ex-
cluding the standard deviation/variance. See CommonVGAMffArguments for more
information. The default is for an identity link to be applied to each of the re-
gression coefficients.

lsd, esd, lvar, evar

Link function and extra argument applied to the standard deviation/variance.
See CommonVGAMffArguments for more information. Same as uninormal.

icoefficients Optional initial values for the coefficients. Recycled to length M − 1 (does not
include the standard deviation/variance). Try using this argument if there is a
link function that is not programmed explicitly to handle range restrictions in
the initialize slot.

var.arg, imethod, isd

Same as, or similar to, uninormal.
zero See CommonVGAMffArguments for more information. The default applies to the

last one, viz. the standard deviation/variance parameter.
sd.inflation.factor

Numeric, should be greater than 1. The initial value of the standard deviation is
multiplied by this, unless isd is inputted. Experience has shown that it is safer
to start off with a larger value rather than a smaller one.

Details

This function allows all the usual LM regression coefficients to be modelled as functions of other
explanatory variables via parameter link functions. For example, we may want some of them to be
positive. Or we may want a subset of them to be positive and add to unity. So a class of such models
have been named varying-coefficient models (VCMs).

The usual linear model is specified through argument form2. As with all other VGAM family
functions, the linear/additive predictors are specified through argument formula.

The multilogitlink link allows a subset of the coefficients to be positive and add to unity. Either
none or more than one call to multilogitlink is allowed. The last variable will be used as the
baseline/reference group, and therefore excluded from the estimation.

By default, the log of the standard deviation is the last linear/additive predictor. It is recommended
that this parameter be estimated as intercept-only, for numerical stability.

Technically, the Fisher information matrix is of unit-rank for all but the last parameter (the standard
deviation/variance). Hence an approximation is used that pools over all the observations.

This VGAM family function cannot handle multiple responses. Also, this function will probably
not have the full capabilities of the class of varying-coefficient models as described by Hastie and
Tibshirani (1993). However, it should be able to manage some simple models, especially involving
the following links: identitylink, loglink, logofflink, logloglink, logitlink, probitlink,
cauchitlink. clogloglink, rhobitlink, fisherzlink.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

586 normal.vcm

Warning

This VGAM family function is fragile. One should monitor convergence, and possibly enter initial
values especially when there are non-identity-link functions. If the initial value of the standard
deviation/variance is too small then numerical problems may occur. One trick is to fit an intercept-
only only model and feed its predict() output into argument etastart of a more complicated
model. The use of the zero argument is recommended in order to keep models as simple as possible.

Note

The standard deviation/variance parameter is best modelled as intercept-only.

Yet to do: allow an argument such as parallel that enables many of the coefficients to be equal.
Fix a bug: Coef() does not work for intercept-only models.

Author(s)

T. W. Yee

References

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. J. Roy. Statist. Soc. Ser. B, 55,
757–796.

See Also

uninormal, lm.

Examples

ndata <- data.frame(x2 = runif(nn <- 2000))
Note that coeff1 + coeff2 + coeff5 == 1. So try "multilogitlink".
myoffset <- 10
ndata <- transform(ndata,

coeff1 = 0.25, # "multilogitlink"
coeff2 = 0.25, # "multilogitlink"
coeff3 = exp(-0.5), # "loglink"

"logofflink" link:
coeff4 = logofflink(+0.5, offset = myoffset, inverse = TRUE),
coeff5 = 0.50, # "multilogitlink"
coeff6 = 1.00, # "identitylink"
v2 = runif(nn),
v3 = runif(nn),
v4 = runif(nn),
v5 = rnorm(nn),
v6 = rnorm(nn))

ndata <- transform(ndata,
Coeff1 = 0.25 - 0 * x2,
Coeff2 = 0.25 - 0 * x2,
Coeff3 = logitlink(-0.5 - 1 * x2, inverse = TRUE),
Coeff4 = logloglink(0.5 - 1 * x2, inverse = TRUE),
Coeff5 = 0.50 - 0 * x2,
Coeff6 = 1.00 + 1 * x2)

normal.vcm 587

ndata <- transform(ndata,
y1 = coeff1 * 1 +

coeff2 * v2 +
coeff3 * v3 +
coeff4 * v4 +
coeff5 * v5 +
coeff6 * v6 + rnorm(nn, sd = exp(0)),

y2 = Coeff1 * 1 +
Coeff2 * v2 +
Coeff3 * v3 +
Coeff4 * v4 +
Coeff5 * v5 +
Coeff6 * v6 + rnorm(nn, sd = exp(0)))

An intercept-only model
fit1 <- vglm(y1 ~ 1,

form2 = ~ 1 + v2 + v3 + v4 + v5 + v6,
normal.vcm(link.list = list("(Intercept)" = "multilogitlink",

"v2" = "multilogitlink",
"v3" = "loglink",
"v4" = "logofflink",
"(Default)" = "identitylink",
"v5" = "multilogitlink"),

earg.list = list("(Intercept)" = list(),
"v2" = list(),
"v4" = list(offset = myoffset),
"v3" = list(),
"(Default)" = list(),
"v5" = list()),

zero = c(1:2, 6)),
data = ndata, trace = TRUE)

coef(fit1, matrix = TRUE)
summary(fit1)
This works only for intercept-only models:
multilogitlink(rbind(coef(fit1, matrix = TRUE)[1, c(1, 2)]), inverse = TRUE)

A model with covariate x2 for the regression coefficients
fit2 <- vglm(y2 ~ 1 + x2,

form2 = ~ 1 + v2 + v3 + v4 + v5 + v6,
normal.vcm(link.list = list("(Intercept)" = "multilogitlink",

"v2" = "multilogitlink",
"v3" = "logitlink",
"v4" = "logloglink",
"(Default)" = "identitylink",
"v5" = "multilogitlink"),

earg.list = list("(Intercept)" = list(),
"v2" = list(),
"v3" = list(),
"v4" = list(),
"(Default)" = list(),
"v5" = list()),

zero = c(1:2, 6)),
data = ndata, trace = TRUE)

588 nparam.vlm

coef(fit2, matrix = TRUE)
summary(fit2)

nparam.vlm Number of Parameters

Description

Returns the number of parameters in a fitted model object.

Usage

nparam(object, ...)
nparam.vlm(object, dpar = TRUE, ...)

nparam.vgam(object, dpar = TRUE, linear.only = FALSE, ...)
nparam.rrvglm(object, dpar = TRUE, ...)

nparam.qrrvglm(object, dpar = TRUE, ...)
nparam.rrvgam(object, dpar = TRUE, ...)

Arguments

object Some VGAM object, for example, having class vglmff-class.

... Other possible arguments fed into the function.

dpar Logical, include any (estimated) dispersion parameters as a parameter?

linear.only Logical, include only the number of linear (parametric) parameters?

Details

The code was copied from the AIC() methods functions.

Value

Returns a numeric value with the corresponding number of parameters. For vgam objects, this may
be real rather than integer, because the nonlinear degrees of freedom is real-valued.

Warning

This code has not been double-checked.

Author(s)

T. W. Yee.

See Also

VGLMs are described in vglm-class; VGAMs are described in vgam-class; RR-VGLMs are
described in rrvglm-class; AICvlm.

olympics 589

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo))
coef(fit1)
coef(fit1, matrix = TRUE)
nparam(fit1)
(fit2 <- vglm(hits ~ 1, poissonff, weights = ofreq, data = V1))
coef(fit2)
coef(fit2, matrix = TRUE)
nparam(fit2)
nparam(fit2, dpar = FALSE)

olympics 2008 and 2012 Summer Olympic Final Medal Count Data

Description

Final medal count, by country, for the Summer 2008 and 2012 Olympic Games.

Usage

data(olym08)
data(olym12)

Format

A data frame with 87 or 85 observations on the following 6 variables.

rank a numeric vector, overall ranking of the countries.

country a factor.

gold a numeric vector, number of gold medals.

silver a numeric vector, number of silver medals.

bronze a numeric vector, number of bronze medals.

totalmedal a numeric vector, total number of medals.

Details

The events were held during (i) August 8–24, 2008, in Beijing; and (ii) 27 July–12 August, 2012,
in London.

References

The official English website was/is http://en.beijing2008.cn and http://www.london2012.com.
Help from Viet Hoang Quoc is gratefully acknowledged.

See Also

grc.

590 Opt

Examples

summary(olym08)
summary(olym12)
maybe str(olym08) ; plot(olym08) ...
Not run: par(mfrow = c(1, 2))
myylim <- c(0, 55)
with(head(olym08, n = 8),
barplot(rbind(gold, silver, bronze),

col = c("gold", "grey", "brown"), # No "silver" or "bronze"!
"gold", "grey71", "chocolate4",

names.arg = country, cex.names = 0.5, ylim = myylim,
beside = TRUE, main = "2008 Summer Olympic Final Medal Count",
ylab = "Medal count", las = 1,
sub = "Top 8 countries; 'gold'=gold, 'grey'=silver, 'brown'=bronze"))

with(head(olym12, n = 8),
barplot(rbind(gold, silver, bronze),

col = c("gold", "grey", "brown"), # No "silver" or "bronze"!
names.arg = country, cex.names = 0.5, ylim = myylim,
beside = TRUE, main = "2012 Summer Olympic Final Medal Count",
ylab = "Medal count", las = 1,
sub = "Top 8 countries; 'gold'=gold, 'grey'=silver, 'brown'=bronze"))

End(Not run)

Opt Optimums

Description

Generic function for the optimums (or optima) of a model.

Usage

Opt(object, ...)

Arguments

object An object for which the computation or extraction of an optimum (or optimums)
is meaningful.

... Other arguments fed into the specific methods function of the model. Sometimes
they are fed into the methods function for Coef.

Details

Different models can define an optimum in different ways. Many models have no such notion or
definition.

Optimums occur in quadratic and additive ordination, e.g., CQO or CAO. For these models the
optimum is the value of the latent variable where the maximum occurs, i.e., where the fitted value
achieves its highest value. For quadratic ordination models there is a formula for the optimum but

Opt 591

for additive ordination models the optimum must be searched for numerically. If it occurs on the
boundary, then the optimum is undefined. At an optimum, the fitted value of the response is called
the maximum.

Value

The value returned depends specifically on the methods function invoked.

Note

In ordination, the optimum of a species is sometimes called the species score.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

Opt.qrrvglm, Max, Tol.

Examples

set.seed(111) # This leads to the global solution
hspider[,1:6] <- scale(hspider[,1:6]) # Standardized environmental vars
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider, Crow1positive = FALSE)

Opt(p1)

Not run:
clr <- (1:(ncol(depvar(p1))+1))[-7] # Omits yellow
persp(p1, col = clr, las = 1, main = "Vertical lines at the optimums")
abline(v = Opt(p1), lty = 2, col = clr)

End(Not run)

592 ordpoisson

ordpoisson Ordinal Poisson Family Function

Description

Fits a Poisson regression where the response is ordinal (the Poisson counts are grouped between
known cutpoints).

Usage

ordpoisson(cutpoints, countdata = FALSE, NOS = NULL,
Levels = NULL, init.mu = NULL, parallel = FALSE,
zero = NULL, link = "loglink")

Arguments

cutpoints Numeric. The cutpoints, Kl. These must be non-negative integers. Inf values
may be included. See below for further details.

countdata Logical. Is the response (LHS of formula) in count-data format? If not then the
response is a matrix or vector with values 1, 2, . . . , L, say, where L is the number
of levels. Such input can be generated with cut with argument labels = FALSE.
If countdata = TRUE then the response is expected to be in the same format
as depvar(fit) where fit is a fitted model with ordpoisson as the VGAM
family function. That is, the response is matrix of counts with L columns (if NOS
= 1).

NOS Integer. The number of species, or more generally, the number of response
random variates. This argument must be specified when countdata = TRUE.
Usually NOS = 1.

Levels Integer vector, recycled to length NOS if necessary. The number of levels for
each response random variate. This argument should agree with cutpoints.
This argument must be specified when countdata = TRUE.

init.mu Numeric. Initial values for the means of the Poisson regressions. Recycled to
length NOS if necessary. Use this argument if the default initial values fail (the
default is to compute an initial value internally).

parallel, zero, link

See poissonff.

Details

This VGAM family function uses maximum likelihood estimation (Fisher scoring) to fit a Poisson
regression to each column of a matrix response. The data, however, is ordinal, and is obtained from
known integer cutpoints. Here, l = 1, . . . , L where L (L ≥ 2) is the number of levels. In more
detail, let Y ∗ = l if Kl−1 < Y ≤ Kl where the Kl are the cutpoints. We have K0 = −∞ and
KL = ∞. The response for this family function corresponds to Y ∗ but we are really interested in
the Poisson regression of Y .

ordpoisson 593

If NOS=1 then the argument cutpoints is a vector (K1,K2, . . . ,KL) where the last value (Inf)
is optional. If NOS>1 then the vector should have NOS-1 Inf values separating the cutpoints. For
example, if there are NOS=3 responses, then something like ordpoisson(cut = c(0, 5, 10, Inf,
20, 30, Inf, 0, 10, 40, Inf)) is valid.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

The input requires care as little to no checking is done. If fit is the fitted object, have a look at
fit@extra and depvar(fit) to check.

Note

Sometimes there are no observations between two cutpoints. If so, the arguments Levels and NOS
need to be specified too. See below for an example.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2020). Ordinal ordination with normalizing link functions for count data, (in prepara-
tion).

See Also

poissonff, polf, ordered.

Examples

set.seed(123) # Example 1
x2 <- runif(n <- 1000); x3 <- runif(n)
mymu <- exp(3 - 1 * x2 + 2 * x3)
y1 <- rpois(n, lambda = mymu)
cutpts <- c(-Inf, 20, 30, Inf)
fcutpts <- cutpts[is.finite(cutpts)] # finite cutpoints
ystar <- cut(y1, breaks = cutpts, labels = FALSE)
Not run:
plot(x2, x3, col = ystar, pch = as.character(ystar))

End(Not run)
table(ystar) / sum(table(ystar))
fit <- vglm(ystar ~ x2 + x3, fam = ordpoisson(cutpoi = fcutpts))
head(depvar(fit)) # This can be input if countdata = TRUE
head(fitted(fit))
head(predict(fit))

594 ordsup

coef(fit, matrix = TRUE)
fit@extra

Example 2: multivariate and there are no obsns between some cutpoints
cutpts2 <- c(-Inf, 0, 9, 10, 20, 70, 200, 201, Inf)
fcutpts2 <- cutpts2[is.finite(cutpts2)] # finite cutpoints
y2 <- rpois(n, lambda = mymu) # Same model as y1
ystar2 <- cut(y2, breaks = cutpts2, labels = FALSE)
table(ystar2) / sum(table(ystar2))
fit <- vglm(cbind(ystar,ystar2) ~ x2 + x3, fam =

ordpoisson(cutpoi = c(fcutpts,Inf,fcutpts2,Inf),
Levels = c(length(fcutpts)+1,length(fcutpts2)+1),
parallel = TRUE), trace = TRUE)

coef(fit, matrix = TRUE)
fit@extra
constraints(fit)
summary(depvar(fit)) # Some columns have all zeros

ordsup Ordinal Superiority Measures

Description

Ordinal superiority measures for the linear model and cumulative link models: the probability that
an observation from one distribution falls above an independent observation from the other distri-
bution, adjusted for explanatory variables in a model.

Usage

ordsup(object, ...)
ordsup.vglm(object, all.vars = FALSE, confint = FALSE, ...)

Arguments

object A vglm fit. Currently it must be one of: cumulative, uninormal. The links for
cumulative must be logitlink or probitlink, and parallel = TRUE is also
needed. For uninormal the mean must use identitylink and model the sd as
intercept-only.

all.vars Logical. The default is to use explanatory variables which are binary, but all
variables are used (except the intercept) if set to TRUE.

confint Logical. If TRUE then confintvglm is called to return confidence intervals for
γ and ∆. By default, Wald intervals are produced, but they can be replaced by
profile intervals by setting method = "profile".

... Parameters that can be fed into confintvglm, e.g., level = 0.95 and method =
c("wald", "profile").

ordsup 595

Details

Details are given in Agresti and Kateri (2017) and this help file draws directly from this. This func-
tion returns two quantities for comparing two groups on an ordinal categorical response variable,
while adjusting for other explanatory variables. They are called “ordinal superiority” measures,
and the two groups can be compared without supplementary explanatory variables. Let Y1 and Y2
be independent random variables from groups A and B, say, for a quantitative ordinal categorical
scale. Then ∆ = P (Y1 > Y2) − P (Y2 > Y1) summarizes their relative size. A second quantity is
γ = P (Y1 > Y2)− 0.5× P (Y2 = Y1). Then ∆ = 2× γ − 1. whereas γ = (∆ + 1)/2. The range
of γ is [0, 1], while the range of ∆ is [−1, 1]. The examples below are based on that paper. This
function is currently implemented for a very limited number of specific models.

Value

By default, a list with components gamma and Delta, where each is a vector with elements corre-
sponding to binary explanatory variables (i.e., 0 or 1), and if no explanatory variables are binary
then a NULL is returned. If confint = TRUE then the list contains 4 more components: lower.gamma,
upper.gamma, Lower.Delta, Upper.Delta.

Author(s)

Thomas W. Yee

References

Agresti, A. and Kateri, M. (2017). Ordinal probability effect measures for group comparisons in
multinomial cumulative link models. Biometrics, 73, 214–219.

See Also

cumulative, propodds, uninormal.

Examples

Not run:
Mental <- read.table("http://www.stat.ufl.edu/~aa/glm/data/Mental.dat",

header = TRUE) # Make take a while to load in
Mental$impair <- ordered(Mental$impair)
pfit3 <- vglm(impair ~ ses + life, data = Mental,

cumulative(link = "probitlink", reverse = FALSE, parallel = TRUE))
coef(pfit3, matrix = TRUE)
ordsup(pfit3) # The 'ses' variable is binary

Fit a crude LM
fit7 <- vglm(as.numeric(impair) ~ ses + life, uninormal, data = Mental)
coef(fit7, matrix = TRUE) # 'sd' is estimated by MLE
ordsup(fit7)
ordsup(fit7, all.vars = TRUE) # Some output may not be meaningful
ordsup(fit7, confint = TRUE, method = "profile")

End(Not run)

596 Paralogistic

oxtemp Oxford Temperature Data

Description

Annual maximum temperatures collected at Oxford, UK.

Usage

data(oxtemp)

Format

A data frame with 80 observations on the following 2 variables.

maxtemp Annual maximum temperatures (in degrees Fahrenheit).

year The values 1901 to 1980.

Details

The data were collected from 1901 to 1980.

Source

Unknown.

Examples

Not run: fit <- vglm(maxtemp ~ 1, gevff, data = oxtemp, trace = TRUE)

Paralogistic The Paralogistic Distribution

Description

Density, distribution function, quantile function and random generation for the paralogistic distri-
bution with shape parameter a and scale parameter scale.

Usage

dparalogistic(x, scale = 1, shape1.a, log = FALSE)
pparalogistic(q, scale = 1, shape1.a, lower.tail = TRUE, log.p = FALSE)
qparalogistic(p, scale = 1, shape1.a, lower.tail = TRUE, log.p = FALSE)
rparalogistic(n, scale = 1, shape1.a)

Paralogistic 597

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

shape1.a shape parameter.

scale scale parameter.

log Logical. If log=TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See paralogistic, which is the VGAM family function for estimating the parameters by maxi-
mum likelihood estimation.

Value

dparalogistic gives the density, pparalogistic gives the distribution function, qparalogistic
gives the quantile function, and rparalogistic generates random deviates.

Note

The paralogistic distribution is a special case of the 4-parameter generalized beta II distribution.

Author(s)

T. W. Yee and Kai Huang

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

paralogistic, genbetaII.

Examples

pdata <- data.frame(y = rparalogistic(n = 3000, scale = exp(1), exp(2)))
fit <- vglm(y ~ 1, paralogistic(lss = FALSE, ishape1.a = 4.1),

data = pdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)

598 paralogistic

paralogistic Paralogistic Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter paralogistic distribution.

Usage

paralogistic(lscale = "loglink", lshape1.a = "loglink", iscale = NULL,
ishape1.a = NULL, imethod = 1, lss = TRUE, gscale = exp(-5:5),
gshape1.a = seq(0.75, 4, by = 0.25), probs.y = c(0.25, 0.5, 0.75),
zero = "shape")

Arguments

lss See CommonVGAMffArguments for important information.
lshape1.a, lscale

Parameter link functions applied to the (positive) parameters a and scale. See
Links for more choices.

iscale, ishape1.a, imethod, zero

See CommonVGAMffArguments for information. For imethod = 2 a good initial
value for ishape1.a is needed to obtain good estimates for the other parameter.

gscale, gshape1.a

See CommonVGAMffArguments for information.

probs.y See CommonVGAMffArguments for information.

Details

The 2-parameter paralogistic distribution is the 4-parameter generalized beta II distribution with
shape parameter p = 1 and a = q. It is the 3-parameter Singh-Maddala distribution with a = q.
More details can be found in Kleiber and Kotz (2003).

The 2-parameter paralogistic has density

f(y) = a2ya−1/[ba{1 + (y/b)a}1+a]

for a > 0, b > 0, y ≥ 0. Here, b is the scale parameter scale, and a is the shape parameter. The
mean is

E(Y) = bΓ(1 + 1/a) Γ(a− 1/a)/Γ(a)

provided a > 1; these are returned as the fitted values. This family function handles multiple
responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Pareto 599

Note

See the notes in genbetaII.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Paralogistic, sinmad, genbetaII, betaII, dagum, fisk, inv.lomax, lomax, inv.paralogistic.

Examples

pdata <- data.frame(y = rparalogistic(n = 3000, exp(1), scale = exp(1)))
fit <- vglm(y ~ 1, paralogistic(lss = FALSE), data = pdata, trace = TRUE)
fit <- vglm(y ~ 1, paralogistic(ishape1.a = 2.3, iscale = 5),

data = pdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

Pareto The Pareto Distribution

Description

Density, distribution function, quantile function and random generation for the Pareto(I) distribution
with parameters scale and shape.

Usage

dpareto(x, scale = 1, shape, log = FALSE)
ppareto(q, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
qpareto(p, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
rpareto(n, scale = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

scale, shape the α and k parameters.

600 Pareto

log Logical. If log = TRUE then the logarithm of the density is returned.

lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See paretoff, the VGAM family function for estimating the parameter k by maximum likelihood
estimation, for the formula of the probability density function and the range restrictions imposed on
the parameters.

Value

dpareto gives the density, ppareto gives the distribution function, qpareto gives the quantile
function, and rpareto generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

paretoff, ParetoIV.

Examples

alpha <- 3; k <- exp(1); x <- seq(2.8, 8, len = 300)
Not run:
plot(x, dpareto(x, scale = alpha, shape = k), type = "l",

main = "Pareto density split into 10 equal areas")
abline(h = 0, col = "blue", lty = 2)
qvec <- qpareto(seq(0.1, 0.9, by = 0.1), scale = alpha, shape = k)
lines(qvec, dpareto(qvec, scale = alpha, shape = k),

col = "purple", lty = 3, type = "h")

End(Not run)
pvec <- seq(0.1, 0.9, by = 0.1)
qvec <- qpareto(pvec, scale = alpha, shape = k)
ppareto(qvec, scale = alpha, shape = k)
qpareto(ppareto(qvec, scale = alpha, shape = k),

scale = alpha, shape = k) - qvec # Should be 0

paretoff 601

paretoff Pareto and Truncated Pareto Distribution Family Functions

Description

Estimates one of the parameters of the Pareto(I) distribution by maximum likelihood estimation.
Also includes the upper truncated Pareto(I) distribution.

Usage

paretoff(scale = NULL, lshape = "loglink")
truncpareto(lower, upper, lshape = "loglink", ishape = NULL, imethod = 1)

Arguments

lshape Parameter link function applied to the parameter k. See Links for more choices.
A log link is the default because k is positive.

scale Numeric. The parameter α below. If the user inputs a number then it is assumed
known with this value. The default means it is estimated by maximum likelihood
estimation, which means min(y) is used, where y is the response vector.

lower, upper Numeric. Lower and upper limits for the truncated Pareto distribution. Each
must be positive and of length 1. They are called α and U below.

ishape Numeric. Optional initial value for the shape parameter. A NULL means a value
is obtained internally. If failure to converge occurs try specifying a value, e.g., 1
or 2.

imethod See CommonVGAMffArguments for information. If failure to converge occurs
then try specifying a value for ishape.

Details

A random variable Y has a Pareto distribution if

P [Y > y] = C/yk

for some positive k and C. This model is important in many applications due to the power law
probability tail, especially for large values of y.

The Pareto distribution, which is used a lot in economics, has a probability density function that can
be written

f(y;α, k) = kαk/yk+1

for 0 < α < y and 0 < k. The α is called the scale parameter, and it is either assumed known or
else min(y) is used. The parameter k is called the shape parameter. The mean of Y is αk/(k − 1)
provided k > 1. Its variance is α2k/((k − 1)2(k − 2)) provided k > 2.

The upper truncated Pareto distribution has a probability density function that can be written

f(y) = kαk/[yk+1(1− (α/U)k)]

for 0 < α < y < U <∞ and k > 0. Possibly, better names for k are the index and tail parameters.
Here, α and U are known. The mean of Y is kαk(U1−k − α1−k)/[(1− k)(1− (α/U)k)].

602 paretoff

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

The usual or unbounded Pareto distribution has two parameters (called α and k here) but the family
function paretoff estimates only k using iteratively reweighted least squares. The MLE of the α
parameter lies on the boundary and is min(y) where y is the response. Consequently, using the
default argument values, the standard errors are incorrect when one does a summary on the fitted
object. If the user inputs a value for alpha then it is assumed known with this value and then
summary on the fitted object should be correct. Numerical problems may occur for small k, e.g.,
k < 1.

Note

Outside of economics, the Pareto distribution is known as the Bradford distribution.

For paretoff, if the estimate of k is less than or equal to unity then the fitted values will be NAs.
Also, paretoff fits the Pareto(I) distribution. See paretoIV for the more general Pareto(IV/III/II)
distributions, but there is a slight change in notation: s = k and b = α.

In some applications the Pareto law is truncated by a natural upper bound on the probability tail.
The upper truncated Pareto distribution has three parameters (called α, U and k here) but the family
function truncpareto() estimates only k. With known lower and upper limits, the ML estimator
of k has the usual properties of MLEs. Aban (2006) discusses other inferential details.

Author(s)

T. W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

Aban, I. B., Meerschaert, M. M. and Panorska, A. K. (2006). Parameter estimation for the truncated
Pareto distribution, Journal of the American Statistical Association, 101(473), 270–277.

See Also

Pareto, Truncpareto, paretoIV, gpd, benini1.

Examples

alpha <- 2; kay <- exp(3)
pdata <- data.frame(y = rpareto(n = 1000, scale = alpha, shape = kay))
fit <- vglm(y ~ 1, paretoff, data = pdata, trace = TRUE)
fit@extra # The estimate of alpha is here
head(fitted(fit))
with(pdata, mean(y))
coef(fit, matrix = TRUE)

ParetoIV 603

summary(fit) # Standard errors are incorrect!!

Here, alpha is assumed known
fit2 <- vglm(y ~ 1, paretoff(scale = alpha), data = pdata, trace = TRUE)
fit2@extra # alpha stored here
head(fitted(fit2))
coef(fit2, matrix = TRUE)
summary(fit2) # Standard errors are okay

Upper truncated Pareto distribution
lower <- 2; upper <- 8; kay <- exp(2)
pdata3 <- data.frame(y = rtruncpareto(n = 100, lower = lower,

upper = upper, shape = kay))
fit3 <- vglm(y ~ 1, truncpareto(lower, upper), data = pdata3, trace = TRUE)
coef(fit3, matrix = TRUE)
c(fit3@misc$lower, fit3@misc$upper)

ParetoIV The Pareto(IV/III/II) Distributions

Description

Density, distribution function, quantile function and random generation for the Pareto(IV/III/II)
distributions.

Usage

dparetoIV(x, location = 0, scale = 1, inequality = 1, shape = 1,
log = FALSE)

pparetoIV(q, location = 0, scale = 1, inequality = 1, shape = 1,
lower.tail = TRUE, log.p = FALSE)

qparetoIV(p, location = 0, scale = 1, inequality = 1, shape = 1,
lower.tail = TRUE, log.p = FALSE)

rparetoIV(n, location = 0, scale = 1, inequality = 1, shape = 1)
dparetoIII(x, location = 0, scale = 1, inequality = 1, log = FALSE)
pparetoIII(q, location = 0, scale = 1, inequality = 1,

lower.tail = TRUE, log.p = FALSE)
qparetoIII(p, location = 0, scale = 1, inequality = 1,

lower.tail = TRUE, log.p = FALSE)
rparetoIII(n, location = 0, scale = 1, inequality = 1)
dparetoII(x, location = 0, scale = 1, shape = 1, log = FALSE)
pparetoII(q, location = 0, scale = 1, shape = 1,

lower.tail = TRUE, log.p = FALSE)
qparetoII(p, location = 0, scale = 1, shape = 1,

lower.tail = TRUE, log.p = FALSE)
rparetoII(n, location = 0, scale = 1, shape = 1)
dparetoI(x, scale = 1, shape = 1, log = FALSE)
pparetoI(q, scale = 1, shape = 1,

604 ParetoIV

lower.tail = TRUE, log.p = FALSE)
qparetoI(p, scale = 1, shape = 1,

lower.tail = TRUE, log.p = FALSE)
rparetoI(n, scale = 1, shape = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

location the location parameter.
scale, shape, inequality

the (positive) scale, inequality and shape parameters.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

For the formulas and other details see paretoIV.

Value

Functions beginning with the letters d give the density, p give the distribution function, q give the
quantile function, and r generates random deviates.

Note

The functions [dpqr]paretoI are the same as [dpqr]pareto except for a slight change in notation:
s = k and b = α; see Pareto.

Author(s)

T. W. Yee and Kai Huang

References

Brazauskas, V. (2003). Information matrix for Pareto(IV), Burr, and related distributions. Comm.
Statist. Theory and Methods 32, 315–325.

Arnold, B. C. (1983). Pareto Distributions. Fairland, Maryland: International Cooperative Publish-
ing House.

See Also

paretoIV, Pareto.

paretoIV 605

Examples

Not run:
x <- seq(-0.2, 4, by = 0.01)
loc <- 0; Scale <- 1; ineq <- 1; shape <- 1.0
plot(x, dparetoIV(x, loc, Scale, ineq, shape), type = "l",

main = "Blue is density, orange is the CDF", col = "blue",
sub = "Purple are 5,10,...,95 percentiles", ylim = 0:1,
las = 1, ylab = "")

abline(h = 0, col = "blue", lty = 2)
Q <- qparetoIV(seq(0.05, 0.95,by = 0.05), loc, Scale, ineq, shape)
lines(Q, dparetoIV(Q, loc, Scale, ineq, shape), col = "purple",

lty = 3, type = "h")
lines(x, pparetoIV(x, loc, Scale, ineq, shape), col = "orange")
abline(h = 0, lty = 2)

End(Not run)

paretoIV Pareto(IV/III/II) Distribution Family Functions

Description

Estimates three of the parameters of the Pareto(IV) distribution by maximum likelihood estimation.
Some special cases of this distribution are also handled.

Usage

paretoIV(location = 0, lscale = "loglink", linequality = "loglink",
lshape = "loglink", iscale = 1, iinequality = 1, ishape = NULL,
imethod = 1)

paretoIII(location = 0, lscale = "loglink", linequality = "loglink",
iscale = NULL, iinequality = NULL)

paretoII(location = 0, lscale = "loglink", lshape = "loglink",
iscale = NULL, ishape = NULL)

Arguments

location Location parameter, called a below. It is assumed known.
lscale, linequality, lshape

Parameter link functions for the scale parameter (called b below), inequality
parameter (called g below), and shape parameter (called s below). See Links
for more choices. A log link is the default for all because all these parameters
are positive.

iscale, iinequality, ishape

Initial values for the parameters. A NULL value means that it is obtained inter-
nally. If convergence failure occurs, use these arguments to input some alterna-
tive initial values.

imethod Method of initialization for the shape parameter. Currently only values 1 and 2
are available. Try the other value if convergence failure occurs.

606 paretoIV

Details

The Pareto(IV) distribution, which is used in actuarial science, economics, finance and telecommu-
nications, has a cumulative distribution function that can be written

F (y) = 1− [1 + ((y − a)/b)1/g]−s

for y > a, b > 0, g > 0 and s > 0. The a is called the location parameter, b the scale parameter, g
the inequality parameter, and s the shape parameter.

The location parameter is assumed known otherwise the Pareto(IV) distribution will not be a regular
family. This assumption is not too restrictive in modelling because in typical applications this
parameter is known, e.g., in insurance and reinsurance it is pre-defined by a contract and can be
represented as a deductible or a retention level.

The inequality parameter is so-called because of its interpretation in the economics context. If
we choose a unit shape parameter value and a zero location parameter value then the inequality
parameter is the Gini index of inequality, provided g ≤ 1.

The fitted values are currently the median, e.g., qparetoIV is used for paretoIV().

There are a number of special cases of the Pareto(IV) distribution. These include the Pareto(I),
Pareto(II), Pareto(III), and Burr family of distributions. Denoting PIV (a, b, g, s) as the Pareto(IV)
distribution, the Burr distribution Burr(b, g, s) is PIV (a = 0, b, 1/g, s), the Pareto(III) distribu-
tion PIII(a, b, g) is PIV (a, b, g, s = 1), the Pareto(II) distribution PII(a, b, s) is PIV (a, b, g =
1, s), and the Pareto(I) distribution PI(b, s) is PIV (b, b, g = 1, s). Thus the Burr distribution
can be fitted using the negloglink link function and using the default location=0 argument. The
Pareto(I) distribution can be fitted using paretoff but there is a slight change in notation: s = k
and b = α.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

The Pareto(IV) distribution is very general, for example, special cases include the Pareto(I), Pareto(II),
Pareto(III), and Burr family of distributions. [Johnson et al. (1994) says on p.19 that fitting Type
IV by ML is very difficult and rarely attempted]. Consequently, reasonably good initial values are
recommended, and convergence to a local solution may occur. For this reason setting trace=TRUE
is a good idea for monitoring the convergence. Large samples are ideally required to get reasonable
results.

Note

The extra slot of the fitted object has a component called "location" which stores the location
parameter value(s).

Author(s)

T. W. Yee

Perks 607

References

Johnson N. L., Kotz S., and Balakrishnan N. (1994). Continuous Univariate Distributions, Volume
1, 2nd ed. New York: Wiley.

Brazauskas, V. (2003). Information matrix for Pareto(IV), Burr, and related distributions. Comm.
Statist. Theory and Methods 32, 315–325.

Arnold, B. C. (1983). Pareto Distributions. Fairland, Maryland: International Cooperative Publish-
ing House.

See Also

ParetoIV, paretoff, gpd.

Examples

pdata <- data.frame(y = rparetoIV(2000, scale = exp(1),
ineq = exp(-0.3), shape = exp(1)))

Not run: par(mfrow = c(2, 1))
with(pdata, hist(y)); with(pdata, hist(log(y)))
End(Not run)
fit <- vglm(y ~ 1, paretoIV, data = pdata, trace = TRUE)
head(fitted(fit))
summary(pdata)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

Perks The Perks Distribution

Description

Density, cumulative distribution function, quantile function and random generation for the Perks
distribution.

Usage

dperks(x, scale = 1, shape, log = FALSE)
pperks(q, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
qperks(p, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
rperks(n, scale = 1, shape)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as in runif.

log Logical. If log = TRUE then the logarithm of the density is returned.

608 perks

lower.tail, log.p

Same meaning as in pnorm or qnorm.

shape, scale positive shape and scale parameters.

Details

See perks for details.

Value

dperks gives the density, pperks gives the cumulative distribution function, qperks gives the quan-
tile function, and rperks generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

perks.

Examples

probs <- seq(0.01, 0.99, by = 0.01)
Shape <- exp(-1.0); Scale <- exp(1);
max(abs(pperks(qperks(p = probs, Shape, Scale),

Shape, Scale) - probs)) # Should be 0

Not run: x <- seq(-0.1, 07, by = 0.01);
plot(x, dperks(x, Shape, Scale), type = "l", col = "blue", las = 1,

main = "Blue is density, orange is cumulative distribution function",
sub = "Purple lines are the 10,20,...,90 percentiles",
ylab = "", ylim = 0:1)

abline(h = 0, col = "blue", lty = 2)
lines(x, pperks(x, Shape, Scale), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qperks(probs, Shape, Scale)
lines(Q, dperks(Q, Shape, Scale), col = "purple", lty = 3, type = "h")
pperks(Q, Shape, Scale) - probs # Should be all zero
abline(h = probs, col = "purple", lty = 3)
End(Not run)

perks Perks Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter Perks distribution.

perks 609

Usage

perks(lscale = "loglink", lshape = "loglink",
iscale = NULL, ishape = NULL,
gscale = exp(-5:5), gshape = exp(-5:5),
nsimEIM = 500, oim.mean = FALSE, zero = NULL,
nowarning = FALSE)

Arguments

nowarning Logical. Suppress a warning? Ignored for VGAM 0.9-7 and higher.

lscale, lshape Parameter link functions applied to the shape parameter shape, scale parameter
scale. All parameters are treated as positive here See Links for more choices.

iscale, ishape Optional initial values. A NULL means a value is computed internally.

gscale, gshape See CommonVGAMffArguments.

nsimEIM, zero See CommonVGAMffArguments.

oim.mean To be currently ignored.

Details

The Perks distribution has cumulative distribution function

F (y;α, β) = 1−
{

1 + α

1 + αeβy

}1/β

which leads to a probability density function

f(y;α, β) = [1 + α]
1/β

αeβy/(1 + αeβy)1+1/β

for α > 0, β > 0, y > 0. Here, β is called the scale parameter scale, and α is called a shape
parameter. The moments for this distribution do not appear to be available in closed form.

Simulated Fisher scoring is used and multiple responses are handled.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

A lot of care is needed because this is a rather difficult distribution for parameter estimation. If
the self-starting initial values fail then try experimenting with the initial value arguments, espe-
cially iscale. Successful convergence depends on having very good initial values. Also, monitor
convergence by setting trace = TRUE.

Author(s)

T. W. Yee

610 perspqrrvglm

References

Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the
Institute of Actuaries, 63, 12–40.

Richards, S. J. (2012). A handbook of parametric survival models for actuarial use. Scandinavian
Actuarial Journal. 1–25.

See Also

dperks, simulate.vlm.

Examples

Not run: set.seed(123)
pdata <- data.frame(x2 = runif(nn <- 1000)) # x2 unused
pdata <- transform(pdata, eta1 = -1,

ceta1 = 1)
pdata <- transform(pdata, shape1 = exp(eta1),

scale1 = exp(ceta1))
pdata <- transform(pdata, y1 = rperks(nn, sh = shape1, sc = scale1))
fit1 <- vglm(y1 ~ 1, perks, data = pdata, trace = TRUE)
coef(fit1, matrix = TRUE)
summary(fit1)

End(Not run)

perspqrrvglm Perspective plot for QRR-VGLMs

Description

Produces a perspective plot for a CQO model (QRR-VGLM). It is only applicable for rank-1 or
rank-2 models with argument noRRR = ~ 1.

Usage

perspqrrvglm(x, varI.latvar = FALSE, refResponse = NULL, show.plot = TRUE,
xlim = NULL, ylim = NULL, zlim = NULL,
gridlength = if (Rank == 1) 301 else c(51,51),
which.species = NULL,
xlab = if (Rank == 1) "Latent Variable" else "Latent Variable 1",
ylab = if (Rank == 1) "Expected Value" else "Latent Variable 2",
zlab = "Expected value", labelSpecies = FALSE,
stretch = 1.05, main = "", ticktype = "detailed",
col = if (Rank == 1) par()$col else "white",
llty = par()$lty, llwd = par()$lwd,
add1 = FALSE, ...)

perspqrrvglm 611

Arguments

x Object of class "qrrvglm", i.e., a constrained quadratic ordination (CQO) ob-
ject.

varI.latvar Logical that is fed into Coef.qrrvglm.

refResponse Integer or character that is fed into Coef.qrrvglm.

show.plot Logical. Plot it?

xlim, ylim Limits of the x- and y-axis. Both are numeric of length 2. See par.

zlim Limits of the z-axis. Numeric of length 2. Ignored if rank is 1. See par.

gridlength Numeric. The fitted values are evaluated on a grid, and this argument regulates
the fineness of the grid. If Rank = 2 then the argument is recycled to length 2, and
the two numbers are the number of grid points on the x- and y-axes respectively.

which.species Numeric or character vector. Indicates which species are to be plotted. The
default is to plot all of them. If numeric, it should contain values in the set
{1,2,. . . ,S} where S is the number of species.

xlab, ylab Character caption for the x-axis and y-axis. By default, a suitable caption is
found. See the xlab argument in plot or title.

zlab Character caption for the z-axis. Used only if Rank = 2. By default, a suitable
caption is found. See the xlab argument in plot or title.

labelSpecies Logical. Whether the species should be labelled with their names. Used for
Rank = 1 only. The position of the label is just above the species’ maximum.

stretch Numeric. A value slightly more than 1, this argument adjusts the height of the
y-axis. Used for Rank = 1 only.

main Character, giving the title of the plot. See the main argument in plot or title.

ticktype Tick type. Used only if Rank = 2. See persp for more information.

col Color. See persp for more information.

llty Line type. Rank-1 models only. See the lty argument of par.

llwd Line width. Rank-1 models only. See the lwd argument of par.

add1 Logical. Add to an existing plot? Used only for rank-1 models.

... Arguments passed into persp. Useful arguments here include theta and phi,
which control the position of the eye.

Details

For a rank-1 model, a perspective plot is similar to lvplot.qrrvglm but plots the curves along a
fine grid and there is no rugplot to show the site scores.

For a rank-2 model, a perspective plot has the first latent variable as the x-axis, the second latent
variable as the y-axis, and the expected value (fitted value) as the z-axis. The result of a CQO is
that each species has a response surface with elliptical contours. This function will, at each grid
point, work out the maximum fitted value over all the species. The resulting response surface is
plotted. Thus rare species will be obscured and abundant species will dominate the plot. To view
rare species, use the which.species argument to select a subset of the species.

A perspective plot will be performed if noRRR = ~ 1, and Rank = 1 or 2. Also, all the tolerance
matrices of those species to be plotted must be positive-definite.

612 perspqrrvglm

Value

For a rank-2 model, a list with the following components.

fitted A (G1 ×G2) by M matrix of fitted values on the grid. Here, G1 and G2 are the
two values of gridlength.

latvar1grid, latvar2grid

The grid points for the x-axis and y-axis.

max.fitted A G1 by G2 matrix of maximum of the fitted values over all species. These are
the values that are plotted on the z-axis.

For a rank-1 model, the components latvar2grid and max.fitted are NULL.

Note

Yee (2004) does not refer to perspective plots. Instead, contour plots via lvplot.qrrvglm are used.

For rank-1 models, a similar function to this one is lvplot.qrrvglm. It plots the fitted values at
the actual site score values rather than on a fine grid here. The result has the advantage that the user
sees the curves as a direct result from a model fitted to data whereas here, it is easy to think that the
smooth bell-shaped curves are the truth because the data is more of a distance away.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

See Also

persp, cqo, Coef.qrrvglm, lvplot.qrrvglm, par, title.

Examples

Not run:
hspider[, 1:6] <- scale(hspider[, 1:6]) # Good idea when I.tolerances = TRUE
set.seed(111)
r1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardmont, Pardnigr, Pardpull, Trocterr) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, trace = FALSE, I.tolerances = TRUE)

set.seed(111) # r2 below is an ill-conditioned model
r2 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardmont, Pardnigr, Pardpull, Trocterr) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
isd.lv = c(2.4, 1.0), Muxfactor = 3.0, trace = FALSE,
poissonff, data = hspider, Rank = 2, eq.tolerances = TRUE)

sort(deviance(r1, history = TRUE)) # A history of all the fits

pgamma.deriv 613

sort(deviance(r2, history = TRUE)) # A history of all the fits
if (deviance(r2) > 857) stop("suboptimal fit obtained")

persp(r1, xlim = c(-6, 5), col = 1:4, label = TRUE)

Involves all species
persp(r2, xlim = c(-6, 5), ylim = c(-4, 5), theta = 10, phi = 20, zlim = c(0, 220))
Omit the two dominant species to see what is behind them
persp(r2, xlim = c(-6, 5), ylim = c(-4, 5), theta = 10, phi = 20, zlim = c(0, 220),

which = (1:10)[-c(8, 10)]) # Use zlim to retain the original z-scale

End(Not run)

pgamma.deriv Derivatives of the Incomplete Gamma Integral

Description

The first two derivatives of the incomplete gamma integral.

Usage

pgamma.deriv(q, shape, tmax = 100)

Arguments

q, shape As in pgamma but these must be vectors of positive values only and finite.

tmax Maximum number of iterations allowed in the computation (per q value).

Details

Write x = q and shape = a. The first and second derivatives with respect to q and a are returned.
This function is similar in spirit to pgamma; define

P (a, x) =
1

Γ(a)

∫ x

0

ta−1e−tdt

so that P (a, x) is pgamma(x, a). Currently a 6-column matrix is returned (in the future this may
change and an argument may be supplied so that only what is required by the user is computed.)

The computations use a series expansion for a ≤ x ≤ 1 or or x < a, else otherwise a continued
fraction expansion. Machine overflow can occur for large values of x when x is much greater than
a.

Value

The first 5 columns, running from left to right, are the derivatives with respect to: x, x2, a, a2, xa.
The 6th column is P (a, x) (but it is not as accurate as calling pgamma directly).

614 pgamma.deriv.unscaled

Note

If convergence does not occur then try increasing the value of tmax.

Yet to do: add more arguments to give greater flexibility in the accuracy desired and to compute
only quantities that are required by the user.

Author(s)

T. W. Yee wrote the wrapper function to the Fortran subroutine written by R. J. Moore. The subrou-
tine was modified to run using double precision. The original code came from http://lib.stat.cmu.edu/apstat/187.
but this website has since become stale.

References

Moore, R. J. (1982). Algorithm AS 187: Derivatives of the Incomplete Gamma Integral. Journal of
the Royal Statistical Society, Series C (Applied Statistics), 31(3), 330–335.

See Also

pgamma.deriv.unscaled, pgamma.

Examples

x <- seq(2, 10, length = 501)
head(ans <- pgamma.deriv(x, 2))
Not run: par(mfrow = c(2, 3))
for (jay in 1:6)

plot(x, ans[, jay], type = "l", col = "blue", cex.lab = 1.5,
cex.axis = 1.5, las = 1, log = "x",
main = colnames(ans)[jay], xlab = "q", ylab = "")

End(Not run)

pgamma.deriv.unscaled Derivatives of the Incomplete Gamma Integral (Unscaled Version)

Description

The first two derivatives of the incomplete gamma integral with scaling.

Usage

pgamma.deriv.unscaled(q, shape)

Arguments

q, shape As in pgamma and pgamma.deriv but these must be vectors of positive values
only and finite.

pgamma.deriv.unscaled 615

Details

Define

G(x, a) =

∫ x

0

ta−1e−tdt

so that G(x, a) is pgamma(x, a) * gamma(a). Write x = q and shape = a. The 0th and first
and second derivatives with respect to a of G are returned. This function is similar in spirit to
pgamma.deriv but here there is no gamma function to scale things. Currently a 3-column matrix
is returned (in the future this may change and an argument may be supplied so that only what is
required by the user is computed.) This function is based on Wingo (1989).

Value

The 3 columns, running from left to right, are the 0:2th derivatives with respect to a.

Warning

These function seems inaccurate for q = 1 and q = 2; see the plot below.

Author(s)

T. W. Yee.

References

See truncweibull.

See Also

pgamma.deriv, pgamma.

Examples

x <- 3; aa <- seq(0.3, 04, by = 0.01)
ans.u <- pgamma.deriv.unscaled(x, aa)
head(ans.u)

Not run: par(mfrow = c(1, 3))
for (jay in 1:3) {

plot(aa, ans.u[, jay], type = "l", col = "blue", cex.lab = 1.5,
cex.axis = 1.5, las = 1, main = colnames(ans.u)[jay],
log = "", xlab = "shape", ylab = "")

abline(h = 0, v = 1:2, lty = "dashed", col = "gray") # Inaccurate at 1 and 2
}

End(Not run)

616 plotdeplot.lmscreg

plotdeplot.lmscreg Density Plot for LMS Quantile Regression

Description

Plots a probability density function associated with a LMS quantile regression.

Usage

plotdeplot.lmscreg(answer, y.arg, add.arg = FALSE,
xlab = "", ylab = "density", xlim = NULL, ylim = NULL,
llty.arg = par()$lty, col.arg = par()$col,
llwd.arg = par()$lwd, ...)

Arguments

answer Output from functions of the form deplot.??? where ??? is the name of the
VGAM LMS family function, e.g., lms.yjn. See below for details.

y.arg Numerical vector. The values of the response variable at which to evaluate the
density. This should be a grid that is fine enough to ensure the plotted curves are
smooth.

add.arg Logical. Add the density to an existing plot?

xlab, ylab Caption for the x- and y-axes. See par.

xlim, ylim Limits of the x- and y-axes. See par.

llty.arg Line type. See the lty argument of par.

col.arg Line color. See the col argument of par.

llwd.arg Line width. See the lwd argument of par.

... Arguments passed into the plot function when setting up the entire plot. Useful
arguments here include main and las.

Details

The above graphical parameters offer some flexibility when plotting the quantiles.

Value

The list answer, which has components

newdata The argument newdata above from the argument list of deplot.lmscreg, or a
one-row data frame constructed out of the x0 argument.

y The argument y.arg above.

density Vector of the density function values evaluated at y.arg.

plotdgaitd.vglm 617

Note

While the graphical arguments of this function are useful to the user, this function should not be
called directly.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

See Also

deplot.lmscreg.

Examples

fit <- vgam(BMI ~ s(age, df = c(4,2)), lms.bcn(zero = 1), bmi.nz)
Not run: y = seq(15, 43, by = 0.25)
deplot(fit, x0 = 20, y = y, xlab = "BMI", col = "green", llwd = 2,

main = "BMI distribution at ages 20 (green), 40 (blue), 60 (orange)")
deplot(fit, x0 = 40, y = y, add = TRUE, col = "blue", llwd = 2)
deplot(fit, x0 = 60, y = y, add = TRUE, col = "orange", llwd = 2) -> aa

names(aa@post$deplot)
aa@post$deplot$newdata
head(aa@post$deplot$y)
head(aa@post$deplot$density)
End(Not run)

plotdgaitd.vglm Plotting the GAITD Combo Density from a GAITD Regression Object

Description

Given a GAITD regression object, plots the probability mass function.

Usage

plotdgaitd(object, ...)
plotdgaitd.vglm(object, ...)

Arguments

object A fitted GAITD combo regression, e.g., gaitdpoisson.

... Graphical arguments passed into dgaitdplot.

618 plotqrrvglm

Details

This is meant to be a more convenient function for plotting the PMF of the GAITD combo model
from a fitted regression model. The fit should be intercept-only and the distribution should have 1
or 2 parameters. Currently it should work for a gaitdpoisson fit. As much information as needed
such as the special values is extracted from the object and fed into dgaitdplot.

Value

Same as dgaitdplot.

Note

This function is subject to change.

Author(s)

T. W. Yee.

See Also

dgaitdplot, spikeplot, gaitdpoisson.

Examples

Not run:
example(gaitdpoisson)
gaitpfit2 <- vglm(y1 ~ 1, crit = "coef", trace = TRUE, data = gdata,

gaitdpoisson(a.mix = a.mix, i.mix = i.mix,
i.mlm = i.mlm, eq.ap = TRUE, eq.ip = TRUE,
truncate = tvec, max.support = max.support))

plotdgaitd(gaitpfit2)

End(Not run)

plotqrrvglm Model Diagnostic Plots for QRR-VGLMs

Description

The residuals of a QRR-VGLM are plotted for model diagnostic purposes.

Usage

plotqrrvglm(object, rtype = c("response", "pearson", "deviance", "working"),
ask = FALSE,
main = paste(Rtype, "residuals vs latent variable(s)"),
xlab = "Latent Variable",
I.tolerances = object@control$eq.tolerances, ...)

plotqrrvglm 619

Arguments

object An object of class "qrrvglm".
rtype Character string giving residual type. By default, the first one is chosen.
ask Logical. If TRUE, the user is asked to hit the return key for the next plot.
main Character string giving the title of the plot.
xlab Character string giving the x-axis caption.
I.tolerances Logical. This argument is fed into Coef(object, I.tolerances = I.tolerances).
... Other plotting arguments (see par).

Details

Plotting the residuals can be potentially very useful for checking that the model fit is adequate.

Value

The original object.

Note

An ordination plot of a QRR-VGLM can be obtained by lvplot.qrrvglm.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

See Also

lvplot.qrrvglm, cqo.

Examples

Not run:
QRR-VGLM on the hunting spiders data
This is computationally expensive
set.seed(111) # This leads to the global solution
hspider[, 1:6] <- scale(hspider[, 1:6]) # Standardize environ vars
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, Crow1positive = FALSE)

par(mfrow = c(3, 4))
plot(p1, rtype = "response", col = "blue", pch = 4, las = 1, main = "")

End(Not run)

620 plotqtplot.lmscreg

plotqtplot.lmscreg Quantile Plot for LMS Quantile Regression

Description

Plots the quantiles associated with a LMS quantile regression.

Usage

plotqtplot.lmscreg(fitted.values, object, newdata = NULL,
percentiles = object@misc$percentiles, lp = NULL,
add.arg = FALSE, y = if (length(newdata)) FALSE else TRUE,
spline.fit = FALSE, label = TRUE, size.label = 0.06,
xlab = NULL, ylab = "",
pch = par()$pch, pcex = par()$cex, pcol.arg = par()$col,
xlim = NULL, ylim = NULL,
llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd,
tcol.arg = par()$col, tadj = 1, ...)

Arguments

fitted.values Matrix of fitted values.

object A VGAM quantile regression model, i.e., an object produced by modelling func-
tions such as vglm and vgam with a family function beginning with "lms.", e.g.,
lms.yjn.

newdata Data frame at which predictions are made. By default, the original data are used.

percentiles Numerical vector with values between 0 and 100 that specify the percentiles
(quantiles). The default is to use the percentiles when fitting the model. For
example, the value 50 corresponds to the median.

lp Length of percentiles.

add.arg Logical. Add the quantiles to an existing plot?

y Logical. Add the response as points to the plot?

spline.fit Logical. Add a spline curve to the plot?

label Logical. Add the percentiles (as text) to the plot?

size.label Numeric. How much room to leave at the RHS for the label. It is in percent (of
the range of the primary variable).

xlab Caption for the x-axis. See par.

ylab Caption for the x-axis. See par.

pch Plotting character. See par.

pcex Character expansion of the points. See par.

pcol.arg Color of the points. See the col argument of par.

xlim Limits of the x-axis. See par.

plotqtplot.lmscreg 621

ylim Limits of the y-axis. See par.

llty.arg Line type. Line type. See the lty argument of par.

lcol.arg Color of the lines. See the col argument of par.

llwd.arg Line width. See the lwd argument of par.

tcol.arg Color of the text (if label is TRUE). See the col argument of par.

tadj Text justification. See the adj argument of par.

... Arguments passed into the plot function when setting up the entire plot. Useful
arguments here include main and las.

Details

The above graphical parameters offer some flexibility when plotting the quantiles.

Value

The matrix of fitted values.

Note

While the graphical arguments of this function are useful to the user, this function should not be
called directly.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

See Also

qtplot.lmscreg.

Examples

Not run:
fit <- vgam(BMI ~ s(age, df = c(4,2)), lms.bcn(zero = 1), data = bmi.nz)
qtplot(fit)
qtplot(fit, perc = c(25,50,75,95), lcol = "blue", tcol = "blue", llwd = 2)

End(Not run)

622 plotrcim0

plotrcim0 Main Effects Plot for a Row-Column Interaction Model (RCIM)

Description

Produces a main effects plot for Row-Column Interaction Models (RCIMs).

Usage

plotrcim0(object, centered = TRUE, which.plots = c(1, 2),
hline0 = TRUE, hlty = "dashed", hcol = par()$col, hlwd = par()$lwd,
rfirst = 1, cfirst = 1,
rtype = "h", ctype = "h",
rcex.lab = 1, rcex.axis = 1, rtick = FALSE,
ccex.lab = 1, ccex.axis = 1, ctick = FALSE,
rmain = "Row effects", rsub = "",
rxlab = "", rylab = "Row effects",
cmain = "Column effects", csub = "",
cxlab= "", cylab = "Column effects",
rcol = par()$col, ccol = par()$col,
no.warning = FALSE, ...)

Arguments

object An rcim object. This should be of rank-0, i.e., main effects only and no interac-
tions.

which.plots Numeric, describing which plots are to be plotted. The row effects plot is 1 and
the column effects plot is 2. Set the value 0, say, for no plots at all.

centered Logical. If TRUE then the row and column effects are centered (but not scaled)
by scale. If FALSE then the raw effects are used (of which the first are zero by
definition).

hline0, hlty, hcol, hlwd

hline0 is logical. If TRUE then a horizontal line is plotted at 0 and the other
arguments describe this line. Probably having hline0 = TRUE only makes sense
when centered = TRUE.

rfirst, cfirst rfirst is the level of row that is placed first in the row effects plot, etc.

rmain, cmain Character. rmain is the main label in the row effects plot, etc.
rtype, ctype, rsub, csub

See the type and sub arguments of plot.default.
rxlab, rylab, cxlab, cylab

Character. For the row effects plot, rxlab is xlab and rylab is ylab; see par.
Ditto for cxlab and cylab for the column effects plot.

rcex.lab, ccex.lab

Numeric. rcex.lab is cex for the row effects plot label, etc.

plotrcim0 623

rcex.axis, ccex.axis

Numeric. rcex.axis is the cex argument for the row effects axis label, etc.

rtick, ctick Logical. If rtick = TRUE then add ticks to the row effects plot, etc.

rcol, ccol rcol give a colour for the row effects plot, etc.

no.warning Logical. If TRUE then no warning is issued if the model is not rank-0.

... Arguments fed into plot.default, etc.

Details

This function plots the row and column effects of a rank-0 RCIM. As the result is a main effects
plot of a regression analysis, its interpretation when centered = FALSE is relative to the baseline
(reference level) of a row and column, and should also be considered in light of the link function
used. Many arguments that start with "r" refer to the row effects plot, and "c" for the column
effects plot.

Value

The original object with the post slot assigned additional information from the plot.

Note

This function should be only used to plot the object of rank-0 RCIM. If the rank is positive then it
will issue a warning.

Using an argument ylim will mean the row and column effects are plotted on a common scale; see
plot.window.

Author(s)

T. W. Yee, A. F. Hadi.

See Also

moffset Rcim, rcim.

Examples

alcoff.e <- moffset(alcoff, "6", "Mon", postfix = "*") # Effective day
fit0 <- rcim(alcoff.e, family = poissonff)
Not run: par(oma = c(0, 0, 4, 0), mfrow = 1:2) # For all plots below too
ii <- plot(fit0, rcol = "blue", ccol = "orange",

lwd = 4, ylim = c(-2, 2), # A common ylim
cylab = "Effective daily effects", rylab = "Hourly effects",
rxlab = "Hour", cxlab = "Effective day")

ii@post # Endowed with additional information

End(Not run)

Negative binomial example
Not run:
fit1 <- rcim(alcoff.e, negbinomial, trace = TRUE)

624 plotvgam

plot(fit1, ylim = c(-2, 2))
End(Not run)

Univariate normal example
fit2 <- rcim(alcoff.e, uninormal, trace = TRUE)
Not run: plot(fit2, ylim = c(-200, 400))

Median-polish example
Not run:
fit3 <- rcim(alcoff.e, alaplace1(tau = 0.5), maxit = 1000, trace = FALSE)
plot(fit3, ylim = c(-200, 250))
End(Not run)

Zero-inflated Poisson example on "crashp" (no 0s in alcoff)
Not run:
cbind(rowSums(crashp)) # Easy to see the data
cbind(colSums(crashp)) # Easy to see the data
fit4 <- rcim(Rcim(crashp, rbaseline = "5", cbaseline = "Sun"),

zipoissonff, trace = TRUE)
plot(fit4, ylim = c(-3, 3))
End(Not run)

plotvgam Default VGAM Plotting

Description

Component functions of a vgam-class object can be plotted with plotvgam(). These are on the
scale of the linear/additive predictor.

Usage

plotvgam(x, newdata = NULL, y = NULL, residuals = NULL,
rugplot = TRUE, se = FALSE, scale = 0, raw = TRUE,
offset.arg = 0, deriv.arg = 0, overlay = FALSE,
type.residuals = c("deviance", "working", "pearson", "response"),
plot.arg = TRUE, which.term = NULL, which.cf = NULL,
control = plotvgam.control(...), varxij = 1, ...)

Arguments

x A fitted VGAM object, e.g., produced by vgam, vglm, or rrvglm.

newdata Data frame. May be used to reconstruct the original data set.

y Unused.

residuals Logical. If TRUE then residuals are plotted. See type.residuals

rugplot Logical. If TRUE then a rug plot is plotted at the foot of each plot. These values
are jittered to expose ties.

plotvgam 625

se Logical. If TRUE then approximate ±2 pointwise standard error bands are in-
cluded in the plot.

scale Numerical. By default, each plot will have its own y-axis scale. However, by
specifying a value, each plot’s y-axis scale will be at least scale wide.

raw Logical. If TRUE then the smooth functions are those obtained directly by the al-
gorithm, and are plotted without having to premultiply with the constraint matri-
ces. If FALSE then the smooth functions have been premultiply by the constraint
matrices. The raw argument is directly fed into predict.vgam().

offset.arg Numerical vector of length r. These are added to the component functions.
Useful for separating out the functions when overlay is TRUE. If overlay is
TRUE and there is one covariate then using the intercept values as the offsets can
be a good idea.

deriv.arg Numerical. The order of the derivative. Should be assigned an small integer
such as 0, 1, 2. Only applying to s() terms, it plots the derivative.

overlay Logical. If TRUE then component functions of the same covariate are overlaid
on each other. The functions are centered, so offset.arg can be useful when
overlay is TRUE.

type.residuals if residuals is TRUE then the first possible value of this vector, is used to specify
the type of residual.

plot.arg Logical. If FALSE then no plot is produced.

which.term Character or integer vector containing all terms to be plotted, e.g., which.term
= c("s(age)", "s(height")) or which.term = c(2, 5, 9). By default, all are
plotted.

which.cf An integer-valued vector specifying which linear/additive predictors are to be
plotted. The values must be from the set {1,2,. . . ,r}. By default, all are plotted.

control Other control parameters. See plotvgam.control.

... Other arguments that can be fed into plotvgam.control. This includes line
colors, line widths, line types, etc.

varxij Positive integer. Used if xij of vglm.control was used, this chooses which in-
ner argument the component is plotted against. This argument is related to raw
= TRUE and terms such as NS(dum1, dum2) and constraint matrices that have
more than one column. The default would plot the smooth against dum1 but set-
ting varxij = 2 could mean plotting the smooth against dum2. See the VGAM
website for further information.

Details

In this help file M is the number of linear/additive predictors, and r is the number of columns of
the constraint matrix of interest.

Many of plotvgam()’s options can be found in plotvgam.control, e.g., line types, line widths,
colors.

Value

The original object, but with the preplot slot of the object assigned information regarding the plot.

626 plotvgam.control

Note

While plot(fit) will work if class(fit) is "vgam", it is necessary to use plotvgam(fit) ex-
plicitly otherwise.

plotvgam() is quite buggy at the moment.

Author(s)

Thomas W. Yee

See Also

vgam, plotvgam.control, predict.vgam, plotvglm, vglm.

Examples

coalminers <- transform(coalminers, Age = (age - 42) / 5)
fit <- vgam(cbind(nBnW, nBW, BnW, BW) ~ s(Age),

binom2.or(zero = NULL), data = coalminers)
Not run: par(mfrow = c(1,3))
plot(fit, se = TRUE, ylim = c(-3, 2), las = 1)
plot(fit, se = TRUE, which.cf = 1:2, lcol = "blue", scol = "orange",

ylim = c(-3, 2))
plot(fit, se = TRUE, which.cf = 1:2, lcol = "blue", scol = "orange",

overlay = TRUE)
End(Not run)

plotvgam.control Control Function for plotvgam()

Description

Provides default values for many arguments available for plotvgam().

Usage

plotvgam.control(which.cf = NULL,
xlim = NULL, ylim = NULL, llty = par()$lty,
slty = "dashed", pcex = par()$cex,
pch = par()$pch, pcol = par()$col,
lcol = par()$col, rcol = par()$col,
scol = par()$col, llwd = par()$lwd, slwd = par()$lwd,
add.arg = FALSE, one.at.a.time = FALSE,
.include.dots = TRUE, noxmean = FALSE,
shade = FALSE, shcol = "gray80", ...)

plotvgam.control 627

Arguments

which.cf Integer vector specifying which component functions are to be plotted (for each
covariate). Must have values from the set {1,2,. . . ,M}.

xlim Range for the x-axis.
ylim Range for the y-axis.
llty Line type for the fitted functions (lines). Fed into par(lty).
slty Line type for the standard error bands. Fed into par(lty).
pcex Character expansion for the points (residuals). Fed into par(cex).
pch Character used for the points (residuals). Same as par(pch).
pcol Color of the points. Fed into par(col).
lcol Color of the fitted functions (lines). Fed into par(col).
rcol Color of the rug plot. Fed into par(col).
scol Color of the standard error bands. Fed into par(col).
llwd Line width of the fitted functions (lines). Fed into par(lwd).
slwd Line width of the standard error bands. Fed into par(lwd).
add.arg Logical. If TRUE then the plot will be added to an existing plot, otherwise a new

plot will be made.
one.at.a.time Logical. If TRUE then the plots are done one at a time, with the user having to

hit the return key between the plots.
.include.dots Not to be used by the user.
noxmean Logical. If TRUE then the point at the mean of x, which is added when standard

errors are specified and it thinks the function is linear, is not added. One might
use this argument if ylab is specified.

shade, shcol shade is logical; if TRUE then the pointwise SE band is shaded gray by default.
The colour can be adjusted by setting shcol. These arguments are ignored un-
less se = TRUE and overlay = FALSE; If shade = TRUE then scol is ignored.

... Other arguments that may be fed into par(). In the above, M is the number of
linear/additive predictors.

Details

The most obvious features of plotvgam can be controlled by the above arguments.

Value

A list with values matching the arguments.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

628 plotvglm

See Also

plotvgam.

Examples

plotvgam.control(lcol = c("red", "blue"), scol = "darkgreen", se = TRUE)

plotvglm Plots for VGLMs

Description

Currently this function plots the Pearson residuals versus the linear predictors (M plots) and plots
the Pearson residuals versus the hat values (M plots).

Usage

plotvglm(x, which = "(All)", ...)

Arguments

x An object of class "vglm" (see vglm-class) or inherits from that class.

which If a subset of the plots is required, specify a subset of the numbers 1:(2*M). The
default is to plot them all.

... Arguments fed into the primitive plot functions.

Details

This function is under development. Currently it plots the Pearson residuals against the predicted
values (on the transformed scale) and the hat values. There are 2M plots in total, therefore users
should call par to assign, e.g., the mfrow argument. Note: Section 3.7 of Yee (2015) describes the
Pearson residuals and hat values for VGLMs.

Value

Returns the object invisibly.

Author(s)

T. W. Yee

See Also

plotvgam, plotvgam.control, vglm.

pneumo 629

Examples

Not run:
ndata <- data.frame(x2 = runif(nn <- 200))
ndata <- transform(ndata, y1 = rnbinom(nn, mu = exp(3+x2), size = exp(1)))
fit1 <- vglm(y1 ~ x2, negbinomial, data = ndata, trace = TRUE)
coef(fit1, matrix = TRUE)
par(mfrow = c(2, 2))
plot(fit1)

Manually produce the four plots
plot(fit1, which = 1, col = "blue", las = 1, main = "main1")
abline(h = 0, lty = "dashed", col = "gray50")
plot(fit1, which = 2, col = "blue", las = 1, main = "main2")
abline(h = 0, lty = "dashed", col = "gray50")
plot(fit1, which = 3, col = "blue", las = 1, main = "main3")
plot(fit1, which = 4, col = "blue", las = 1, main = "main4")

End(Not run)

pneumo Pneumoconiosis in Coalminers Data

Description

The pneumo data frame has 8 rows and 4 columns. Exposure time is explanatory, and there are 3
ordinal response variables.

Usage

data(pneumo)

Format

This data frame contains the following columns:

exposure.time a numeric vector, in years

normal a numeric vector, counts

mild a numeric vector, counts

severe a numeric vector, counts

Details

These were collected from coalface workers. In the original data set, the two most severe categories
were combined.

Source

Ashford, J.R., 1959. An approach to the analysis of data for semi-quantal responses in biological
assay. Biometrics, 15, 573–581.

630 poisson.points

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

cumulative.

Examples

Fit the proportional odds model, p.179, in McCullagh and Nelder (1989)
pneumo <- transform(pneumo, let = log(exposure.time))
vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo)

poisson.points Poisson-points-on-a-plane/volume Distances Distribution

Description

Estimating the density parameter of the distances from a fixed point to the u-th nearest point, in a
plane or volume.

Usage

poisson.points(ostatistic, dimension = 2, link = "loglink",
idensity = NULL, imethod = 1)

Arguments

ostatistic Order statistic. A single positive value, usually an integer. For example, the
value 5 means the response are the distances of the fifth nearest value to that
point (usually over many planes or volumes). Non-integers are allowed be-
cause the value 1.5 coincides with maxwell when dimension = 2. Note: if
ostatistic = 1 and dimension = 2 then this VGAM family function coincides
with rayleigh.

dimension The value 2 or 3; 2 meaning a plane and 3 meaning a volume.

link Parameter link function applied to the (positive) density parameter, called λ be-
low. See Links for more choices.

idensity Optional initial value for the parameter. A NULL value means a value is obtained
internally. Use this argument if convergence failure occurs.

imethod An integer with value 1 or 2 which specifies the initialization method for λ.
If failure to converge occurs try another value and/or else specify a value for
idensity.

poisson.points 631

Details

Suppose the number of points in any region of areaA of the plane is a Poisson random variable with
mean λA (i.e., λ is the density of the points). Given a fixed point P , define D1, D2,. . . to be the
distance to the nearest point to P , second nearest to P , etc. This VGAM family function estimates
λ since the probability density function for Du is easily derived, u = 1, 2, Here, u corresponds
to the argument ostatistic.

Similarly, suppose the number of points in any volume V is a Poisson random variable with mean
λV where, once again, λ is the density of the points. This VGAM family function estimates λ by
specifying the argument ostatistic and using dimension = 3.

The mean of Du is returned as the fitted values. Newton-Raphson is the same as Fisher-scoring.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

Convergence may be slow if the initial values are far from the solution. This often corresponds to
the situation when the response values are all close to zero, i.e., there is a high density of points.

Formulae such as the means have not been fully checked.

Author(s)

T. W. Yee

See Also

poissonff, maxwell, rayleigh.

Examples

pdata <- data.frame(y = rgamma(10, shape = exp(-1))) # Not proper data!
ostat <- 2
fit <- vglm(y ~ 1, poisson.points(ostat, 2), data = pdata,

trace = TRUE, crit = "coef")
fit <- vglm(y ~ 1, poisson.points(ostat, 3), data = pdata,

trace = TRUE, crit = "coef") # Slow convergence?
fit <- vglm(y ~ 1, poisson.points(ostat, 3, idensi = 1), data = pdata,

trace = TRUE, crit = "coef")
head(fitted(fit))
with(pdata, mean(y))
coef(fit, matrix = TRUE)
Coef(fit)

632 poissonff

poissonff Poisson Regression

Description

Family function for a generalized linear model fitted to Poisson responses.

Usage

poissonff(link = "loglink", imu = NULL, imethod = 1,
parallel = FALSE, zero = NULL, bred = FALSE,
earg.link = FALSE, type.fitted = c("mean", "quantiles"),
percentiles = c(25, 50, 75))

Arguments

link Link function applied to the mean or means. See Links for more choices and
information.

parallel A logical or formula. Used only if the response is a matrix.

imu, imethod See CommonVGAMffArguments for more information.

zero Can be an integer-valued vector specifying which linear/additive predictors are
modelled as intercepts only. The values must be from the set {1,2,. . . ,M}, where
M is the number of columns of the matrix response. See CommonVGAMffArguments
for more information.

bred, earg.link

Details at CommonVGAMffArguments. Setting bred = TRUE should work for mul-
tiple responses and all VGAM link functions; it has been tested for loglink,
identity but further testing is required.

type.fitted, percentiles

Details at CommonVGAMffArguments.

Details

M defined above is the number of linear/additive predictors. With overdispersed data try negbinomial.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, vgam, rrvglm, cqo, and cao.

Warning

With multiple responses, assigning a known dispersion parameter for each response is not handled
well yet. Currently, only a single known dispersion parameter is handled well.

poissonff 633

Note

This function will handle a matrix response automatically.

Regardless of whether the dispersion parameter is to be estimated or not, its value can be seen from
the output from the summary() of the object.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, hdeff.vglm, negbinomial, genpoisson1, genpoisson2, genpoisson0, gaitdpoisson,
zipoisson, pospoisson, oipospoisson, otpospoisson, skellam, mix2poisson, cens.poisson,
ordpoisson, amlpoisson, inv.binomial, simulate.vlm, loglink, polf, rrvglm, cqo, cao,
binomialff, poisson, Poisson, poisson.points, ruge, V1, V2, residualsvglm.

Examples

poissonff()

set.seed(123)
pdata <- data.frame(x2 = rnorm(nn <- 100))
pdata <- transform(pdata, y1 = rpois(nn, exp(1 + x2)),

y2 = rpois(nn, exp(1 + x2)))
(fit1 <- vglm(cbind(y1, y2) ~ x2, poissonff, data = pdata))
(fit2 <- vglm(y1 ~ x2, poissonff(bred = TRUE), data = pdata))
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)

nn <- 200
cdata <- data.frame(x2 = rnorm(nn), x3 = rnorm(nn), x4 = rnorm(nn))
cdata <- transform(cdata, lv1 = 0 + x3 - 2*x4)
cdata <- transform(cdata, lambda1 = exp(3 - 0.5 * (lv1-0)^2),

lambda2 = exp(2 - 0.5 * (lv1-1)^2),
lambda3 = exp(2 - 0.5 * ((lv1+4)/2)^2))

cdata <- transform(cdata, y1 = rpois(nn, lambda1),
y2 = rpois(nn, lambda2),
y3 = rpois(nn, lambda3))

Not run: lvplot(p1, y = TRUE, lcol = 2:4, pch = 2:4, pcol = 2:4, rug = FALSE)

634 PoissonPoints

PoissonPoints Poisson Points Distribution

Description

Density for the PoissonPoints distribution.

Usage

dpois.points(x, lambda, ostatistic, dimension = 2, log = FALSE)

Arguments

x vector of quantiles.

lambda the mean density of points.

ostatistic positive values, usually integers.

dimension Either 2 and/or 3.

log Logical; if TRUE, the logarithm is returned.

Details

See poisson.points, the VGAM family function for estimating the parameters, for the formula of
the probability density function and other details.

Value

dpois.points gives the density.

See Also

poisson.points, dpois, Maxwell.

Examples

Not run: lambda <- 1; xvec <- seq(0, 2, length = 400)
plot(xvec, dpois.points(xvec, lambda, ostat = 1, dimension = 2),

type = "l", las = 1, col = "blue",
sub = "First order statistic",
main = paste("PDF of PoissonPoints distribution with lambda = ",

lambda, " and on the plane", sep = ""))
End(Not run)

Polono 635

Polono The Poisson Lognormal Distribution

Description

Density, distribution function and random generation for the Poisson lognormal distribution.

Usage

dpolono(x, meanlog = 0, sdlog = 1, bigx = 170, ...)
ppolono(q, meanlog = 0, sdlog = 1,

isOne = 1 - sqrt(.Machine$double.eps), ...)
rpolono(n, meanlog = 0, sdlog = 1)

Arguments

x, q vector of quantiles.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

meanlog, sdlog the mean and standard deviation of the normal distribution (on the log scale).
They match the arguments in Lognormal.

bigx Numeric. This argument is for handling large values of x and/or when integrate
fails. A first order Taylor series approximation [Equation (7) of Bulmer (1974)]
is used at values of x that are greater or equal to this argument. For bigx = 10,
he showed that the approximation has a relative error less than 0.001 for values
of meanlog and sdlog “likely to be encountered in practice”. The argument can
be assigned Inf in which case the approximation is not used.

isOne Used to test whether the cumulative probabilities have effectively reached unity.

... Arguments passed into integrate.

Details

The Poisson lognormal distribution is similar to the negative binomial in that it can be motivated by
a Poisson distribution whose mean parameter comes from a right skewed distribution (gamma for
the negative binomial and lognormal for the Poisson lognormal distribution).

Value

dpolono gives the density, ppolono gives the distribution function, and rpolono generates random
deviates.

636 Polono

Note

By default, dpolono involves numerical integration that is performed using integrate. Conse-
quently, computations are very slow and numerical problems may occur (if so then the use of ...
may be needed). Alternatively, for extreme values of x, meanlog, sdlog, etc., the use of bigx = Inf
avoids the call to integrate, however the answer may be a little inaccurate.

For the maximum likelihood estimation of the 2 parameters a VGAM family function called polono(),
say, has not been written yet.

Author(s)

T. W. Yee. Some anonymous soul kindly wrote ppolono() and improved the original dpolono().

References

Bulmer, M. G. (1974). On fitting the Poisson lognormal distribution to species-abundance data.
Biometrics, 30, 101–110.

See Also

lognormal, poissonff, negbinomial.

Examples

meanlog <- 0.5; sdlog <- 0.5; yy <- 0:19
sum(proby <- dpolono(yy, m = meanlog, sd = sdlog)) # Should be 1
max(abs(cumsum(proby) - ppolono(yy, m = meanlog, sd = sdlog))) # Should be 0

Not run: opar = par(no.readonly = TRUE)
par(mfrow = c(2, 2))
plot(yy, proby, type = "h", col = "blue", ylab = "P[Y=y]", log = "",

main = paste("Poisson lognormal(m = ", meanlog,
", sdl = ", sdlog, ")", sep = ""))

y <- 0:190 # More extreme values; use the approximation and plot on a log scale
(sum(proby <- dpolono(y, m = meanlog, sd = sdlog, bigx = 100))) # Should be 1
plot(y, proby, type = "h", col = "blue", ylab = "P[Y=y] (log)", log = "y",

main = paste("Poisson lognormal(m = ", meanlog,
", sdl = ", sdlog, ")", sep = "")) # Note the kink at bigx

Random number generation
table(y <- rpolono(n = 1000, m = meanlog, sd = sdlog))
hist(y, breaks = ((-1):max(y))+0.5, prob = TRUE, border = "blue")
par(opar)
End(Not run)

pordlink 637

pordlink Poisson-Ordinal Link Function

Description

Computes the Poisson-ordinal transformation, including its inverse and the first two derivatives.

Usage

pordlink(theta, cutpoint = NULL,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

cutpoint The cutpoints should be non-negative integers. If pordlink() is used as the link
function in cumulative then one should choose reverse = TRUE, parallel =
TRUE.

inverse, deriv, short, tag

Details at Links.

Details

The Poisson-ordinal link function (POLF) can be applied to a parameter lying in the unit interval.
Its purpose is to link cumulative probabilities associated with an ordinal response coming from an
underlying Poisson distribution. If the cutpoint is zero then a complementary log-log link is used.

See Links for general information about VGAM link functions.

Value

See Yee (2012) for details.

Warning

Prediction may not work on vglm or vgam etc. objects if this link function is used.

Note

Numerical values of theta too close to 0 or 1 or out of range result in large positive or negative
values, or maybe 0 depending on the arguments. Although measures have been taken to handle
cases where theta is too close to 1 or 0, numerical instabilities may still arise.

In terms of the threshold approach with cumulative probabilities for an ordinal response this link
function corresponds to the Poisson distribution (see poissonff) that has been recorded as an ordi-
nal response using known cutpoints.

Author(s)

Thomas W. Yee

638 pordlink

References

Yee, T. W. (2020). Ordinal ordination with normalizing link functions for count data, (in prepara-
tion).

See Also

Links, ordpoisson, poissonff, nbordlink, gordlink, cumulative.

Examples

Not run:
pordlink("p", cutpoint = 2, short = FALSE)
pordlink("p", cutpoint = 2, tag = TRUE)

p <- seq(0.01, 0.99, by = 0.01)
y <- pordlink(p, cutpoint = 2)
y. <- pordlink(p, cutpoint = 2, deriv = 1)
max(abs(pordlink(y, cutpoint = 2, inv = TRUE) - p)) # Should be 0

#\ dontrun{ par(mfrow = c(2, 1), las = 1)
#plot(p, y, type = "l", col = "blue", main = "pordlink()")
#abline(h = 0, v = 0.5, col = "orange", lty = "dashed")
#
#plot(p, y., type = "l", col = "blue",
main = "(Reciprocal of) first POLF derivative")
#}

Rutherford and Geiger data
ruge <- data.frame(yy = rep(0:14,

times = c(57,203,383,525,532,408,273,139,45,27,10,4,0,1,1)))
with(ruge, length(yy)) # 2608 1/8-minute intervals
cutpoint <- 5
ruge <- transform(ruge, yy01 = ifelse(yy <= cutpoint, 0, 1))
fit <- vglm(yy01 ~ 1, binomialff(link=pordlink(cutpoint=cutpoint)), ruge)
coef(fit, matrix = TRUE)
exp(coef(fit))

Another example
pdata <- data.frame(x2 = sort(runif(nn <- 1000)))
pdata <- transform(pdata, x3 = runif(nn))
pdata <- transform(pdata, mymu = exp(3 + 1 * x2 - 2 * x3))
pdata <- transform(pdata, y1 = rpois(nn, lambda = mymu))
cutpoints <- c(-Inf, 10, 20, Inf)
pdata <- transform(pdata, cuty = Cut(y1, breaks = cutpoints))
#\ dontrun{ with(pdata, plot(x2, x3, col = cuty, pch = as.character(cuty))) }
with(pdata, table(cuty) / sum(table(cuty)))
fit <- vglm(cuty ~ x2 + x3, data = pdata, trace = TRUE,

cumulative(reverse = TRUE,
parallel = TRUE,
link = pordlink(cutpoint = cutpoints[2:3]),

posbernoulli.b 639

multiple.responses = TRUE))
head(depvar(fit))
head(fitted(fit))
head(predict(fit))
coef(fit)
coef(fit, matrix = TRUE)
constraints(fit)
fit@misc$earg

End(Not run)

posbernoulli.b Positive Bernoulli Family Function with Behavioural Effects

Description

Fits a GLM-/GAM-like model to multiple Bernoulli responses where each row in the capture his-
tory matrix response has at least one success (capture). Capture history behavioural effects are
accommodated.

Usage

posbernoulli.b(link = "logitlink", drop.b = FALSE ~ 1,
type.fitted = c("likelihood.cond", "mean.uncond"), I2 = FALSE,
ipcapture = NULL, iprecapture = NULL,
p.small = 1e-4, no.warning = FALSE)

Arguments

link, drop.b, ipcapture, iprecapture

See CommonVGAMffArguments for information about these arguments. By de-
fault the parallelism assumption does not apply to the intercept. With an intercept-
only model setting drop.b = TRUE ~ 1 results in the M0/Mh model.

I2 Logical. This argument is used for terms that are not parallel. If TRUE then
the constraint matrix diag(2) (the general default constraint matrix in VGAM)
is used, else cbind(0:1, 1). The latter means the first element/column corre-
sponds to the behavioural effect. Consequently it and its standard error etc. can
be accessed directly without subtracting two quantities.

type.fitted Details at posbernoulli.tb.
p.small, no.warning

See posbernoulli.t.

Details

This model (commonly known as Mb/Mbh in the capture–recapture literature) operates on a cap-
ture history matrix response of 0s and 1s (n × τ). See posbernoulli.t for details, e.g., common
assumptions with other models. Once an animal is captured for the first time, it is marked/tagged

640 posbernoulli.b

so that its future capture history can be recorded. The effect of the recapture probability is mod-
elled through a second linear/additive predictor. It is well-known that some species of animals
are affected by capture, e.g., trap-shy or trap-happy. This VGAM family function does allow
the capture history to be modelled via such behavioural effects. So does posbernoulli.tb but
posbernoulli.t cannot.

The number of linear/additive predictors is M = 2, and the default links are (logit pc, logit pr)
T

where pc is the probability of capture and pr is the probability of recapture. The fitted value returned
is of the same dimension as the response matrix, and depends on the capture history: prior to being
first captured, it is pcapture. Afterwards, it is precapture.

By default, the constraint matrices for the intercept term and the other covariates are set up so
that pr differs from pc by a simple binary effect, on a logit scale. However, this difference (the
behavioural effect) is more directly estimated by having I2 = FALSE. Then it allows an estimate
of the trap-happy/trap-shy effect; these are positive/negative values respectively. If I2 = FALSE
then the (nonstandard) constraint matrix used is cbind(0:1, 1), meaning the first element can be
interpreted as the behavioural effect.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The dependent variable is not scaled to row proportions. This is the same as posbernoulli.t and
posbernoulli.tb but different from posbinomial and binomialff.

Author(s)

Thomas W. Yee.

References

See posbernoulli.t.

See Also

posbernoulli.t and posbernoulli.tb (including estimatingN), deermice, dposbern, rposbern,
posbinomial, aux.posbernoulli.t, prinia.

Examples

deermice data ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fit a M_b model
M.b <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1,

posbernoulli.b, data = deermice, trace = TRUE)
coef(M.b)["(Intercept):1"] # Behavioural effect on logit scale
coef(M.b, matrix = TRUE)
constraints(M.b, matrix = TRUE)
summary(M.b, presid = FALSE)

posbernoulli.b 641

Fit a M_bh model
M.bh <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight,

posbernoulli.b, data = deermice, trace = TRUE)
coef(M.bh, matrix = TRUE)
coef(M.bh)["(Intercept):1"] # Behavioural effect on logit scale
(2,1) elt is for the behavioural effect:
constraints(M.bh)[["(Intercept)"]]
summary(M.bh, presid = FALSE) # Significant trap-happy effect
Approx. 95 percent confidence for the behavioural effect:
SE.M.bh <- coef(summary(M.bh))["(Intercept):1", "Std. Error"]
coef(M.bh)["(Intercept):1"] + c(-1, 1) * 1.96 * SE.M.bh

Fit a M_h model
M.h <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight,

posbernoulli.b(drop.b = TRUE ~ sex + weight),
data = deermice, trace = TRUE)

coef(M.h, matrix = TRUE)
constraints(M.h, matrix = TRUE)
summary(M.h, presid = FALSE)

Fit a M_0 model
M.0 <- vglm(cbind(y1 + y2 + y3 + y4 + y5 + y6,

6 - y1 - y2 - y3 - y4 - y5 - y6) ~ 1,
posbinomial, data = deermice, trace = TRUE)

coef(M.0, matrix = TRUE)
summary(M.0, presid = FALSE)

Simulated data set ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
set.seed(123); nTimePts <- 5; N <- 1000 # N is the popn size
pdata <- rposbern(N, nTimePts=nTimePts, pvars=2, is.popn=TRUE)
nrow(pdata) # < N (because some animals were never captured)
The truth: xcoeffs are c(-2, 1, 2) and cap.effect = +1

M.bh.2 <- vglm(cbind(y1, y2, y3, y4, y5) ~ x2,
posbernoulli.b, data = pdata, trace = TRUE)

coef(M.bh.2)
coef(M.bh.2, matrix = TRUE)
constraints(M.bh.2, matrix = TRUE)
summary(M.bh.2, presid = FALSE)
head(depvar(M.bh.2)) # Capture history response matrix
head(M.bh.2@extra$cap.hist1) # Info on its capture history
head(M.bh.2@extra$cap1) # When it was first captured
head(fitted(M.bh.2)) # Depends on capture history
(trap.effect <- coef(M.bh.2)["(Intercept):1"]) # Should be +1
head(model.matrix(M.bh.2, type = "vlm"), 21)
head(pdata)
summary(pdata)
dim(depvar(M.bh.2))
vcov(M.bh.2)

M.bh.2@extra$N.hat # Population size estimate; should be about N

642 posbernoulli.t

M.bh.2@extra$SE.N.hat # SE of the estimate of the population size
An approximate 95 percent confidence interval:
round(M.bh.2@extra$N.hat + c(-1, 1)*1.96* M.bh.2@extra$SE.N.hat, 1)

posbernoulli.t Positive Bernoulli Family Function with Time Effects

Description

Fits a GLM/GAM-like model to multiple Bernoulli responses where each row in the capture history
matrix response has at least one success (capture). Sampling occasion effects are accommodated.

Usage

posbernoulli.t(link = "logitlink", parallel.t = FALSE ~ 1,
iprob = NULL, p.small = 1e-4, no.warning = FALSE,
type.fitted = c("probs", "onempall0"))

Arguments

link, iprob, parallel.t

See CommonVGAMffArguments for information. By default, the parallelism as-
sumption does not apply to the intercept. Setting parallel.t = FALSE ~ -1, or
equivalently parallel.t = FALSE ~ 0, results in the M0/Mh model.

p.small, no.warning

A small probability value used to give a warning for the Horvitz–Thompson
estimator. Any estimated probability value less than p.small will result in a
warning, however, setting no.warning = TRUE will suppress this warning if it
occurs. This is because the Horvitz-Thompson estimator is the sum of the recip-
rocal of such probabilities, therefore any probability that is too close to 0 will
result in an unstable estimate.

type.fitted See CommonVGAMffArguments for information. The default is to return a matrix
of probabilities. If "onempall0" is chosen then the the probability that each
animal is captured at least once in the course of the study is returned. The
abbreviation stands for one minus the probability of all 0s, and the quantity
appears in the denominator of the usual formula.

Details

These models (commonly known as Mt or Mth (no prefix h means it is an intercept-only model) in
the capture–recapture literature) operate on a capture history matrix response of 0s and 1s (n× τ).
Each column is a sampling occasion where animals are potentially captured (e.g., a field trip), and
each row is an individual animal. Capture is a 1, else a 0. No removal of animals from the population
is made (closed population), e.g., no immigration or emigration. Each row of the response matrix
has at least one capture. Once an animal is captured for the first time, it is marked/tagged so that
its future capture history can be recorded. Then it is released immediately back into the population
to remix. It is released immediately after each recapture too. It is assumed that the animals are

posbernoulli.t 643

independent and that, for a given animal, each sampling occasion is independent. And animals do
not lose their marks/tags, and all marks/tags are correctly recorded.

The number of linear/additive predictors is equal to the number of sampling occasions, i.e., M = τ ,
say. The default link functions are (logit p1, . . . , logit pτ)T where each pj denotes the probability
of capture at time point j. The fitted value returned is a matrix of probabilities of the same dimension
as the response matrix.

A conditional likelihood is maximized here using Fisher scoring. Each sampling occasion has a
separate probability that is modelled here. The probabilities can be constrained to be equal by
setting parallel.t = FALSE ~ 0; then the results are effectively the same as posbinomial except
the binomial constants are not included in the log-likelihood. If parallel.t = TRUE ~ 0 then each
column should have at least one 1 and at least one 0.

It is well-known that some species of animals are affected by capture, e.g., trap-shy or trap-happy.
This VGAM family function does not allow any behavioral effect to be modelled (posbernoulli.b
and posbernoulli.tb do) because the denominator of the likelihood function must be free of
behavioral effects.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Upon fitting the extra slot has a (list) component called N.hat which is a point estimate of the
population size N (it is the Horvitz-Thompson (1952) estimator). And there is a component called
SE.N.hat containing its standard error.

Note

The weights argument of vglm need not be assigned, and the default is just a matrix of ones.

Fewer numerical problems are likely to occur for parallel.t = TRUE. Data-wise, each sampling
occasion may need at least one success (capture) and one failure. Less stringent conditions in the
data are needed when parallel.t = TRUE. Ditto when parallelism is applied to the intercept too.

The response matrix is returned unchanged; i.e., not converted into proportions like posbinomial.
If the response matrix has column names then these are used in the labelling, else prob1, prob2,
etc. are used.

Using AIC() or BIC() to compare posbernoulli.t, posbernoulli.b, posbernoulli.tb models
with a posbinomial model requires posbinomial(omit.constant = TRUE) because one needs
to remove the normalizing constant from the log-likelihood function. See posbinomial for an
example.

Author(s)

Thomas W. Yee.

References

Huggins, R. M. (1991). Some practical aspects of a conditional likelihood approach to capture
experiments. Biometrics, 47, 725–732.

644 posbernoulli.t

Huggins, R. M. and Hwang, W.-H. (2011). A review of the use of conditional likelihood in capture–
recapture experiments. International Statistical Review, 79, 385–400.

Otis, D. L. and Burnham, K. P. and White, G. C. and Anderson, D. R. (1978). Statistical inference
from capture data on closed animal populations, Wildlife Monographs, 62, 3–135.

Yee, T. W. and Stoklosa, J. and Huggins, R. M. (2015). The VGAM package for capture–recapture
data using the conditional likelihood. Journal of Statistical Software, 65, 1–33. doi:10.18637/
jss.v065.i05.

See Also

posbernoulli.b, posbernoulli.tb, Select, deermice, Huggins89table1, Huggins89.t1, dposbern,
rposbern, posbinomial, AICvlm, BICvlm, prinia.

Examples

M.t <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1, posbernoulli.t,
data = deermice, trace = TRUE)

coef(M.t, matrix = TRUE)
constraints(M.t, matrix = TRUE)
summary(M.t, presid = FALSE)

M.h.1 <- vglm(Select(deermice, "y") ~ sex + weight, trace = TRUE,
posbernoulli.t(parallel.t = FALSE ~ -1), deermice)

coef(M.h.1, matrix = TRUE)
constraints(M.h.1)
summary(M.h.1, presid = FALSE)
head(depvar(M.h.1)) # Response capture history matrix
dim(depvar(M.h.1))

M.th.2 <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight,
posbernoulli.t(parallel.t = FALSE), deermice)

Test the parallelism assumption wrt sex and weight:
lrtest(M.h.1, M.th.2)
coef(M.th.2)
coef(M.th.2, matrix = TRUE)
constraints(M.th.2)
summary(M.th.2, presid = FALSE)
head(model.matrix(M.th.2, type = "vlm"), 21)

M.th.2@extra$N.hat # Population size estimate; should be about N
M.th.2@extra$SE.N.hat # SE of the estimate of the population size
An approximate 95 percent confidence interval:
round(M.th.2@extra$N.hat + c(-1, 1)*1.96* M.th.2@extra$SE.N.hat, 1)

Fit a M_h model, effectively the parallel M_t model:
deermice <- transform(deermice, ysum = y1 + y2 + y3 + y4 + y5 + y6,

tau = 6)
M.h.3 <- vglm(cbind(ysum, tau - ysum) ~ sex + weight,

posbinomial(omit.constant = TRUE), data = deermice)
max(abs(coef(M.h.1) - coef(M.h.3))) # Should be zero
Difference is due to the binomial constants:

https://doi.org/10.18637/jss.v065.i05
https://doi.org/10.18637/jss.v065.i05

posbernoulli.tb 645

logLik(M.h.3) - logLik(M.h.1)

posbernoulli.tb Positive Bernoulli Family Function with Time and Behavioural Effects

Description

Fits a GLM/GAM-like model to multiple Bernoulli responses where each row in the capture history
matrix response has at least one success (capture). Sampling occasion effects and behavioural
effects are accommodated.

Usage

posbernoulli.tb(link = "logitlink", parallel.t = FALSE ~ 1,
parallel.b = FALSE ~ 0, drop.b = FALSE ~ 1,
type.fitted = c("likelihood.cond", "mean.uncond"),
imethod = 1, iprob = NULL,
p.small = 1e-4, no.warning = FALSE,
ridge.constant = 0.0001, ridge.power = -4)

Arguments

link, imethod, iprob

See CommonVGAMffArguments for information.
parallel.t, parallel.b, drop.b

A logical, or formula with a logical as the response. See CommonVGAMffArguments
for information. The parallel.-type arguments specify whether the constraint
matrices have a parallelism assumption for the temporal and behavioural ef-
fects. Argument parallel.t means parallel with respect to time, and matches
the same argument name in posbernoulli.t.
Suppose the model is intercept-only. Setting parallel.t = FALSE ~ 0 results in
the Mb model. Setting drop.b = FALSE ~ 0 results in the Mt model because it
drops columns off the constraint matrices corresponding to any behavioural ef-
fect. Setting parallel.t = FALSE ~ 0 and setting parallel.b = FALSE ~ 0 re-
sults in the Mb model. Setting parallel.t = FALSE ~ 0, parallel.b = FALSE
~ 0 and drop.b = FALSE ~ 0 results in the M0 model. Note the default for
parallel.t and parallel.b may be unsuitable for data sets which have a large
τ because of the large number of parameters; it might be too flexible. If it is de-
sired to have the behaviour affect some of the other covariates then set drop.b
= TRUE ~ 0.
The default model has a different intercept for each sampling occasion, a time-
parallelism assumption for all other covariates, and a dummy variable represent-
ing a single behavioural effect (also in the intercept).
The most flexible model is to set parallel.b = TRUE ~ 0, parallel.t = TRUE ~
0 and drop.b = TRUE ~ 0. This means that all possible temporal and behavioural
effects are estimated, for the intercepts and other covariates. Such a model is not
recommended; it will contain a lot of paramters.

646 posbernoulli.tb

type.fitted Character, one of the choices for the type of fitted value returned. The default is
the first one. Partial matching is okay. For "likelihood.cond": the probability
defined by the conditional likelihood. For "mean.uncond": the unconditional
mean, which should agree with colMeans applied to the response matrix for
intercept-only models.

ridge.constant, ridge.power

Determines the ridge parameters at each IRLS iteration. They are the constant
and power (exponent) for the ridge adjustment for the working weight matrices
(the capture probability block matrix, hence the first τ diagonal values). At
iteration a of the IRLS algorithm a positive value is added to the first τ diagonal
elements of the working weight matrices to make them positive-definite. This
adjustment is the mean of the diagonal elements of wz multipled by K × ap

where K is ridge.constant and p is ridge.power. This is always positive but
decays to zero as iterations proceed (provided p is negative etc.).

p.small, no.warning

See posbernoulli.t.

Details

This model (commonly known as Mtb/Mtbh in the capture–recapture literature) operates on a re-
sponse matrix of 0s and 1s (n × τ). See posbernoulli.t for information that is in common. It
allows time and behavioural effects to be modelled.

Evidently, the expected information matrix (EIM) seems not of full rank (especially in early it-
erations), so ridge.constant and ridge.power are used to try fix up the problem. The default
link functions are (logit pc1, . . . , logit pcτ , logit pr2, . . . , logit prτ)T where the subscript c denotes
capture, the subscript r denotes recapture, and it is not possible to recapture the animal at sampling
occasion 1. ThusM = 2τ−1. The parameters are currently prefixed by pcapture and precapture
for the capture and recapture probabilities. This VGAM family function may be further modified
in the future.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

It is a good idea to apply the parallelism assumption to each sampling occasion except possibly
with respect to the intercepts. Also, a simple behavioural effect such as being modelled using the
intercept is recommended; if the behavioural effect is not parallel and/or allowed to apply to other
covariates then there will probably be too many parameters, and hence, numerical problems. See
M_tbh.1 below.

It is a good idea to monitor convergence. Simpler models such as the M0/Mh models are best fitted
with posbernoulli.t or posbernoulli.b or posbinomial.

Author(s)

Thomas W. Yee.

posbernoulli.tb 647

References

See posbernoulli.t.

See Also

posbernoulli.b (including N.hat), posbernoulli.t, posbinomial, Select, fill1, Huggins89table1,
Huggins89.t1, deermice, prinia.

Examples

Not run:
Example 1: simulated data
nTimePts <- 5 # (aka tau == # of sampling occasions)
nnn <- 1000 # Number of animals
pdata <- rposbern(n = nnn, nTimePts = nTimePts, pvars = 2)
dim(pdata); head(pdata)

M_tbh.1 <- vglm(cbind(y1, y2, y3, y4, y5) ~ x2,
posbernoulli.tb, data = pdata, trace = TRUE)

coef(M_tbh.1) # First element is the behavioural effect
coef(M_tbh.1, matrix = TRUE)
constraints(M_tbh.1, matrix = TRUE)
summary(M_tbh.1, presid = FALSE) # Std errors are approximate
head(fitted(M_tbh.1))
head(model.matrix(M_tbh.1, type = "vlm"), 21)
dim(depvar(M_tbh.1))

M_tbh.2 <- vglm(cbind(y1, y2, y3, y4, y5) ~ x2,
posbernoulli.tb(parallel.t = FALSE ~ 0),
data = pdata, trace = TRUE)

coef(M_tbh.2) # First element is the behavioural effect
coef(M_tbh.2, matrix = TRUE)
constraints(M_tbh.2, matrix = TRUE)
summary(M_tbh.2, presid = FALSE) # Std errors are approximate
head(fitted(M_tbh.2))
head(model.matrix(M_tbh.2, type = "vlm"), 21)
dim(depvar(M_tbh.2))

Example 2: deermice subset data
fit1 <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight,

posbernoulli.t, data = deermice, trace = TRUE)
coef(fit1)
coef(fit1, matrix = TRUE)
constraints(fit1, matrix = TRUE)
summary(fit1, presid = FALSE) # Standard errors are approximate

fit1 is the same as Fit1 (a M_{th} model):
Fit1 <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight,

posbernoulli.tb(drop.b = TRUE ~ sex + weight,
parallel.t = TRUE), # But not for the intercept

data = deermice, trace = TRUE)
constraints(Fit1)

648 posbernUC

End(Not run)

posbernUC Positive Bernoulli Sequence Model

Description

Density, and random generation for multiple Bernoulli responses where each row in the response
matrix has at least one success.

Usage

rposbern(n, nTimePts = 5, pvars = length(xcoeff),
xcoeff = c(-2, 1, 2), Xmatrix = NULL, cap.effect = 1,
is.popn = FALSE, link = "logitlink", earg.link = FALSE)

dposbern(x, prob, prob0 = prob, log = FALSE)

Arguments

x response vector or matrix. Should only have 0 and 1 values, at least two columns,
and each row should have at least one 1.

nTimePts Number of sampling occasions. Called τ in posbernoulli.b and posbernoulli.t.
n number of observations. Usually a single positive integer, else the length of the

vector is used. See argument is.popn.
is.popn Logical. If TRUE then argument n is the population size and what is returned

may have substantially less rows than n. That is, if an animal has at least one
one in its sequence then it is returned, else that animal is not returned because it
never was captured.

Xmatrix Optional X matrix. If given, the X matrix is not generated internally.
cap.effect Numeric, the capture effect. Added to the linear predictor if captured previously.

A positive or negative value corresponds to a trap-happy and trap-shy effect
respectively.

pvars Number of other numeric covariates that make up the linear predictor. Labelled
x1, x2, . . . , where the first is an intercept, and the others are independent stan-
dard runif random variates. The first pvars elements of xcoeff are used.

xcoeff The regression coefficients of the linear predictor. These correspond to x1, x2,
. . . , and the first is for the intercept. The length of xcoeff must be at least
pvars.

link, earg.link

The former is used to generate the probabilities for capture at each occasion.
Other details at CommonVGAMffArguments.

prob, prob0 Matrix of probabilities for the numerator and denominators respectively. The
default does not correspond to the Mb model since the Mb model has a denom-
inator which involves the capture history.

log Logical. Return the logarithm of the answer?

posbinomial 649

Details

The form of the conditional likelihood is described in posbernoulli.b and/or posbernoulli.t
and/or posbernoulli.tb. The denominator is equally shared among the elements of the matrix x.

Value

rposbern returns a data frame with some attributes. The function generates random deviates (τ
columns labelled y1, y2, . . .) for the response. Some indicator columns are also included (those
starting with ch are for previous capture history). The default setting corresponds to a Mbh model
that has a single trap-happy effect. Covariates x1, x2, . . . have the same affect on capture/recapture
at every sampling occasion (see the argument parallel.t in, e.g., posbernoulli.tb).

The function dposbern gives the density,

Note

The r-type function is experimental only and does not follow the usual conventions of r-type R
functions. It may change a lot in the future. The d-type function is more conventional and is less
likely to change.

Author(s)

Thomas W. Yee.

See Also

posbernoulli.tb, posbernoulli.b, posbernoulli.t.

Examples

rposbern(n = 10)
attributes(pdata <- rposbern(n = 100))
M.bh <- vglm(cbind(y1, y2, y3, y4, y5) ~ x2 + x3,

posbernoulli.b(I2 = FALSE), pdata, trace = TRUE)
constraints(M.bh)
summary(M.bh)

posbinomial Positive Binomial Distribution Family Function

Description

Fits a positive binomial distribution.

Usage

posbinomial(link = "logitlink", multiple.responses = FALSE,
parallel = FALSE, omit.constant = FALSE, p.small = 1e-4,
no.warning = FALSE, zero = NULL)

650 posbinomial

Arguments

link, multiple.responses, parallel, zero

Details at CommonVGAMffArguments.

omit.constant Logical. If TRUE then the constant (lchoose(size, size * yprop) is omitted
from the loglikelihood calculation. If the model is to be compared using
AIC() or BIC() (see AICvlm or BICvlm) to the likes of posbernoulli.tb etc.
then it is important to set omit.constant = TRUE because all models then will
not have any normalizing constants in the likelihood function. Hence they be-
come comparable. This is because the M0 Otis et al. (1978) model coincides
with posbinomial(). See below for an example. Also see posbernoulli.t
regarding estimating the population size (N.hat and SE.N.hat) if the number of
trials is the same for all observations.

p.small, no.warning

See posbernoulli.t.

Details

The positive binomial distribution is the ordinary binomial distribution but with the probability of
zero being zero. Thus the other probabilities are scaled up (i.e., divided by 1 − P (Y = 0)). The
fitted values are the ordinary binomial distribution fitted values, i.e., the usual mean.

In the capture–recapture literature this model is called the M0 if it is an intercept-only model.
Otherwise it is called the Mh when there are covariates. It arises from a sum of a sequence of τ -
Bernoulli random variates subject to at least one success (capture). Here, each animal has the same
probability of capture or recapture, regardless of the τ sampling occasions. Independence between
animals and between sampling occasions etc. is assumed.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

Under- or over-flow may occur if the data is ill-conditioned.

Note

The input for this family function is the same as binomialff.

If multiple.responses = TRUE then each column of the matrix response should be a count (the
number of successes), and the weights argument should be a matrix of the same dimension as the
response containing the number of trials. If multiple.responses = FALSE then the response input
should be the same as binomialff.

Yet to be done: a quasi.posbinomial() which estimates a dispersion parameter.

Author(s)

Thomas W. Yee

Posgeom 651

References

Otis, D. L. et al. (1978). Statistical inference from capture data on closed animal populations,
Wildlife Monographs, 62, 3–135.

Patil, G. P. (1962). Maximum likelihood estimation for generalised power series distributions and
its application to a truncated binomial distribution. Biometrika, 49, 227–237.

Pearson, K. (1913). A Monograph on Albinism in Man. Drapers Company Research Memoirs.

See Also

posbernoulli.b, posbernoulli.t, posbernoulli.tb, binomialff, AICvlm, BICvlm, simulate.vlm.

Examples

Albinotic children in families with 5 kids (from Patil, 1962) ,,,,
albinos <- data.frame(y = c(rep(1, 25), rep(2, 23), rep(3, 10), 4, 5),

n = rep(5, 60))
fit1 <- vglm(cbind(y, n-y) ~ 1, posbinomial, albinos, trace = TRUE)
summary(fit1)
Coef(fit1) # = MLE of p = 0.3088
head(fitted(fit1))
sqrt(vcov(fit1, untransform = TRUE)) # SE = 0.0322

Fit a M_0 model (Otis et al. 1978) to the deermice data ,,,,,,,,,,
M.0 <- vglm(cbind(y1 + y2 + y3 + y4 + y5 + y6,

6 - y1 - y2 - y3 - y4 - y5 - y6) ~ 1, trace = TRUE,
posbinomial(omit.constant = TRUE), data = deermice)

coef(M.0, matrix = TRUE)
Coef(M.0)
constraints(M.0, matrix = TRUE)
summary(M.0)
c(N.hat = M.0@extra$N.hat, # As tau = 6, i.e., 6 Bernoulli trials

SE.N.hat = M.0@extra$SE.N.hat) # per obsn is the same for each obsn

Compare it to the M_b using AIC and BIC
M.b <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1, trace = TRUE,

posbernoulli.b, data = deermice)
sort(c(M.0 = AIC(M.0), M.b = AIC(M.b))) # Ok since omit.constant=TRUE
sort(c(M.0 = BIC(M.0), M.b = BIC(M.b))) # Ok since omit.constant=TRUE

Posgeom Positive-Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the positive-geometric
distribution.

652 Posgeom

Usage

dposgeom(x, prob, log = FALSE)
pposgeom(q, prob)
qposgeom(p, prob)
rposgeom(n, prob)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Fed into runif.

prob vector of probabilities of success (of an ordinary geometric distribution). Short
vectors are recycled.

log logical.

Details

The positive-geometric distribution is a geometric distribution but with the probability of a zero
being zero. The other probabilities are scaled to add to unity. The mean therefore is 1/prob.

As prob decreases, the positive-geometric and geometric distributions become more similar. Like
similar functions for the geometric distribution, a zero value of prob is not permitted here.

Value

dposgeom gives the density, pposgeom gives the distribution function, qposgeom gives the quantile
function, and rposgeom generates random deviates.

Author(s)

T. W. Yee

See Also

zageometric, zigeometric, rgeom.

Examples

prob <- 0.75; y <- rposgeom(n = 1000, prob)
table(y)
mean(y) # Sample mean
1 / prob # Population mean

(ii <- dposgeom(0:7, prob))
cumsum(ii) - pposgeom(0:7, prob) # Should be 0s
table(rposgeom(100, prob))

table(qposgeom(runif(1000), prob))
round(dposgeom(1:10, prob) * 1000) # Should be similar

posnegbinomial 653

Not run:
x <- 0:5
barplot(rbind(dposgeom(x, prob), dgeom(x, prob)),

beside = TRUE, col = c("blue", "orange"),
main = paste("Positive geometric(", prob, ") (blue) vs",
" geometric(", prob, ") (orange)", sep = ""),
names.arg = as.character(x), las = 1, lwd = 2)

End(Not run)

posnegbinomial Positive Negative Binomial Distribution Family Function

Description

Maximum likelihood estimation of the two parameters of a positive negative binomial distribution.

Usage

posnegbinomial(zero = "size",
type.fitted = c("mean", "munb", "prob0"),
mds.min = 0.001, nsimEIM = 500, cutoff.prob = 0.999,
eps.trig = 1e-07, max.support = 4000, max.chunk.MB = 30,
lmunb = "loglink", lsize = "loglink", imethod = 1,
imunb = NULL, iprobs.y = NULL,
gprobs.y = ppoints(8), isize = NULL,
gsize.mux = exp(c(-30, -20, -15, -10, -6:3)))

Arguments

lmunb Link function applied to the munb parameter, which is the mean µnb of an ordi-
nary negative binomial distribution. See Links for more choices.

lsize Parameter link function applied to the dispersion parameter, called k. See Links
for more choices.

isize Optional initial value for k, an index parameter. The value 1/k is known as a
dispersion parameter. If failure to converge occurs try different values (and/or
use imethod). If necessary this vector is recycled to length equal to the number
of responses. A value NULL means an initial value for each response is computed
internally using a range of values.

nsimEIM, zero, eps.trig

See CommonVGAMffArguments.
mds.min, iprobs.y, cutoff.prob

Similar to negbinomial.
imunb, max.support

Similar to negbinomial.
max.chunk.MB, gsize.mux

Similar to negbinomial.

654 posnegbinomial

imethod, gprobs.y

See negbinomial.

type.fitted See CommonVGAMffArguments for details.

Details

The positive negative binomial distribution is an ordinary negative binomial distribution but with
the probability of a zero response being zero. The other probabilities are scaled to sum to unity.

This family function is based on negbinomial and most details can be found there. To avoid confu-
sion, the parameter munb here corresponds to the mean of an ordinary negative binomial distribution
negbinomial. The mean of posnegbinomial is

µnb/(1− p(0))

where p(0) = (k/(k + µnb))
k is the probability an ordinary negative binomial distribution has a

zero value.

The parameters munb and k are not independent in the positive negative binomial distribution,
whereas they are in the ordinary negative binomial distribution.

This function handles multiple responses, so that a matrix can be used as the response. The number
of columns is the number of species, say, and setting zero = -2 means that all species have a k
equalling a (different) intercept only.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

This family function is fragile; at least two cases will lead to numerical problems. Firstly, the
positive-Poisson model corresponds to k equalling infinity. If the data is positive-Poisson or close
to positive-Poisson, then the estimated k will diverge to Inf or some very large value. Secondly,
if the data is clustered about the value 1 because the munb parameter is close to 0 then numerical
problems will also occur. Users should set trace = TRUE to monitor convergence. In the situation
when both cases hold, the result returned (which will be untrustworthy) will depend on the initial
values.

The negative binomial distribution (NBD) is a strictly unimodal distribution. Any data set that
does not exhibit a mode (in the middle) makes the estimation problem difficult. The positive NBD
inherits this feature. Set trace = TRUE to monitor convergence.

See the example below of a data set where posbinomial() fails; the so-called solution is extremely
poor. This is partly due to a lack of a unimodal shape because the number of counts decreases only.
This long tail makes it very difficult to estimate the mean parameter with any certainty. The result
too is that the size parameter is numerically fraught.

This VGAM family function inherits the same warnings as negbinomial. And if k is much less
than 1 then the estimation may be slow.

posnegbinomial 655

Note

If the estimated k is very large then fitting a pospoisson model is a good idea.

If both munb and k are large then it may be necessary to decrease eps.trig and increase max.support
so that the EIMs are positive-definite, e.g., eps.trig = 1e-8 and max.support = Inf.

Author(s)

Thomas W. Yee

References

Barry, S. C. and Welsh, A. H. (2002). Generalized additive modelling and zero inflated count data.
Ecological Modelling, 157, 179–188.

Williamson, E. and Bretherton, M. H. (1964). Tables of the logarithmic series distribution. Annals
of Mathematical Statistics, 35, 284–297.

See Also

gaitdnbinomial, pospoisson, negbinomial, zanegbinomial, rnbinom, CommonVGAMffArguments,
corbet, logff, simulate.vlm.

Examples

pdata <- data.frame(x2 = runif(nn <- 1000))
pdata <- transform(pdata,

y1 = rgaitdnbinom(nn, exp(1), munb.p = exp(0+2*x2), truncate = 0),
y2 = rgaitdnbinom(nn, exp(3), munb.p = exp(1+2*x2), truncate = 0))

fit <- vglm(cbind(y1, y2) ~ x2, posnegbinomial, pdata, trace = TRUE)
coef(fit, matrix = TRUE)
dim(depvar(fit)) # Using dim(fit@y) is not recommended

Another artificial data example
pdata2 <- data.frame(munb = exp(2), size = exp(3)); nn <- 1000
pdata2 <- transform(pdata2,

y3 = rgaitdnbinom(nn, size, munb.p = munb,
truncate = 0))

with(pdata2, table(y3))
fit <- vglm(y3 ~ 1, posnegbinomial, data = pdata2, trace = TRUE)
coef(fit, matrix = TRUE)
with(pdata2, mean(y3)) # Sample mean
head(with(pdata2, munb/(1-(size/(size+munb))^size)), 1) # Popn mean
head(fitted(fit), 3)
head(predict(fit), 3)

Example: Corbet (1943) butterfly Malaya data
fit <- vglm(ofreq ~ 1, posnegbinomial, weights = species, corbet)
coef(fit, matrix = TRUE)
Coef(fit)

656 Posnorm

(khat <- Coef(fit)["size"])
pdf2 <- dgaitdnbinom(with(corbet, ofreq), khat,

munb.p = fitted(fit), truncate = 0)
print(with(corbet,

cbind(ofreq, species, fitted = pdf2*sum(species))), dig = 1)
Not run: with(corbet,
matplot(ofreq, cbind(species, fitted = pdf2*sum(species)), las = 1,

xlab = "Observed frequency (of individual butterflies)",
type = "b", ylab = "Number of species", col = c("blue", "orange"),
main = "blue 1s = observe; orange 2s = fitted"))

End(Not run)

Not run:
Data courtesy of Maxim Gerashchenko causes posbinomial() to fail
pnbd.fail <- data.frame(
y1 = c(1:16, 18:21, 23:28, 33:38, 42, 44, 49:51, 55, 56, 58,
59, 61:63, 66, 73, 76, 94, 107, 112, 124, 190, 191, 244),
ofreq = c(130, 80, 38, 23, 22, 11, 21, 14, 6, 7, 9, 9, 9, 4, 4, 5, 1,

4, 6, 1, 3, 2, 4, 3, 4, 5, 3, 1, 2, 1, 1, 4, 1, 2, 2, 1, 3,
1, 1, 2, 2, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1))

fit.fail <- vglm(y1 ~ 1, weights = ofreq, posnegbinomial,
trace = TRUE, data = pnbd.fail)

End(Not run)

Posnorm The Positive-Normal Distribution

Description

Density, distribution function, quantile function and random generation for the univariate positive-
normal distribution.

Usage

dposnorm(x, mean = 0, sd = 1, log = FALSE)
pposnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qposnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rposnorm(n, mean = 0, sd = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

mean, sd, log, lower.tail, log.p

see rnorm.

posnormal 657

Details

See posnormal, the VGAM family function for estimating the parameters, for the formula of the
probability density function and other details.

Value

dposnorm gives the density, pposnorm gives the distribution function, qposnorm gives the quantile
function, and rposnorm generates random deviates.

Author(s)

T. W. Yee

See Also

posnormal.

Examples

Not run: m <- 0.8; x <- seq(-1, 4, len = 501)
plot(x, dposnorm(x, m = m), type = "l", las = 1, ylim = 0:1,

ylab = paste("posnorm(m = ", m, ", sd = 1)"), col = "blue",
main = "Blue is density, orange is the CDF",
sub = "Purple lines are the 10,20,...,90 percentiles")

abline(h = 0, col = "grey")
lines(x, pposnorm(x, m = m), col = "orange", type = "l")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qposnorm(probs, m = m)
lines(Q, dposnorm(Q, m = m), col = "purple", lty = 3, type = "h")
lines(Q, pposnorm(Q, m = m), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
max(abs(pposnorm(Q, m = m) - probs)) # Should be 0

End(Not run)

posnormal Positive Normal Distribution Family Function

Description

Fits a positive (univariate) normal distribution.

Usage

posnormal(lmean = "identitylink", lsd = "loglink",
eq.mean = FALSE, eq.sd = FALSE,
gmean = exp((-5:5)/2), gsd = exp((-1:5)/2),
imean = NULL, isd = NULL, probs.y = 0.10, imethod = 1,
nsimEIM = NULL, zero = "sd")

658 posnormal

Arguments

lmean, lsd Link functions for the mean and standard deviation parameters of the usual uni-
variate normal distribution. They are µ and σ respectively. See Links for more
choices.

gmean, gsd, imethod

See CommonVGAMffArguments for more information. gmean and gsd currently
operate on a multiplicative scale, on the sample mean and the sample standard
deviation, respectively.

imean, isd Optional initial values for µ and σ. A NULL means a value is computed internally.
See CommonVGAMffArguments for more information.

eq.mean, eq.sd See CommonVGAMffArguments for more information. The fact that these argu-
ments are supported results in default constraint matrices being a permutation
of the identity matrix (effectively trivial constraints).

zero, nsimEIM, probs.y

See CommonVGAMffArguments for information.

Details

The positive normal distribution is the ordinary normal distribution but with the probability of zero
or less being zero. The rest of the probability density function is scaled up. Hence the probability
density function can be written

f(y) =
1√
2πσ

exp

(
−1

2
(y − µ)2/σ2

)
/ [1− Φ(−µ/σ)]

where Φ() is the cumulative distribution function of a standard normal (pnorm). Equivalently, this
is

f(y) =
1

σ

φ((y − µ)/σ)

1− Φ(−µ/σ)

where φ() is the probability density function of a standard normal distribution (dnorm).

The mean of Y is

E(Y) = µ+ σ
φ(−µ/σ)

1− Φ(−µ/σ)
.

This family function handles multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

It is recommended that trace = TRUE be used to monitor convergence; sometimes the estimated
mean is -Inf and the estimated mean standard deviation is Inf, especially when the sample size is
small. Under- or over-flow may occur if the data is ill-conditioned.

pospoisson 659

Note

The response variable for this family function is the same as uninormal except positive values are
required. Reasonably good initial values are needed.

The distribution of the reciprocal of a positive normal random variable is known as an alpha distri-
bution.

Author(s)

Thomas W. Yee

See Also

uninormal, tobit.

Examples

pdata <- data.frame(Mean = 1.0, SD = exp(1.0))
pdata <- transform(pdata, y = rposnorm(n <- 1000, m = Mean, sd = SD))

Not run: with(pdata, hist(y, prob = TRUE, border = "blue",
main = paste("posnorm(m =", Mean[1], ", sd =", round(SD[1], 2),")")))

End(Not run)
fit <- vglm(y ~ 1, posnormal, data = pdata, trace = TRUE)
coef(fit, matrix = TRUE)
(Cfit <- Coef(fit))
mygrid <- with(pdata, seq(min(y), max(y), len = 200))
Not run: lines(mygrid, dposnorm(mygrid, Cfit[1], Cfit[2]), col = "red")

pospoisson Positive Poisson Distribution Family Function

Description

Fits a positive Poisson distribution.

Usage

pospoisson(link = "loglink", type.fitted = c("mean", "lambda", "prob0"),
expected = TRUE, ilambda = NULL, imethod = 1, zero = NULL, gt.1 = FALSE)

Arguments

link Link function for the usual mean (lambda) parameter of an ordinary Poisson
distribution. See Links for more choices.

expected Logical. Fisher scoring is used if expected = TRUE, else Newton-Raphson.
ilambda, imethod, zero

See CommonVGAMffArguments for information.
type.fitted See CommonVGAMffArguments for details.
gt.1 Logical. Enforce lambda > 1? The default is to enforce lambda > 0.

660 pospoisson

Details

The positive Poisson distribution is the ordinary Poisson distribution but with the probability of zero
being zero. Thus the other probabilities are scaled up (i.e., divided by 1 − P [Y = 0]). The mean,
λ/(1− exp(−λ)), can be obtained by the extractor function fitted applied to the object.

A related distribution is the zero-inflated Poisson, in which the probability P [Y = 0] involves
another parameter φ. See zipoisson.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

Under- or over-flow may occur if the data is ill-conditioned.

Note

This family function can handle multiple responses.

Yet to be done: a quasi.pospoisson which estimates a dispersion parameter.

Author(s)

Thomas W. Yee

References

Coleman, J. S. and James, J. (1961). The equilibrium size distribution of freely-forming groups.
Sociometry, 24, 36–45.

See Also

Gaitdpois, gaitdpoisson, posnegbinomial, poissonff, zapoisson, zipoisson, simulate.vlm,
otpospoisson, Pospois.

Examples

Data from Coleman and James (1961)
cjdata <- data.frame(y = 1:6, freq = c(1486, 694, 195, 37, 10, 1))
fit <- vglm(y ~ 1, pospoisson, data = cjdata, weights = freq)
Coef(fit)
summary(fit)
fitted(fit)

pdata <- data.frame(x2 = runif(nn <- 1000)) # Artificial data
pdata <- transform(pdata, lambda = exp(1 - 2 * x2))
pdata <- transform(pdata, y1 = rgaitdpois(nn, lambda, truncate = 0))
with(pdata, table(y1))
fit <- vglm(y1 ~ x2, pospoisson, data = pdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)

powerlink 661

powerlink Power Link Function

Description

Computes the power transformation, including its inverse and the first two derivatives.

Usage

powerlink(theta, power = 1, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

power This denotes the power or exponent.

inverse, deriv, short, tag

Details at Links.

Details

The power link function raises a parameter by a certain value of power. Care is needed because it
is very easy to get numerical problems, e.g., if power=0.5 and theta is negative.

Value

For powerlink with deriv = 0, then theta raised to the power of power. And if inverse = TRUE
then theta raised to the power of 1/power.

For deriv = 1, then the function returns d theta / d eta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Note

Numerical problems may occur for certain combinations of theta and power. Consequently this
link function should be used with caution.

Author(s)

Thomas W. Yee

See Also

Links, loglink.

662 prats

Examples

powerlink("a", power = 2, short = FALSE, tag = TRUE)
powerlink(x <- 1:5)
powerlink(x, power = 2)
max(abs(powerlink(powerlink(x, power = 2),

power = 2, inverse = TRUE) - x)) # Should be 0
powerlink(x <- (-5):5, power = 0.5) # Has NAs

1/2 = 0.5
pdata <- data.frame(y = rbeta(n = 1000, shape1 = 2^2, shape2 = 3^2))
fit <- vglm(y ~ 1, betaR(lshape1 = powerlink(power = 0.5), i1 = 3,

lshape2 = powerlink(power = 0.5), i2 = 7), data = pdata)
t(coef(fit, matrix = TRUE))
Coef(fit) # Useful for intercept-only models
vcov(fit, untransform = TRUE)

prats Pregnant Rats Toxological Experiment Data

Description

A small toxological experiment data. The subjects are fetuses from two randomized groups of
pregnant rats, and they were given a placebo or chemical treatment. The number with birth defects
were recorded, as well as each litter size.

Usage

data(prats)

Format

A data frame with the following variables.

treatment A 0 means control; a 1 means the chemical treatment.

alive, litter.size The number of fetuses alive at 21 days, out of the number of fetuses alive at 4 days
(the litter size).

Details

The data concerns a toxological experiment where the subjects are fetuses from two randomized
groups of 16 pregnant rats each, and they were given a placebo or chemical treatment. The number
with birth defects and the litter size were recorded. Half the rats were fed a control diet during
pregnancy and lactation, and the diet of the other half was treated with a chemical. For each litter
the number of pups alive at 4 days and the number of pups that survived the 21 day lactation period,
were recorded.

predictqrrvglm 663

Source

Weil, C. S. (1970) Selection of the valid number of sampling units and a consideration of their
combination in toxicological studies involving reproduction, teratogenesis or carcinogenesis. Food
and Cosmetics Toxicology, 8(2), 177–182.

References

Williams, D. A. (1975). The Analysis of Binary Responses From Toxicological Experiments In-
volving Reproduction and Teratogenicity. Biometrics, 31(4), 949–952.

See Also

betabinomial, betabinomialff.

Examples

prats
colSums(subset(prats, treatment == 0))
colSums(subset(prats, treatment == 1))
summary(prats)

predictqrrvglm Predict Method for a CQO fit

Description

Predicted values based on a constrained quadratic ordination (CQO) object.

Usage

predictqrrvglm(object, newdata = NULL,
type = c("link", "response", "latvar", "terms"),
se.fit = FALSE, deriv = 0, dispersion = NULL,
extra = object@extra, varI.latvar = FALSE, refResponse = NULL, ...)

Arguments

object Object of class inheriting from "qrrvglm".

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors are used.

type, se.fit, dispersion, extra

See predictvglm.

deriv Derivative. Currently only 0 is handled.
varI.latvar, refResponse

Arguments passed into Coef.qrrvglm.

... Currently undocumented.

664 predictqrrvglm

Details

Obtains predictions from a fitted CQO object. Currently there are lots of limitations of this function;
it is unfinished.

Value

See predictvglm.

Note

This function is not robust and has not been checked fully.

Author(s)

T. W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

See Also

cqo, calibrate.qrrvglm.

Examples

Not run: set.seed(1234)
hspider[, 1:6] <- scale(hspider[, 1:6]) # Standardize the X vars
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute,

Arctperi, Auloalbi, Pardlugu, Pardmont,
Pardnigr, Pardpull, Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, Crow1positive = FALSE, I.toler = TRUE)

sort(deviance(p1, history = TRUE)) # A history of all the iterations
head(predict(p1))

The following should be all 0s:
max(abs(predict(p1, newdata = head(hspider)) - head(predict(p1))))
max(abs(predict(p1, newdata = head(hspider), type = "res")-head(fitted(p1))))

End(Not run)

predictvglm 665

predictvglm Predict Method for a VGLM fit

Description

Predicted values based on a vector generalized linear model (VGLM) object.

Usage

predictvglm(object, newdata = NULL,
type = c("link", "response", "terms"),
se.fit = FALSE, deriv = 0, dispersion = NULL,
untransform = FALSE,
type.fitted = NULL, percentiles = NULL, ...)

Arguments

object Object of class inheriting from "vlm", e.g., vglm.
newdata An optional data frame in which to look for variables with which to predict. If

omitted, the fitted linear predictors are used.
type The value of this argument can be abbreviated. The type of prediction required.

The default is the first one, meaning on the scale of the linear predictors. This
should be a n×M matrix.
The alternative "response" is on the scale of the response variable, and de-
pending on the family function, this may or may not be the mean. Often this
is the fitted value, e.g., fitted(vglmObject) (see fittedvlm). Note that the
response is output from the @linkinv slot, where the eta argument is the n×M
matrix of linear predictors.
The "terms" option returns a matrix giving the fitted values of each term in the
model formula on the linear predictor scale. The terms have been centered.

se.fit logical: return standard errors?
deriv Non-negative integer. Currently this must be zero. Later, this may be imple-

mented for general values.
dispersion Dispersion parameter. This may be inputted at this stage, but the default is to

use the dispersion parameter of the fitted model.
type.fitted Some VGAM family functions have an argument by the same name. If so,

then one can obtain fitted values by setting type = "response" and choosing a
value of type.fitted from what’s available. If type.fitted = "quantiles"
is available then the percentiles argument can be used to specify what quantile
values are requested.

percentiles Used only if type.fitted = "quantiles" is available and is selected.
untransform Logical. Reverses any parameter link function. This argument only works

if type = "link", se.fit = FALSE, deriv = 0. Setting untransform = TRUE
does not work for all VGAM family functions; only ones where there is a one-
to-one correspondence between a simple link function and a simple parameter
might work.

666 predictvglm

... Arguments passed into predictvlm.

Details

Obtains predictions and optionally estimates standard errors of those predictions from a fitted vglm
object.

This code implements smart prediction (see smartpred).

Value

If se.fit = FALSE, a vector or matrix of predictions. If se.fit = TRUE, a list with components

fitted.values Predictions

se.fit Estimated standard errors

df Degrees of freedom

sigma The square root of the dispersion parameter

Warning

This function may change in the future.

Note

Setting se.fit = TRUE and type = "response" will generate an error.

The arguments type.fitted and percentiles are provided in this function to give more conve-
nience than modifying the extra slot directly.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

predict, vglm, predictvlm, smartpred, calibrate.

Examples

Illustrates smart prediction
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ poly(c(scale(let)), 2),

propodds, data = pneumo, trace = TRUE, x.arg = FALSE)
class(fit)

(q0 <- head(predict(fit)))
(q1 <- predict(fit, newdata = head(pneumo)))

prentice74 667

(q2 <- predict(fit, newdata = head(pneumo)))
all.equal(q0, q1) # Should be TRUE
all.equal(q1, q2) # Should be TRUE

head(predict(fit))
head(predict(fit, untransform = TRUE))

p0 <- head(predict(fit, type = "response"))
p1 <- head(predict(fit, type = "response", newdata = pneumo))
p2 <- head(predict(fit, type = "response", newdata = pneumo))
p3 <- head(fitted(fit))
all.equal(p0, p1) # Should be TRUE
all.equal(p1, p2) # Should be TRUE
all.equal(p2, p3) # Should be TRUE

predict(fit, type = "terms", se = TRUE)

prentice74 Prentice (1974) Log-gamma Distribution

Description

Estimation of a 3-parameter log-gamma distribution described by Prentice (1974).

Usage

prentice74(llocation = "identitylink", lscale = "loglink",
lshape = "identitylink", ilocation = NULL, iscale = NULL,
ishape = NULL, imethod = 1,
glocation.mux = exp((-4:4)/2), gscale.mux = exp((-4:4)/2),
gshape = qt(ppoints(6), df = 1), probs.y = 0.3,
zero = c("scale", "shape"))

Arguments

llocation, lscale, lshape

Parameter link function applied to the location parameter a, positive scale pa-
rameter b and the shape parameter q, respectively. See Links for more choices.

ilocation, iscale

Initial value for a and b, respectively. The defaults mean an initial value is
determined internally for each.

ishape Initial value for q. If failure to converge occurs, try some other value. The
default means an initial value is determined internally.

imethod, zero See CommonVGAMffArguments for information.
glocation.mux, gscale.mux, gshape, probs.y

See CommonVGAMffArguments for information.

668 prentice74

Details

The probability density function is given by

f(y; a, b, q) = |q| exp(w/q2 − ew)/(bΓ(1/q2)),

for shape parameter q 6= 0, positive scale parameter b > 0, location parameter a, and all real y.
Here, w = (y − a)q/b+ ψ(1/q2) where ψ is the digamma function, digamma. The mean of Y is a
(returned as the fitted values). This is a different parameterization compared to lgamma3.

Special cases: q = 0 is the normal distribution with standard deviation b, q = −1 is the extreme
value distribution for maximums, q = 1 is the extreme value distribution for minima (Weibull). If
q > 0 then the distribution is left skew, else q < 0 is right skew.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

The special case q = 0 is not handled, therefore estimates of q too close to zero may cause numerical
problems.

Note

The notation used here differs from Prentice (1974): α = a, σ = b. Fisher scoring is used.

Author(s)

T. W. Yee

References

Prentice, R. L. (1974). A log gamma model and its maximum likelihood estimation. Biometrika,
61, 539–544.

See Also

lgamma3, lgamma, gengamma.stacy.

Examples

pdata <- data.frame(x2 = runif(nn <- 1000))
pdata <- transform(pdata, loc = -1 + 2*x2, Scale = exp(1))
pdata <- transform(pdata, y = rlgamma(nn, loc = loc, scale = Scale, shape = 1))
fit <- vglm(y ~ x2, prentice74(zero = 2:3), data = pdata, trace = TRUE)
coef(fit, matrix = TRUE) # Note the coefficients for location

prinia 669

prinia Yellow-bellied Prinia

Description

A data frame with yellow-bellied Prinia.

Usage

data(prinia)

Format

A data frame with 151 observations on the following 23 variables.

length a numeric vector, the scaled wing length (zero mean and unit variance).

fat a numeric vector, fat index; originally 1 (no fat) to 4 (very fat) but converted to 0 (no fat) versus
1 otherwise.

cap a numeric vector, number of times the bird was captured or recaptured.

noncap a numeric vector, number of times the bird was not captured.

y01, y02, y03, y04, y05, y06 a numeric vector of 0s and 1s; for noncapture and capture resp.

y07, y08, y09, y10, y11, y12 same as above.

y13, y14, y15, y16, y17, y18, y19 same as above.

Details

The yellow-bellied Prinia Prinia flaviventris is a common bird species located in Southeast Asia. A
capture–recapture experiment was conducted at the Mai Po Nature Reserve in Hong Kong during
1991, where captured individuals had their wing lengths measured and fat index recorded. A total
of 19 weekly capture occasions were considered, where 151 distinct birds were captured.

More generally, the prinias are a genus of small insectivorous birds, and are sometimes referred
to as wren-warblers. They are a little-known group of the tropical and subtropical Old World, the
roughly 30 species being divided fairly equally between Africa and Asia.

Source

Thanks to Paul Yip for permission to make this data available.

Hwang, W.-H. and Huggins, R. M. (2007) Application of semiparametric regression models in the
analysis of capture–recapture experiments. Australian and New Zealand Journal of Statistics 49,
191–202.

670 probitlink

Examples

head(prinia)
summary(prinia)
rowSums(prinia[, c("cap", "noncap")]) # 19s

Fit a positive-binomial distribution (M.h) to the data:
fit1 <- vglm(cbind(cap, noncap) ~ length + fat, posbinomial, prinia)

Fit another positive-binomial distribution (M.h) to the data:
The response input is suitable for posbernoulli.*-type functions.
fit2 <- vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10,

y11, y12, y13, y14, y15, y16, y17, y18, y19) ~
length + fat, posbernoulli.b(drop.b = FALSE ~ 0), prinia)

probitlink Probit Link Function

Description

Computes the probit transformation, including its inverse and the first two derivatives.

Usage

probitlink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

bvalue See Links.
inverse, deriv, short, tag

Details at Links.

Details

The probit link function is commonly used for parameters that lie in the unit interval. It is the
inverse CDF of the standard normal distribution. Numerical values of theta close to 0 or 1 or out
of range result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the probit of theta, i.e., qnorm(theta) when inverse = FALSE, and if inverse =
TRUE then pnorm(theta).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

profilevglm 671

Note

Numerical instability may occur when theta is close to 1 or 0. One way of overcoming this is to
use bvalue.

In terms of the threshold approach with cumulative probabilities for an ordinal response this link
function corresponds to the univariate normal distribution (see uninormal).

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

Links, logitlink, clogloglink, cauchitlink, Normal.

Examples

p <- seq(0.01, 0.99, by = 0.01)
probitlink(p)
max(abs(probitlink(probitlink(p), inverse = TRUE) - p)) # Should be 0

p <- c(seq(-0.02, 0.02, by = 0.01), seq(0.97, 1.02, by = 0.01))
probitlink(p) # Has NAs
probitlink(p, bvalue = .Machine$double.eps) # Has no NAs

Not run: p <- seq(0.01, 0.99, by = 0.01); par(lwd = (mylwd <- 2))
plot(p, logitlink(p), type = "l", col = "limegreen", ylab = "transformation",

las = 1, main = "Some probability link functions")
lines(p, probitlink(p), col = "purple")
lines(p, clogloglink(p), col = "chocolate")
lines(p, cauchitlink(p), col = "tan")
abline(v = 0.5, h = 0, lty = "dashed")
legend(0.1, 4, c("logitlink", "probitlink", "clogloglink", "cauchitlink"),

col = c("limegreen", "purple", "chocolate", "tan"), lwd = mylwd)
par(lwd = 1)
End(Not run)

profilevglm Method for Profiling vglm Objects

Description

Investigates the profile log-likelihood function for a fitted model of class "vglm".

672 profilevglm

Usage

profilevglm(object, which = 1:p.vlm, alpha = 0.01,
maxsteps = 10, del = zmax/5, trace = NULL, ...)

Arguments

object the original fitted model object.

which the original model parameters which should be profiled. This can be a numeric
or character vector. By default, all parameters are profiled.

alpha highest significance level allowed for the profiling.

maxsteps maximum number of points to be used for profiling each parameter.

del suggested change on the scale of the profile t-statistics. Default value chosen to
allow profiling at about 10 parameter values.

trace logical: should the progress of profiling be reported? The default is to use the
trace value from the fitted object; see vglm.control for details.

... further arguments passed to or from other methods.

Details

This function is called by confintvglm to do the profiling. See also profile.glm for details.

Value

A list of classes "profile.glm" and "profile" with an element for each parameter being profiled.
The elements are data-frames with two variables

par.vals a matrix of parameter values for each fitted model.

tau the profile t-statistics.

Author(s)

T. W. Yee adapted this function from profile.glm, written originally by D. M. Bates and W. N.
Venables. (For S in 1996.) The help file was also used as a template.

See Also

vglm, confintvglm, lrt.stat, profile, profile.glm, plot.profile.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit1 <- vglm(cbind(normal, mild, severe) ~ let, propodds,

trace = TRUE, data = pneumo)
pfit1 <- profile(fit1, trace = FALSE)
confint(fit1, method = "profile", trace = FALSE)

propodds 673

propodds Proportional Odds Model for Ordinal Regression

Description

Fits the proportional odds model to a (preferably ordered) factor response.

Usage

propodds(reverse = TRUE, whitespace = FALSE)

Arguments

reverse, whitespace

Logical. Fed into arguments of the same name in cumulative.

Details

The proportional odds model is a special case from the class of cumulative link models. It involves
a logit link applied to cumulative probabilities and a strong parallelism assumption. A parallelism
assumption means there is less chance of numerical problems because the fitted probabilities will
remain between 0 and 1; however the parallelism assumption ought to be checked, e.g., via a
likelihood ratio test. This VGAM family function is merely a shortcut for cumulative(reverse
= reverse, link = "logit", parallel = TRUE). Please see cumulative for more details on this
model.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

No check is made to verify that the response is ordinal if the response is a matrix; see ordered.

Author(s)

Thomas W. Yee

References

See cumulative.

See Also

cumulative, R2latvar.

674 prplot

Examples

Fit the proportional odds model, McCullagh and Nelder (1989,p.179)
pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo))
depvar(fit) # Sample proportions
weights(fit, type = "prior") # Number of observations
coef(fit, matrix = TRUE)
constraints(fit) # Constraint matrices
summary(fit)

Check that the model is linear in let ----------------------
fit2 <- vgam(cbind(normal, mild, severe) ~ s(let, df = 2), propodds,

pneumo)
Not run: plot(fit2, se = TRUE, lcol = 2, scol = 2)

Check the proportional odds assumption with a LRT ----------
(fit3 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = FALSE, reverse = TRUE), pneumo))
pchisq(deviance(fit) - deviance(fit3),

df = df.residual(fit) - df.residual(fit3), lower.tail = FALSE)
lrtest(fit3, fit) # Easier

prplot Probability Plots for Categorical Data Analysis

Description

Plots the fitted probabilities for some very simplified special cases of categorical data analysis mod-
els.

Usage

prplot(object, control = prplot.control(...), ...)

prplot.control(xlab = NULL, ylab = "Probability", main = NULL, xlim = NULL,
ylim = NULL, lty = par()$lty, col = par()$col, rcol = par()$col,
lwd = par()$lwd, rlwd = par()$lwd, las = par()$las, rug.arg = FALSE, ...)

Arguments

object Currently only an cumulative object. This includes a propodds object since
that VGAM family function is a special case of cumulative.

control List containing some basic graphical parameters.
xlab, ylab, main, xlim, ylim, lty

See par and ... below.

put.smart 675

col, rcol, lwd, rlwd, las, rug.arg

See par and ... below. Arguments starting with r refer to the rug. Argument
rug.arg is logical: add a rug for the distinct values of the explanatory variable?

... Arguments such as xlab which are fed into prplot.control(). Only a small
selection of graphical arguments from par are offered.

Details

For models involving one term in the RHS of the formula this function plots the fitted probabilities
against the single explanatory variable.

Value

The object is returned invisibly with the preplot slot assigned. This is obtained by a call to
plotvgam().

Note

This function is rudimentary.

See Also

cumulative.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo)
M <- npred(fit) # Or fit@misc$M
Not run: prplot(fit)
prplot(fit, lty = 1:M, col = (1:M)+2, rug = TRUE, las = 1,

ylim = c(0, 1), rlwd = 2)
End(Not run)

put.smart Adds a List to the End of the List “.smart.prediction”

Description

Adds a list to the end of the list .smart.prediction in smartpredenv.

Usage

put.smart(smart)

Arguments

smart a list containing parameters needed later for smart prediction.

676 qrrvglm.control

Details

put.smart is used in "write" mode within a smart function. It saves parameters at the time
of model fitting, which are later used for prediction. The function put.smart is the opposite of
get.smart, and both deal with the same contents.

Value

Nothing is returned.

Side Effects

The variable .smart.prediction.counter in smartpredenv is incremented beforehand, and .smart.prediction[[.smart.prediction.counter]]
is assigned the list smart. If the list .smart.prediction in smartpredenv is not long enough to
hold smart, then it is made larger, and the variable .max.smart in smartpredenv is adjusted ac-
cordingly.

See Also

get.smart.

Examples

print(sm.min1)

qrrvglm.control Control Function for QRR-VGLMs (CQO)

Description

Algorithmic constants and parameters for a constrained quadratic ordination (CQO), by fitting a
quadratic reduced-rank vector generalized linear model (QRR-VGLM), are set using this function.
It is the control function for cqo.

Usage

qrrvglm.control(Rank = 1, Bestof = if (length(Cinit)) 1 else 10,
checkwz = TRUE, Cinit = NULL, Crow1positive = TRUE,
epsilon = 1.0e-06, EqualTolerances = NULL, eq.tolerances = TRUE,
Etamat.colmax = 10, FastAlgorithm = TRUE, GradientFunction = TRUE,
Hstep = 0.001, isd.latvar = rep_len(c(2, 1, rep_len(0.5, Rank)),
Rank), iKvector = 0.1, iShape = 0.1, ITolerances = NULL,
I.tolerances = FALSE, maxitl = 40, imethod = 1,
Maxit.optim = 250, MUXfactor = rep_len(7, Rank),
noRRR = ~ 1, Norrr = NA, optim.maxit = 20,
Parscale = if (I.tolerances) 0.001 else 1.0,
sd.Cinit = 0.02, SmallNo = 5.0e-13, trace = TRUE,
Use.Init.Poisson.QO = TRUE,
wzepsilon = .Machine$double.eps^0.75, ...)

qrrvglm.control 677

Arguments

In the following, R is the Rank, M is the number of linear predictors, and S
is the number of responses (species). Thus M = S for binomial and Poisson
responses, and M = 2S for the negative binomial and 2-parameter gamma
distributions.

The numerical rankR of the model, i.e., the number of ordination axes. Must be
an element from the set {1,2,. . . ,min(M ,p2)} where the vector of explanatory
variables x is partitioned into (x1,x2), which is of dimension p1 + p2. The
variables making up x1 are given by the terms in the noRRR argument, and the
rest of the terms comprise x2.

RankBestof Integer. The best of Bestof models fitted is returned. This argument helps guard
against local solutions by (hopefully) finding the global solution from many fits.
The argument has value 1 if an initial value for C is inputted using Cinit.

checkwz logical indicating whether the diagonal elements of the working weight matri-
ces should be checked whether they are sufficiently positive, i.e., greater than
wzepsilon. If not, any values less than wzepsilon are replaced with this value.

Cinit Optional initial C matrix, which must be a p2 by R matrix. The default is to
apply .Init.Poisson.QO() to obtain initial values.

Crow1positive Logical vector of length Rank (recycled if necessary): are the elements of the
first row ofC positive? For example, if Rank is 4, then specifying Crow1positive
= c(FALSE, TRUE) will force C[1, 1] and C[1, 3] to be negative, and C[1, 2] and
C[1, 4] to be positive. This argument allows for a reflection in the ordination
axes because the coefficients of the latent variables are unique up to a sign.

epsilon Positive numeric. Used to test for convergence for GLMs fitted in C. Larger
values mean a loosening of the convergence criterion. If an error code of 3 is
reported, try increasing this value.

eq.tolerances Logical indicating whether each (quadratic) predictor will have equal tolerances.
Having eq.tolerances = TRUE can help avoid numerical problems, especially
with binary data. Note that the estimated (common) tolerance matrix may or
may not be positive-definite. If it is then it can be scaled to the R by R identity
matrix, i.e., made equivalent to I.tolerances = TRUE. Setting I.tolerances
= TRUE will force a common R by R identity matrix as the tolerance matrix to
the data even if it is not appropriate. In general, setting I.tolerances = TRUE is
preferred over eq.tolerances = TRUE because, if it works, it is much faster and
uses less memory. However, I.tolerances = TRUE requires the environmental
variables to be scaled appropriately. See Details for more details.

EqualTolerances

Defunct argument. Use eq.tolerances instead.
Etamat.colmax Positive integer, no smaller than Rank. Controls the amount of memory used by

.Init.Poisson.QO(). It is the maximum number of columns allowed for the
pseudo-response and its weights. In general, the larger the value, the better the
initial value. Used only if Use.Init.Poisson.QO = TRUE.

FastAlgorithm Logical. Whether a new fast algorithm is to be used. The fast algorithm results
in a large speed increases compared to Yee (2004). Some details of the fast
algorithm are found in Appendix A of Yee (2006). Setting FastAlgorithm =
FALSE will give an error.

678 qrrvglm.control

GradientFunction

Logical. Whether optim’s argument gr is used or not, i.e., to compute gradient
values. Used only if FastAlgorithm is TRUE. The default value is usually faster
on most problems.

Hstep Positive value. Used as the step size in the finite difference approximation to the
derivatives by optim.

isd.latvar Initial standard deviations for the latent variables (site scores). Numeric, pos-
itive and of length R (recycled if necessary). This argument is used only if
I.tolerances = TRUE. Used by .Init.Poisson.QO() to obtain initial values
for the constrained coefficients C adjusted to a reasonable value. It adjusts the
spread of the site scores relative to a common species tolerance of 1 for each
ordination axis. A value between 0.5 and 10 is recommended; a value such as
10 means that the range of the environmental space is very large relative to the
niche width of the species. The successive values should decrease because the
first ordination axis should have the most spread of site scores, followed by the
second ordination axis, etc.

iKvector, iShape

Numeric, recycled to length S if necessary. Initial values used for estimat-
ing the positive k and λ parameters of the negative binomial and 2-parameter
gamma distributions respectively. For further information see negbinomial and
gamma2. These arguments override the ik and ishape arguments in negbinomial
and gamma2.

I.tolerances Logical. If TRUE then the (common) tolerance matrix is the R by R identity ma-
trix by definition. Note that having I.tolerances = TRUE implies eq.tolerances
= TRUE, but not vice versa. Internally, the quadratic terms will be treated as off-
sets (in GLM jargon) and so the models can potentially be fitted very efficiently.
However, it is a very good idea to center and scale all numerical variables in the
x2 vector. See Details for more details. The success of I.tolerances = TRUE
often depends on suitable values for isd.latvar and/or MUXfactor.

ITolerances Defunct argument. Use I.tolerances instead.

maxitl Maximum number of times the optimizer is called or restarted. Most users
should ignore this argument.

imethod Method of initialization. A positive integer 1 or 2 or 3 etc. depending on the
VGAM family function. Currently it is used for negbinomial and gamma2 only,
and used within the C.

Maxit.optim Positive integer. Number of iterations given to the function optim at each of the
optim.maxit iterations.

MUXfactor Multiplication factor for detecting large offset values. Numeric, positive and of
length R (recycled if necessary). This argument is used only if I.tolerances
= TRUE. Offsets are −0.5 multiplied by the sum of the squares of all R latent
variable values. If the latent variable values are too large then this will result
in numerical problems. By too large, it is meant that the standard deviation of
the latent variable values are greater than MUXfactor[r] * isd.latvar[r] for
r=1:Rank (this is why centering and scaling all the numerical predictor variables
in x2 is recommended). A value about 3 or 4 is recommended. If failure to
converge occurs, try a slightly lower value.

qrrvglm.control 679

optim.maxit Positive integer. Number of times optim is invoked. At iteration i, the ith value
of Maxit.optim is fed into optim.

noRRR Formula giving terms that are not to be included in the reduced-rank regression
(or formation of the latent variables), i.e., those belong to x1. Those variables
which do not make up the latent variable (reduced-rank regression) correspond
to the B1 matrix. The default is to omit the intercept term from the latent vari-
ables.

Norrr Defunct. Please use noRRR. Use of Norrr will become an error soon.

Parscale Numerical and positive-valued vector of lengthC (recycled if necessary). Passed
into optim(..., control = list(parscale = Parscale)); the elements of C
become C / Parscale. Setting I.tolerances = TRUE results in line searches
that are very large, therefore C has to be scaled accordingly to avoid large step
sizes. See Details for more information. It’s probably best to leave this argu-
ment alone.

sd.Cinit Standard deviation of the initial values for the elements ofC. These are normally
distributed with mean zero. This argument is used only if Use.Init.Poisson.QO
= FALSE and C is not inputted using Cinit.

trace Logical indicating if output should be produced for each iteration. The default
is TRUE because the calculations are numerically intensive, meaning it may take
a long time, so that the user might think the computer has locked up if trace =
FALSE.

SmallNo Positive numeric between .Machine$double.eps and 0.0001. Used to avoid
under- or over-flow in the IRLS algorithm. Used only if FastAlgorithm is
TRUE.

Use.Init.Poisson.QO

Logical. If TRUE then the function .Init.Poisson.QO() is used to obtain initial
values for the canonical coefficients C. If FALSE then random numbers are used
instead.

wzepsilon Small positive number used to test whether the diagonals of the working weight
matrices are sufficiently positive.

... Ignored at present.

Details

Recall that the central formula for CQO is

η = BT1 x1 +Aν +

M∑
m=1

(νTDmν)em

where x1 is a vector (usually just a 1 for an intercept), x2 is a vector of environmental variables,
ν = CTx2 is a R-vector of latent variables, em is a vector of 0s but with a 1 in the mth position.
QRR-VGLMs are an extension of RR-VGLMs and allow for maximum likelihood solutions to
constrained quadratic ordination (CQO) models.

Having I.tolerances = TRUE means all the tolerance matrices are the order-R identity matrix, i.e.,
it forces bell-shaped curves/surfaces on all species. This results in a more difficult optimization
problem (especially for 2-parameter models such as the negative binomial and gamma) because

680 qrrvglm.control

of overflow errors and it appears there are more local solutions. To help avoid the overflow er-
rors, scaling C by the factor Parscale can help enormously. Even better, scaling C by specify-
ing isd.latvar is more understandable to humans. If failure to converge occurs, try adjusting
Parscale, or better, setting eq.tolerances = TRUE (and hope that the estimated tolerance matrix
is positive-definite). To fit an equal-tolerances model, it is firstly best to try setting I.tolerances
= TRUE and varying isd.latvar and/or MUXfactor if it fails to converge. If it still fails to converge
after many attempts, try setting eq.tolerances = TRUE, however this will usually be a lot slower
because it requires a lot more memory.

With a R > 1 model, the latent variables are always uncorrelated, i.e., the variance-covariance
matrix of the site scores is a diagonal matrix.

If setting eq.tolerances = TRUE is used and the common estimated tolerance matrix is positive-
definite then that model is effectively the same as the I.tolerances = TRUE model (the two are
transformations of each other). In general, I.tolerances = TRUE is numerically more unstable and
presents a more difficult problem to optimize; the arguments isd.latvar and/or MUXfactor often
must be assigned some good value(s) (possibly found by trial and error) in order for convergence
to occur. Setting I.tolerances = TRUE forces a bell-shaped curve or surface onto all the species
data, therefore this option should be used with deliberation. If unsuitable, the resulting fit may be
very misleading. Usually it is a good idea for the user to set eq.tolerances = FALSE to see which
species appear to have a bell-shaped curve or surface. Improvements to the fit can often be achieved
using transformations, e.g., nitrogen concentration to log nitrogen concentration.

Fitting a CAO model (see cao) first is a good idea for pre-examining the data and checking whether
it is appropriate to fit a CQO model.

Value

A list with components matching the input names.

Warning

The default value of Bestof is a bare minimum for many datasets, therefore it will be necessary to
increase its value to increase the chances of obtaining the global solution.

Note

When I.tolerances = TRUE it is a good idea to apply scale to all the numerical variables that
make up the latent variable, i.e., those of x2. This is to make them have mean 0, and hence avoid
large offset values which cause numerical problems.

This function has many arguments that are common with rrvglm.control and vglm.control.

It is usually a good idea to try fitting a model with I.tolerances = TRUE first, and if convergence
is unsuccessful, then try eq.tolerances = TRUE and I.tolerances = FALSE. Ordination diagrams
with eq.tolerances = TRUE have a natural interpretation, but with eq.tolerances = FALSE they
are more complicated and requires, e.g., contours to be overlaid on the ordination diagram (see
lvplot.qrrvglm).

In the example below, an equal-tolerances CQO model is fitted to the hunting spiders data. Because
I.tolerances = TRUE, it is a good idea to center all the x2 variables first. Upon fitting the model,
the actual standard deviation of the site scores are computed. Ideally, the isd.latvar argument
should have had this value for the best chances of getting good initial values. For comparison, the
model is refitted with that value and it should run more faster and reliably.

qtplot.gumbel 681

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

cqo, rcqo, Coef.qrrvglm, Coef.qrrvglm-class, optim, binomialff, poissonff, negbinomial,
gamma2.

Examples

Not run: # Poisson CQO with equal tolerances
set.seed(111) # This leads to the global solution
hspider[,1:6] <- scale(hspider[,1:6]) # Good when I.tolerances = TRUE
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr,

Arctlute, Arctperi, Auloalbi,
Pardlugu, Pardmont, Pardnigr,
Pardpull, Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig +
CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, eq.tolerances = TRUE)

sort(deviance(p1, history = TRUE)) # Iteration history

(isd.latvar <- apply(latvar(p1), 2, sd)) # Approx isd.latvar

Refit the model with better initial values
set.seed(111) # This leads to the global solution
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr,

Arctlute, Arctperi, Auloalbi,
Pardlugu, Pardmont, Pardnigr,
Pardpull, Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig +
CoveMoss + CoveHerb + ReflLux,
I.tolerances = TRUE, poissonff, data = hspider,
isd.latvar = isd.latvar) # Note this

sort(deviance(p1, history = TRUE)) # Iteration history

End(Not run)

qtplot.gumbel Quantile Plot for Gumbel Regression

682 qtplot.gumbel

Description

Plots quantiles associated with a Gumbel model.

Usage

qtplot.gumbel(object, show.plot = TRUE,
y.arg = TRUE, spline.fit = FALSE, label = TRUE,
R = object@misc$R, percentiles = object@misc$percentiles,
add.arg = FALSE, mpv = object@misc$mpv,
xlab = NULL, ylab = "", main = "",
pch = par()$pch, pcol.arg = par()$col,
llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd,
tcol.arg = par()$col, tadj = 1, ...)

Arguments

object A VGAM extremes model of the Gumbel type, produced by modelling func-
tions such as vglm and vgam, and with a family function that is either gumbel or
gumbelff.

show.plot Logical. Plot it? If FALSE no plot will be done.

y.arg Logical. Add the raw data on to the plot?

spline.fit Logical. Use a spline fit through the fitted percentiles? This can be useful if
there are large gaps between some values along the covariate.

label Logical. Label the percentiles?

R See gumbel.

percentiles See gumbel.

add.arg Logical. Add the plot to an existing plot?

mpv See gumbel.

xlab Caption for the x-axis. See par.

ylab Caption for the y-axis. See par.

main Title of the plot. See title.

pch Plotting character. See par.

pcol.arg Color of the points. See the col argument of par.

llty.arg Line type. Line type. See the lty argument of par.

lcol.arg Color of the lines. See the col argument of par.

llwd.arg Line width. See the lwd argument of par.

tcol.arg Color of the text (if label is TRUE). See the col argument of par.

tadj Text justification. See the adj argument of par.

... Arguments passed into the plot function when setting up the entire plot. Useful
arguments here include sub and las.

Details

There should be a single covariate such as time. The quantiles specified by percentiles are plotted.

qtplot.lmscreg 683

Value

The object with a list called qtplot in the post slot of object. (If show.plot = FALSE then just
the list is returned.) The list contains components

fitted.values The percentiles of the response, possibly including the MPV.

percentiles The percentiles (small vector of values between 0 and 100.

Note

Unlike gumbel, one cannot have percentiles = NULL.

Author(s)

Thomas W. Yee

See Also

gumbel.

Examples

ymat <- as.matrix(venice[, paste("r", 1:10, sep = "")])
fit1 <- vgam(ymat ~ s(year, df = 3), gumbel(R = 365, mpv = TRUE),

data = venice, trace = TRUE, na.action = na.pass)
head(fitted(fit1))

Not run: par(mfrow = c(1, 1), bty = "l", xpd = TRUE, las = 1)
qtplot(fit1, mpv = TRUE, lcol = c(1, 2, 5), tcol = c(1, 2, 5),

lwd = 2, pcol = "blue", tadj = 0.4, ylab = "Sea level (cm)")

qtplot(fit1, perc = 97, mpv = FALSE, lcol = 3, tcol = 3,
lwd = 2, tadj = 0.4, add = TRUE) -> saved

head(saved@post$qtplot$fitted)

End(Not run)

qtplot.lmscreg Quantile Plot for LMS Quantile Regression

Description

Plots quantiles associated with a LMS quantile regression.

Usage

qtplot.lmscreg(object, newdata = NULL,
percentiles = object@misc$percentiles,
show.plot = TRUE, ...)

684 qtplot.lmscreg

Arguments

object A VGAM quantile regression model, i.e., an object produced by modelling func-
tions such as vglm and vgam with a family function beginning with "lms.", e.g.,
lms.yjn.

newdata Optional data frame for computing the quantiles. If missing, the original data is
used.

percentiles Numerical vector with values between 0 and 100 that specify the percentiles
(quantiles). The default are the percentiles used when the model was fitted.

show.plot Logical. Plot it? If FALSE no plot will be done.
... Graphical parameter that are passed into plotqtplot.lmscreg.

Details

The ‘primary’ variable is defined as the main covariate upon which the regression or smoothing is
performed. For example, in medical studies, it is often the age. In VGAM, it is possible to handle
more than one covariate, however, the primary variable must be the first term after the intercept.

Value

A list with the following components.

fitted.values A vector of fitted percentile values.
percentiles The percentiles used.

Note

plotqtplot.lmscreg does the actual plotting.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

See Also

plotqtplot.lmscreg, deplot.lmscreg, lms.bcn, lms.bcg, lms.yjn.

Examples

Not run:
fit <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero=1), bmi.nz)
qtplot(fit)
qtplot(fit, perc = c(25, 50, 75, 95), lcol = 4, tcol = 4, llwd = 2)

End(Not run)

Qvar 685

Qvar Quasi-variances Preprocessing Function

Description

Takes a vglm fit or a variance-covariance matrix, and preprocesses it for rcim and uninormal so
that quasi-variances can be computed.

Usage

Qvar(object, factorname = NULL, which.linpred = 1,
coef.indices = NULL, labels = NULL,
dispersion = NULL, reference.name = "(reference)", estimates = NULL)

Arguments

object A "vglm" object or a variance-covariance matrix, e.g., vcov(vglm.object).
The former is preferred since it contains all the information needed. If a ma-
trix then factorname and/or coef.indices should be specified to identify the
factor.

which.linpred A single integer from the set 1:M. Specifies which linear predictor to use. Let
the value of which.linpred be called j. Then the factor should appear in that
linear predictor, hence the jth row of the constraint matrix corresponding to the
factor should have at least one nonzero value. Currently the jth row must have
exactly one nonzero value because programming it for more than one nonzero
value is difficult.

factorname Character. If the vglm object contains more than one factor as explanatory vari-
able then this argument should be the name of the factor of interest. If object
is a variance-covariance matrix then this argument should also be specified.

labels Character. Optional, for labelling the variance-covariance matrix.

dispersion Numeric. Optional, passed into vcov() with the same argument name.

reference.name Character. Label for for the reference level.

coef.indices Optional numeric vector of length at least 3 specifying the indices of the factor
from the variance-covariance matrix.

estimates an optional vector of estimated coefficients (redundant if object is a model).

Details

Suppose a factor with L levels is an explanatory variable in a regression model. By default, R treats
the first level as baseline so that its coefficient is set to zero. It estimates the other L − 1 coeffi-
cients, and with its associated standard errors, this is the conventional output. From the complete
variance-covariance matrix one can compute L quasi-variances based on all pairwise difference of
the coefficients. They are based on an approximation, and can be treated as uncorrelated. In min-
imizing the relative (not absolute) errors it is not hard to see that the estimation involves a RCIM
(rcim) with an exponential link function (explink).

686 Qvar

If object is a model, then at least one of factorname or coef.indices must be non-NULL. The
value of coef.indices, if non-NULL, determines which rows and columns of the model’s variance-
covariance matrix to use. If coef.indices contains a zero, an extra row and column are included
at the indicated position, to represent the zero variances and covariances associated with a reference
level. If coef.indices is NULL, then factorname should be the name of a factor effect in the
model, and is used in order to extract the necessary variance-covariance estimates.

Quasi-variances were first implemented in R with qvcalc. This implementation draws heavily from
that.

Value

A L by L matrix whose i-j element is the logarithm of the variance of the ith coefficient minus the
jth coefficient, for all values of i and j. The diagonal elements are abitrary and are set to zero.

The matrix has an attribute that corresponds to the prior weight matrix; it is accessed by uninormal
and replaces the usual weights argument. of vglm. This weight matrix has ones on the off-diagonals
and some small positive number on the diagonals.

Warning

Negative quasi-variances may occur (one of them and only one), though they are rare in practice. If
so then numerical problems may occur. See qvcalc() for more information.

Note

This is an adaptation of qvcalc() in qvcalc. It should work for all vglm models with one linear
predictor, i.e., M = 1. For M > 1 the factor should appear only in one of the linear predictors.

It is important to set maxit to be larger than usual for rcim since convergence is slow. Upon
successful convergence the ith row effect and the ith column effect should be equal. A simple
computation involving the fitted and predicted values allows the quasi-variances to be extracted
(see example below).

A function to plot comparison intervals has not been written here.

Author(s)

T. W. Yee, based heavily on qvcalc() in qvcalc written by David Firth.

References

Firth, D. (2003). Overcoming the reference category problem in the presentation of statistical mod-
els. Sociological Methodology 33, 1–18.

Firth, D. and de Menezes, R. X. (2004). Quasi-variances. Biometrika 91, 65–80.

Yee, T. W. and Hadi, A. F. (2014). Row-column interaction models, with an R implementation.
Computational Statistics, 29, 1427–1445.

See Also

rcim, vglm, qvar, uninormal, explink, qvcalc() in qvcalc, ships.

Qvar 687

Examples

Example 1
data("ships", package = "MASS")

Shipmodel <- vglm(incidents ~ type + year + period,
poissonff, offset = log(service),

trace = TRUE, model = TRUE,
data = ships, subset = (service > 0))

Easiest form of input
fit1 <- rcim(Qvar(Shipmodel, "type"), uninormal("explink"), maxit = 99)
qvar(fit1) # Easy method to get the quasi-variances
qvar(fit1, se = TRUE) # Easy method to get the quasi-standard errors

(quasiVar <- exp(diag(fitted(fit1))) / 2) # Version 1
(quasiVar <- diag(predict(fit1)[, c(TRUE, FALSE)]) / 2) # Version 2
(quasiSE <- sqrt(quasiVar))

Another form of input
fit2 <- rcim(Qvar(Shipmodel, coef.ind = c(0, 2:5), reference.name = "typeA"),

uninormal("explink"), maxit = 99)
Not run: qvplot(fit2, col = "green", lwd = 3, scol = "blue", slwd = 2, las = 1)

The variance-covariance matrix is another form of input (not recommended)
fit3 <- rcim(Qvar(cbind(0, rbind(0, vcov(Shipmodel)[2:5, 2:5])),

labels = c("typeA", "typeB", "typeC", "typeD", "typeE"),
estimates = c(typeA = 0, coef(Shipmodel)[2:5])),

uninormal("explink"), maxit = 99)
(QuasiVar <- exp(diag(fitted(fit3))) / 2) # Version 1
(QuasiVar <- diag(predict(fit3)[, c(TRUE, FALSE)]) / 2) # Version 2
(QuasiSE <- sqrt(quasiVar))
Not run: qvplot(fit3)

Example 2: a model with M > 1 linear predictors
Not run: require("VGAMdata")
xs.nz.f <- subset(xs.nz, sex == "F")
xs.nz.f <- subset(xs.nz.f, !is.na(babies) & !is.na(age) & !is.na(ethnicity))
xs.nz.f <- subset(xs.nz.f, ethnicity != "Other")

clist <- list("sm.bs(age, df = 4)" = rbind(1, 0),
"sm.bs(age, df = 3)" = rbind(0, 1),
"ethnicity" = diag(2),
"(Intercept)" = diag(2))

fit1 <- vglm(babies ~ sm.bs(age, df = 4) + sm.bs(age, df = 3) + ethnicity,
zipoissonff(zero = NULL), xs.nz.f,
constraints = clist, trace = TRUE)

Fit1 <- rcim(Qvar(fit1, "ethnicity", which.linpred = 1),
uninormal("explink", imethod = 1), maxit = 99, trace = TRUE)

Fit2 <- rcim(Qvar(fit1, "ethnicity", which.linpred = 2),
uninormal("explink", imethod = 1), maxit = 99, trace = TRUE)

688 qvar

End(Not run)
Not run: par(mfrow = c(1, 2))
qvplot(Fit1, scol = "blue", pch = 16, main = expression(eta[1]),

slwd = 1.5, las = 1, length.arrows = 0.07)
qvplot(Fit2, scol = "blue", pch = 16, main = expression(eta[2]),

slwd = 1.5, las = 1, length.arrows = 0.07)

End(Not run)

qvar Quasi-variances Extraction Function

Description

Takes a rcim fit of the appropriate format and returns either the quasi-variances or quasi-standard
errors.

Usage

qvar(object, se = FALSE, ...)

Arguments

object A rcim object that has family function uninormal with the explink link. See
below for an example.

se Logical. If FALSE then the quasi-variances are returned, else the square root of
them, called quasi-standard errors.

... Currently unused.

Details

This simple function is ad hoc and simply is equivalent to computing the quasi-variances by diag(predict(fit1)[,
c(TRUE, FALSE)]) / 2. This function is for convenience only. Serious users of quasi-variances
ought to understand why and how this function works.

Value

A vector of quasi-variances or quasi-standard errors.

Author(s)

T. W. Yee.

See Also

rcim, uninormal, explink, Qvar, ships.

R2latvar 689

Examples

data("ships", package = "MASS")
Shipmodel <- vglm(incidents ~ type + year + period,

poissonff, offset = log(service),
data = ships, subset = (service > 0))

Easiest form of input
fit1 = rcim(Qvar(Shipmodel, "type"), uninormal("explink"), maxit=99)
qvar(fit1) # Quasi-variances
qvar(fit1, se = TRUE) # Quasi-standard errors

Manually compute them:
(quasiVar <- exp(diag(fitted(fit1))) / 2) # Version 1
(quasiVar <- diag(predict(fit1)[, c(TRUE, FALSE)]) / 2) # Version 2
(quasiSE <- sqrt(quasiVar))

Not run: qvplot(fit1, col = "green", lwd = 3, scol = "blue",
slwd = 2, las = 1)

End(Not run)

R2latvar R-squared for Latent Variable Models

Description

R-squared goodness of fit for latent variable models, such as cumulative link models. Some software
such as Stata call the quantity the McKelvey–Zavoina R-squared, which was proposed in their 1975
paper for cumulative probit models.

Usage

R2latvar(object)

Arguments

object A cumulative or binomialff fit using vglm. Only a few selected link functions
are currently permitted: logitlink, probitlink, clogloglink. For models
with more than one linear predictor, a parallelism assumption is needed also,
i.e., the constraint matrices must be a 1-column matrix of 1s (except for the
intercept). The model is assumed to have an intercept term.

Details

Models such as the proportional odds model have a latent variable interpretation (see, e.g., Section
6.2.6 of Agresti (2018), Section 14.4.1.1 of Yee (2015), Section 5.2.2 of McCullagh and Nelder
(1989)). It is possible to summarize the predictive power of the model by computing R2 on the
transformed scale, e.g., on a standard normal distribution for a probitlink link. For more details
see Section 6.3.7 of Agresti (2018).

690 Rank

Value

The R2 value. Approximately, that amount is the variability in the latent variable of the model ex-
plained by all the explanatory variables. Then taking the positive square-root gives an approximate
multiple correlation R.

Author(s)

Thomas W. Yee

References

Agresti, A. (2018). An Introduction to Categorical Data Analysis, 3rd ed., New York: John Wiley
& Sons.

McKelvey, R. D. and W. Zavoina (1975). A statistical model for the analysis of ordinal level
dependent variables. The Journal of Mathematical Sociology, 4, 103–120.

See Also

vglm, cumulative, propodds, logitlink, probitlink, clogloglink, summary.lm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo))
R2latvar(fit)

Rank Rank

Description

Returns the rank of reduced-rank regression-type models in the VGAM package.

Usage

Rank(object, ...)
Rank.rrvglm(object, ...)
Rank.qrrvglm(object, ...)
Rank.rrvgam(object, ...)

Arguments

object Some VGAM object, for example, having class rrvglm-class. The class vglm-class
is not included since this is not based on reduced-rank regression.

... Other possible arguments fed into the function later (used for added flexibility
for the future).

Rayleigh 691

Details

Regression models based on reduced-rank regression have a quantity called the rank, which is 1 or
2 or 3 etc. The smaller the value the more dimension reduction, so that there are fewer parameters.
This function was not called rank() to avoid conflict with rank.

Value

Returns an integer value, provided the rank of the model makes sense.

Note

This function has not been defined for VGLMs yet. It might refer to the rank of the VL model
matrix, but for now this function should not be applied to vglm fits.

Author(s)

T. W. Yee.

See Also

RR-VGLMs are described in rrvglm-class; QRR-VGLMs are described in qrrvglm-class.

Examples

pneumo <- transform(pneumo, let = log(exposure.time),
x3 = runif(nrow(pneumo)))

(fit1 <- rrvglm(cbind(normal, mild, severe) ~ let + x3,
acat, data = pneumo))

coef(fit1, matrix = TRUE)
constraints(fit1)
Rank(fit1)

Rayleigh Rayleigh Distribution

Description

Density, distribution function, quantile function and random generation for the Rayleigh distribution
with parameter a.

Usage

drayleigh(x, scale = 1, log = FALSE)
prayleigh(q, scale = 1, lower.tail = TRUE, log.p = FALSE)
qrayleigh(p, scale = 1, lower.tail = TRUE, log.p = FALSE)
rrayleigh(n, scale = 1)

692 Rayleigh

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Fed into runif.

scale the scale parameter b.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See rayleigh, the VGAM family function for estimating the scale parameter b by maximum like-
lihood estimation, for the formula of the probability density function and range restrictions on the
parameter b.

Value

drayleigh gives the density, prayleigh gives the distribution function, qrayleigh gives the quan-
tile function, and rrayleigh generates random deviates.

Note

The Rayleigh distribution is related to the Maxwell distribution.

Author(s)

T. W. Yee and Kai Huang

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

rayleigh, maxwell.

Examples

Not run: Scale <- 2; x <- seq(-1, 8, by = 0.1)
plot(x, drayleigh(x, scale = Scale), type = "l", ylim = c(0,1),

las = 1, ylab = "",
main = "Rayleigh density divided into 10 equal areas; red = CDF")

abline(h = 0, col = "blue", lty = 2)
qq <- qrayleigh(seq(0.1, 0.9, by = 0.1), scale = Scale)
lines(qq, drayleigh(qq, scale = Scale), col = 2, lty = 3, type = "h")
lines(x, prayleigh(x, scale = Scale), col = "red")
End(Not run)

rayleigh 693

rayleigh Rayleigh Regression Family Function

Description

Estimating the parameter of the Rayleigh distribution by maximum likelihood estimation. Right-
censoring is allowed.

Usage

rayleigh(lscale = "loglink", nrfs = 1/3 + 0.01,
oim.mean = TRUE, zero = NULL, parallel = FALSE,
type.fitted = c("mean", "percentiles", "Qlink"),
percentiles = 50)

cens.rayleigh(lscale = "loglink", oim = TRUE)

Arguments

lscale Parameter link function applied to the scale parameter b. See Links for more
choices. A log link is the default because b is positive.

nrfs Numeric, of length one, with value in [0, 1]. Weighting factor between Newton-
Raphson and Fisher scoring. The value 0 means pure Newton-Raphson, while
1 means pure Fisher scoring. The default value uses a mixture of the two algo-
rithms, and retaining positive-definite working weights.

oim.mean Logical, used only for intercept-only models. TRUE means the mean of the OIM
elements are used as working weights. If TRUE then this argument has top prior-
ity for working out the working weights. FALSE means use another algorithm.

oim Logical. For censored data only, TRUE means the Newton-Raphson algorithm,
and FALSE means Fisher scoring.

zero, parallel Details at CommonVGAMffArguments.
type.fitted, percentiles

See CommonVGAMffArguments for information. Using "Qlink" is for quantile-
links in VGAMextra.

Details

The Rayleigh distribution, which is used in physics, has a probability density function that can be
written

f(y) = y exp(−0.5(y/b)2)/b2

for y > 0 and b > 0. The mean of Y is b
√
π/2 (returned as the fitted values) and its variance is

b2(4− π)/2.

The VGAM family function cens.rayleigh handles right-censored data (the true value is greater
than the observed value). To indicate which type of censoring, input extra = list(rightcensored
= vec2) where vec2 is a logical vector the same length as the response. If the component of this

694 rayleigh

list is missing then the logical values are taken to be FALSE. The fitted object has this component
stored in the extra slot.

The VGAM family function rayleigh handles multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

The theory behind the argument oim is not fully complete.

Note

The poisson.points family function is more general so that if ostatistic = 1 and dimension =
2 then it coincides with rayleigh. Other related distributions are the Maxwell and Weibull distri-
butions.

Author(s)

T. W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

Rayleigh, genrayleigh, riceff, maxwell, weibullR, poisson.points, simulate.vlm.

Examples

nn <- 1000; Scale <- exp(2)
rdata <- data.frame(ystar = rrayleigh(nn, scale = Scale))
fit <- vglm(ystar ~ 1, rayleigh, data = rdata, trace = TRUE)
head(fitted(fit))
with(rdata, mean(ystar))
coef(fit, matrix = TRUE)
Coef(fit)

Censored data
rdata <- transform(rdata, U = runif(nn, 5, 15))
rdata <- transform(rdata, y = pmin(U, ystar))
Not run: par(mfrow = c(1, 2))
hist(with(rdata, ystar)); hist(with(rdata, y))
End(Not run)
extra <- with(rdata, list(rightcensored = ystar > U))
fit <- vglm(y ~ 1, cens.rayleigh, data = rdata, trace = TRUE,

extra = extra, crit = "coef")

Rcim 695

table(fit@extra$rightcen)
coef(fit, matrix = TRUE)
head(fitted(fit))

Rcim Mark the Baseline of Row and Column on a Matrix data

Description

Rearrange the rows and columns of the input so that the first row and first column are baseline.
This function is for rank-zero row-column interaction models (RCIMs; i.e., general main effects
models).

Usage

Rcim(mat, rbaseline = 1, cbaseline = 1)

Arguments

mat Matrix, of dimension r by c. It is best that it is labelled with row and column
names.

rbaseline, cbaseline

Numeric (row number of the matrix mat) or character (matching a row name
of mat) that the user wants as the row baseline or reference level. Similarly
cbaseline for the column.

Details

This is a data preprocessing function for rcim. For rank-zero row-column interaction models this
function establishes the baseline (or reference) levels of the matrix response with respect to the row
and columns—these become the new first row and column.

Value

Matrix of the same dimension as the input, with rbaseline and cbaseline specifying the first
rows and columns. The default is no change in mat.

Note

This function is similar to moffset; see moffset for information about the differences. If numeric,
the arguments rbaseline and cbaseline differ from arguments roffset and coffset in moffset
by 1 (when elements of the matrix agree).

Author(s)

Alfian F. Hadi and T. W. Yee.

696 rcqo

See Also

moffset, rcim, plotrcim0.

Examples

(alcoff.e <- moffset(alcoff, roffset = "6", postfix = "*"))
(aa <- Rcim(alcoff, rbaseline = "11", cbaseline = "Sun"))
(bb <- moffset(alcoff, "11", "Sun", postfix = "*"))
aa - bb # Note the difference!

rcqo Constrained Quadratic Ordination

Description

Random generation for constrained quadratic ordination (CQO).

Usage

rcqo(n, p, S, Rank = 1,
family = c("poisson", "negbinomial", "binomial-poisson",

"Binomial-negbinomial", "ordinal-poisson",
"Ordinal-negbinomial", "gamma2"),

eq.maximums = FALSE, eq.tolerances = TRUE, es.optimums = FALSE,
lo.abundance = if (eq.maximums) hi.abundance else 10,
hi.abundance = 100, sd.latvar = head(1.5/2^(0:3), Rank),
sd.optimums = ifelse(es.optimums, 1.5/Rank, 1) *

ifelse(scale.latvar, sd.latvar, 1),
sd.tolerances = 0.25, Kvector = 1, Shape = 1,
sqrt.arg = FALSE, log.arg = FALSE, rhox = 0.5, breaks = 4,
seed = NULL, optimums1.arg = NULL, Crow1positive = TRUE,
xmat = NULL, scale.latvar = TRUE)

Arguments

n Number of sites. It is denoted by n below.

p Number of environmental variables, including an intercept term. It is denoted
by p below. Must be no less than 1 +R in value.

S Number of species. It is denoted by S below.

Rank The rank or the number of latent variables or true dimension of the data on the
reduced space. This must be either 1, 2, 3 or 4. It is denoted by R.

family What type of species data is to be returned. The first choice is the default. If
binomial then a 0 means absence and 1 means presence. If ordinal then the
breaks argument is passed into the breaks argument of cut. Note that either
the Poisson or negative binomial distributions are used to generate binomial and
ordinal data, and that an upper-case choice is used for the negative binomial

rcqo 697

distribution (this makes it easier for the user). If "gamma2" then this is the 2-
parameter gamma distribution.

eq.maximums Logical. Does each species have the same maximum? See arguments lo.abundance
and hi.abundance.

eq.tolerances Logical. Does each species have the same tolerance? If TRUE then the common
value is 1 along every latent variable, i.e., all species’ tolerance matrices are the
order-R identity matrix.

es.optimums Logical. Do the species have equally spaced optimums? If TRUE then the quan-
tity S1/R must be an integer with value 2 or more. That is, there has to be an
appropriate number of species in total. This is so that a grid of optimum values
is possible in R-dimensional latent variable space in order to place the species’
optimums. Also see the argument sd.tolerances.

lo.abundance, hi.abundance

Numeric. These are recycled to a vector of length S. The species have a maxi-
mum between lo.abundance and hi.abundance. That is, at their optimal en-
vironment, the mean abundance of each species is between the two componen-
twise values. If eq.maximums is TRUE then lo.abundance and hi.abundance
must have the same values. If eq.maximums is FALSE then the logarithm of the
maximums are uniformly distributed between log(lo.abundance) and log(hi.abundance).

sd.latvar Numeric, of length R (recycled if necessary). Site scores along each latent vari-
able have these standard deviation values. This must be a decreasing sequence
of values because the first ordination axis contains the greatest spread of the
species’ site scores, followed by the second axis, followed by the third axis, etc.

sd.optimums Numeric, of length R (recycled if necessary). If es.optimums = FALSE then, for
the rth latent variable axis, the optimums of the species are generated from a
normal distribution centered about 0. If es.optimums = TRUE then the S opti-
mums are equally spaced about 0 along every latent variable axis. Regardless
of the value of es.optimums, the optimums are then scaled to give standard
deviation sd.optimums[r].

sd.tolerances Logical. If eq.tolerances = FALSE then, for the rth latent variable, the species’
tolerances are chosen from a normal distribution with mean 1 and standard devi-
ation sd.tolerances[r]. However, the first species y1 has its tolerance matrix
set equal to the order-R identity matrix. All tolerance matrices for all species are
diagonal in this function. This argument is ignored if eq.tolerances is TRUE,
otherwise it is recycled to length R if necessary.

Kvector A vector of positive k values (recycled to length S if necessary) for the negative
binomial distribution (see negbinomial for details). Note that a natural default
value does not exist, however the default value here is probably a realistic one,
and that for large values of µ one has V ar(Y) = µ2/k approximately.

Shape A vector of positive λ values (recycled to length S if necessary) for the 2-
parameter gamma distribution (see gamma2 for details). Note that a natural de-
fault value does not exist, however the default value here is probably a realistic
one, and that V ar(Y) = µ2/λ.

sqrt.arg Logical. Take the square-root of the negative binomial counts? Assigning
sqrt.arg = TRUE when family="negbinomial" means that the resulting species
data can be considered very crudely to be approximately Poisson distributed.

698 rcqo

They will not integers in general but much easier (less numerical problems) to
estimate using something like cqo(..., family="poissonff").

log.arg Logical. Take the logarithm of the gamma random variates? Assigning log.arg
= TRUE when family="gamma2" means that the resulting species data can be
considered very crudely to be approximately Gaussian distributed about its (quadratic)
mean.

rhox Numeric, less than 1 in absolute value. The correlation between the environmen-
tal variables. The correlation matrix is a matrix of 1’s along the diagonal and
rhox in the off-diagonals. Note that each environmental variable is normally
distributed with mean 0. The standard deviation of each environmental variable
is chosen so that the site scores have the determined standard deviation, as given
by argument sd.latvar.

breaks If family is assigned an ordinal value then this argument is used to define the
cutpoints. It is fed into the breaks argument of cut.

seed If given, it is passed into set.seed. This argument can be used to obtain re-
producible results. If set, the value is saved as the "seed" attribute of the re-
turned value. The default will not change the random generator state, and return
.Random.seed as "seed" attribute.

optimums1.arg If assigned and Rank = 1 then these are the explicity optimums. Recycled to
length S.

Crow1positive See qrrvglm.control for details.

xmat The n by p− 1 environmental matrix can be inputted.

scale.latvar Logical. If FALSE the argument sd.latvar is ignored and no scaling of the
latent variable values is performed.

Details

This function generates data coming from a constrained quadratic ordination (CQO) model. In
particular, data coming from a species packing model can be generated with this function. The
species packing model states that species have equal tolerances, equal maximums, and optimums
which are uniformly distributed over the latent variable space. This can be achieved by assigning
the arguments es.optimums = TRUE, eq.maximums = TRUE, eq.tolerances = TRUE.

At present, the Poisson and negative binomial abundances are generated first using lo.abundance
and hi.abundance, and if family is binomial or ordinal then it is converted into these forms.

In CQO theory the n by pmatrixX is partitioned into two partsX1 andX2. The matrixX2 contains
the ‘real’ environmental variables whereas the variables inX1 are just for adjustment purposes; they
contain the intercept terms and other variables that one wants to adjust for when (primarily) looking
at the variables inX2. This function hasX1 only being a matrix of ones, i.e., containing an intercept
only.

Value

A n by p − 1 + S data frame with components and attributes. In the following the attributes are
labelled with double quotes.

rcqo 699

x2, x3, x4, ..., xp

The environmental variables. This makes up the n by p − 1 X2 matrix. Note
that x1 is not present; it is effectively a vector of ones since it corresponds to an
intercept term when cqo is applied to the data.

y1, y2, x3, ..., yS

The species data. This makes up the n by S matrix Y . This will be of the form
described by the argument family.

"concoefficients"

The p − 1 by R matrix of constrained coefficients (or canonical coefficients).
These are also known as weights or loadings.

"formula" The formula involving the species and environmental variable names. This can
be used directly in the formula argument of cqo.

"log.maximums" The S-vector of species’ maximums, on a log scale. These are uniformly dis-
tributed between log(lo.abundance) and log(hi.abundance).

"latvar" The n by R matrix of site scores. Each successive column (latent variable) has
sample standard deviation equal to successive values of sd.latvar.

"eta" The linear/additive predictor value.

"optimums" The S by R matrix of species’ optimums.

"tolerances" The S by R matrix of species’ tolerances. These are the square root of the
diagonal elements of the tolerance matrices (recall that all tolerance matrices
are restricted to being diagonal in this function).

Other attributes are "break", "family", "Rank", "lo.abundance", "hi.abundance", "eq.tolerances",
"eq.maximums", "seed" as used.

Note

This function is under development and is not finished yet. There may be a few bugs.

Yet to do: add an argument that allows absences to be equal to the first level if ordinal data is
requested.

Author(s)

T. W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

ter Braak, C. J. F. and Prentice, I. C. (1988). A theory of gradient analysis. Advances in Ecological
Research, 18, 271–317.

See Also

cqo, qrrvglm.control, cut, binomialff, poissonff, negbinomial, gamma2.

700 rdiric

Examples

Not run:
Example 1: Species packing model:
n <- 100; p <- 5; S <- 5
mydata <- rcqo(n, p, S, es.opt = TRUE, eq.max = TRUE)
names(mydata)
(myform <- attr(mydata, "formula"))
fit <- cqo(myform, poissonff, mydata, Bestof = 3) # eq.tol = TRUE
matplot(attr(mydata, "latvar"), mydata[,-(1:(p-1))], col = 1:S)
persp(fit, col = 1:S, add = TRUE)
lvplot(fit, lcol = 1:S, y = TRUE, pcol = 1:S) # Same plot as above

Compare the fitted model with the 'truth'
concoef(fit) # The fitted model
attr(mydata, "concoefficients") # The 'truth'

c(apply(attr(mydata, "latvar"), 2, sd),
apply(latvar(fit), 2, sd)) # Both values should be approx equal

Example 2: negative binomial data fitted using a Poisson model:
n <- 200; p <- 5; S <- 5
mydata <- rcqo(n, p, S, fam = "negbin", sqrt = TRUE)
myform <- attr(mydata, "formula")
fit <- cqo(myform, fam = poissonff, dat = mydata) # I.tol = TRUE,
lvplot(fit, lcol = 1:S, y = TRUE, pcol = 1:S)
Compare the fitted model with the 'truth'
concoef(fit) # The fitted model
attr(mydata, "concoefficients") # The 'truth'

End(Not run)

rdiric The Dirichlet distribution

Description

Generates Dirichlet random variates.

Usage

rdiric(n, shape, dimension = NULL, is.matrix.shape = FALSE)

Arguments

n number of observations. Note it has two meanings, see is.matrix.shape be-
low.

shape the shape parameters. These must be positive. If dimension is specifed, values
are recycled if necessary to length dimension.

rec.exp1 701

dimension the dimension of the distribution. If dimension is not numeric then it is taken
to be length(shape) (or ncol(shape) if is.matrix.shape == TRUE).

is.matrix.shape

Logical. If TRUE then shape must be a matrix, and then n is no longer the number
of rows of the answer but the answer has n * nrow(shape) rows. If FALSE (the
default) then shape is a vector and each of the n rows of the answer have shape
as its shape parameters.

Details

This function is based on a relationship between the gamma and Dirichlet distribution. Random
gamma variates are generated, and then Dirichlet random variates are formed from these.

Value

A n by dimension matrix of Dirichlet random variates. Each element is positive, and each row will
sum to unity. If shape has names then these will become the column names of the answer.

Author(s)

Thomas W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

dirichlet is a VGAM family function for fitting a Dirichlet distribution to data.

Examples

ddata <- data.frame(rdiric(n = 1000, shape = c(y1 = 3, y2 = 1, y3 = 4)))
fit <- vglm(cbind(y1, y2, y3) ~ 1, dirichlet, data = ddata, trace = TRUE)
Coef(fit)
coef(fit, matrix = TRUE)

rec.exp1 Upper Record Values from a 1-parameter Exponential Distribution

Description

Maximum likelihood estimation of the rate parameter of a 1-parameter exponential distribution
when the observations are upper record values.

Usage

rec.exp1(lrate = "loglink", irate = NULL, imethod = 1)

702 rec.exp1

Arguments

lrate Link function applied to the rate parameter. See Links for more choices.

irate Numeric. Optional initial values for the rate. The default value NULL means they
are computed internally, with the help of imethod.

imethod Integer, either 1 or 2 or 3. Initial method, three algorithms are implemented.
Choose the another value if convergence fails, or use irate.

Details

The response must be a vector or one-column matrix with strictly increasing values.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

By default, this family function has the intercept-only MLE as the initial value, therefore conver-
gence may only take one iteration. Fisher scoring is used.

Author(s)

T. W. Yee

References

Arnold, B. C. and Balakrishnan, N. and Nagaraja, H. N. (1998). Records, New York: John Wiley
& Sons.

See Also

exponential.

Examples

rawy <- rexp(n <- 10000, rate = exp(1))
y <- unique(cummax(rawy)) # Keep only the records

length(y) / y[length(y)] # MLE of rate

fit <- vglm(y ~ 1, rec.exp1, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)

rec.normal 703

rec.normal Upper Record Values from a Univariate Normal Distribution

Description

Maximum likelihood estimation of the two parameters of a univariate normal distribution when the
observations are upper record values.

Usage

rec.normal(lmean = "identitylink", lsd = "loglink",
imean = NULL, isd = NULL, imethod = 1, zero = NULL)

Arguments

lmean, lsd Link functions applied to the mean and sd parameters. See Links for more
choices.

imean, isd Numeric. Optional initial values for the mean and sd. The default value NULL
means they are computed internally, with the help of imethod.

imethod Integer, either 1 or 2 or 3. Initial method, three algorithms are implemented.
Choose the another value if convergence fails, or use imean and/or isd.

zero Can be an integer vector, containing the value 1 or 2. If so, the mean or stan-
dard deviation respectively are modelled as an intercept only. Usually, setting
zero = 2 will be used, if used at all. The default value NULL means both lin-
ear/additive predictors are modelled as functions of the explanatory variables.
See CommonVGAMffArguments for more information.

Details

The response must be a vector or one-column matrix with strictly increasing values.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

This family function tries to solve a difficult problem, and the larger the data set the better. Conver-
gence failure can commonly occur, and convergence may be very slow, so set maxit = 200, trace
= TRUE, say. Inputting good initial values are advised.

This family function uses the BFGS quasi-Newton update formula for the working weight matrices.
Consequently the estimated variance-covariance matrix may be inaccurate or simply wrong! The
standard errors must be therefore treated with caution; these are computed in functions such as
vcov() and summary().

704 reciprocallink

Author(s)

T. W. Yee

References

Arnold, B. C. and Balakrishnan, N. and Nagaraja, H. N. (1998). Records, New York: John Wiley
& Sons.

See Also

uninormal, double.cens.normal.

Examples

nn <- 10000; mymean <- 100
First value is reference value or trivial record
Rdata <- data.frame(rawy = c(mymean, rnorm(nn, mymean, exp(3))))
Keep only observations that are records:
rdata <- data.frame(y = unique(cummax(with(Rdata, rawy))))

fit <- vglm(y ~ 1, rec.normal, rdata, trace = TRUE, maxit = 200)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

reciprocallink Reciprocal Link Function

Description

Computes the reciprocal transformation, including its inverse and the first two derivatives.

Usage

reciprocallink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

negreciprocallink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

bvalue See Links.
inverse, deriv, short, tag

Details at Links.

residualsvglm 705

Details

The reciprocallink link function is a special case of the power link function. Numerical values
of theta close to 0 result in Inf, -Inf, NA or NaN.

The negreciprocallink link function computes the negative reciprocal, i.e., −1/θ.

Value

For reciprocallink: for deriv = 0, the reciprocal of theta, i.e., 1/theta when inverse = FALSE,
and if inverse = TRUE then 1/theta. For deriv = 1, then the function returns d theta / d eta as a
function of theta if inverse = FALSE, else if inverse = TRUE then it returns the reciprocal.

Note

Numerical instability may occur when theta is close to 0.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

See Also

identitylink, powerlink.

Examples

reciprocallink(1:5)
reciprocallink(1:5, inverse = TRUE, deriv = 2)

negreciprocallink(1:5)
negreciprocallink(1:5, inverse = TRUE, deriv = 2)

x <- (-3):3
reciprocallink(x) # Has Inf
reciprocallink(x, bvalue = .Machine$double.eps) # Has no Inf

residualsvglm Residuals for a VGLM fit

Description

Residuals for a vector generalized linear model (VGLM) object.

706 residualsvglm

Usage

residualsvglm(object, type = c("working", "pearson", "response",
"deviance", "ldot", "stdres", "rquantile"), matrix.arg = TRUE)

Arguments

object Object of class "vglm", i.e., a vglm fit.

type The value of this argument can be abbreviated. The type of residuals to be
returned. The default is the first one: working residuals corresponding to the
IRLS algorithm. These are defined for all models. They are sometimes added to
VGAM plots of estimated component functions (see plotvgam).
Pearson residuals for GLMs, when squared and summed over the data set, to-
tal to the Pearson chi-squared statistic. For VGLMs, Pearson residuals involve
the working weight matrices and the score vectors. Under certain limiting con-
ditions, Pearson residuals have 0 means and identity matrix as the variance-
covariance matrix.
Response residuals are simply the difference between the observed values and
the fitted values. Both have to be of the same dimension, hence not all families
have response residuals defined.
Deviance residuals are only defined for models with a deviance function. They
tend to GLMs mainly. This function returns a NULL for those models whose
deviance is undefined.
Randomized quantile residuals (RQRs) (Dunn and Smyth, 1996) are based on
the p-type function being fed into qnorm. For example, for the default exponential
it is qnorm(pexp(y, rate = 1 / fitted(object))). So one should expect these
residuals to have a standard normal distribution if the model and data agree well.
If the distribution is discrete then randomized values are returned; see runif and
set.seed. For example, for the default poissonff it is qnorm(runif(length(y),
ppois(y - 1, mu), ppois(y, mu))) where mu is the fitted mean. The following
excerpts comes from their writings. They highly recommend quantile residuals
for discrete distributions since plots using deviance and Pearson residuals may
contain distracting patterns. Four replications of the quantile residuals are rec-
ommended with discrete distributions because they have a random component.
Any features not preserved across all four sets of residuals are considered arti-
facts of the randomization. This type of residual is continuous even for discrete
distributions; for both discrete and continuous distributions, the quantile residu-
als have an exact standard normal distribution.
The choice "ldot" should not be used currently.
Standardized residuals are currently only defined for 2 types of models: (i)
GLMs (poissonff, binomialff); (ii) those fitted to a two-way table of counts,
e.g., cumulative, acat, multinomial, sratio, cratio. For (ii), they are
defined in Section 2.4.5 of Agresti (2018) and are also the output from the
"stdres" component of chisq.test. For the test of independence they are a
useful type of residual. Their formula is (observed - expected) / sqrt(V),
where V is the residual cell variance (also see Agresti, 2007, section 2.4.5).
When an independence null hypothesis is true, each standardized residual (cor-
responding to a cell in the table) has a a large-sample standard normal distribu-

residualsvglm 707

tion. Currently this function merely extracts the table of counts from object
and then computes the standardized residuals like chisq.test.

matrix.arg Logical, which applies when if the pre-processed answer is a vector or a 1-
column matrix. If TRUE then the value returned will be a matrix, else a vector.

Details

This function returns various kinds of residuals, sometimes depending on the specific type of model
having been fitted. Section 3.7 of Yee (2015) gives some details on several types of residuals defined
for the VGLM class.

Standardized residuals for GLMs are described in Section 4.5.6 of Agresti (2013) as the ratio of the
raw (response) residuals divided by their standard error. They involve the generalized hat matrix
evaluated at the final IRLS iteration. When applied to the LM, standardized residuals for GLMs
simplify to rstandard. For GLMs they are basically the Pearson residual divided by the square
root of 1 minus the leverage.

Value

If that residual type is undefined or inappropriate or not yet implemented, then NULL is returned,
otherwise a matrix or vector of residuals is returned.

Warning

This function may change in the future, especially those whose definitions may change.

References

Agresti, A. (2007). An Introduction to Categorical Data Analysis, 2nd ed., New York: John Wiley
& Sons. Page 38.

Agresti, A. (2013). Categorical Data Analysis, 3rd ed., New York: John Wiley & Sons.

Agresti, A. (2018). An Introduction to Categorical Data Analysis, 3rd ed., New York: John Wiley
& Sons.

Dunn, P. K. and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational
and Graphical Statistics, 5, 236–244.

See Also

resid, vglm, chisq.test, hatvalues.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo)
resid(fit) # Same as having type = "working" (the default)
resid(fit, type = "response")
resid(fit, type = "pearson")
resid(fit, type = "stdres") # Test for independence

708 rhobitlink

rhobitlink Rhobit Link Function

Description

Computes the rhobit link transformation, including its inverse and the first two derivatives.

Usage

rhobitlink(theta, bminvalue = NULL, bmaxvalue = NULL,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.
bminvalue, bmaxvalue

Optional boundary values, e.g., values of theta which are less than or equal
to -1 can be replaced by bminvalue before computing the link function value.
And values of theta which are greater than or equal to 1 can be replaced by
bmaxvalue before computing the link function value. See Links.

inverse, deriv, short, tag

Details at Links.

Details

The rhobitlink link function is commonly used for parameters that lie between −1 and 1. Nu-
merical values of theta close to −1 or 1 or out of range result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the rhobit of theta, i.e., log((1 + theta)/(1 - theta)) when inverse = FALSE,
and if inverse = TRUE then (exp(theta) - 1)/(exp(theta) + 1).

For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.

Note

Numerical instability may occur when theta is close to −1 or 1. One way of overcoming this is to
use bminvalue, etc.

The correlation parameter of a standard bivariate normal distribution lies between −1 and 1, there-
fore this function can be used for modelling this parameter as a function of explanatory variables.

The link function rhobitlink is very similar to fisherzlink, e.g., just twice the value of fisherzlink.

Author(s)

Thomas W. Yee

Rice 709

See Also

Links, binom2.rho, fisherz.

Examples

theta <- seq(-0.99, 0.99, by = 0.01)
y <- rhobitlink(theta)
Not run:
plot(theta, y, type = "l", ylab = "", main = "rhobitlink(theta)")
abline(v = 0, h = 0, lty = 2)

End(Not run)

x <- c(seq(-1.02, -0.98, by = 0.01), seq(0.97, 1.02, by = 0.01))
rhobitlink(x) # Has NAs
rhobitlink(x, bminvalue = -1 + .Machine$double.eps,

bmaxvalue = 1 - .Machine$double.eps) # Has no NAs

Rice The Rice Distribution

Description

Density, distribution function, quantile function and random generation for the Rician distribution.

Usage

drice(x, sigma, vee, log = FALSE)
price(q, sigma, vee, lower.tail = TRUE, log.p = FALSE, ...)
qrice(p, sigma, vee, lower.tail = TRUE, log.p = FALSE, ...)
rrice(n, sigma, vee)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. Same as in runif.
vee, sigma See riceff.
... Other arguments such as lower.tail.
lower.tail, log.p

Same meaning as in pnorm or qnorm.
log Logical. If log = TRUE then the logarithm of the density is returned.

Details

See riceff, the VGAM family function for estimating the two parameters, for the formula of the
probability density function and other details.

Formulas for price() and qrice() are based on the Marcum-Q function.

710 riceff

Value

drice gives the density, price gives the distribution function, qrice gives the quantile function,
and rrice generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

riceff.

Examples

Not run: x <- seq(0.01, 7, len = 201)
plot(x, drice(x, vee = 0, sigma = 1), type = "n", las = 1,

ylab = "",
main = "Density of Rice distribution for various v values")

sigma <- 1; vee <- c(0, 0.5, 1, 2, 4)
for (ii in 1:length(vee))

lines(x, drice(x, vee = vee[ii], sigma), col = ii)
legend(x = 5, y = 0.6, legend = as.character(vee),

col = 1:length(vee), lty = 1)

x <- seq(0, 4, by = 0.01); vee <- 1; sigma <- 1
probs <- seq(0.05, 0.95, by = 0.05)
plot(x, drice(x, vee = vee, sigma = sigma), type = "l",

main = "Blue is density, orange is CDF", col = "blue",
ylim = c(0, 1), sub = "Red are 5, 10, ..., 95 percentiles",
las = 1, ylab = "", cex.main = 0.9)

abline(h = 0:1, col = "black", lty = 2)
Q <- qrice(probs, sigma, vee = vee)
lines(Q, drice(qrice(probs, sigma, vee = vee),

sigma, vee = vee), col = "red", lty = 3, type = "h")
lines(x, price(x, sigma, vee = vee), type = "l", col = "orange")
lines(Q, drice(Q, sigma, vee = vee), col = "red", lty = 3, type = "h")
lines(Q, price(Q, sigma, vee = vee), col = "red", lty = 3, type = "h")
abline(h = probs, col = "red", lty = 3)
max(abs(price(Q, sigma, vee = vee) - probs)) # Should be 0

End(Not run)

riceff Rice Distribution Family Function

Description

Estimates the two parameters of a Rice distribution by maximum likelihood estimation.

riceff 711

Usage

riceff(lsigma = "loglink", lvee = "loglink", isigma = NULL,
ivee = NULL, nsimEIM = 100, zero = NULL, nowarning = FALSE)

Arguments

nowarning Logical. Suppress a warning? Ignored for VGAM 0.9-7 and higher.

lvee, lsigma Link functions for the v and σ parameters. See Links for more choices and for
general information.

ivee, isigma Optional initial values for the parameters. If convergence failure occurs (this
VGAM family function seems to require good initial values) try using these
arguments. See CommonVGAMffArguments for more information.

nsimEIM, zero See CommonVGAMffArguments for information.

Details

The Rician distribution has density function

f(y; v, σ) =
y

σ2
exp(−(y2 + v2)/(2σ2)) I0(yv/σ2)

where y > 0, v > 0, σ > 0 and I0 is the modified Bessel function of the first kind with
order zero. When v = 0 the Rice distribution reduces to a Rayleigh distribution. The mean
is σ

√
π/2 exp(z/2)((1 − z)I0(−z/2) − zI1(−z/2)) (returned as the fitted values) where z =

−v2/(2σ2). Simulated Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

Convergence problems may occur for data where v = 0; if so, use rayleigh or possibly use an
identity link.

When v is large (greater than 3, say) then the mean is approximately v and the standard deviation
is approximately σ.

Author(s)

T. W. Yee

References

Rice, S. O. (1945). Mathematical Analysis of Random Noise. Bell System Technical Journal, 24,
46–156.

See Also

drice, rayleigh, besselI, simulate.vlm.

712 rigff

Examples

Not run: sigma <- exp(1); vee <- exp(2)
rdata <- data.frame(y = rrice(n <- 1000, sigma, vee = vee))
fit <- vglm(y ~ 1, riceff, data = rdata, trace = TRUE, crit = "c")
c(with(rdata, mean(y)), fitted(fit)[1])
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

End(Not run)

rigff Reciprocal Inverse Gaussian distribution

Description

Estimation of the parameters of a reciprocal inverse Gaussian distribution.

Usage

rigff(lmu = "identitylink", llambda = "loglink", imu = NULL,
ilambda = 1)

Arguments

lmu, llambda Link functions for mu and lambda. See Links for more choices.

imu, ilambda Initial values for mu and lambda. A NULL means a value is computed internally.

Details

See Jorgensen (1997) for details.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

This distribution is potentially useful for dispersion modelling.

Author(s)

T. W. Yee

References

Jorgensen, B. (1997). The Theory of Dispersion Models. London: Chapman & Hall

rlplot.gevff 713

See Also

simplex.

Examples

rdata <- data.frame(y = rchisq(100, df = 14)) # Not 'proper' data!!
fit <- vglm(y ~ 1, rigff, rdata, trace = TRUE)
fit <- vglm(y ~ 1, rigff, rdata, trace = TRUE, crit = "c")
summary(fit)

rlplot.gevff Return Level Plot for GEV Fits

Description

A return level plot is constructed for a GEV-type model.

Usage

rlplot.gevff(object, show.plot = TRUE,
probability = c((1:9)/100, (1:9)/10, 0.95, 0.99, 0.995, 0.999),
add.arg = FALSE, xlab = if(log.arg) "Return Period (log-scale)" else
"Return Period", ylab = "Return Level",
main = "Return Level Plot",
pch = par()$pch, pcol.arg = par()$col, pcex = par()$cex,
llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd,
slty.arg = par()$lty, scol.arg = par()$col, slwd.arg = par()$lwd,
ylim = NULL, log.arg = TRUE, CI = TRUE, epsilon = 1e-05, ...)

Arguments

object A VGAM extremes model of the GEV-type, produced by vglm with a family
function either "gev" or "gevff".

show.plot Logical. Plot it? If FALSE no plot will be done.

probability Numeric vector of probabilities used.

add.arg Logical. Add the plot to an existing plot?

xlab Caption for the x-axis. See par.

ylab Caption for the y-axis. See par.

main Title of the plot. See title.

pch Plotting character. See par.

pcol.arg Color of the points. See the col argument of par.

pcex Character expansion of the points. See the cex argument of par.

llty.arg Line type. Line type. See the lty argument of par.

lcol.arg Color of the lines. See the col argument of par.

714 rlplot.gevff

llwd.arg Line width. See the lwd argument of par.
slty.arg, scol.arg, slwd.arg

Correponding arguments for the lines used for the confidence intervals. Used
only if CI=TRUE.

ylim Limits for the y-axis. Numeric of length 2.

log.arg Logical. If TRUE then log="" otherwise log="x". This changes the labelling of
the x-axis only.

CI Logical. Add in a 95 percent confidence interval?

epsilon Numeric, close to zero. Used for the finite-difference approximation to the first
derivatives with respect to each parameter. If too small, numerical problems will
occur.

... Arguments passed into the plot function when setting up the entire plot. Useful
arguments here include sub and las.

Details

A return level plot plots zp versus log(yp). It is linear if the shape parameter ξ = 0. If ξ < 0
then the plot is convex with asymptotic limit as p approaches zero at µ − σ/ξ. And if ξ > 0
then the plot is concave and has no finite bound. Here, G(zp) = 1 − p where 0 < p < 1 (p
corresponds to the argument probability) and G is the cumulative distribution function of the
GEV distribution. The quantity zp is known as the return level associated with the return period
1/p. For many applications, this means zp is exceeded by the annual maximum in any particular
year with probability p.

The points in the plot are the actual data.

Value

In the post slot of the object is a list called rlplot with list components

yp -log(probability), which is used on the x-axis.

zp values which are used for the y-axis

lower, upper lower and upper confidence limits for the 95 percent confidence intervals evalu-
ated at the values of probability (if CI=TRUE).

Note

The confidence intervals are approximate, being based on finite-difference approximations to deriva-
tives.

Author(s)

T. W. Yee

References

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer-
Verlag.

rootogram4 715

See Also

gevff.

Examples

gdata <- data.frame(y = rgev(n <- 100, scale = 2, shape = -0.1))
fit <- vglm(y ~ 1, gevff, data = gdata, trace = TRUE)

Identity link for all parameters:
fit2 <- vglm(y ~ 1, gevff(lshape = identitylink, lscale = identitylink,

iscale = 10), data = gdata, trace = TRUE)
coef(fit2, matrix = TRUE)
Not run:
par(mfrow = c(1, 2))
rlplot(fit) -> i1
rlplot(fit2, pcol = "darkorange", lcol = "blue", log.arg = FALSE,

scol = "darkgreen", slty = "dashed", las = 1) -> i2
range(i2@post$rlplot$upper - i1@post$rlplot$upper) # Should be near 0
range(i2@post$rlplot$lower - i1@post$rlplot$lower) # Should be near 0

End(Not run)

rootogram4 Rootograms (S4 generic) for Assessing Goodness of Fit of Probability
Models

Description

A graphical technique for comparing the observed and fitted counts from a probability model, on a
square root scale.

Usage

rootogram4(object, ...)
rootogram4vglm(object, newdata = NULL, breaks = NULL, max = NULL,

xlab = NULL, main = NULL, width = NULL, ...)

Arguments

object an object of class "vglm". zz This includes "vgam" because "vlm" handles both
VGLM and VGAM objects.

newdata Data upon which to base the calculations. The default is the one used to fit the
model.

breaks numeric. Breaks for the histogram intervals.

max maximum count displayed. If an error message occurs regarding running out of
memory then use this argument; it might occur with a very long tailed distribu-
tion such as gaitdzeta.

716 rootogram4

xlab, main graphical parameters.

width numeric. Widths of the histogram bars.

... any additional arguments to rootogram.default and plot.rootogram in coun-
treg. Probably the most useful of these are style = c("hanging", "standing",
"suspended") and scale = c("sqrt", "raw").

Details

Rootograms are a useful graphical technique for comparing the observed counts with the expected
counts given a probability model.

This S4 implementation is based very heavily on rootogram coming from countreg. This package
is primarily written by A. Zeileis and C. Kleiber. That package is currently on R-Forge but not
CRAN, and it is based on S3. Since VGAM is written using S4, it was necessary to define an S4
generic function called rootogram4() which dispatches appropriately for S4 objects.

Currently, only a selected number of VGAM family functions are implemented. Over time, hope-
fully more and more will be completed.

Value

See rootogram in countreg; an object of class "rootogram0" inheriting from "data.frame" with
about 8 variables.

Warning

This function is rudimentary and based totally on the implementation in countreg.

Note

The function names used coming from countreg have been renamed slightly to avoid conflict.

Author(s)

Package countreg is primarily written by A. Zeileis and C. Kleiber. Function rootogram4() is
based very heavily on countreg. T. W. Yee wrote code to unpack variables from many various
models and feed them into the appropriate d-type function.

References

Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling
Techniques for Categorical and Count Data, Boca Raton, FL, USA: Chapman & Hall/CRC Press.

Kleiber, C. and Zeileis, A. (2016) “Visualizing Count Data Regressions Using Rootograms.” The
American Statistician, 70(3), 296–303. doi:10.1080/00031305.2016.1173590.

Tukey, J. W. (1977) Exploratory Data Analysis, Reading, MA, USA: Addison-Wesley.

See Also

vglm, vgam, glm, zipoisson, zapoisson, rootogram in countreg.

https://doi.org/10.1080/00031305.2016.1173590

round2 717

Examples

Not run:
data("hspider", package = "VGAM") # Count responses
hs.p <- vglm(Pardlugu ~ CoveHerb, poissonff, data = hspider)
hs.nb <- vglm(Pardlugu ~ CoveHerb, negbinomial, data = hspider)
hs.zip <- vglm(Pardlugu ~ CoveHerb, zipoisson, data = hspider)
hs.zap <- vglm(Pardlugu ~ CoveHerb, zapoisson, data = hspider)

opar <- par(mfrow = c(2, 2)) # Plot the rootograms
rootogram4(hs.p, max = 15, main = "poissonff")
rootogram4(hs.nb, max = 15, main = "negbinomial")
rootogram4(hs.zip, max = 15, main = "zipoisson")
rootogram4(hs.zap, max = 15, main = "zapoisson")
par(opar)

End(Not run)

round2 Rounding of Numbers to Base 2

Description

’round2’ works like ’round’ but the rounding has base 2 under consideration so that bits (binary
digits) beyond a certain theshold are zeroed.

Usage

round2(x, digits10 = 0)

Arguments

x Same as round.

digits10 Same as digits in round. The "10" is to emphasize the usual base 10 used by
humans.

Details

round2() is intended to allow reliable and safe for == comparisons provided both sides have the
function applied to the same value of digits10. Internally a numeric has its binary representation
(bits) past a certain point set to all 0s, while retaining a certain degree of accuracy. Algorithmically,
x is multiplied by 2^exponent and then rounded, and then divided by 2^exponent. The value
of exponent is approximately 3 * digits10 when digits10 is positive. If digits10 is negative
then what is returned is round(x, digits10). The value of exponent guarantees that x has been
rounded to at least digits10 decimal places (often around digits10 + 1 for safety).

Value

Something similar to round.

718 rrar

Author(s)

T. W. Yee.

See Also

round, tobit.

Examples

set.seed(1); x <- sort(rcauchy(10))
x3 <- round2(x, 3)
x3 == round2(x, 3) # Supposed to be reliable (all TRUE)
rbind(x, x3) # Comparison
(x3[1] * 2^(0:9)) / 2^(0:9)
print((x3[1] * 2^(0:11)), digits = 14)

Round to approx 1 d.p.
x1 <- round2(x, 1)
x1 == round2(x, 1) # Supposed to be reliable (all TRUE)
rbind(x, x1)
x1[8] == 0.75 # 3/4
print((x1[1] * 2^(0:11)), digits = 9)
seq(31) / 32

rrar Nested Reduced-rank Autoregressive Models for Multiple Time Series

Description

Estimates the parameters of a nested reduced-rank autoregressive model for multiple time series.

Usage

rrar(Ranks = 1, coefstart = NULL)

Arguments

Ranks Vector of integers: the ranks of the model. Each value must be at least one and
no more than M, where M is the number of response variables in the time series.
The length of Ranks is the lag, which is often denoted by the symbol L in the
literature.

coefstart Optional numerical vector of initial values for the coefficients. By default, the
family function chooses these automatically.

Details

Full details are given in Ahn and Reinsel (1988). Convergence may be very slow, so setting maxits
= 50, say, may help. If convergence is not obtained, you might like to try inputting different initial
values.
Setting trace = TRUE in vglm is useful for monitoring the progress at each iteration.

rrar 719

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

This family function should be used within vglm and not with rrvglm because it does not fit into
the RR-VGLM framework exactly. Instead, the reduced-rank model is formulated as a VGLM!

A methods function Coef.rrar, say, has yet to be written. It would return the quantities Ak1, C, D,
omegahat, Phi, etc. as slots, and then show.Coef.rrar would also need to be written.

Author(s)

T. W. Yee

References

Ahn, S. and Reinsel, G. C. (1988). Nested reduced-rank autoregressive models for multiple time
series. Journal of the American Statistical Association, 83, 849–856.

See Also

vglm, grain.us.

Examples

Not run:
year <- seq(1961 + 1/12, 1972 + 10/12, by = 1/12)
par(mar = c(4, 4, 2, 2) + 0.1, mfrow = c(2, 2))
for (ii in 1:4) {

plot(year, grain.us[, ii], main = names(grain.us)[ii], las = 1,
type = "l", xlab = "", ylab = "", col = "blue")

points(year, grain.us[, ii], pch = "*", col = "blue")
}
apply(grain.us, 2, mean) # mu vector
cgrain <- scale(grain.us, scale = FALSE) # Center the time series only
fit <- vglm(cgrain ~ 1, rrar(Ranks = c(4, 1)), trace = TRUE)
summary(fit)

print(fit@misc$Ak1, digits = 2)
print(fit@misc$Cmatrices, digits = 3)
print(fit@misc$Dmatrices, digits = 3)
print(fit@misc$omegahat, digits = 3)
print(fit@misc$Phimatrices, digits = 2)

par(mar = c(4, 4, 2, 2) + 0.1, mfrow = c(4, 1))
for (ii in 1:4) {

plot(year, fit@misc$Z[, ii], main = paste("Z", ii, sep = ""),
type = "l", xlab = "", ylab = "", las = 1, col = "blue")

points(year, fit@misc$Z[, ii], pch = "*", col = "blue")
}

720 rrvglm

End(Not run)

rrvglm Fitting Reduced-Rank Vector Generalized Linear Models (RR-
VGLMs)

Description

A reduced-rank vector generalized linear model (RR-VGLM) is fitted. RR-VGLMs are VGLMs
but some of the constraint matrices are estimated. In this documentation, M is the number of linear
predictors.

Usage

rrvglm(formula, family = stop("argument 'family' needs to be assigned"),
data = list(), weights = NULL, subset = NULL,
na.action = na.fail, etastart = NULL, mustart = NULL,
coefstart = NULL, control = rrvglm.control(...), offset = NULL,
method = "rrvglm.fit", model = FALSE, x.arg = TRUE, y.arg = TRUE,
contrasts = NULL, constraints = NULL, extra = NULL,
qr.arg = FALSE, smart = TRUE, ...)

Arguments

formula, family, weights

See vglm.
data an optional data frame containing the variables in the model. By default the vari-

ables are taken from environment(formula), typically the environment from
which rrvglm is called.

subset, na.action

See vglm.
etastart, mustart, coefstart

See vglm.
control a list of parameters for controlling the fitting process. See rrvglm.control for

details.
offset, model, contrasts

See vglm.
method the method to be used in fitting the model. The default (and presently only)

method rrvglm.fit uses iteratively reweighted least squares (IRLS).
x.arg, y.arg logical values indicating whether the model matrix and response vector/matrix

used in the fitting process should be assigned in the x and y slots. Note the
model matrix is the LM model matrix; to get the VGLM model matrix type
model.matrix(vglmfit) where vglmfit is a vglm object.

constraints See vglm.
extra, smart, qr.arg

See vglm.
... further arguments passed into rrvglm.control.

rrvglm 721

Details

The central formula is given by
η = BT1 x1 +Aν

where x1 is a vector (usually just a 1 for an intercept), x2 is another vector of explanatory variables,
and ν = CTx2 is an R-vector of latent variables. Here, η is a vector of linear predictors, e.g., the
mth element is ηm = log(E[Ym]) for the mth Poisson response. The matrices B1, A and C are
estimated from the data, i.e., contain the regression coefficients. For ecologists, the central formula
represents a constrained linear ordination (CLO) since it is linear in the latent variables. It means
that the response is a monotonically increasing or decreasing function of the latent variables.

For identifiability it is common to enforce corner constraints on A: by default, the top R by R
submatrix is fixed to be the order-R identity matrix and the remainder of A is estimated.

The underlying algorithm of RR-VGLMs is iteratively reweighted least squares (IRLS) with an
optimizing algorithm applied within each IRLS iteration (e.g., alternating algorithm).

In theory, any VGAM family function that works for vglm and vgam should work for rrvglm too.
The function that actually does the work is rrvglm.fit; it is vglm.fit with some extra code.

Value

An object of class "rrvglm", which has the the same slots as a "vglm" object. The only difference
is that the some of the constraint matrices are estimates rather than known. But VGAM stores the
models the same internally. The slots of "vglm" objects are described in vglm-class.

Note

The arguments of rrvglm are in general the same as those of vglm but with some extras in rrvglm.control.

The smart prediction (smartpred) library is packed with the VGAM library.

In an example below, a rank-1 stereotype model of Anderson (1984) is fitted to some car data.
The reduced-rank regression is performed, adjusting for two covariates. Setting a trivial constraint
matrix (diag(M)) for the latent variable variables in x2 avoids a warning message when it is over-
written by a (common) estimated constraint matrix. It shows that German cars tend to be more
expensive than American cars, given a car of fixed weight and width.

If fit <- rrvglm(..., data = mydata) then summary(fit) requires corner constraints and no
missing values in mydata. Often the estimated variance-covariance matrix of the parameters is
not positive-definite; if this occurs, try refitting the model with a different value for Index.corner.

For constrained quadratic ordination (CQO) see cqo for more details about QRR-VGLMs.

With multiple binary responses, one must use binomialff(multiple.responses = TRUE) to indi-
cate that the response is a matrix with one response per column. Otherwise, it is interpreted as a
single binary response variable.

Author(s)

Thomas W. Yee

722 rrvglm

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Anderson, J. A. (1984). Regression and ordered categorical variables. Journal of the Royal Statis-
tical Society, Series B, Methodological, 46, 1–30.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

See Also

rrvglm.control, lvplot.rrvglm (same as biplot.rrvglm), rrvglm-class, grc, cqo, vglmff-class,
vglm, vglm-class, smartpred, rrvglm.fit. Special family functions include negbinomial zipoisson
and zinegbinomial. (see Yee (2014) and COZIGAM). Methods functions include Coef.rrvglm,
calibrate.rrvglm, summary.rrvglm, etc. Data include crashi.

Examples

Not run:
Example 1: RR NB with Var(Y) = mu + delta1 * mu^delta2
nn <- 1000 # Number of observations
delta1 <- 3.0 # Specify this
delta2 <- 1.5 # Specify this; should be greater than unity
a21 <- 2 - delta2
mydata <- data.frame(x2 = runif(nn), x3 = runif(nn))
mydata <- transform(mydata, mu = exp(2 + 3 * x2 + 0 * x3))
mydata <- transform(mydata,

y2 = rnbinom(nn, mu = mu, size = (1/delta1)*mu^a21))
plot(y2 ~ x2, data = mydata, pch = "+", col = 'blue', las = 1,

main = paste("Var(Y) = mu + ", delta1, " * mu^", delta2, sep = ""))
rrnb2 <- rrvglm(y2 ~ x2 + x3, negbinomial(zero = NULL),

data = mydata, trace = TRUE)

a21.hat <- (Coef(rrnb2)@A)["loglink(size)", 1]
beta11.hat <- Coef(rrnb2)@B1["(Intercept)", "loglink(mu)"]
beta21.hat <- Coef(rrnb2)@B1["(Intercept)", "loglink(size)"]
(delta1.hat <- exp(a21.hat * beta11.hat - beta21.hat))
(delta2.hat <- 2 - a21.hat)
exp(a21.hat * predict(rrnb2)[1,1] - predict(rrnb2)[1,2]) # delta1.hat
summary(rrnb2)

Obtain a 95 percent confidence interval for delta2:
se.a21.hat <- sqrt(vcov(rrnb2)["I(latvar.mat)", "I(latvar.mat)"])
ci.a21 <- a21.hat + c(-1, 1) * 1.96 * se.a21.hat
(ci.delta2 <- 2 - rev(ci.a21)) # The 95 percent confidence interval

Confint.rrnb(rrnb2) # Quick way to get it

Plot the abundances and fitted values against the latent variable

rrvglm-class 723

plot(y2 ~ latvar(rrnb2), data = mydata, col = "blue",
xlab = "Latent variable", las = 1)

ooo <- order(latvar(rrnb2))
lines(fitted(rrnb2)[ooo] ~ latvar(rrnb2)[ooo], col = "orange")

Example 2: stereotype model (reduced-rank multinomial logit model)
data(car.all)
scar <- subset(car.all,

is.element(Country, c("Germany", "USA", "Japan", "Korea")))
fcols <- c(13,14,18:20,22:26,29:31,33,34,36) # These are factors
scar[, -fcols] <- scale(scar[, -fcols]) # Standardize all numerical vars
ones <- matrix(1, 3, 1)
clist <- list("(Intercept)" = diag(3), Width = ones, Weight = ones,

Disp. = diag(3), Tank = diag(3), Price = diag(3),
Frt.Leg.Room = diag(3))

set.seed(111)
fit <- rrvglm(Country ~ Width + Weight + Disp. + Tank +

Price + Frt.Leg.Room,
multinomial, data = scar, Rank = 2, trace = TRUE,
constraints = clist, noRRR = ~ 1 + Width + Weight,
Uncor = TRUE, Corner = FALSE, Bestof = 2)

fit@misc$deviance # A history of the fits
Coef(fit)
biplot(fit, chull = TRUE, scores = TRUE, clty = 2, Ccex = 2,

ccol = "blue", scol = "orange", Ccol = "darkgreen", Clwd = 2,
main = "1=Germany, 2=Japan, 3=Korea, 4=USA")

End(Not run)

rrvglm-class Class “rrvglm”

Description

Reduced-rank vector generalized linear models.

Objects from the Class

Objects can be created by calls to rrvglm.

Slots

extra: Object of class "list"; the extra argument on entry to vglm. This contains any extra
information that might be needed by the family function.

family: Object of class "vglmff". The family function.

iter: Object of class "numeric". The number of IRLS iterations used.

predictors: Object of class "matrix" with M columns which holds the M linear predictors.

assign: Object of class "list", from class "vlm". This named list gives information matching the
columns and the (LM) model matrix terms.

724 rrvglm-class

call: Object of class "call", from class "vlm". The matched call.
coefficients: Object of class "numeric", from class "vlm". A named vector of coefficients.
constraints: Object of class "list", from class "vlm". A named list of constraint matrices used

in the fitting.
contrasts: Object of class "list", from class "vlm". The contrasts used (if any).
control: Object of class "list", from class "vlm". A list of parameters for controlling the fitting

process. See vglm.control for details.
criterion: Object of class "list", from class "vlm". List of convergence criterion evaluated at

the final IRLS iteration.
df.residual: Object of class "numeric", from class "vlm". The residual degrees of freedom.
df.total: Object of class "numeric", from class "vlm". The total degrees of freedom.
dispersion: Object of class "numeric", from class "vlm". The scaling parameter.
effects: Object of class "numeric", from class "vlm". The effects.
fitted.values: Object of class "matrix", from class "vlm". The fitted values. This is usually

the mean but may be quantiles, or the location parameter, e.g., in the Cauchy model.
misc: Object of class "list", from class "vlm". A named list to hold miscellaneous parameters.
model: Object of class "data.frame", from class "vlm". The model frame.
na.action: Object of class "list", from class "vlm". A list holding information about missing

values.
offset: Object of class "matrix", from class "vlm". If non-zero, a M -column matrix of offsets.
post: Object of class "list", from class "vlm" where post-analysis results may be put.
preplot: Object of class "list", from class "vlm" used by plotvgam; the plotting parameters

may be put here.
prior.weights: Object of class "matrix", from class "vlm" holding the initially supplied weights.
qr: Object of class "list", from class "vlm". QR decomposition at the final iteration.
R: Object of class "matrix", from class "vlm". The R matrix in the QR decomposition used in the

fitting.
rank: Object of class "integer", from class "vlm". Numerical rank of the fitted model.
residuals: Object of class "matrix", from class "vlm". The working residuals at the final IRLS

iteration.
ResSS: Object of class "numeric", from class "vlm". Residual sum of squares at the final IRLS

iteration with the adjusted dependent vectors and weight matrices.
smart.prediction: Object of class "list", from class "vlm". A list of data-dependent parame-

ters (if any) that are used by smart prediction.
terms: Object of class "list", from class "vlm". The terms object used.
weights: Object of class "matrix", from class "vlm". The weight matrices at the final IRLS

iteration. This is in matrix-band form.
x: Object of class "matrix", from class "vlm". The model matrix (LM, not VGLM).
xlevels: Object of class "list", from class "vlm". The levels of the factors, if any, used in fitting.
y: Object of class "matrix", from class "vlm". The response, in matrix form.
Xm2: Object of class "matrix", from class "vlm". See vglm-class).
Ym2: Object of class "matrix", from class "vlm". See vglm-class).
callXm2: Object of class "call", from class "vlm". The matched call for argument form2.

rrvglm-class 725

Extends

Class "vglm", directly. Class "vlm", by class "vglm".

Methods

biplot signature(x = "rrvglm"): biplot.

Coef signature(object = "rrvglm"): more detailed coefficients giving A,B1, C, etc.

biplot signature(object = "rrvglm"): biplot.

print signature(x = "rrvglm"): short summary of the object.

summary signature(object = "rrvglm"): a more detailed summary of the object.

Note

The slots of "rrvglm" objects are currently identical to "vglm" objects.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

See Also

rrvglm, lvplot.rrvglm, vglmff-class.

Examples

Not run: # Rank-1 stereotype model of Anderson (1984)
pneumo <- transform(pneumo, let = log(exposure.time),

x3 = runif(nrow(pneumo))) # Unrelated
fit <- rrvglm(cbind(normal, mild, severe) ~ let + x3,

multinomial, data = pneumo, Rank = 1)
Coef(fit)

End(Not run)

726 rrvglm.control

rrvglm.control Control Function for rrvglm()

Description

Algorithmic constants and parameters for running rrvglm are set using this function.

Usage

rrvglm.control(Rank = 1, Algorithm = c("alternating", "derivative"),
Corner = TRUE, Uncorrelated.latvar = FALSE,
Wmat = NULL, Svd.arg = FALSE,
Index.corner = if (length(str0))
head((1:1000)[-str0], Rank) else 1:Rank,
Ainit = NULL, Alpha = 0.5, Bestof = 1, Cinit = NULL,
Etamat.colmax = 10,
sd.Ainit = 0.02, sd.Cinit = 0.02, str0 = NULL,
noRRR = ~1, Norrr = NA,
noWarning = FALSE,
trace = FALSE, Use.Init.Poisson.QO = FALSE,
checkwz = TRUE, Check.rank = TRUE, Check.cm.rank = TRUE,
wzepsilon = .Machine$double.eps^0.75, ...)

Arguments

Rank The numerical rankR of the model. Must be an element from the set {1,2,. . . ,min(M ,p2)}.
Here, the vector of explanatory variables x is partitioned into (x1,x2), which is
of dimension p1+p2. The variables making up x1 are given by the terms in
noRRR argument, and the rest of the terms comprise x2.

Algorithm Character string indicating what algorithm is to be used. The default is the first
one.

Corner Logical indicating whether corner constraints are to be used. This is one method
for ensuring a unique solution. If TRUE, Index.corner specifies the R rows of
the constraint matrices that are use as the corner constraints, i.e., they hold an
order-R identity matrix.

Uncorrelated.latvar

Logical indicating whether uncorrelated latent variables are to be used. This is
normalization forces the variance-covariance matrix of the latent variables to be
diag(Rank), i.e., unit variance and uncorrelated. This constraint does not lead
to a unique solution because it can be rotated.

Wmat Yet to be done.

Svd.arg Logical indicating whether a singular value decomposition of the outer product
is to computed. This is another normalization which ensures uniqueness. See
the argument Alpha below.

Index.corner Specifies the R rows of the constraint matrices that are used for the corner con-
straints, i.e., they hold an order-R identity matrix.

rrvglm.control 727

Alpha The exponent in the singular value decomposition that is used in the first part:
if the SVD is UDV T then the first and second parts are UDα and D1−αV T

respectively. A value of 0.5 is ‘symmetrical’. This argument is used only when
Svd.arg=TRUE.

Bestof Integer. The best of Bestof models fitted is returned. This argument helps guard
against local solutions by (hopefully) finding the global solution from many fits.
The argument works only when the function generates its own initial value for
C, i.e., when C is not passed in as initial values.

Ainit, Cinit Initial A and C matrices which may speed up convergence. They must be of the
correct dimension.

Etamat.colmax Positive integer, no smaller than Rank. Controls the amount of memory used by
.Init.Poisson.QO(). It is the maximum number of columns allowed for the
pseudo-response and its weights. In general, the larger the value, the better the
initial value. Used only if Use.Init.Poisson.QO=TRUE.

str0 Integer vector specifying which rows of the estimated constraint matrices (A) are
to be all zeros. These are called structural zeros. Must not have any common
value with Index.corner, and be a subset of the vector 1:M. The default, str0
= NULL, means no structural zero rows at all.

sd.Ainit, sd.Cinit

Standard deviation of the initial values for the elements of A and C. These are
normally distributed with mean zero. This argument is used only if Use.Init.Poisson.QO
= FALSE.

noRRR Formula giving terms that are not to be included in the reduced-rank regres-
sion. That is, noRRR specifes which explanatory variables are in the x1 vector
of rrvglm, and the rest go into x2. The x1 variables constitute theB1 matrix in
Yee and Hastie (2003). Those x2 variables which are subject to the reduced-rank
regression correspond to the B2 matrix. Set noRRR = NULL for the reduced-rank
regression to be applied to every explanatory variable including the intercept.

Norrr Defunct. Please use noRRR. Use of Norrr will become an error soon.
trace Logical indicating if output should be produced for each iteration.
Use.Init.Poisson.QO

Logical indicating whether the .Init.Poisson.QO() should be used to obtain
initial values for the C. The function uses a new method that can work well if the
data are Poisson counts coming from an equal-tolerances QRR-VGLM (CQO).
This option is less realistic for RR-VGLMs compared to QRR-VGLMs.

checkwz logical indicating whether the diagonal elements of the working weight matri-
ces should be checked whether they are sufficiently positive, i.e., greater than
wzepsilon. If not, any values less than wzepsilon are replaced with this value.

noWarning, Check.rank, Check.cm.rank

Same as vglm.control. Ignored for VGAM 0.9-7 and higher.
wzepsilon Small positive number used to test whether the diagonals of the working weight

matrices are sufficiently positive.
... Variables in . . . are passed into vglm.control. If the derivative algorithm is

used then . . . are also passed into rrvglm.optim.control; and if the alternating
algorithm is used then . . . are also passed into valt.control.
In the above, R is the Rank and M is the number of linear predictors.

728 rrvglm.control

Details

VGAM supports three normalizations to ensure a unique solution. Of these, only corner constraints
will work with summary of RR-VGLM objects.

Value

A list with components matching the input names. Some error checking is done, but not much.

Note

The arguments in this function begin with an upper case letter to help avoid interference with those
of vglm.control.

In the example below a rank-1 stereotype model (Anderson, 1984) is fitted.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

rrvglm, rrvglm.optim.control, rrvglm-class, vglm, vglm.control, cqo.

Examples

Not run:
set.seed(111)
pneumo <- transform(pneumo, let = log(exposure.time),

x3 = runif(nrow(pneumo))) # Unrelated
fit <- rrvglm(cbind(normal, mild, severe) ~ let + x3,

multinomial, pneumo, Rank = 1, Index.corner = 2)
constraints(fit)
vcov(fit)
summary(fit)

End(Not run)

rrvglm.optim.control 729

rrvglm.optim.control Control Function for rrvglm() Calling optim()

Description

Algorithmic constants and parameters for running optim within rrvglm are set using this function.

Usage

rrvglm.optim.control(Fnscale = 1, Maxit = 100,
Switch.optimizer = 3, Abstol = -Inf,
Reltol = sqrt(.Machine$double.eps), ...)

Arguments

Fnscale Passed into optim as fnscale.

Maxit Passed into optim as maxit.
Switch.optimizer

Iteration number when the "Nelder-Mead" method of optim is switched to the
quasi-Newton "BFGS" method. Assigning Switch.optimizer a negative num-
ber means always BFGS, while assigning Switch.optimizer a value greater
than maxits means always use Nelder-Mead.

Abstol Passed into optim as abstol.

Reltol Passed into optim as reltol.

... Ignored.

Details

See optim for more details.

Value

A list with components equal to the arguments.

Note

The transition between optimization methods may be unstable, so users may have to vary the value
of Switch.optimizer.

Practical experience with Switch.optimizer shows that setting it to too large a value may lead to
a local solution, whereas setting it to a low value will obtain the global solution. It appears that, if
BFGS kicks in too late when the Nelder-Mead algorithm is starting to converge to a local solution,
then switching to BFGS will not be sufficient to bypass convergence to that local solution.

Author(s)

Thomas W. Yee

730 ruge

See Also

rrvglm.control, optim.

ruge Rutherford-Geiger Polonium Data

Description

Decay counts of polonium recorded by Rutherford and Geiger (1910).

Usage

data(ruge)

Format

This data frame contains the following columns:

counts a numeric vector, counts or frequencies

number a numeric vector, the number of decays

Details

These are the radioactive decay counts of polonium recorded by Rutherford and Geiger (1910)
representing the number of scintillations in 2608 1/8 minute intervals. For example, there were
57 frequencies of zero counts. The counts can be thought of as being approximately Poisson dis-
tributed.

Source

Rutherford, E. and Geiger, H. (1910) The Probability Variations in the Distribution of alpha Parti-
cles, Philosophical Magazine, 20, 698–704.

Examples

lambdahat <- with(ruge, weighted.mean(number, w = counts))
(N <- with(ruge, sum(counts)))
with(ruge, cbind(number, counts,

fitted = round(N * dpois(number, lambdahat))))

s 731

s Defining Smooths in VGAM Formulas

Description

s is used in the definition of (vector) smooth terms within vgam formulas. This corresponds to 1st-
generation VGAMs that use backfitting for their estimation. The effective degrees of freedom is
prespecified.

Usage

s(x, df = 4, spar = 0, ...)

Arguments

x covariate (abscissae) to be smoothed. Note that x must be a single variable and
not a function of a variable. For example, s(x) is fine but s(log(x)) will fail.
In this case, let logx <- log(x) (in the data frame), say, and then use s(logx).
At this stage bivariate smoothers (x would be a two-column matrix) are not
implemented.

df numerical vector of length r. Effective degrees of freedom: must lie between
1 (linear fit) and n (interpolation). Thus one could say that df-1 is the effec-
tive nonlinear degrees of freedom (ENDF) of the smooth. Recycling of values
will be used if df is not of length r. If spar is positive then this argument is
ignored. Thus s() means that the effective degrees of freedom is prespecified.
If it is known that the component function(s) are more wiggly than usual then
try increasing the value of this argument.

spar numerical vector of length r. Positive smoothing parameters (after scaling) .
Larger values mean more smoothing so that the solution approaches a linear fit
for that component function. A zero value means that df is used. Recycling of
values will be used if spar is not of length r.

... Ignored for now.

Details

In this help file M is the number of additive predictors and r is the number of component functions
to be estimated (so that r is an element from the set {1,2,. . . ,M}). Also, if n is the number of
distinct abscissae, then s will fail if n < 7.

s, which is symbolic and does not perform any smoothing itself, only handles a single covariate.
Note that s works in vgam only. It has no effect in vglm (actually, it is similar to the identity
function I so that s(x2) is the same as x2 in the LM model matrix). It differs from the s() of
the gam package and the s of the mgcv package; they should not be mixed together. Also, terms
involving s should be simple additive terms, and not involving interactions and nesting etc. For
example, myfactor:s(x2) is not a good idea.

732 s

Value

A vector with attributes that are (only) used by vgam.

Note

The vector cubic smoothing spline which s() represents is computationally demanding for large
M . The cost is approximately O(nM3) where n is the number of unique abscissae.

Currently a bug relating to the use of s() is that only constraint matrices whose columns are or-
thogonal are handled correctly. If any s() term has a constraint matrix that does not satisfy this
condition then a warning is issued. See is.buggy for more information.

A more modern alternative to using s with vgam is to use sm.os or sm.ps. This does not require
backfitting and allows automatic smoothing parameter selection. However, this alternative should
only be used when the sample size is reasonably large (> 500, say). These are called Generation-2
VGAMs.

Another alternative to using s with vgam is bs and/or ns with vglm. The latter implements half-
stepping, which is helpful if convergence is difficult.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

See Also

vgam, is.buggy, sm.os, sm.ps, vsmooth.spline.

Examples

Nonparametric logistic regression
fit1 <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = hunua)
Not run: plot(fit1, se = TRUE)

Bivariate logistic model with artificial data
nn <- 300
bdata <- data.frame(x1 = runif(nn), x2 = runif(nn))
bdata <- transform(bdata,

y1 = rbinom(nn, size = 1, prob = logitlink(sin(2 * x2), inverse = TRUE)),
y2 = rbinom(nn, size = 1, prob = logitlink(sin(2 * x2), inverse = TRUE)))

fit2 <- vgam(cbind(y1, y2) ~ x1 + s(x2, 3), trace = TRUE,
binom2.or(exchangeable = TRUE), data = bdata)

coef(fit2, matrix = TRUE) # Hard to interpret
Not run: plot(fit2, se = TRUE, which.term = 2, scol = "blue")

sc.studentt2 733

sc.studentt2 Scaled Student t Distribution with 2 df Family Function

Description

Estimates the location and scale parameters of a scaled Student t distribution with 2 degrees of
freedom, by maximum likelihood estimation.

Usage

sc.studentt2(percentile = 50, llocation = "identitylink", lscale = "loglink",
ilocation = NULL, iscale = NULL, imethod = 1, zero = "scale")

Arguments

percentile A numerical vector containing values between 0 and 100, which are the quantiles
and expectiles. They will be returned as ‘fitted values’.

llocation, lscale

See Links for more choices, and CommonVGAMffArguments.
ilocation, iscale, imethod, zero

See CommonVGAMffArguments for details.

Details

Koenker (1993) solved for the distribution whose quantiles are equal to its expectiles. Its canonical
form has mean and mode at 0, and has a heavy tail (in fact, its variance is infinite).

The standard (“canonical”) form of this distribution can be endowed with a location and scale
parameter. The standard form has a density that can be written as

f(z) = 2/(4 + z2)3/2

for real y. Then z = (y − a)/b for location and scale parameters a and b > 0. The mean of Y is
a. By default, η1 = a) and η2 = log(b). The expectiles/quantiles corresponding to percentile are
returned as the fitted values; in particular, percentile = 50 corresponds to the mean (0.5 expectile)
and median (0.5 quantile).

Note that if Y has a standard dsc.t2 then Y =
√

2T2 where T2 has a Student-t distribution with 2
degrees of freedom. The two parameters here can also be estimated using studentt2 by specifying
df = 2 and making an adjustment for the scale parameter, however, this VGAM family function is
more efficient since the EIM is known (Fisher scoring is implemented.)

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Author(s)

T. W. Yee

734 score.stat

References

Koenker, R. (1993). When are expectiles percentiles? (solution) Econometric Theory, 9, 526–527.

See Also

dsc.t2, studentt2.

Examples

set.seed(123); nn <- 1000
kdata <- data.frame(x2 = sort(runif(nn)))
kdata <- transform(kdata, mylocat = 1 + 3 * x2,

myscale = 1)
kdata <- transform(kdata, y = rsc.t2(nn, loc = mylocat, scale = myscale))
fit <- vglm(y ~ x2, sc.studentt2(perc = c(1, 50, 99)), data = kdata)
fit2 <- vglm(y ~ x2, studentt2(df = 2), data = kdata) # 'same' as fit

coef(fit, matrix = TRUE)
head(fitted(fit))
head(predict(fit))

Nice plot of the results
Not run: plot(y ~ x2, data = kdata, col = "blue", las = 1,

sub = paste("n =", nn),
main = "Fitted quantiles/expectiles using the sc.studentt2() distribution")

matplot(with(kdata, x2), fitted(fit), add = TRUE, type = "l", lwd = 3)
legend("bottomright", lty = 1:3, lwd = 3, legend = colnames(fitted(fit)),

col = 1:3)
End(Not run)

fit@extra$percentile # Sample quantiles

score.stat Rao’s Score Test Statistics Evaluated at the Null Values

Description

Generic function that computes Rao’s score test statistics evaluated at the null values.

Usage

score.stat(object, ...)
score.stat.vlm(object, values0 = 0, subset = NULL, omit1s = TRUE,

all.out = FALSE, orig.SE = FALSE, iterate.SE = TRUE,
iterate.score = TRUE, trace = FALSE, ...)

score.stat 735

Arguments

object, values0, subset

Same as in wald.stat.vlm.
omit1s, all.out

Same as in wald.stat.vlm.
orig.SE, iterate.SE

Same as in wald.stat.vlm.

iterate.score Logical. The score vector is evaluated at one value of values0 and at other
regression coefficient values. These other values may be either the MLE ob-
tained from the original object (FALSE), else at values obtained by further IRLS
iterations—this argument enables that choice.

trace Same as in wald.stat.vlm.

... Ignored for now.

Details

The (Rao) score test (also known as the Lagrange multiplier test in econometrics) is a third general
method for hypothesis testing under a likelihood-based framework (the others are the likelihood ra-
tio test and Wald test; see lrt.stat and wald.stat). Asymptotically, the three tests are equivalent.
The Wald test is not invariant to parameterization, and the usual Wald test statistics computed at the
estimates make it vulnerable to the Hauck-Donner effect (HDE; see hdeff). This function is similar
to wald.stat in that one coefficient is set to 0 (by default) and the other coefficients are iterated by
IRLS to get their MLE subject to this constraint. The SE is almost always based on the expected
information matrix (EIM) rather than the OIM, and for some models the EIM and OIM coincide.

Value

By default the signed square root of the Rao score statistics are returned. If all.out = TRUE then
a list is returned with the following components: score.stat the score statistic, SE0 the standard
error of that coefficient, values0 the null values. Approximately, the default score statistics output
are standard normal random variates if each null hypothesis is true.

Altogether, by the eight combinations of iterate.SE, iterate.score and orig.SE, there are six
different variants of the Rao score statistic that can be returned because the score vector has 2 and
the SEs have 3 subvariants.

Warning

See wald.stat.vlm.

Author(s)

Thomas W. Yee

See Also

wald.stat, lrt.stat, summaryvglm, summary.glm, anova.vglm, vglm, hdeff.

736 seglines

Examples

set.seed(1)
pneumo <- transform(pneumo, let = log(exposure.time),

x3 = rnorm(nrow(pneumo)))
(pfit <- vglm(cbind(normal, mild, severe) ~ let + x3, propodds, pneumo))
score.stat(pfit) # No HDE here; should be similar to the next line:
coef(summary(pfit))[, "z value"] # Wald statistics computed at the MLE
summary(pfit, score0 = TRUE)

seglines Hauck-Donner Effects: Segmented Lines Plot

Description

Plots the piecewise segmented curve made up of Wald statistics versus estimates, using a colour
code for the HDE severity.

Usage

seglines(x, y, dy, ddy, lwd = 2, cex = 2, plot.it = TRUE,
add.legend = TRUE, position.legend = "topleft",
lty.table = c("solid", "dashed", "solid", "dashed",

"solid", "dashed", "solid"),
col.table = rainbow.sky[-5], pch.table = 7:1,
severity.table = c("None", "Faint", "Weak",
"Moderate", "Strong", "Extreme", "Undetermined"),
tol0 = 0.1, FYI = FALSE, ...)

Arguments

x, y, dy, ddy Same as hdeffsev.

lwd, cex Graphical parameters: line width, and character expansion.

plot.it Logical, plot it? If FALSE then the other graphical arguments are ignored.
add.legend, position.legend

Logical and character; add a legend? The other argument is fed into legend.
severity.table, tol0

Same as hdeffsev.
lty.table, col.table, pch.table

Graphical parameters for the 7 different types of segments. Usually users should
not assign anything to these arguments.

FYI, ... Should be ignored.

Details

This function was written to complement hdeffsev and is rough-and-ready. It plots the Wald
statistics as a function of the estimates, and uses a colour-code to indicate the severity of the Hauck-
Donner effect (HDE). This can be obtained from its first two derivatives.

Select 737

Value

This function returns the severity of the HDE, possibly invisibly.

Note

This function is likely to change in the short future because it is experimental and far from complete.

Author(s)

Thomas W. Yee.

See Also

hdeff, hdeffsev.

Examples

deg <- 4 # myfun is a function that approximates the HDE
myfun <- function(x, deriv = 0) switch(as.character(deriv),

'0' = x^deg * exp(-x),
'1' = (deg * x^(deg-1) - x^deg) * exp(-x),
'2' = (deg * (deg-1) * x^(deg-2) - 2*deg * x^(deg-1) + x^deg) * exp(-x))

Not run:
curve(myfun, 0, 10, col = "white")
xgrid <- seq(0, 10, length = 101)
seglines(xgrid, myfun(xgrid), myfun(xgrid, deriv = 1),

myfun(xgrid, deriv = 2), position = "bottom")

End(Not run)

Select Select Variables for a Formula Response or the RHS of a Formula

Description

Select variables from a data frame whose names begin with a certain character string.

Usage

Select(data = list(), prefix = "y",
lhs = NULL, rhs = NULL, rhs2 = NULL, rhs3 = NULL,
as.character = FALSE, as.formula.arg = FALSE, tilde = TRUE,
exclude = NULL, sort.arg = TRUE)

738 Select

Arguments

data A data frame or a matrix.

prefix A vector of character strings, or a logical. If a character then the variables cho-
sen from data begin with the value of prefix. If a logical then only TRUE is
accepted and all the variables in data are chosen.

lhs A character string. The response of a formula.

rhs A character string. Included as part of the RHS a formula. Set rhs = "0" to
suppress the intercept.

rhs2, rhs3 Same as rhs but appended to its RHS, i.e., paste0(rhs, " + ", rhs2, " + ",
rhs3). If used, rhs should be used first, and then possibly rhs2 and then possi-
bly rhs3.

as.character Logical. Return the answer as a character string?

as.formula.arg Logical. Is the answer a formula?

tilde Logical. If as.character and as.formula.arg are both TRUE then include the
tilde in the formula?

exclude Vector of character strings. Exclude these variables explicitly.

sort.arg Logical. Sort the variables?

Details

This is meant as a utility function to avoid manually: (i) making a cbind call to construct a big
matrix response, and (ii) constructing a formula involving a lot of terms. The savings can be made
because the variables of interest begin with some prefix, e.g., with the character "y".

Value

If as.character = FALSE and as.formula.arg = FALSE then a matrix such as cbind(y1, y2, y3).
If as.character = TRUE and as.formula.arg = FALSE then a character string such as "cbind(y1,
y2, y3)".

If as.character = FALSE and as.formula.arg = TRUE then a formula such as lhs ~ y1 + y2 + y3.
If as.character = TRUE and as.formula.arg = TRUE then a character string such as "lhs ~ y1 +
y2 + y3". See the examples below. By default, if no variables beginning the the value of prefix is
found then a NULL is returned. Setting prefix = " " is a way of selecting no variables.

Note

This function is a bit experimental at this stage and may change in the short future. Some of its
utility may be better achieved using subset and its select argument, e.g., subset(pdata, TRUE,
select = y01:y10).

For some models such as posbernoulli.t the order of the variables in the xij argument is crucial,
therefore care must be taken with the argument sort.arg. In some instances, it may be good to
rename variables y1 to y01, y2 to y02, etc. when there are variables such as y14.

Currently subsetcol() and Select() are identical. One of these functions might be withdrawn in
the future.

Select 739

Author(s)

T. W. Yee.

See Also

vglm, cbind, subset, formula, fill1.

Examples

Pneumo <- pneumo
colnames(Pneumo) <- c("y1", "y2", "y3", "x2") # The "y" variables are response
Pneumo$x1 <- 1; Pneumo$x3 <- 3; Pneumo$x <- 0; Pneumo$x4 <- 4 # Add these

Select(data = Pneumo) # Same as with(Pneumo, cbind(y1, y2, y3))
Select(Pneumo, "x")
Select(Pneumo, "x", sort = FALSE, as.char = TRUE)
Select(Pneumo, "x", exclude = "x1")
Select(Pneumo, "x", exclude = "x1", as.char = TRUE)
Select(Pneumo, c("x", "y"))
Select(Pneumo, "z") # Now returns a NULL
Select(Pneumo, " ") # Now returns a NULL
Select(Pneumo, prefix = TRUE, as.formula = TRUE)
Select(Pneumo, "x", exclude = c("x3", "x1"), as.formula = TRUE,

lhs = "cbind(y1, y2, y3)", rhs = "0")
Select(Pneumo, "x", exclude = "x1", as.formula = TRUE, as.char = TRUE,

lhs = "cbind(y1, y2, y3)", rhs = "0")

Now a 'real' example:
Huggins89table1 <- transform(Huggins89table1, x3.tij = t01)
tab1 <- subset(Huggins89table1,

rowSums(Select(Huggins89table1, "y")) > 0)
Same as
subset(Huggins89table1, y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 > 0)

Long way to do it:
fit.th <-

vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2 + x3.tij,
xij = list(x3.tij ~ t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 +

t09 + t10 - 1),
posbernoulli.t(parallel.t = TRUE ~ x2 + x3.tij),
data = tab1, trace = TRUE,
form2 = ~ x2 + x3.tij + t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 +

t09 + t10)
Short way to do it:
Fit.th <- vglm(Select(tab1, "y") ~ x2 + x3.tij,

xij = list(Select(tab1, "t", as.formula = TRUE,
sort = FALSE, lhs = "x3.tij", rhs = "0")),

posbernoulli.t(parallel.t = TRUE ~ x2 + x3.tij),
data = tab1, trace = TRUE,
form2 = Select(tab1, prefix = TRUE, as.formula = TRUE))

740 seq2binomial

seq2binomial The Two-stage Sequential Binomial Distribution Family Function

Description

Estimation of the probabilities of a two-stage binomial distribution.

Usage

seq2binomial(lprob1 = "logitlink", lprob2 = "logitlink",
iprob1 = NULL, iprob2 = NULL,
parallel = FALSE, zero = NULL)

Arguments

lprob1, lprob2 Parameter link functions applied to the two probabilities, called p and q below.
See Links for more choices.

iprob1, iprob2 Optional initial value for the first and second probabilities respectively. A NULL
means a value is obtained in the initialize slot.

parallel, zero Details at Links. If parallel = TRUE then the constraint also applies to the
intercept.

Details

This VGAM family function fits the model described by Crowder and Sweeting (1989) which is
described as follows. Each of m spores has a probability p of germinating. Of the y1 spores that
germinate, each has a probability q of bending in a particular direction. Let y2 be the number that
bend in the specified direction. The probability model for this data is P (y1, y2) =(

m

y1

)
py1(1− p)m−y1

(
y1
y2

)
qy2(1− q)y1−y2

for 0 < p < 1, 0 < q < 1, y1 = 1, . . . ,m and y2 = 1, . . . , y1. Here, p is prob1, q is prob2.

Although the Authors refer to this as the bivariate binomial model, I have named it the (two-stage)
sequential binomial model. Fisher scoring is used.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two-column matrix of sample proportions corresponding to y1 and y2. The
m values should be inputted with the weights argument of vglm and vgam. The fitted value is a
two-column matrix of estimated probabilities p and q. A common form of error is when there are
no trials for y1, e.g., if mvector below has some values which are zero.

setup.smart 741

Author(s)

Thomas W. Yee

References

Crowder, M. and Sweeting, T. (1989). Bayesian inference for a bivariate binomial distribution.
Biometrika, 76, 599–603.

See Also

binomialff, cfibrosis.

Examples

sdata <- data.frame(mvector = round(rnorm(nn <- 100, m = 10, sd = 2)),
x2 = runif(nn))

sdata <- transform(sdata, prob1 = logitlink(+2 - x2, inverse = TRUE),
prob2 = logitlink(-2 + x2, inverse = TRUE))

sdata <- transform(sdata, successes1 = rbinom(nn, size = mvector, prob = prob1))
sdata <- transform(sdata, successes2 = rbinom(nn, size = successes1, prob = prob2))
sdata <- transform(sdata, y1 = successes1 / mvector)
sdata <- transform(sdata, y2 = successes2 / successes1)
fit <- vglm(cbind(y1, y2) ~ x2, seq2binomial, weight = mvector,

data = sdata, trace = TRUE)
coef(fit)
coef(fit, matrix = TRUE)
head(fitted(fit))
head(depvar(fit))
head(weights(fit, type = "prior")) # Same as with(sdata, mvector)
Number of first successes:
head(depvar(fit)[, 1] * c(weights(fit, type = "prior")))
Number of second successes:
head(depvar(fit)[, 2] * c(weights(fit, type = "prior")) *

depvar(fit)[, 1])

setup.smart Smart Prediction Setup

Description

Sets up smart prediction in one of two modes: "write" and "read".

Usage

setup.smart(mode.arg, smart.prediction = NULL, max.smart = 30)

742 setup.smart

Arguments

mode.arg mode.arg must be "write" or "read". If in "read" mode then smart.prediction
must be assigned the data structure .smart.prediction that was created while
fitting. This is stored in object@smart.prediction or object$smart.prediction
where object is the name of the fitted object.

smart.prediction

If in "read" mode then smart.prediction must be assigned the list of data de-
pendent parameters, which is stored on the fitted object. Otherwise, smart.prediction
is ignored.

max.smart max.smart is the initial length of the list .smart.prediction. It is not impor-
tant because .smart.prediction is made larger if needed.

Details

This function is only required by programmers writing a modelling function such as lm and glm, or a
prediction functions of such, e.g., predict.lm. The function setup.smart operates by mimicking
the operations of a first-in first-out stack (better known as a queue).

Value

Nothing is returned.

Side Effects

In "write" mode .smart.prediction in smartpredenv is assigned an empty list with max.smart
components. In "read" mode .smart.prediction in smartpredenv is assigned smart.prediction.
Then .smart.prediction.counter in smartpredenv is assigned the value 0, and .smart.prediction.mode
and .max.smart are written to smartpredenv too.

See Also

lm, predict.lm.

Examples

Not run:
setup.smart("write") # Put at the beginning of lm

End(Not run)

Not run: # Put at the beginning of predict.lm
setup.smart("read", smart.prediction = object$smart.prediction)

End(Not run)

Simplex 743

Simplex Simplex Distribution

Description

Density function, and random generation for the simplex distribution.

Usage

dsimplex(x, mu = 0.5, dispersion = 1, log = FALSE)
rsimplex(n, mu = 0.5, dispersion = 1)

Arguments

x Vector of quantiles. The support of the distribution is the interval (0, 1).

mu, dispersion Mean and dispersion parameters. The former lies in the interval (0, 1) and the
latter is positive.

n, log Same usage as runif.

Details

The VGAM family function simplex fits this model; see that online help for more information. For
rsimplex() the rejection method is used; it may be very slow if the density is highly peaked, and
will fail if the density asymptotes at the boundary.

Value

dsimplex(x) gives the density function, rsimplex(n) gives n random variates.

Author(s)

T. W. Yee

See Also

simplex.

Examples

sigma <- c(4, 2, 1) # Dispersion parameter
mymu <- c(0.1, 0.5, 0.7); xxx <- seq(0, 1, len = 501)
Not run: par(mfrow = c(3, 3)) # Figure 2.1 of Song (2007)
for (iii in 1:3)

for (jjj in 1:3) {
plot(xxx, dsimplex(xxx, mymu[jjj], sigma[iii]),

type = "l", col = "blue", xlab = "", ylab = "", main =
paste("mu = ", mymu[jjj], ", sigma = ", sigma[iii], sep = "")) }

End(Not run)

744 simplex

simplex Simplex Distribution Family Function

Description

The two parameters of the univariate standard simplex distribution are estimated by full maximum
likelihood estimation.

Usage

simplex(lmu = "logitlink", lsigma = "loglink", imu = NULL, isigma = NULL,
imethod = 1, ishrinkage = 0.95, zero = "sigma")

Arguments

lmu, lsigma Link function for mu and sigma. See Links for more choices.

imu, isigma Optional initial values for mu and sigma. A NULL means a value is obtained
internally.

imethod, ishrinkage, zero

See CommonVGAMffArguments for information.

Details

The probability density function can be written

f(y;µ, σ) = [2πσ2(y(1− y))3]−0.5 exp[−0.5(y − µ)2/(σ2y(1− y)µ2(1− µ)2)]

for 0 < y < 1, 0 < µ < 1, and σ > 0. The mean of Y is µ (called mu, and returned as the fitted
values).

The second parameter, sigma, of this standard simplex distribution is known as the dispersion pa-
rameter. The unit variance function is V (µ) = µ3(1 − µ)3. Fisher scoring is applied to both
parameters.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

This distribution is potentially useful for dispersion modelling. Numerical problems may occur
when mu is very close to 0 or 1.

Author(s)

T. W. Yee

simulate.vlm 745

References

Jorgensen, B. (1997). The Theory of Dispersion Models. London: Chapman & Hall

Song, P. X.-K. (2007). Correlated Data Analysis: Modeling, Analytics, and Applications. Springer.

See Also

dsimplex, dirichlet, rig, binomialff.

Examples

sdata <- data.frame(x2 = runif(nn <- 1000))
sdata <- transform(sdata, eta1 = 1 + 2 * x2,

eta2 = 1 - 2 * x2)
sdata <- transform(sdata, y = rsimplex(nn, mu = logitlink(eta1, inverse = TRUE),

dispersion = exp(eta2)))
(fit <- vglm(y ~ x2, simplex(zero = NULL), data = sdata, trace = TRUE))
coef(fit, matrix = TRUE)
summary(fit)

simulate.vlm Simulate Responses for VGLMs and VGAMs

Description

Simulate one or more responses from the distribution corresponding to a fitted model object.

Usage

S3 method for class 'vlm'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object an object representing a fitted model. Usually an object of class vglm-class or
vgam-class.

nsim, seed Same as simulate.
... additional optional arguments.

Details

This is a methods function for simulate and hopefully should behave in a very similar manner.
Only VGAM family functions with a simslot slot have been implemented for simulate.

Value

Similar to simulate. Note that many VGAM family functions can handle multiple responses. This
can result in a longer data frame with more rows (nsim multiplied by n rather than the ordinary
n). In the future an argument may be available so that there is always n rows no matter how many
responses were inputted.

746 simulate.vlm

Warning

With multiple response and/or multivariate responses, the order of the elements may differ. For
some VGAM families, the order is n × N × F , where n is the sample size, N is nsim and F is
ncol(fitted(vglmObject)). For other VGAM families, the order is n× F ×N . An example of
each is given below.

See Also

Currently the VGAM family functions with a simslot slot are: alaplace1, alaplace2, betabinomial,
betabinomialff, betaR, betaff, biamhcop, bifrankcop, bilogistic, binomialff, binormal,
binormalcop, biclaytoncop, cauchy, cauchy1, chisq, dirichlet, dagum, erlang, exponential,
bifgmcop, fisk, gamma1, gamma2, gammaR, gengamma.stacy, geometric, gompertz, gumbelII,
hzeta, inv.lomax, inv.paralogistic, kumar, lgamma1, lgamma3, lindley, lino, logff, logistic1,
logistic, lognormal, lomax, makeham, negbinomial, negbinomial.size, paralogistic, perks,
poissonff, posnegbinomial, posnormal, pospoisson, polya, polyaR, posbinomial, rayleigh,
riceff, simplex, sinmad, slash, studentt, studentt2, studentt3, triangle, uninormal,
yulesimon, zageometric, zageometricff, zanegbinomial, zanegbinomialff, zapoisson, zapoissonff,
zigeometric, zigeometricff, zinegbinomial, zipf, zipoisson, zipoissonff.

See also RNG about random number generation in R, vglm, vgam for model fitting.

Examples

nn <- 10; mysize <- 20; set.seed(123)
bdata <- data.frame(x2 = rnorm(nn))
bdata <- transform(bdata,

y1 = rbinom(nn, size = mysize, p = logitlink(1+x2, inverse = TRUE)),
y2 = rbinom(nn, size = mysize, p = logitlink(1+x2, inverse = TRUE)),
f1 = factor(as.numeric(rbinom(nn, size = 1,

p = logitlink(1+x2, inverse = TRUE)))))
(fit1 <- vglm(cbind(y1, aaa = mysize - y1) ~ x2, # Matrix response (2-colns)

binomialff, data = bdata))
(fit2 <- vglm(f1 ~ x2, binomialff, model = TRUE, data = bdata)) # Factor response

set.seed(123); simulate(fit1, nsim = 8)
set.seed(123); c(simulate(fit2, nsim = 3)) # Use c() when model = TRUE

An n x N x F example
set.seed(123); n <- 100
bdata <- data.frame(x2 = runif(n), x3 = runif(n))
bdata <- transform(bdata, y1 = rnorm(n, 1 + 2 * x2),

y2 = rnorm(n, 3 + 4 * x2))
fit1 <- vglm(cbind(y1, y2) ~ x2, binormal(eq.sd = TRUE), data = bdata)
nsim <- 1000 # Number of simulations for each observation
my.sims <- simulate(fit1, nsim = nsim)
dim(my.sims) # A data frame
aaa <- array(unlist(my.sims), c(n, nsim, ncol(fitted(fit1)))) # n by N by F
summary(rowMeans(aaa[, , 1]) - fitted(fit1)[, 1]) # Should be all 0s
summary(rowMeans(aaa[, , 2]) - fitted(fit1)[, 2]) # Should be all 0s

An n x F x N example

Sinmad 747

n <- 100; set.seed(111); nsim <- 1000
zdata <- data.frame(x2 = runif(n))
zdata <- transform(zdata, lambda1 = loglink(-0.5 + 2 * x2, inverse = TRUE),

lambda2 = loglink(0.5 + 2 * x2, inverse = TRUE),
pstr01 = logitlink(0, inverse = TRUE),
pstr02 = logitlink(-1.0, inverse = TRUE))

zdata <- transform(zdata, y1 = rzipois(n, lambda = lambda1, pstr0 = pstr01),
y2 = rzipois(n, lambda = lambda2, pstr0 = pstr02))

zip.fit <- vglm(cbind(y1, y2) ~ x2, zipoissonff, data = zdata, crit = "coef")
my.sims <- simulate(zip.fit, nsim = nsim)
dim(my.sims) # A data frame
aaa <- array(unlist(my.sims), c(n, ncol(fitted(zip.fit)), nsim)) # n by F by N
summary(rowMeans(aaa[, 1,]) - fitted(zip.fit)[, 1]) # Should be all 0s
summary(rowMeans(aaa[, 2,]) - fitted(zip.fit)[, 2]) # Should be all 0s

Sinmad The Singh-Maddala Distribution

Description

Density, distribution function, quantile function and random generation for the Singh-Maddala dis-
tribution with shape parameters a and q, and scale parameter scale.

Usage

dsinmad(x, scale = 1, shape1.a, shape3.q, log = FALSE)
psinmad(q, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
qsinmad(p, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
rsinmad(n, scale = 1, shape1.a, shape3.q)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

shape1.a, shape3.q

shape parameters.

scale scale parameter.

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See sinmad, which is the VGAM family function for estimating the parameters by maximum like-
lihood estimation.

748 sinmad

Value

dsinmad gives the density, psinmad gives the distribution function, qsinmad gives the quantile
function, and rsinmad generates random deviates.

Note

The Singh-Maddala distribution is a special case of the 4-parameter generalized beta II distribution.

Author(s)

T. W. Yee and Kai Huang

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

sinmad, genbetaII.

Examples

sdata <- data.frame(y = rsinmad(n = 3000, scale = exp(2),
shape1 = exp(1), shape3 = exp(1)))

fit <- vglm(y ~ 1, sinmad(lss = FALSE, ishape1.a = 2.1), data = sdata,
trace = TRUE, crit = "coef")

coef(fit, matrix = TRUE)
Coef(fit)

sinmad Singh-Maddala Distribution Family Function

Description

Maximum likelihood estimation of the 3-parameter Singh-Maddala distribution.

Usage

sinmad(lscale = "loglink", lshape1.a = "loglink", lshape3.q = "loglink",
iscale = NULL, ishape1.a = NULL, ishape3.q = NULL, imethod = 1,
lss = TRUE, gscale = exp(-5:5), gshape1.a = exp(-5:5),
gshape3.q = exp(-5:5), probs.y = c(0.25, 0.5, 0.75),
zero = "shape")

sinmad 749

Arguments

lss See CommonVGAMffArguments for important information.
lshape1.a, lscale, lshape3.q

Parameter link functions applied to the (positive) parameters a, scale, and q.
See Links for more choices.

iscale, ishape1.a, ishape3.q, imethod, zero

See CommonVGAMffArguments for information. For imethod = 2 a good initial
value for ishape3.q is needed to obtain good estimates for the other parameters.

gscale, gshape1.a, gshape3.q

See CommonVGAMffArguments for information.

probs.y See CommonVGAMffArguments for information.

Details

The 3-parameter Singh-Maddala distribution is the 4-parameter generalized beta II distribution with
shape parameter p = 1. It is known under various other names, such as the Burr XII (or just the
Burr distribution), Pareto IV, beta-P, and generalized log-logistic distribution. More details can be
found in Kleiber and Kotz (2003).

Some distributions which are special cases of the 3-parameter Singh-Maddala are the Lomax (a =
1), Fisk (q = 1), and paralogistic (a = q).

The Singh-Maddala distribution has density

f(y) = aqya−1/[ba{1 + (y/b)a}1+q]

for a > 0, b > 0, q > 0, y ≥ 0. Here, b is the scale parameter scale, and the others are shape
parameters. The cumulative distribution function is

F (y) = 1− [1 + (y/b)a]−q.

The mean is
E(Y) = bΓ(1 + 1/a) Γ(q − 1/a)/Γ(q)

provided −a < 1 < aq; these are returned as the fitted values. This family function handles
multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

See the notes in genbetaII.

Author(s)

T. W. Yee

750 Skellam

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Sinmad, genbetaII, betaII, dagum, fisk, inv.lomax, lomax, paralogistic, inv.paralogistic,
simulate.vlm.

Examples

sdata <- data.frame(y = rsinmad(n = 1000, shape1 = exp(1),
scale = exp(2), shape3 = exp(0)))

fit <- vglm(y ~ 1, sinmad(lss = FALSE), data = sdata, trace = TRUE)
fit <- vglm(y ~ 1, sinmad(lss = FALSE, ishape1.a = exp(1)),

data = sdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

Harder problem (has the shape3.q parameter going to infinity)

set.seed(3)
sdata <- data.frame(y1 = rbeta(1000, 6, 6))
hist(with(sdata, y1))
if (FALSE) {
These struggle

fit1 <- vglm(y1 ~ 1, sinmad(lss = FALSE), data = sdata, trace = TRUE)
fit1 <- vglm(y1 ~ 1, sinmad(lss = FALSE), data = sdata, trace = TRUE,

crit = "coef")
Coef(fit1)

}
Try this remedy:
fit2 <- vglm(y1 ~ 1, data = sdata, trace = TRUE, stepsize = 0.05, maxit = 99,

sinmad(lss = FALSE, ishape3.q = 3, lshape3.q = "logloglink"))

coef(fit2, matrix = TRUE)
Coef(fit2)

Skellam The Skellam Distribution

Description

Density and random generation for the Skellam distribution.

Usage

dskellam(x, mu1, mu2, log = FALSE)
rskellam(n, mu1, mu2)

skellam 751

Arguments

x vector of quantiles.

n number of observations. Same as runif.

mu1, mu2 See skellam

.

log Logical; if TRUE, the logarithm is returned.

Details

See skellam, the VGAM family function for estimating the parameters, for the formula of the
probability density function and other details.

Value

dskellam gives the density, and rskellam generates random deviates.

Warning

Numerical problems may occur for data if µ1 and/or µ2 are large. The normal approximation for
this case has not been implemented yet.

See Also

skellam, dpois.

Examples

Not run: mu1 <- 1; mu2 <- 2; x <- (-7):7
plot(x, dskellam(x, mu1, mu2), type = "h", las = 1, col = "blue",

main = paste("Density of Skellam distribution with mu1 = ", mu1,
" and mu2 = ", mu2, sep = ""))

End(Not run)

skellam Skellam Distribution Family Function

Description

Estimates the two parameters of a Skellam distribution by maximum likelihood estimation.

Usage

skellam(lmu1 = "loglink", lmu2 = "loglink", imu1 = NULL, imu2 = NULL,
nsimEIM = 100, parallel = FALSE, zero = NULL)

752 skellam

Arguments

lmu1, lmu2 Link functions for the µ1 and µ2 parameters. See Links for more choices and
for general information.

imu1, imu2 Optional initial values for the parameters. See CommonVGAMffArguments for
more information. If convergence failure occurs (this VGAM family function
seems to require good initial values) try using these arguments.

nsimEIM, parallel, zero

See CommonVGAMffArguments for information. In particular, setting parallel=TRUE
will constrain the two means to be equal.

Details

The Skellam distribution models the difference between two independent Poisson distributions
(with means µj , say). It has density function

f(y;µ1, µ2) =

(
µ1

µ2

)y/2
exp(−µ1 − µ2) I|y|(2

√
µ1µ2)

where y is an integer, µ1 > 0, µ2 > 0. Here, Iv is the modified Bessel function of the first kind
with order v.

The mean is µ1 − µ2 (returned as the fitted values), and the variance is µ1 + µ2. Simulated Fisher
scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

This VGAM family function seems fragile and very sensitive to the initial values. Use very cau-
tiously!!

Note

Numerical problems may occur for data if µ1 and/or µ2 are large.

References

Skellam, J. G. (1946). The frequency distribution of the difference between two Poisson variates
belonging to different populations. Journal of the Royal Statistical Society, Series A, 109, 296.

See Also

dskellam, dpois, poissonff.

skewnorm 753

Examples

Not run:
sdata <- data.frame(x2 = runif(nn <- 1000))
sdata <- transform(sdata, mu1 = exp(1 + x2), mu2 = exp(1 + x2))
sdata <- transform(sdata, y = rskellam(nn, mu1, mu2))
fit1 <- vglm(y ~ x2, skellam, data = sdata, trace = TRUE, crit = "coef")
fit2 <- vglm(y ~ x2, skellam(parallel = TRUE), data = sdata, trace = TRUE)
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)
summary(fit1)
Likelihood ratio test for equal means:
pchisq(2 * (logLik(fit1) - logLik(fit2)),

df = df.residual(fit2) - df.residual(fit1), lower.tail = FALSE)
lrtest(fit1, fit2) # Alternative

End(Not run)

skewnorm Skew-Normal Distribution

Description

Density and random generation for the univariate skew-normal distribution.

Usage

dskewnorm(x, location = 0, scale = 1, shape = 0, log = FALSE)
rskewnorm(n, location = 0, scale = 1, shape = 0)

Arguments

x vector of quantiles.

n number of observations. Same as runif.

location The location parameter ξ. A vector.

scale The scale parameter ω. A positive vector.

shape The shape parameter. It is called α in skewnormal.

log Logical. If log=TRUE then the logarithm of the density is returned.

Details

See skewnormal, which currently only estimates the shape parameter. More generally here, Z =
ξ + ωY where Y has a standard skew-normal distribution (see skewnormal), ξ is the location
parameter and ω is the scale parameter.

Value

dskewnorm gives the density, rskewnorm generates random deviates.

754 skewnormal

Note

The default values of all three parameters corresponds to the skew-normal being the standard normal
distribution.

Author(s)

T. W. Yee

References

http://tango.stat.unipd.it/SN.

See Also

skewnormal.

Examples

Not run: N <- 200 # Grid resolution
shape <- 7; x <- seq(-4, 4, len = N)
plot(x, dskewnorm(x, shape = shape), type = "l", col = "blue", las = 1,

ylab = "", lty = 1, lwd = 2)
abline(v = 0, h = 0, col = "grey")
lines(x, dnorm(x), col = "orange", lty = 2, lwd = 2)
legend("topleft", leg = c(paste("Blue = dskewnorm(x, ", shape,")", sep = ""),

"Orange = standard normal density"), lty = 1:2, lwd = 2,
col = c("blue", "orange"))

End(Not run)

skewnormal Univariate Skew-Normal Distribution Family Function

Description

Maximum likelihood estimation of the shape parameter of a univariate skew-normal distribution.

Usage

skewnormal(lshape = "identitylink", ishape = NULL, nsimEIM = NULL)

Arguments

lshape, ishape, nsimEIM

See Links and CommonVGAMffArguments.

skewnormal 755

Details

The univariate skew-normal distribution has a density function that can be written

f(y) = 2φ(y) Φ(αy)

where α is the shape parameter. Here, φ is the standard normal density and Φ its cumulative
distribution function. When α = 0 the result is a standard normal distribution. When α = 1 it
models the distribution of the maximum of two independent standard normal variates. When the
absolute value of the shape parameter increases the skewness of the distribution increases. The
limit as the shape parameter tends to positive infinity results in the folded normal distribution or
half-normal distribution. When the shape parameter changes its sign, the density is reflected about
y = 0.

The mean of the distribution is µ = α
√

2/(π(1 + α2)) and these are returned as the fitted values.
The variance of the distribution is 1 − µ2. The Newton-Raphson algorithm is used unless the
nsimEIM argument is used.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

It is well known that the EIM of Azzalini’s skew-normal distribution is singular for skewness pa-
rameter tending to zero, and thus produces influential problems.

Note

It is a good idea to use several different initial values to ensure that the global solution is obtained.

This family function will be modified (hopefully soon) to handle a location and scale parameter too.

Author(s)

Thomas W. Yee

References

Azzalini, A. A. (1985). A class of distributions which include the normal. Scandinavian Journal of
Statistics, 12, 171–178.

Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew-normal
distribution. Journal of the Royal Statistical Society, Series B, Methodological, 61, 579–602.

See Also

skewnorm, uninormal, foldnormal.

756 Slash

Examples

sdata <- data.frame(y1 = rskewnorm(nn <- 1000, shape = 5))
fit1 <- vglm(y1 ~ 1, skewnormal, data = sdata, trace = TRUE)
coef(fit1, matrix = TRUE)
head(fitted(fit1), 1)
with(sdata, mean(y1))
Not run: with(sdata, hist(y1, prob = TRUE))
x <- with(sdata, seq(min(y1), max(y1), len = 200))
with(sdata, lines(x, dskewnorm(x, shape = Coef(fit1)), col = "blue"))
End(Not run)

sdata <- data.frame(x2 = runif(nn))
sdata <- transform(sdata, y2 = rskewnorm(nn, shape = 1 + 2*x2))
fit2 <- vglm(y2 ~ x2, skewnormal, data = sdata, trace = TRUE, crit = "coef")
summary(fit2)

Slash Slash Distribution

Description

Density function, distribution function, and random generation for the slash distribution.

Usage

dslash(x, mu = 0, sigma = 1, log = FALSE,
smallno = .Machine$double.eps*1000)

pslash(q, mu = 0, sigma = 1, very.negative = -10000,
lower.tail = TRUE, log.p = FALSE)

rslash(n, mu = 0, sigma = 1)

Arguments

x, q vector of quantiles.

n Same as runif.

mu, sigma the mean and standard deviation of the univariate normal distribution.

log Logical. If TRUE then the logarithm of the density is returned.

very.negative Numeric, of length 1. A large negative value. For (q-mu)/sigma values less
than this, the value 0 is returned because integrate tends to fail. A warning is
issued. Similarly, if (q-mu)/sigma is greater than abs(very.negative) then 1
is returned with a warning.

smallno See slash.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

slash 757

Details

See slash, the VGAM family function for estimating the two parameters by maximum likelihood
estimation, for the formula of the probability density function and other details.

Function pslash uses a for () loop and integrate, meaning it’s very slow. It may also be in-
accurate for extreme values of q, and returns with 1 or 0 values when too extreme compared to
very.negative.

Value

dslash gives the density, and pslash gives the distribution function, rslash generates random
deviates.

Note

pslash is very slow.

Author(s)

Thomas W. Yee and C. S. Chee

See Also

slash.

Examples

Not run:
curve(dslash, col = "blue", ylab = "f(x)", -5, 5, ylim = c(0, 0.4), las = 1,

main = "Standard slash, normal and Cauchy densities", lwd = 2)
curve(dnorm, col = "black", lty = 2, lwd = 2, add = TRUE)
curve(dcauchy, col = "orange", lty = 3, lwd = 2, add = TRUE)
legend("topleft", c("slash", "normal", "Cauchy"), lty = 1:3,

col = c("blue","black","orange"), lwd = 2)

curve(pslash, col = "blue", -5, 5, ylim = 0:1)
pslash(c(-Inf, -20000, 20000, Inf)) # Gives a warning

End(Not run)

slash Slash Distribution Family Function

Description

Estimates the two parameters of the slash distribution by maximum likelihood estimation.

758 slash

Usage

slash(lmu = "identitylink", lsigma = "loglink",
imu = NULL, isigma = NULL, gprobs.y = ppoints(8), nsimEIM = 250,
zero = NULL, smallno = .Machine$double.eps*1000)

Arguments

lmu, lsigma Parameter link functions applied to the µ and σ parameters, respectively. See
Links for more choices.

imu, isigma Initial values. A NULL means an initial value is chosen internally. See CommonVGAMffArguments
for more information.

gprobs.y Used to compute the initial values for mu. This argument is fed into the probs
argument of quantile to construct a grid, which is used to evaluate the log-
likelihood. This must have values between 0 and 1.

nsimEIM, zero See CommonVGAMffArguments for information.

smallno Small positive number, used to test for the singularity.

Details

The standard slash distribution is the distribution of the ratio of a standard normal variable to an
independent standard uniform(0,1) variable. It is mainly of use in simulation studies. One of its
properties is that it has heavy tails, similar to those of the Cauchy.

The general slash distribution can be obtained by replacing the univariate normal variable by a
general normal N(µ, σ) random variable. It has a density that can be written as

f(y) =

{
1/(2σ

√
(2π)) ify = µ,

1− exp(−(((y − µ)/σ)2)/2))/(
√

(2pi)σ((y − µ)/σ)2) ify 6= µ.

where µ and σ are the mean and standard deviation of the univariate normal distribution respectively.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

Fisher scoring using simulation is used. Convergence is often quite slow. Numerical problems may
occur.

Author(s)

T. W. Yee and C. S. Chee

sm.os 759

References

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd
edition, Volume 1, New York: Wiley.

Kafadar, K. (1982). A Biweight Approach to the One-Sample Problem Journal of the American
Statistical Association, 77, 416–424.

See Also

rslash, simulate.vlm.

Examples

Not run:
sdata <- data.frame(y = rslash(n = 1000, mu = 4, sigma = exp(2)))
fit <- vglm(y ~ 1, slash, data = sdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

End(Not run)

sm.os Defining O’Sullivan Spline Smooths in VGAM Formulas

Description

This function represents an O-spline smooth term in a vgam formula and confers automatic smooth-
ing parameter selection.

Usage

sm.os(x, ..., niknots = 6, spar = -1, o.order = 2,
alg.niknots = c("s", ".nknots.smspl")[1], all.knots = FALSE,
ridge.adj = 1e-5, spillover = 0.01, maxspar = 1e12,
outer.ok = FALSE, fixspar = FALSE)

Arguments

x covariate (abscissae) to be smoothed. Also called the regressor. If the xij facil-
ity is used then these covariates are inputted via the ... argument.

... Used to accommodate the other M − 1 covariates when the xij facility is used.
See Section 3.4.4 of Yee (2015) for something very similar. This argument,
found in the second argument, means that the other argument names must be
fully specified if used, e.g., outer.ok and not outer. See the example be-
low. In the example below, the term in the main formula is sm.os(gcost.air,
gcost.trn, gcost.bus) and one might be tempted to use something like sm.os(gcost)
to represent that xij term. However, this is not recommended because sm.os(gcost)

760 sm.os

might not have the same number of columns as sm.os(gcost.air, gcost.trn,
gcost.bus) etc. That is, it is best to select one of the diagonal elements of the
block matrix to represent that term.

niknots numeric, the number of interior knots, calledK below. The default is to use this
value. If you want alg.niknots to operate then assign NULL to this argument.

alg.niknots character. The algorithm used to determine the number of interior knots. Only
used when all.knots = FALSE and niknots = NULL. Note that ".nknots.smspl"
corresponds to the default of smooth.spline. The value "s" corresponds to the
same algorithm as s.

all.knots logical. If TRUE then all distinct points in x are used as the interior knots.
If FALSE (default) then a subset of x[] is used, specifically x[j] where the
niknots indices are quantiles that are evenly spaced with respect to the argu-
ment probs—see quantile. If all.knots = FALSE and niknots = NULL then
the argument alg.niknots is used to compute niknots.

spar, maxspar spar is a vector of smoothing parameters. Negative values mean that magic will
choose initial values in order to do the optimization at each P-IRLS iteration.
Positive values mean that they are used as initial values for magic. If fixspar =
TRUE then spar should be assigned a vector of positive values (but having values
less than maxspar); then the smoothing parameters will be fixed and magic will
not be used.

o.order The order of the O’Sullivan penalzed spline. Any one value from 1:4 is accept-
able. The degree of the spline is 2 * o.order - 1, so that cubic splines are the
default. Setting o.order = 1 results in a linear spline which is a piecewise linear
function.

ridge.adj small positive number to stabilize linear dependencies among B-spline bases.

spillover small and positive proportion of the range used on the outside of the boundary
values. This defines the endpoints a and b that cover the data xi, i.e., we are
interested in the interval [a, b] which contains all the abscissae. The interior
knots are strictly inside (a, b).

outer.ok Fed into the argument (by the same name) of splineDesign.

fixspar logical. If TRUE then spar should be a vector with positive values and the
smoothing parameters are fixed at those values. If FALSE then spar contains
the initial values for the smoothing parameters, and magic is called to determine
(hopefully) some good values for the smoothing parameters.

Details

This function is currently used by vgam to allow automatic smoothing parameter selection based on
O-splines to minimize an UBRE quantity. In contrast, s operates by having a prespecified amount
of smoothing, e.g., its df argument. When the sample size is reasonably large this function is
recommended over s also because backfitting is not required. This function therefore allows 2nd-
generation VGAMs to be fitted (called G2-VGAMs, or Penalized-VGAMs).

This function should only be used with vgam. This function uses quantile to choose the knots,
whereas sm.ps chooses equally-spaced knots. As Wand and Ormerod (2008) write, in most sit-
uations the differences will be minor, but it is possible for problems to arise for either strategy
by constructing certain regression functions and predictor variable distributions. Any differences

sm.os 761

between O-splines and P-splines tend to be at the boundaries. O-splines have natural boundary
constraints so that the solution is linear beyond the boundary knots.

Some arguments in decreasing order of precedence are: all.knots, niknots, alg.niknots.

Unlike s, which is symbolic and does not perform any smoothing itself, this function does compute
the penalized spline when used by vgam—it creates the appropriate columns of the model matrix.
When this function is used within vgam, automatic smoothing parameter selection is implemented
by calling magic after the necessary link-ups are done.

By default this function centres the component function. This function is also smart; it can be
used for smart prediction (Section 18.6 of Yee (2015)). Automatic smoothing parameter selection
is performed using performance-oriented iteration whereby an optimization problem is solved at
each IRLS iteration.

This function works better when the sample size is large, e.g., when in the hundreds, say.

Value

A matrix with attributes that are (only) used by vgam. The number of rows of the matrix is
length(x). The number of columns is a function of the number of interior knots K and the order
of the O-spline m: K + 2m − 1. In code, this is niknots + 2 * o.order - 1, or using sm.ps-like
arguments, ps.int + degree - 1 (where ps.int should be more generally interpreted as the num-
ber of intervals. The formula is the same as sm.ps.). It transpires then that sm.os and sm.ps are
very similar.

Warning

Being introduced into VGAM for the first time, this function (and those associated with it) should
be used cautiously. Not all options are fully working or have been tested yet, and there are bound
to be some bugs lurking around.

Note

This function is currently under development and may change in the future.

One might try using this function with vglm so as to fit a regression spline, however, the default
value of niknots will probably be too high for most data sets.

Author(s)

T. W. Yee, with some of the essential R code coming from the appendix of Wand and Ormerod
(2008).

References

Wand, M. P. and Ormerod, J. T. (2008). On semiparametric regression with O’Sullivan penalized
splines. Australian and New Zealand Journal of Statistics, 50(2): 179–198.

See Also

vgam, sm.ps, s, smartpred, is.smart, summarypvgam, smooth.spline, splineDesign, bs, magic.

762 sm.os

Examples

sm.os(runif(20))

Not run:
data("TravelMode", package = "AER") # Need to install "AER" first
air.df <- subset(TravelMode, mode == "air") # Form 4 smaller data frames
bus.df <- subset(TravelMode, mode == "bus")
trn.df <- subset(TravelMode, mode == "train")
car.df <- subset(TravelMode, mode == "car")
TravelMode2 <- data.frame(income = air.df$income,

wait.air = air.df$wait - car.df$wait,
wait.trn = trn.df$wait - car.df$wait,
wait.bus = bus.df$wait - car.df$wait,
gcost.air = air.df$gcost - car.df$gcost,
gcost.trn = trn.df$gcost - car.df$gcost,
gcost.bus = bus.df$gcost - car.df$gcost,
wait = air.df$wait) # Value is unimportant

TravelMode2$mode <- subset(TravelMode, choice == "yes")$mode # The response
TravelMode2 <- transform(TravelMode2, incom.air = income, incom.trn = 0,

incom.bus = 0)
set.seed(1)
TravelMode2 <- transform(TravelMode2,

junkx2 = runif(nrow(TravelMode2)))

tfit2 <-
vgam(mode ~ sm.os(gcost.air, gcost.trn, gcost.bus) + ns(junkx2, 4) +

sm.os(incom.air, incom.trn, incom.bus) + wait ,
crit = "coef",
multinomial(parallel = FALSE ~ 1), data = TravelMode2,
xij = list(sm.os(gcost.air, gcost.trn, gcost.bus) ~

sm.os(gcost.air, gcost.trn, gcost.bus) +
sm.os(gcost.trn, gcost.bus, gcost.air) +
sm.os(gcost.bus, gcost.air, gcost.trn),
sm.os(incom.air, incom.trn, incom.bus) ~
sm.os(incom.air, incom.trn, incom.bus) +
sm.os(incom.trn, incom.bus, incom.air) +
sm.os(incom.bus, incom.air, incom.trn),
wait ~ wait.air + wait.trn + wait.bus),

form2 = ~ sm.os(gcost.air, gcost.trn, gcost.bus) +
sm.os(gcost.trn, gcost.bus, gcost.air) +
sm.os(gcost.bus, gcost.air, gcost.trn) +
wait +
sm.os(incom.air, incom.trn, incom.bus) +
sm.os(incom.trn, incom.bus, incom.air) +
sm.os(incom.bus, incom.air, incom.trn) +
junkx2 + ns(junkx2, 4) +
incom.air + incom.trn + incom.bus +
gcost.air + gcost.trn + gcost.bus +
wait.air + wait.trn + wait.bus)

par(mfrow = c(2, 2))
plot(tfit2, se = TRUE, lcol = "orange", scol = "blue", ylim = c(-4, 4))
summary(tfit2)

sm.ps 763

End(Not run)

sm.ps Defining Penalized Spline Smooths in VGAM Formulas

Description

This function represents a P-spline smooth term in a vgam formula and confers automatic smoothing
parameter selection.

Usage

sm.ps(x, ..., ps.int = NULL, spar = -1, degree = 3, p.order = 2,
ridge.adj = 1e-5, spillover = 0.01, maxspar = 1e12,
outer.ok = FALSE, mux = NULL, fixspar = FALSE)

Arguments

x, ... See sm.os.

ps.int the number of equally-spaced B-spline intervals. Note that the number of knots
is equal to ps.int + 2*degree + 1. The default, signified by NULL, means that
the maximum of the value 7 and degree is chosen. This usually means 6 inte-
rior knots for big data sets. However, if this is too high compared to the length
of x, then some adjustment is made. In the case where mux is assigned a nu-
merical value (suggestions: some value between 1 and 2) then ceiling(mux
* log(length(unique(x.index)))) is used, where x.index is the combined
data. No matter what, the above is not guaranteed to work on every data set.
This argument may change in the future. See also argument mux.

spar, maxspar See sm.os.

mux numeric. If given, then this argument multiplies log(length(unique(x))) to
obtain ps.int. If ps.int is given then this argument is ignored.

degree degree of B-spline basis. Usually this will be 2 or 3; and the values 1 or 4 might
possibly be used.

p.order order of difference penalty (0 is the ridge penalty).
ridge.adj, spillover

See sm.os.
outer.ok, fixspar

See sm.os.

Details

This function can be used by vgam to allow automatic smoothing parameter selection based on
P-splines and minimizing an UBRE quantity.

This function should only be used with vgam and is an alternative to sm.os; see that function for
some details that also apply here.

764 sm.ps

Value

A matrix with attributes that are (only) used by vgam. The number of rows of the matrix is
length(x) and the number of columns is ps.int + degree - 1. The latter is because the func-
tion is centred.

Warning

See sm.os.

Note

This function is currently under development and may change in the future. In particular, the default
for ps.int is subject to change.

Author(s)

B. D. Marx wrote the original function. Subsequent edits were made by T. W. Yee and C. Somchit.

References

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with
comments and rejoinder). Statistical Science, 11(2): 89–121.

See Also

sm.os, s, vgam, smartpred, is.smart, summarypvgam, splineDesign, bs, magic.

Examples

sm.ps(runif(20))
sm.ps(runif(20), ps.int = 5)

Not run:
data("TravelMode", package = "AER") # Need to install "AER" first
air.df <- subset(TravelMode, mode == "air") # Form 4 smaller data frames
bus.df <- subset(TravelMode, mode == "bus")
trn.df <- subset(TravelMode, mode == "train")
car.df <- subset(TravelMode, mode == "car")
TravelMode2 <- data.frame(income = air.df$income,

wait.air = air.df$wait - car.df$wait,
wait.trn = trn.df$wait - car.df$wait,
wait.bus = bus.df$wait - car.df$wait,
gcost.air = air.df$gcost - car.df$gcost,
gcost.trn = trn.df$gcost - car.df$gcost,
gcost.bus = bus.df$gcost - car.df$gcost,
wait = air.df$wait) # Value is unimportant

TravelMode2$mode <- subset(TravelMode, choice == "yes")$mode # The response
TravelMode2 <- transform(TravelMode2, incom.air = income, incom.trn = 0,

incom.bus = 0)
set.seed(1)
TravelMode2 <- transform(TravelMode2,

smart.expression 765

junkx2 = runif(nrow(TravelMode2)))

tfit2 <-
vgam(mode ~ sm.ps(gcost.air, gcost.trn, gcost.bus) + ns(junkx2, 4) +

sm.ps(incom.air, incom.trn, incom.bus) + wait ,
crit = "coef",
multinomial(parallel = FALSE ~ 1), data = TravelMode2,
xij = list(sm.ps(gcost.air, gcost.trn, gcost.bus) ~

sm.ps(gcost.air, gcost.trn, gcost.bus) +
sm.ps(gcost.trn, gcost.bus, gcost.air) +
sm.ps(gcost.bus, gcost.air, gcost.trn),
sm.ps(incom.air, incom.trn, incom.bus) ~
sm.ps(incom.air, incom.trn, incom.bus) +
sm.ps(incom.trn, incom.bus, incom.air) +
sm.ps(incom.bus, incom.air, incom.trn),
wait ~ wait.air + wait.trn + wait.bus),

form2 = ~ sm.ps(gcost.air, gcost.trn, gcost.bus) +
sm.ps(gcost.trn, gcost.bus, gcost.air) +
sm.ps(gcost.bus, gcost.air, gcost.trn) +
wait +
sm.ps(incom.air, incom.trn, incom.bus) +
sm.ps(incom.trn, incom.bus, incom.air) +
sm.ps(incom.bus, incom.air, incom.trn) +
junkx2 + ns(junkx2, 4) +
incom.air + incom.trn + incom.bus +
gcost.air + gcost.trn + gcost.bus +
wait.air + wait.trn + wait.bus)

par(mfrow = c(2, 2))
plot(tfit2, se = TRUE, lcol = "orange", scol = "blue", ylim = c(-4, 4))
summary(tfit2)

End(Not run)

smart.expression S Expression for Smart Functions

Description

smart.expression is an S expression for a smart function to call itself. It is best if you go through
it line by line, but most users will not need to know anything about it. It requires the primary
argument of the smart function to be called "x".

The list component match.call must be assigned the value of match.call() in the smart function;
this is so that the smart function can call itself later.

See Also

match.call.

766 smart.mode.is

Examples

print(sm.min2)

smart.mode.is Determine What Mode the Smart Prediction is In

Description

Determine which of three modes the smart prediction is currently in.

Usage

smart.mode.is(mode.arg = NULL)

Arguments

mode.arg a character string, either "read", "write" or "neutral".

Details

Smart functions such as bs and poly need to know what mode smart prediction is in. If it is
in "write" mode then the parameters are saved to .smart.prediction using put.smart. If in
"read" mode then the parameters are read in using get.smart. If in "neutral" mode then the
smart function behaves like an ordinary function.

Value

If mode.arg is given, then either TRUE or FALSE is returned. If mode.arg is not given, then the mode
("neutral", "read" or "write") is returned. Usually, the mode is "neutral".

See Also

put.smart, bs, poly.

Examples

print(sm.min1)
smart.mode.is() # Returns "neutral"
smart.mode.is(smart.mode.is()) # Returns TRUE

smartpred 767

smartpred Smart Prediction

Description

Data-dependent parameters in formula terms can cause problems in when predicting. The smart-
pred package saves data-dependent parameters on the object so that the bug is fixed. The lm and
glm functions have been fixed properly. Note that the VGAM package by T. W. Yee automatically
comes with smart prediction.

Usage

sm.bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,
Boundary.knots = range(x))

sm.ns(x, df = NULL, knots = NULL, intercept = FALSE,
Boundary.knots = range(x))

sm.poly(x, ..., degree = 1, coefs = NULL, raw = FALSE)
sm.scale(x, center = TRUE, scale = TRUE)

Arguments

x The x argument is actually common to them all.

df, knots, intercept, Boundary.knots

See bs and/or ns.
degree, ..., coefs, raw

See poly.

center, scale See scale.

Details

R version 1.6.0 introduced a partial fix for the prediction problem because it does not work all the
time, e.g., for terms such as I(poly(x, 3)), poly(c(scale(x)), 3), bs(scale(x), 3), scale(scale(x)).
See the examples below. Smart prediction, however, will always work.

The basic idea is that the functions in the formula are now smart, and the modelling functions make
use of these smart functions. Smart prediction works in two ways: using smart.expression, or
using a combination of put.smart and get.smart.

Value

The usual value returned by bs, ns, poly and scale, When used with functions such as vglm the
data-dependent parameters are saved on one slot component called smart.prediction.

768 smartpred

Side Effects

The variables .max.smart, .smart.prediction and .smart.prediction.counter are created
while the model is being fitted. They are created in a new environment called smartpredenv.
These variables are deleted after the model has been fitted. However, if there is an error in the
model fitting function or the fitting model is killed (e.g., by typing control-C) then these variables
will be left in smartpredenv. At the beginning of model fitting, these variables are deleted if
present in smartpredenv.

During prediction, the variables .smart.prediction and .smart.prediction.counter are re-
constructed and read by the smart functions when the model frame is re-evaluated. After prediction,
these variables are deleted.

If the modelling function is used with argument smart = FALSE (e.g., vglm(..., smart = FALSE))
then smart prediction will not be used, and the results should match with the original R functions.

WARNING

The functions bs, ns, poly and scale are now left alone (from 2014-05 onwards) and no longer
smart. They work via safe prediction. The smart versions of these functions have been renamed and
they begin with "sm.".

The functions predict.bs and predict.ns are not smart. That is because they operate on objects
that contain attributes only and do not have list components or slots. The function predict.poly
is not smart.

Author(s)

T. W. Yee and T. J. Hastie

See Also

get.smart.prediction, get.smart, put.smart, smart.expression, smart.mode.is, setup.smart,
wrapup.smart. For vgam in VGAM, sm.ps is important. Commonly used data-dependent func-
tions include scale, poly, bs, ns. In R, the functions bs and ns are in the splines package, and this
library is automatically loaded in because it contains compiled code that bs and ns call.

The functions vglm, vgam, rrvglm and cqo in T. W. Yee’s VGAM package are examples of mod-
elling functions that employ smart prediction.

Examples

Create some data first
n <- 20
set.seed(86) # For reproducibility of the random numbers
ldata <- data.frame(x2 = sort(runif(n)), y = sort(runif(n)))
library("splines") # To get ns() in R

This will work for R 1.6.0 and later
fit <- lm(y ~ ns(x2, df = 5), data = ldata)
Not run:
plot(y ~ x2, data = ldata)
lines(fitted(fit) ~ x2, data = ldata)

specials 769

new.ldata <- data.frame(x2 = seq(0, 1, len = n))
points(predict(fit, new.ldata) ~ x2, new.ldata, type = "b", col = 2, err = -1)

End(Not run)

The following fails for R 1.6.x and later. It can be
made to work with smart prediction provided
ns is changed to sm.ns and scale is changed to sm.scale:
fit1 <- lm(y ~ ns(scale(x2), df = 5), data = ldata)
Not run:
plot(y ~ x2, data = ldata, main = "Safe prediction fails")
lines(fitted(fit1) ~ x2, data = ldata)
points(predict(fit1, new.ldata) ~ x2, new.ldata, type = "b", col = 2, err = -1)

End(Not run)

Fit the above using smart prediction
Not run:
library("VGAM") # The following requires the VGAM package to be loaded
fit2 <- vglm(y ~ sm.ns(sm.scale(x2), df = 5), uninormal, data = ldata)
fit2@smart.prediction
plot(y ~ x2, data = ldata, main = "Smart prediction")
lines(fitted(fit2) ~ x2, data = ldata)
points(predict(fit2, new.ldata, type = "response") ~ x2, data = new.ldata,

type = "b", col = 2, err = -1)

End(Not run)

specials Special Values or Quantities in a Fitted Object

Description

Return any special values or quantities in a fitted object, and in particular in a VGLM fit

Usage

specials(object, ...)
specialsvglm(object, ...)

Arguments

object an object of class "vglm" whose family function begins with "gait".
... any additional arguments, to future-proof this function.

Details

This extractor function was motivated by GAITD regression (Yee and Ma, 2021) where the values
from three disjoint sets are referred to as special. More generally, S4 methods functions can be
written so that specials() will work on any S4 object, where what is called special depends on
the methodology at hand.

770 spikeplot

Value

Returns any ‘special’ values or quantities associated with a fitted regression model. This is often
something simple such as a list or a vector.

References

Yee, T. W. and Ma, C. (2022). Generally–altered, –inflated, –truncated and –deflated regression,
with application to heaped and seeped data. In preparation.

See Also

vglm, vglm-class, inflated, altered, truncated, Gaitdpois, gaitdpoisson.

Examples

abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, 0, 0, 1))
fit1 <- vglm(y ~ 1, gaitdpoisson(a.mix = 0), data = abdata,

weight = w, subset = w > 0)
specials(fit1)

spikeplot Spike Plot

Description

Produces a spike plot of a numeric vector.

Usage

spikeplot(x, freq = FALSE, as.table = FALSE, col = par("col"),
lty = par("lty"), lwd = par("lwd"), lend = par("lend"),
type = "h", xlab = deparse1(substitute(x)), ylab = NULL,
capped = FALSE, cex = sqrt(lwd) / 2, pch = 19, pcol = col, scol = NULL,
slty = NULL, slwd = NULL, new.plot = TRUE, offset.x = 0, ymux = 1, ...)

Arguments

x Numeric, passed into table.

freq Logical. If TRUE then the y-axis measures the frequencies, else the sample pro-
portions. Intended to be as hist.

as.table Logical. If TRUE then the call to plot is closer to plot(table(x), ...), mean-
ing the labelling differs from as.table = FALSE. The default is to convert table(x)
into a numeric vector which is then passed into plot so that the labelling is more
uniform along the x-axis.

col, type, lty, lwd

See par.

spikeplot 771

lend, xlab, ylab

See par.

capped, cex, pch, pcol

First argument is logical. If TRUE then the others argument are used to place
points at the top using points with pcol being its colour. See par.

scol, slty, slwd

Similar to col, lty and lwd but apply to some selected values. The input may be
a named list such as scol = list("green" = c(2, 4, 6), "blue" = 5), slty =
list("dashed" = c(2, 4, 6), "dotted" = 5), slwd = list("2" = c(2, 4, 6),
"3" = 5), else a named vector such as scol = c("green" = 2, "green" = 4,
"green" = 6, "blue" = 5), slty = c("dashed" = 2, "dashed" = 4, "dashed"
= 6, "dotted" = 5), slwd = c("2" = 2, "2" = 4, "2" = 6, "3" = 5). The three
arguments are ignored if as.table = TRUE.

new.plot, offset.x

Logical and numeric. Add to an existing plot? If so, set new.plot = FALSE and
it is useful for the spikes to be shifted by some amount offset.x.

ymux Numeric, y-multiplier. The response is multiplied by ymux. This can be useful
when plotting subsets side-by-side so that the constituent proportions add up to
the overall proportion.

... Additional graphical arguments passed into an ordinary plot, for example, xlim,
las, main.

Details

Heaping is a very commonly occurring phenomenon in retrospective self-reported survey data.
Also known as digit preference data, it is often characterized by an excess of multiples of 10 or 5
upon rounding. For this type of data this simple function is meant to be convenient for plotting the
frequencies or sample proportions of a vector x representing a discrete random variable. This type
of plot is known as a spike plot in STATA circles. If table(x) works then this function should
hopefully work. The default for type means that any heaping and seeping should easily be seen. If
such features exist then GAITD regression is potentially useful—see gaitdpoisson etc. Currently
missing values are ignored totally because table(x) is used without further arguments; this might
change in the future.

Value

Returns invisibly table(x).

Author(s)

T. W. Yee.

See Also

table, plot, par, deparse1, dgaitdplot, plotdgaitd, gaitdpoisson.

772 sratio

Examples

Not run:
spikeplot(with(marital.nz, age), col = "pink2", lwd = 2)

End(Not run)

sratio Ordinal Regression with Stopping Ratios

Description

Fits a stopping ratio logit/probit/cloglog/cauchit/... regression model to an ordered (preferably)
factor response.

Usage

sratio(link = "logitlink", parallel = FALSE, reverse = FALSE,
zero = NULL, whitespace = FALSE)

Arguments

link Link function applied to the M stopping ratio probabilities. See Links for more
choices.

parallel A logical, or formula specifying which terms have equal/unequal coefficients.

reverse Logical. By default, the stopping ratios used are ηj = logit(P [Y = j|Y ≥ j])
for j = 1, . . . ,M . If reverse is TRUE, then ηj = logit(P [Y = j+1|Y ≤ j+1])
will be used.

zero Can be an integer-valued vector specifying which linear/additive predictors are
modelled as intercepts only. The values must be from the set {1,2,. . . ,M}. The
default value means none are modelled as intercept-only terms.

whitespace See CommonVGAMffArguments for information.

Details

In this help file the response Y is assumed to be a factor with ordered values 1, 2, . . . ,M + 1, so
that M is the number of linear/additive predictors ηj .

There are a number of definitions for the continuation ratio in the literature. To make life easier,
in the VGAM package, we use continuation ratios (see cratio) and stopping ratios. Continuation
ratios deal with quantities such as logitlink(P[Y>j|Y>=j]).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

sratio 773

Warning

No check is made to verify that the response is ordinal if the response is a matrix; see ordered.

Note

The response should be either a matrix of counts (with row sums that are all positive), or a factor.
In both cases, the y slot returned by vglm/vgam/rrvglm is the matrix of counts.

For a nominal (unordered) factor response, the multinomial logit model (multinomial) is more
appropriate.

Here is an example of the usage of the parallel argument. If there are covariates x1, x2 and
x3, then parallel = TRUE ~ x1 + x2 -1 and parallel = FALSE ~ x3 are equivalent. This would
constrain the regression coefficients for x1 and x2 to be equal; those of the intercepts and x3 would
be different.

Author(s)

Thomas W. Yee

References

Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Hoboken, NJ, USA: Wiley.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

Tutz, G. (2012). Regression for Categorical Data, Cambridge: Cambridge University Press.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1–34. doi:10.18637/jss.v032.i10.

See Also

cratio, acat, cumulative, multinomial, margeff, pneumo, logitlink, probitlink, clogloglink,
cauchitlink.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let,

sratio(parallel = TRUE), data = pneumo))
coef(fit, matrix = TRUE)
constraints(fit)
predict(fit)
predict(fit, untransform = TRUE)

https://doi.org/10.18637/jss.v032.i10

774 step4

step4 Choose a model by AIC in a Stepwise Algorithm

Description

Select a formula-based model by AIC.

Usage

step4(object, ...)
step4vglm(object, scope, direction = c("both", "backward", "forward"),

trace = 1, keep = NULL, steps = 1000, k = 2, ...)

Arguments

object an object of class "vglm". This is used as the initial model in the stepwise
search.

scope See step.

direction See step.

trace, keep See step.

steps, k See step.

... any additional arguments to extractAIC.vglm, drop1.vglm and add1.vglm.

Details

This function is a direct adaptation of step for vglm-class objects. Since step is not generic, the
name step4() was adopted and it is generic, as well as being S4 rather than S3. It is the intent that
this function should work as similar as possible to step.

Internally, the methods function for vglm-class objects calls add1.vglm and drop1.vglm repeat-
edly.

Value

The results are placed in the post slot of the stepwise-selected model that is returned. There are up
to two additional components. There is an "anova" component corresponding to the steps taken in
the search, as well as a "keep" component if the keep= argument was supplied in the call.

Warning

In general, the same warnings in drop1.glm and drop1.vglm apply here.

This function

See Also

add1.vglm, drop1.vglm, vglm, trim.constraints, add1.glm, drop1.glm, backPain2, step,
update.

studentt 775

Examples

data("backPain2", package = "VGAM")
summary(backPain2)
fit1 <- vglm(pain ~ x2 + x3 + x4 + x2:x3 + x2:x4 + x3:x4,

propodds, data = backPain2)
spom1 <- step4(fit1)
summary(spom1)
spom1@post$anova

studentt Student t Distribution

Description

Estimating the parameters of a Student t distribution.

Usage

studentt (ldf = "logloglink", idf = NULL, tol1 = 0.1, imethod = 1)
studentt2(df = Inf, llocation = "identitylink", lscale = "loglink",

ilocation = NULL, iscale = NULL, imethod = 1, zero = "scale")
studentt3(llocation = "identitylink", lscale = "loglink",

ldf = "logloglink", ilocation = NULL, iscale = NULL,
idf = NULL, imethod = 1, zero = c("scale", "df"))

Arguments

llocation, lscale, ldf

Parameter link functions for each parameter, e.g., for degrees of freedom ν. See
Links for more choices. The defaults ensures the parameters are in range. A
loglog link keeps the degrees of freedom greater than unity; see below.

ilocation, iscale, idf

Optional initial values. If given, the values must be in range. The default is to
compute an initial value internally.

tol1 A positive value, the tolerance for testing whether an initial value is 1. Best to
leave this argument alone.

df Numeric, user-specified degrees of freedom. It may be of length equal to the
number of columns of a response matrix.

imethod, zero See CommonVGAMffArguments.

Details

The Student t density function is

f(y; ν) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

y2

ν

)−(ν+1)/2

776 studentt

for all real y. Then E(Y) = 0 if ν > 1 (returned as the fitted values), and V ar(Y) = ν/(ν − 2)
for ν > 2. When ν = 1 then the Student t-distribution corresponds to the standard Cauchy distri-
bution, cauchy1. When ν = 2 with a scale parameter of sqrt(2) then the Student t-distribution
corresponds to the standard (Koenker) distribution, sc.studentt2. The degrees of freedom can be
treated as a parameter to be estimated, and as a real and not an integer. The Student t distribution is
used for a variety of reasons in statistics, including robust regression.

Let Y = (T − µ)/σ where µ and σ are the location and scale parameters respectively. Then
studentt3 estimates the location, scale and degrees of freedom parameters. And studentt2 es-
timates the location, scale parameters for a user-specified degrees of freedom, df. And studentt
estimates the degrees of freedom parameter only. The fitted values are the location parameters. By
default the linear/additive predictors are (µ, log(σ), log log(ν))T or subsets thereof.

In general convergence can be slow, especially when there are covariates.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

studentt3() and studentt2() can handle multiple responses.

Practical experience has shown reasonably good initial values are required. If convergence failure
occurs try using arguments such as idf. Local solutions are also possible, especially when the
degrees of freedom is close to unity or the scale parameter is close to zero.

A standard normal distribution corresponds to a t distribution with infinite degrees of freedom. Con-
sequently, if the data is close to normal, there may be convergence problems; best to use uninormal
instead.

Author(s)

T. W. Yee

References

Student (1908). The probable error of a mean. Biometrika, 6, 1–25.

Zhu, D. and Galbraith, J. W. (2010). A generalized asymmetric Student-t distribution with applica-
tion to financial econometrics. Journal of Econometrics, 157, 297–305.

See Also

uninormal, cauchy1, logistic, huber2, sc.studentt2, TDist, simulate.vlm.

Examples

tdata <- data.frame(x2 = runif(nn <- 1000))
tdata <- transform(tdata, y1 = rt(nn, df = exp(exp(0.5 - x2))),

y2 = rt(nn, df = exp(exp(0.5 - x2))))
fit1 <- vglm(y1 ~ x2, studentt, data = tdata, trace = TRUE)
coef(fit1, matrix = TRUE)

summarypvgam 777

df inputted into studentt2() not quite right:
fit2 <- vglm(y1 ~ x2, studentt2(df = exp(exp(0.5))), tdata)
coef(fit2, matrix = TRUE)

fit3 <- vglm(cbind(y1, y2) ~ x2, studentt3, tdata, trace = TRUE)
coef(fit3, matrix = TRUE)

summarypvgam Summarizing Penalized Vector Generalized Additive Model Fits

Description

These functions are all methods for class "pvgam" or summary.pvgam objects.

Usage

summarypvgam(object, dispersion = NULL, digits = options()$digits - 2,
presid = TRUE)

S3 method for class 'summary.pvgam'
show(x, quote = TRUE, prefix = "", digits = options()$digits -

2, signif.stars = getOption("show.signif.stars"))

Arguments

object an object of class "pvgam", which is the result of a call to vgam with at least one
sm.os or sm.ps term.

x an object of class "summary.pvgam", which is the result of a call to summarypvgam().
dispersion, digits, presid

See summaryvglm.
quote, prefix, signif.stars

See summaryvglm.

Details

This methods function reports a summary more similar to summary.gam from mgcv than summary.gam()
from gam. It applies to G2-VGAMs using sm.os and O-splines, else sm.ps and P-splines. In partic-
ular, the hypothesis test for whether each sm.os or sm.ps term can be deleted follows quite closely
to summary.gam. The p-values from this type of test tend to be biased downwards (too small) and
corresponds to p.type = 5. It is hoped in the short future that improved p-values be implemented,
somewhat like the default of summary.gam. This methods function was adapted from summary.gam.

Value

summarypvgam returns an object of class "summary.pvgam"; see summary.pvgam-class.

778 summaryvgam

Warning

See sm.os.

See Also

vgam, summaryvgam, summary.pvgam-class, sm.os, sm.ps, summary.glm, summary.lm, summary.gam
from mgcv, summaryvgam for G1-VGAMs.

Examples

hfit2 <- vgam(agaaus ~ sm.os(altitude), binomialff, data = hunua)
coef(hfit2, matrix = TRUE)
summary(hfit2)

summaryvgam Summarizing Vector Generalized Additive Model Fits

Description

These functions are all methods for class vgam or summary.vgam objects.

Usage

summaryvgam(object, dispersion = NULL, digits = options()$digits - 2,
presid = TRUE, nopredictors = FALSE)

S3 method for class 'summary.vgam'
show(x, quote = TRUE, prefix = "",

digits = options()$digits-2, nopredictors = NULL)

Arguments

object an object of class "vgam", which is the result of a call to vgam with at least one
s term.

x an object of class "summary.vgam", which is the result of a call to summaryvgam().
dispersion, digits, presid

See summaryvglm.
quote, prefix, nopredictors

See summaryvglm.

Details

This methods function reports a summary more similar to summary.gam() from gam than summary.gam
from mgcv. It applies to G1-VGAMs using s and vector backfitting. In particular, an approximate
score test for linearity is conducted for each s term—see Section 4.3.4 of Yee (2015) for details.
The p-values from this type of test tend to be biased upwards (too large).

summaryvglm 779

Value

summaryvgam returns an object of class "summary.vgam"; see summary.vgam-class.

See Also

vgam, summary.glm, summary.lm, summary.gam from mgcv, summarypvgam for P-VGAMs.

Examples

hfit <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = hunua)
summary(hfit)
summary(hfit)@anova # Table for (approximate) testing of linearity

summaryvglm Summarizing Vector Generalized Linear Model Fits

Description

These functions are all methods for class vglm or summary.vglm objects.

Usage

summaryvglm(object, correlation = FALSE, dispersion = NULL,
digits = NULL, presid = FALSE,
HDEtest = TRUE, hde.NA = TRUE, threshold.hde = 0.001,
signif.stars = getOption("show.signif.stars"),
nopredictors = FALSE,
lrt0.arg = FALSE, score0.arg = FALSE, wald0.arg = FALSE,
values0 = 0, subset = NULL, omit1s = TRUE,
...)

S3 method for class 'summary.vglm'
show(x, digits = max(3L, getOption("digits") - 3L),

quote = TRUE, prefix = "", presid = length(x@pearson.resid) > 0,
HDEtest = TRUE, hde.NA = TRUE, threshold.hde = 0.001,
signif.stars = NULL, nopredictors = NULL,
top.half.only = FALSE, ...)

Arguments

object an object of class "vglm", usually, a result of a call to vglm.

x an object of class "summary.vglm", usually, a result of a call to summaryvglm().

dispersion used mainly for GLMs. See summary.glm.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

signif.stars logical; if TRUE, ‘significance stars’ are printed for each coefficient.

780 summaryvglm

presid Pearson residuals; print out some summary statistics of these?

HDEtest logical; if TRUE (the default) then a test for the HDE is performed, else all argu-
ments related to the HDE are ignored.

hde.NA logical; if a test for the Hauck-Donner effect is done (for each coefficient) and
it is affirmative should that Wald test p-value be replaced by an NA? The default
is to do so. Setting hde.NA = FALSE will print the p-value even though it will be
biased upwards. Also see argument threshold.hde.

threshold.hde numeric; used if hde.NA = TRUE and is present for some coefficients. Only p-
values greater than this argument will be replaced by an NA, the reason be-
ing that small p-values will already be statistically significant. Hence setting
threshold.hde = 0 will print out a NA if the HDE is present.

quote Fed into print().

nopredictors logical; if TRUE the names of the linear predictors are not printed out. The default
is that they are.

lrt0.arg, score0.arg, wald0.arg

Logical. If lrt0.arg = TRUE then the other arguments are passed into lrt.stat.vlm
and the equivalent of the so-called Wald table is outputted. Similarly, if score0.arg
= TRUE then the other arguments are passed into score.stat.vlm and the equiv-
alent of the so-called Wald table is outputted. Similarly, if wald0.arg = TRUE
then the other arguments are passed into wald.stat.vlm and the Wald table
corresponding to that is outputted. See details below. Setting any of these will
result in further IRLS iterations being performed, therefore may be computa-
tionally expensive.

values0, subset, omit1s

These arguments are used if any of the lrt0.arg, score0.arg, wald0.arg
arguments are used. They are passed into the appropriate function, such as
wald.stat.vlm.

top.half.only logical; if TRUE then only print out the top half of the usual output. Used for
P-VGAMs.

prefix Not used.

... Not used.

Details

Originally, summaryvglm() was written to be very similar to summary.glm, however now there
are a quite a few more options available. By default, show.summary.vglm() tries to be smart
about formatting the coefficients, standard errors, etc. and additionally gives ‘significance stars’ if
signif.stars is TRUE. The coefficients component of the result gives the estimated coefficients
and their estimated standard errors, together with their ratio. This third column is labelled z value
regardless of whether the dispersion is estimated or known (or fixed by the family). A fourth column
gives the two-tailed p-value corresponding to the z ratio based on a Normal reference distribution.

In general, the t distribution is not used, but the normal distribution is.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)@correlation directly.

summaryvglm 781

The Hauck-Donner effect (HDE) is tested for almost all models; see hdeff.vglm for details. Ar-
guments hde.NA and threshold.hde here are meant to give some control of the output if this
aberration of the Wald statistic occurs (so that the p-value is biased upwards). If the HDE is present
then using lrt.stat.vlm to get a more accurate p-value is a good alternative as p-values based
on the likelihood ratio test (LRT) tend to be more accurate than Wald tests and do not suffer from
the HDE. Alternatively, if the HDE is present then using wald0.arg = TRUE will compute Wald
statistics that are HDE-free; see wald.stat.

The arguments lrt0.arg and score0.arg enable the so-called Wald table to be replaced by the
equivalent LRT and Rao score test table; see lrt.stat.vlm, score.stat. Further IRLS iterations
are performed for both of these, hence the computational cost might be significant.

It is possible for programmers to write a methods function to print out extra quantities when
summary(vglmObject) is called. The generic function is summaryvglmS4VGAM(), and one can use
the S4 function setMethod to compute the quantities needed. Also needed is the generic function
is showsummaryvglmS4VGAM() to actually print the quantities out.

Value

summaryvglm returns an object of class "summary.vglm"; see summary.vglm-class.

Warning

Currently the SE column is deleted when lrt0 = TRUE because SEs are not so meaningful with the
LRT. In the future an SE column may be inserted (with NA values) so that it has 4-column output
like the other tests. In the meantime, the columns of this matrix should be accessed by name and
not number.

Author(s)

T. W. Yee.

See Also

vglm, confintvglm, vcovvlm, summary.glm, summary.lm, summary, hdeff.vglm, lrt.stat.vlm,
score.stat, wald.stat.

Examples

For examples see example(glm)
pneumo <- transform(pneumo, let = log(exposure.time))
(afit <- vglm(cbind(normal, mild, severe) ~ let, acat, data = pneumo))
coef(afit, matrix = TRUE)
summary(afit) # Might suffer from the Hauck-Donner effect
coef(summary(afit))
summary(afit, lrt0 = TRUE, score0 = TRUE, wald0 = TRUE)

782 SURff

SURff Seemingly Unrelated Regressions Family Function

Description

Fits a system of seemingly unrelated regressions.

Usage

SURff(mle.normal = FALSE,
divisor = c("n", "n-max(pj,pk)", "sqrt((n-pj)*(n-pk))"),
parallel = FALSE, Varcov = NULL, matrix.arg = FALSE)

Arguments

mle.normal Logical. If TRUE then the MLE, assuming multivariate normal errors, is com-
puted; the effect is just to add a loglikelihood slot to the returned object.
Then it results in the maximum likelihood estimator.

divisor Character, partial matching allowed and the first choice is the default. The divi-
sor for the estimate of the covariances. If "n" then the estimate will be biased. If
the others then the estimate will be unbiased for some elements. If mle.normal
= TRUE and this argument is not "n" then a warning or an error will result.

parallel See CommonVGAMffArguments. If parallel = TRUE then the constraint applies
to the intercept too.

Varcov Numeric. This may be assigned a variance-covariance of the errors. If matrix.arg
then this is a M ×M matrix. If !matrix.arg then this is a M ×M matrix in
matrix-band format (a vector with at least M and at most M*(M+1)/2 elements).

matrix.arg Logical. Of single length.

Details

Proposed by Zellner (1962), the basic seemingly unrelated regressions (SUR) model is a set of LMs
(M > 1 of them) tied together at the error term level. Each LM’s model matrix may potentially
have its own set of predictor variables.

Zellner’s efficient (ZEF) estimator (also known as Zellner’s two-stage Aitken estimator) can be
obtained by setting maxit = 1 (and possibly divisor = "sqrt" or divisor = "n-max").

The default value of maxit (in vglm.control) probably means iterative GLS (IGLS) estimator is
computed because IRLS will probably iterate to convergence. IGLS means, at each iteration, the
residuals are used to estimate the error variance-covariance matrix, and then the matrix is used in
the GLS. The IGLS estimator is also known as Zellner’s iterative Aitken estimator, or IZEF.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

SURff 783

Warning

The default convergence criterion may be a little loose. Try setting epsilon = 1e-11, especially
with mle.normal = TRUE.

Note

The fitted object has slot @extra$ncols.X.lm which is a M vector with the number of parameters
for each LM. Also, @misc$values.divisor is the M -vector of divisor values.

Constraint matrices are needed in order to specify which response variables that each term on the
RHS of the formula is a regressor for. See the constraints argument of vglm for more information.

Author(s)

T. W. Yee.

References

Zellner, A. (1962). An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests
for Aggregation Bias. J. Amer. Statist. Assoc., 57(298), 348–368.

Kmenta, J. and Gilbert, R. F. (1968). Small Sample Properties of Alternative Estimators of Seem-
ingly Unrelated Regressions. J. Amer. Statist. Assoc., 63(324), 1180–1200.

See Also

uninormal, gew.

Examples

Obtain some of the results of p.1199 of Kmenta and Gilbert (1968)
clist <- list("(Intercept)" = diag(2),

"capital.g" = rbind(1, 0),
"value.g" = rbind(1, 0),
"capital.w" = rbind(0, 1),
"value.w" = rbind(0, 1))

zef1 <- vglm(cbind(invest.g, invest.w) ~
capital.g + value.g + capital.w + value.w,
SURff(divisor = "sqrt"), maxit = 1,
data = gew, trace = TRUE, constraints = clist)

round(coef(zef1, matrix = TRUE), digits = 4) # ZEF
zef1@extra$ncols.X.lm
zef1@misc$divisor
zef1@misc$values.divisor
round(sqrt(diag(vcov(zef1))), digits = 4) # SEs
nobs(zef1, type = "lm")
df.residual(zef1, type = "lm")

mle1 <- vglm(cbind(invest.g, invest.w) ~
capital.g + value.g + capital.w + value.w,

784 SurvS4

SURff(mle.normal = TRUE),
epsilon = 1e-11,
data = gew, trace = TRUE, constraints = clist)

round(coef(mle1, matrix = TRUE), digits = 4) # MLE
round(sqrt(diag(vcov(mle1))), digits = 4) # SEs

SurvS4 Create a Survival Object

Description

Create a survival object, usually used as a response variable in a model formula.

Usage

SurvS4(time, time2, event, type =, origin = 0)
is.SurvS4(x)

Arguments

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

x any R object.

event The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

time2 ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This is most often used in
conjunction with a model containing time dependent strata in order to align the
subjects properly when they cross over from one strata to another.

Details

Typical usages are

SurvS4(time, event)
SurvS4(time, time2, event, type=, origin=0)

SurvS4 785

In theory it is possible to represent interval censored data without a third column containing the
explicit status. Exact, right censored, left censored and interval censored observation would be
represented as intervals of (a,a), (a, infinity), (-infinity,b), and (a,b) respectively; each specifying
the interval within which the event is known to have occurred.

If type = "interval2" then the representation given above is assumed, with NA taking the place
of infinity. If ‘type="interval" event must be given. If event is 0, 1, or 2, the relevant information
is assumed to be contained in time, the value in time2 is ignored, and the second column of the
result will contain a placeholder.

Presently, the only methods allowing interval censored data are the parametric models computed
by survreg, so the distinction between open and closed intervals is unimportant. The distinction is
important for counting process data and the Cox model.

The function tries to distinguish between the use of 0/1 and 1/2 coding for left and right censored
data using if (max(status)==2). If 1/2 coding is used and all the subjects are censored, it will
guess wrong. Use 0/1 coding in this case.

Value

An object of class SurvS4 (formerly Surv). There are methods for print, is.na, and subscripting
survival objects. SurvS4 objects are implemented as a matrix of 2 or 3 columns.

In the case of is.SurvS4, a logical value TRUE if x inherits from class "SurvS4", otherwise a FALSE.

Note

The purpose of having SurvS4 in VGAM is so that the same input can be fed into vglm as functions
in survival such as survreg. The class name has been changed from "Surv" to "SurvS4"; see
SurvS4-class.

The format J+ is interpreted in VGAM as ≥ J . If type="interval" then these should not be used
in VGAM: (L,U-] or (L,U+].

Author(s)

The code and documentation comes from survival. Slight modifications have been made for conver-
sion to S4 by T. W. Yee. Also, for "interval" data, as.character.SurvS4() has been modified
to print intervals of the form (start, end] and not [start, end] as previously. (This makes a
difference for discrete data, such as for cens.poisson). All VGAM family functions beginning
with "cen" require the packaging function Surv to format the input.

See Also

SurvS4-class, cens.poisson, survreg, leukemia.

Examples

with(leukemia, SurvS4(time, status))
class(with(leukemia, SurvS4(time, status)))

786 SurvS4-class

SurvS4-class Class "SurvS4"

Description

S4 version of the Surv class.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "Surv", directly. Class "matrix", directly. Class "oldClass", by class "Surv", distance
2. Class "structure", by class "matrix", distance 2. Class "array", by class "matrix", distance
2. Class "vector", by class "matrix", distance 3, with explicit coerce. Class "vector", by class
"matrix", distance 4, with explicit coerce.

Methods

show signature(object = "SurvS4"): ...

Warning

This code has not been thoroughly tested.

Note

The purpose of having SurvS4 in VGAM is so that the same input can be fed into vglm as functions
in survival such as survreg.

Author(s)

T. W. Yee.

References

See survival.

See Also

SurvS4.

Examples

showClass("SurvS4")

TIC 787

TIC Takeuchi’s Information Criterion

Description

Calculates the Takeuchi information criterion for a fitted model object for which a log-likelihood
value has been obtained.

Usage

TIC(object, ...)
TICvlm(object, ...)

Arguments

object A VGAM object having class vglm-class.

... Other possible arguments fed into logLik in order to compute the log-likelihood.

Details

The following formula is used for VGLMs: −2log-likelihood+2trace(V K), where V is the inverse
of the EIM from the fitted model, andK is the outer product of the score vectors. Both V andK are
order-p.V LM matrices. One has V equal to vcov(object), andK is computed by taking the outer
product of the output from the deriv slot multiplied by the large VLM matrix and then taking their
sum. Hence for the huge majority of models, the penalty is computed at the MLE and is empirical
in nature. Theoretically, if the fitted model is the true model then AIC equals TIC.

When there are prior weights the score vectors are divided by the square root of these, because
(aiUi/

√
ai)

2 = aiU
2
i .

This code relies on the log-likelihood being defined, and computed, for the object. When comparing
fitted objects, the smaller the TIC, the better the fit. The log-likelihood and hence the TIC is only
defined up to an additive constant.

Currently any estimated scale parameter (in GLM parlance) is ignored by treating its value as unity.
Also, currently this function is written only for vglm objects and not vgam or rrvglm, etc., objects.

Value

Returns a numeric TIC value.

Warning

This code has not been double-checked. The general applicability of TIC for the VGLM/VGAM
classes has not been developed fully. In particular, TIC should not be run on some VGAM family
functions because of violation of certain regularity conditions, etc.

Some authors note that quite large sample sizes are needed for this IC to work reasonably well.

788 Tobit

Note

TIC has not been defined for RR-VGLMs, QRR-VGLMs, etc., yet.

See AICvlm about models such as posbernoulli.tb that require posbinomial(omit.constant =
TRUE).

Author(s)

T. W. Yee.

References

Takeuchi, K. (1976). Distribution of informational statistics and a criterion of model fitting. (In
Japanese). Suri-Kagaku (Mathematic Sciences), 153, 12–18.

Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multi-Model Inference: A Prac-
tical Information-Theoretic Approach, 2nd ed. New York, USA: Springer.

See Also

VGLMs are described in vglm-class; AIC, AICvlm. BICvlm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = TRUE, reverse = TRUE), data = pneumo))
coef(fit1, matrix = TRUE)
TIC(fit1)
(fit2 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = FALSE, reverse = TRUE), data = pneumo))
coef(fit2, matrix = TRUE)
TIC(fit2)

Tobit The Tobit Distribution

Description

Density, distribution function, quantile function and random generation for the Tobit model.

Usage

dtobit(x, mean = 0, sd = 1, Lower = 0, Upper = Inf, log = FALSE)
ptobit(q, mean = 0, sd = 1, Lower = 0, Upper = Inf,

lower.tail = TRUE, log.p = FALSE)
qtobit(p, mean = 0, sd = 1, Lower = 0, Upper = Inf,

lower.tail = TRUE, log.p = FALSE)
rtobit(n, mean = 0, sd = 1, Lower = 0, Upper = Inf)

Tobit 789

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

Lower, Upper vector of lower and upper thresholds.
mean, sd, lower.tail, log, log.p

see rnorm.

Details

See tobit, the VGAM family function for estimating the parameters, for details. Note that the
density at Lower and Upper is the the area to the left and right of those points. Thus there are two
spikes (but less in value); see the example below. Consequently, dtobit(Lower) + dtobit(Upper)
+ the area in between equals unity.

Value

dtobit gives the density, ptobit gives the distribution function, qtobit gives the quantile function,
and rtobit generates random deviates.

Author(s)

T. W. Yee

See Also

tobit, rnorm.

Examples

mu <- 0.5; x <- seq(-2, 4, by = 0.01)
Lower <- -1; Upper <- 2.0

integrate(dtobit, lower = Lower, upper = Upper,
mean = mu, Lower = Lower, Upper = Upper)$value +

dtobit(Lower, mean = mu, Lower = Lower, Upper = Upper) +
dtobit(Upper, mean = mu, Lower = Lower, Upper = Upper) # Adds to 1

Not run:
plot(x, ptobit(x, m = mu, Lower = Lower, Upper = Upper),

type = "l", ylim = 0:1, las = 1, col = "orange",
ylab = paste("ptobit(m = ", mu, ", sd = 1, Lower =", Lower,

", Upper =", Upper, ")"),
main = "Orange is the CDF; blue is density",
sub = "Purple lines are the 10,20,...,90 percentiles")

abline(h = 0)
lines(x, dtobit(x, m = mu, L = Lower, U = Upper), col = "blue")

790 tobit

probs <- seq(0.1, 0.9, by = 0.1)
Q <- qtobit(probs, m = mu, Lower = Lower, Upper = Upper)
lines(Q, ptobit(Q, m = mu, Lower = Lower, Upper = Upper),

col = "purple", lty = "dashed", type = "h")
lines(Q, dtobit(Q, m = mu, Lower = Lower, Upper = Upper),

col = "darkgreen", lty = "dashed", type = "h")
abline(h = probs, col = "purple", lty = "dashed")
max(abs(ptobit(Q, mu, L = Lower, U = Upper) - probs)) # Should be 0

epts <- c(Lower, Upper) # Endpoints have a spike (not quite, actually)
lines(epts, dtobit(epts, m = mu, Lower = Lower, Upper = Upper),

col = "blue", lwd = 3, type = "h")

End(Not run)

tobit Tobit Regression

Description

Fits a Tobit regression model.

Usage

tobit(Lower = 0, Upper = Inf, lmu = "identitylink",
lsd = "loglink", imu = NULL, isd = NULL,
type.fitted = c("uncensored", "censored", "mean.obs"),
byrow.arg = FALSE, imethod = 1, zero = "sd")

Arguments

Lower Numeric. It is the value L described below. Any value of the linear model xTi β
that is less than this lowerbound is assigned this value. Hence this should be the
smallest possible value in the response variable. May be a vector (see below for
more information).

Upper Numeric. It is the value U described below. Any value of the linear model xTi β
that is greater than this upperbound is assigned this value. Hence this should be
the largest possible value in the response variable. May be a vector (see below
for more information).

lmu, lsd Parameter link functions for the mean and standard deviation parameters. See
Links for more choices. The standard deviation is a positive quantity, therefore
a log link is its default.

imu, isd, byrow.arg

See CommonVGAMffArguments for information.

type.fitted Type of fitted value returned. The first choice is default and is the ordinary un-
censored or unbounded linear model. If "censored" then the fitted values in the
interval [L,U]. If "mean.obs" then the mean of the observations is returned;

tobit 791

this is a doubly truncated normal distribution augmented by point masses at the
truncation points (see dtobit). See CommonVGAMffArguments for more infor-
mation.

imethod Initialization method. Either 1 or 2 or 3, this specifies some methods for obtain-
ing initial values for the parameters. See CommonVGAMffArguments for informa-
tion.

zero A vector, e.g., containing the value 1 or 2. If so, the mean or standard deviation
respectively are modelled as an intercept-only. Setting zero = NULL means both
linear/additive predictors are modelled as functions of the explanatory variables.
See CommonVGAMffArguments for more information.

Details

The Tobit model can be written
y∗i = xTi β + εi

where the ei ∼ N(0, σ2) independently and i = 1, . . . , n. However, we measure yi = y∗i only if
y∗i > L and y∗i < U for some cutpoints L and U . Otherwise we let yi = L or yi = U , whatever
is closer. The Tobit model is thus a multiple linear regression but with censored responses if it is
below or above certain cutpoints.

The defaults for Lower and Upper and lmu correspond to the standard Tobit model. Fisher scoring is
used for the standard and nonstandard models. By default, the mean xTi β is the first linear/additive
predictor, and the log of the standard deviation is the second linear/additive predictor. The Fisher
information matrix for uncensored data is diagonal. The fitted values are the estimates of xTi β.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

If values of the response and Lower and/or Upper are not integers then there is the danger that
the value is wrongly interpreted as uncensored. For example, if the first 10 values of the response
were runif(10) and Lower was assigned these value then testing y[1:10] == Lower[1:10] is
numerically fraught. Currently, if any y < Lower or y > Upper then a warning is issued. The function
round2 may be useful.

Note

The response can be a matrix. If so, then Lower and Upper are recycled into a matrix with the num-
ber of columns equal to the number of responses, and the recycling is done row-wise if byrow.arg =
TRUE. The default order is as matrix, which is byrow.arg = FALSE. For example, these are returned
in fit4@misc$Lower and fit4@misc$Upper below.

If there is no censoring then uninormal is recommended instead. Any value of the response less
than Lower or greater than Upper will be assigned the value Lower and Upper respectively, and a
warning will be issued. The fitted object has components censoredL and censoredU in the extra
slot which specifies whether observations are censored in that direction. The function cens.normal
is an alternative to tobit().

792 tobit

When obtaining initial values, if the algorithm would otherwise want to fit an underdetermined
system of equations, then it uses the entire data set instead. This might result in rather poor quality
initial values, and consequently, monitoring convergence is advised.

Author(s)

Thomas W. Yee

References

Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica 26,
24–36.

See Also

rtobit, cens.normal, uninormal, double.cens.normal, posnormal, CommonVGAMffArguments,
round2, mills.ratio, margeff, rnorm.

Examples

Here, fit1 is a standard Tobit model and fit2 is nonstandard
tdata <- data.frame(x2 = seq(-1, 1, length = (nn <- 100)))
set.seed(1)
Lower <- 1; Upper <- 4 # For the nonstandard Tobit model
tdata <- transform(tdata,

Lower.vec = rnorm(nn, Lower, 0.5),
Upper.vec = rnorm(nn, Upper, 0.5))

meanfun1 <- function(x) 0 + 2*x
meanfun2 <- function(x) 2 + 2*x
meanfun3 <- function(x) 3 + 2*x
tdata <- transform(tdata,

y1 = rtobit(nn, mean = meanfun1(x2)), # Standard Tobit model
y2 = rtobit(nn, mean = meanfun2(x2), Lower = Lower, Upper = Upper),
y3 = rtobit(nn, mean = meanfun3(x2), Lower = Lower.vec,

Upper = Upper.vec),
y4 = rtobit(nn, mean = meanfun3(x2), Lower = Lower.vec,

Upper = Upper.vec))
with(tdata, table(y1 == 0)) # How many censored values?
with(tdata, table(y2 == Lower | y2 == Upper)) # Ditto
with(tdata, table(attr(y2, "cenL")))
with(tdata, table(attr(y2, "cenU")))

fit1 <- vglm(y1 ~ x2, tobit, data = tdata, trace = TRUE)
coef(fit1, matrix = TRUE)
summary(fit1)

fit2 <- vglm(y2 ~ x2,
tobit(Lower = Lower, Upper = Upper, type.f = "cens"),
data = tdata, trace = TRUE)

table(fit2@extra$censoredL)
table(fit2@extra$censoredU)
coef(fit2, matrix = TRUE)

tobit 793

fit3 <- vglm(y3 ~ x2, tobit(Lower = with(tdata, Lower.vec),
Upper = with(tdata, Upper.vec),
type.f = "cens"),

data = tdata, trace = TRUE)
table(fit3@extra$censoredL)
table(fit3@extra$censoredU)
coef(fit3, matrix = TRUE)

fit4 is fit3 but with type.fitted = "uncen".
fit4 <- vglm(cbind(y3, y4) ~ x2,

tobit(Lower = rep(with(tdata, Lower.vec), each = 2),
Upper = rep(with(tdata, Upper.vec), each = 2),
byrow.arg = TRUE),

data = tdata, crit = "coeff", trace = TRUE)
head(fit4@extra$censoredL) # A matrix
head(fit4@extra$censoredU) # A matrix
head(fit4@misc$Lower) # A matrix
head(fit4@misc$Upper) # A matrix
coef(fit4, matrix = TRUE)

Not run: # Plot fit1--fit4
par(mfrow = c(2, 2))

plot(y1 ~ x2, tdata, las = 1, main = "Standard Tobit model",
col = as.numeric(attr(y1, "cenL")) + 3,
pch = as.numeric(attr(y1, "cenL")) + 1)

legend(x = "topleft", leg = c("censored", "uncensored"),
pch = c(2, 1), col = c("blue", "green"))

legend(-1.0, 2.5, c("Truth", "Estimate", "Naive"), lwd = 2,
col = c("purple", "orange", "black"), lty = c(1, 2, 2))

lines(meanfun1(x2) ~ x2, tdata, col = "purple", lwd = 2)
lines(fitted(fit1) ~ x2, tdata, col = "orange", lwd = 2, lty = 2)
lines(fitted(lm(y1 ~ x2, tdata)) ~ x2, tdata, col = "black",

lty = 2, lwd = 2) # This is simplest but wrong!

plot(y2 ~ x2, data = tdata, las = 1, main = "Tobit model",
col = as.numeric(attr(y2, "cenL")) + 3 +

as.numeric(attr(y2, "cenU")),
pch = as.numeric(attr(y2, "cenL")) + 1 +

as.numeric(attr(y2, "cenU")))
legend(x = "topleft", leg = c("censored", "uncensored"),

pch = c(2, 1), col = c("blue", "green"))
legend(-1.0, 3.5, c("Truth", "Estimate", "Naive"), lwd = 2,

col = c("purple", "orange", "black"), lty = c(1, 2, 2))
lines(meanfun2(x2) ~ x2, tdata, col = "purple", lwd = 2)
lines(fitted(fit2) ~ x2, tdata, col = "orange", lwd = 2, lty = 2)
lines(fitted(lm(y2 ~ x2, tdata)) ~ x2, tdata, col = "black",

lty = 2, lwd = 2) # This is simplest but wrong!

plot(y3 ~ x2, data = tdata, las = 1,
main = "Tobit model with nonconstant censor levels",
col = as.numeric(attr(y3, "cenL")) + 2 +

794 Tol

as.numeric(attr(y3, "cenU") * 2),
pch = as.numeric(attr(y3, "cenL")) + 1 +

as.numeric(attr(y3, "cenU") * 2))
legend(x = "topleft", pch = c(2, 3, 1), col = c(3, 4, 2),

leg = c("censoredL", "censoredU", "uncensored"))
legend(-1.0, 3.5, c("Truth", "Estimate", "Naive"), lwd = 2,

col = c("purple", "orange", "black"), lty = c(1, 2, 2))
lines(meanfun3(x2) ~ x2, tdata, col = "purple", lwd = 2)
lines(fitted(fit3) ~ x2, tdata, col = "orange", lwd = 2, lty = 2)
lines(fitted(lm(y3 ~ x2, tdata)) ~ x2, tdata, col = "black",

lty = 2, lwd = 2) # This is simplest but wrong!

plot(y3 ~ x2, data = tdata, las = 1,
main = "Tobit model with nonconstant censor levels",
col = as.numeric(attr(y3, "cenL")) + 2 +

as.numeric(attr(y3, "cenU") * 2),
pch = as.numeric(attr(y3, "cenL")) + 1 +

as.numeric(attr(y3, "cenU") * 2))
legend(x = "topleft", pch = c(2, 3, 1), col = c(3, 4, 2),

leg = c("censoredL", "censoredU", "uncensored"))
legend(-1.0, 3.5, c("Truth", "Estimate", "Naive"), lwd = 2,

col = c("purple", "orange", "black"), lty = c(1, 2, 2))
lines(meanfun3(x2) ~ x2, data = tdata, col = "purple", lwd = 2)
lines(fitted(fit4)[, 1] ~ x2, tdata, col="orange", lwd = 2, lty = 2)
lines(fitted(lm(y3 ~ x2, tdata)) ~ x2, data = tdata, col = "black",

lty = 2, lwd = 2) # This is simplest but wrong!

End(Not run)

Tol Tolerances

Description

Generic function for the tolerances of a model.

Usage

Tol(object, ...)

Arguments

object An object for which the computation or extraction of a tolerance or tolerances is
meaningful.

... Other arguments fed into the specific methods function of the model. Sometimes
they are fed into the methods function for Coef.

Tol 795

Details

Different models can define an optimum in different ways. Many models have no such notion or
definition.

Tolerances occur in quadratic ordination, i.e., CQO and UQO. They have ecological meaning be-
cause a high tolerance for a species means the species can survive over a large environmental
range (stenoecous species), whereas a small tolerance means the species’ niche is small (eurycous
species). Mathematically, the tolerance is like the variance of a normal distribution.

Value

The value returned depends specifically on the methods function invoked. For a cqo binomial or
Poisson fit, this function returns a R × R × S array, where R is the rank and S is the number of
species. Each tolerance matrix ought to be positive-definite, and for a rank-1 fit, taking the square
root of each tolerance matrix results in each species’ tolerance (like a standard deviation).

Warning

There is a direct inverse relationship between the scaling of the latent variables (site scores) and
the tolerances. One normalization is for the latent variables to have unit variance. Another nor-
malization is for all the tolerances to be unit. These two normalization cannot simultaneously hold
in general. For rank-R>1 models it becomes more complicated because the latent variables are
also uncorrelated. An important argument when fitting quadratic ordination models is whether
eq.tolerances is TRUE or FALSE. See Yee (2004) for details.

Note

Tolerances are undefined for ‘linear’ and additive ordination models. They are well-defined for
quadratic ordination models.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Eco-
logical Monographs, 74, 685–701.

Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.

See Also

Tol.qrrvglm. Max, Opt, cqo, rcim for UQO.

Examples

Not run:
set.seed(111) # This leads to the global solution
hspider[,1:6] <- scale(hspider[, 1:6]) # Standardized environmental vars
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

796 Topple

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, Crow1positive = FALSE)

Tol(p1)

End(Not run)

Topple The Topp-Leone Distribution

Description

Density, distribution function, quantile function and random generation for the Topp-Leone distri-
bution.

Usage

dtopple(x, shape, log = FALSE)
ptopple(q, shape, lower.tail = TRUE, log.p = FALSE)
qtopple(p, shape)
rtopple(n, shape)

Arguments

x, q, p, n Same as Uniform.

shape the (shape) parameter, which lies in (0, 1).

log Logical. If log = TRUE then the logarithm of the density is returned.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See topple, the VGAM family function for estimating the (shape) parameter s by maximum like-
lihood estimation, for the formula of the probability density function.

Value

dtopple gives the density, ptopple gives the distribution function, qtopple gives the quantile
function, and rtopple generates random deviates.

Note

The Topp-Leone distribution is related to the triangle distribution.

topple 797

Author(s)

T. W. Yee

References

Topp, C. W. and F. C. Leone (1955). A family of J-shaped frequency functions. Journal of the
American Statistical Association, 50, 209–219.

See Also

topple, Triangle.

Examples

Not run: shape <- 0.7; x <- seq(0.02, 0.999, length = 300)
plot(x, dtopple(x, shape = shape), type = "l", col = "blue",

main = "Blue is density, orange is CDF", ylab = "", las = 1,
sub = "Purple lines are the 10,20,...,90 percentiles")

abline(h = 0, col = "blue", lty = 2)
lines(x, ptopple(x, shape = shape), type = "l", col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qtopple(probs, shape = shape)
lines(Q, dtopple(Q, shape), col = "purple", lty = 3, type = "h")
lines(Q, ptopple(Q, shape), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
max(abs(ptopple(Q, shape) - probs)) # Should be zero

End(Not run)

topple Topp-Leone Distribution Family Function

Description

Estimating the parameter of the Topp-Leone distribution by maximum likelihood estimation.

Usage

topple(lshape = "logitlink", zero = NULL, gshape = ppoints(8),
parallel = FALSE,
type.fitted = c("mean", "percentiles", "Qlink"),
percentiles = 50)

Arguments

lshape, gshape Details at CommonVGAMffArguments.
zero, parallel Details at CommonVGAMffArguments.
type.fitted, percentiles

See CommonVGAMffArguments for information. Using "Qlink" is for quantile-
links in VGAMextra.

798 toxop

Details

The Topple distribution has a probability density function that can be written

f(y; s) = 2s(1− y)[y(2− y)]s−1

for 0 < y < 1 and shape parameter 0 < s < 1. The mean of Y is 1 − 4s[Γ(1 + s)]2/Γ(2 + 2s)
(returned as the fitted values).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

Fisher-scoring and Newton-Raphson are the same here. A related distribution is the triangle distri-
bution. This VGAM family function handles multiple responses.

Author(s)

T. W. Yee

References

Topp, C. W. and F. C. Leone (1955). A family of J-shaped frequency functions. Journal of the
American Statistical Association, 50, 209–219.

See Also

Topple, Triangle.

Examples

tdata <- data.frame(y = rtopple(1000, logitlink(1, inverse = TRUE)))
tfit <- vglm(y ~ 1, topple, tdata, trace = TRUE, crit = "coef")
coef(tfit, matrix = TRUE)
Coef(tfit)

toxop Toxoplasmosis Data

Description

Toxoplasmosis data in 34 cities in El Salvador.

Usage

data(toxop)

Triangle 799

Format

A data frame with 34 observations on the following 4 variables.

rainfall a numeric vector; the amount of rainfall in each city.

ssize a numeric vector; sample size.

cityNo a numeric vector; the city number.

positive a numeric vector; the number of subjects testing positive for the disease.

Details

See the references for details.

Source

See the references for details.

References

Efron, B. (1978). Regression and ANOVA With zero-one data: measures of residual variation.
Journal of the American Statistical Association, 73, 113–121.

Efron, B. (1986). Double exponential families and their use in generalized linear regression. Jour-
nal of the American Statistical Association, 81, 709–721.

See Also

double.expbinomial.

Examples

Not run: with(toxop, plot(rainfall, positive/ssize, col = "blue"))
plot(toxop, col = "blue")
End(Not run)

Triangle The Triangle Distribution

Description

Density, distribution function, quantile function and random generation for the Triangle distribution
with parameter theta.

Usage

dtriangle(x, theta, lower = 0, upper = 1, log = FALSE)
ptriangle(q, theta, lower = 0, upper = 1, lower.tail = TRUE, log.p = FALSE)
qtriangle(p, theta, lower = 0, upper = 1, lower.tail = TRUE, log.p = FALSE)
rtriangle(n, theta, lower = 0, upper = 1)

800 Triangle

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Same as runif.

theta the theta parameter which lies between lower and upper.

lower, upper lower and upper limits of the distribution. Must be finite.

log Logical. If log = TRUE then the logarithm of the density is returned.

lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See triangle, the VGAM family function for estimating the parameter θ by maximum likelihood
estimation.

Value

dtriangle gives the density, ptriangle gives the distribution function, qtriangle gives the quan-
tile function, and rtriangle generates random deviates.

Author(s)

T. W. Yee and Kai Huang

See Also

triangle, topple.

Examples

Not run: x <- seq(-0.1, 1.1, by = 0.01); theta <- 0.75
plot(x, dtriangle(x, theta = theta), type = "l", col = "blue", las = 1,

main = "Blue is density, orange is the CDF",
sub = "Purple lines are the 10,20,...,90 percentiles",
ylim = c(0,2), ylab = "")

abline(h = 0, col = "blue", lty = 2)
lines(x, ptriangle(x, theta = theta), col = "orange")
probs <- seq(0.1, 0.9, by = 0.1)
Q <- qtriangle(probs, theta = theta)
lines(Q, dtriangle(Q, theta = theta), col = "purple", lty = 3, type = "h")
ptriangle(Q, theta = theta) - probs # Should be all zero
abline(h = probs, col = "purple", lty = 3)
End(Not run)

triangle 801

triangle Triangle Distribution Family Function

Description

Estimating the parameter of the triangle distribution by maximum likelihood estimation.

Usage

triangle(lower = 0, upper = 1,
link = extlogitlink(min = 0, max = 1), itheta = NULL)

Arguments

lower, upper lower and upper limits of the distribution. Must be finite. Called A and B
respectively below.

link Parameter link function applied to the parameter θ, which lies in (A,B). See
Links for more choices. The default constrains the estimate to lie in the interval.

itheta Optional initial value for the parameter. The default is to compute the value
internally.

Details

The triangle distribution has a probability density function that consists of two lines joined at θ,
which is the location of the mode. The lines intersect the y = 0 axis at A and B. Here, Fisher
scoring is used.

On fitting, the extra slot has components called lower and upper which contains the values of the
above arguments (recycled to the right length). The fitted values are the mean of the distribution,
which is (A+B + θ)/3.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

The MLE regularity conditions do not hold for this distribution (e.g., the first derivative evaluated
at the mode does not exist because it is not continuous) so that misleading inferences may result,
e.g., in the summary and vcov of the object. Additionally, convergence to the MLE often appears to
fail.

802 triangle

Note

The response must contain values in (A,B). For most data sets (especially small ones) it is very
common for half-stepping to occur.

Arguments lower and upper and link must match. For example, setting lower = 0.2 and upper =
4 and link = extlogitlink(min = 0.2, max = 4.1) will result in an error. Ideally link = extlogitlink(min
= lower, max = upper) ought to work but it does not (yet)! Minimal error checking is done for this
deficiency.

Author(s)

T. W. Yee

References

Kotz, S. and van Dorp, J. R. (2004). Beyond Beta: Other Continuous Families of Distributions with
Bounded Support and Applications. Chapter 1. World Scientific: Singapore.

Nguyen, H. D. and McLachlan, G. J. (2016). Maximum likelihood estimation of triangular and
polygon distributions. Computational Statistics and Data Analysis, 102, 23–36.

See Also

Triangle, Topple, simulate.vlm.

Examples

Example 1
tdata <- data.frame(y = rtriangle(n <- 3000, theta = 3/4))
fit <- vglm(y ~ 1, triangle(link = "identitylink"), tdata,

trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fit@extra$lower)
head(fitted(fit))
with(tdata, mean(y))

Example 2; Kotz and van Dorp (2004), p.14
rdata <- data.frame(y = c(0.1,0.25,0.3,0.4,0.45, 0.6, 0.75, 0.8))
fit <- vglm(y ~ 1, triangle(link = "identitylink"), rdata,

trace = TRUE, crit = "coef", maxit = 1000)
Coef(fit) # The MLE is the 3rd order statistic, which is 0.3.
fit <- vglm(y ~ 1, triangle(link = "identitylink"), rdata,

trace = TRUE, crit = "coef", maxit = 1001)
Coef(fit) # The MLE is the 3rd order statistic, which is 0.3.

trim.constraints 803

trim.constraints Trimmed Constraint Matrices

Description

Deletes statistically nonsignficant regression coefficients via their constraint matrices, for future
refitting.

Usage

trim.constraints(object, sig.level = 0.05, max.num = Inf,
intercepts = TRUE, ...)

Arguments

object Some VGAM object, especially having class vglmff-class. It has not yet been
tested on non-"vglm" objects.

sig.level Significance levels, with values in [0, 1]. Columns of constraint matices whose
p-values are larger than this argument are deleted. With terms that generate
more than one column of the "lm" model matrix, all p-values must be greater
than this argument for deletion. This argument is recycled to the total number
of regression coefficients of object.

max.num Numeric, positive and integer-valued. Maximum number of regression coeffi-
cients allowable for deletion. This allows one to limit the number of deleted
coefficients. For example, if max.num = 1 then only the largest p-value is used
for the deletion, provided it is larger than sig.level. The default is to delete
all those coefficients whose p-values are greater than sig.level. With a finite
value, this argument will probably not work properly when there are terms that
generate more than one column of the LM model matrix. Having a value greater
than unity might be unsuitable in the presence of multicollinearity because all
correlated variables might be eliminated at once.

intercepts Logical. Trim the intercept term? If FALSE then the constraint matrix for the
"(Intercept)" term is left unchanged.

... Unused but for provision in the future.

Details

This utility function is intended to simplify an existing vglm object having variables (terms) that
affect unnecessary parameters. Suppose the explanatory variables in the formula includes a simple
numeric covariate called x2. This variable will affect every linear predictor if zero = NULL in the
VGAM family function. This situation may correspond to the constraint matrices having unnec-
essary columns because their regression coefficients are statistically nonsignificant. This function
attempts to delete those columns and return a possibly simplified list of constraint matrices that can
make refitting a simpler model easy to do. P-values obtained from summaryvglm (with HDEtest =
FALSE for increased speed) are compared to sig.level to test for statistical significance.

804 trim.constraints

For terms that generate more than one column of the "lm" model matrix, such as bs and poly, the
column is deleted if all regression coefficients are statistically nonsignificant. Incidentally, users
should instead use sm.bs, sm.ns, sm.poly, etc., for smart and safe prediction.

One can think of this function as facilitating backward elimination for variable selection, especially
if max.num = 1 and M = 1, however usually more than one regression coefficient is deleted here by
default.

Value

A list of possibly simpler constraint matrices that can be fed back into the model using the constraints
argument (usually zero = NULL is needed to avoid a warning). Consequently, they are required to be
of the "term"-type. After the model is refitted, applying summaryvglm should result in regression
coefficients that are ‘all’ statistically significant.

Warning

This function has not been tested thoroughly. One extreme is that a term is totally deleted because
none of its regression coefficients are needed, and that situation has not yet been finalized. Ide-
ally, object only contains terms where at least one regression coefficient has a p-value less than
sig.level. For ordered factors and other situations, deleting certain columns may not make sense
and destroy interpretability.

As stated above, max.num may not work properly when there are terms that generate more than one
column of the LM model matrix. However, this limitation may change in the future.

Note

This function is experimental and may be replaced by some other function in the future. This
function does not use S4 object oriented programming but may be converted to such in the future.

Author(s)

T. W. Yee

See Also

constraints, vglm, summaryvglm, model.matrixvlm, drop1.vglm, step4vglm, sm.bs, sm.ns,
sm.poly.

Examples

Not run: data("xs.nz", package = "VGAMdata")
fit1 <-

vglm(cbind(worry, worrier) ~ bs(age) + sex + ethnicity + cat + dog,
binom2.or(zero = NULL), data = xs.nz, trace = TRUE)

summary(fit1, HDEtest = FALSE) # 'cat' is not significant at all
dim(constraints(fit1, matrix = TRUE))
(tclist1 <- trim.constraints(fit1)) # No 'cat'
fit2 <- # Delete 'cat' manually from the formula:

vglm(cbind(worry, worrier) ~ bs(age) + sex + ethnicity + dog,
binom2.or(zero = NULL), data = xs.nz,

Trinorm 805

constraints = tclist1, trace = TRUE)
summary(fit2, HDEtest = FALSE) # A simplified model
dim(constraints(fit2, matrix = TRUE)) # Fewer regression coefficients

End(Not run)

Trinorm Trivariate Normal Distribution Density and Random Variates

Description

Density and random generation for the trivariate normal distribution distribution.

Usage

dtrinorm(x1, x2, x3, mean1 = 0, mean2 = 0, mean3 = 0,
var1 = 1, var2 = 1, var3 = 1,
cov12 = 0, cov23 = 0, cov13 = 0, log = FALSE)

rtrinorm(n, mean1 = 0, mean2 = 0, mean3 = 0,
var1 = 1, var2 = 1, var3 = 1,
cov12 = 0, cov23 = 0, cov13 = 0)

Arguments

x1, x2, x3 vector of quantiles.
mean1, mean2, mean3

vectors of means.
var1, var2, var3

vectors of variances.
cov12, cov23, cov13

vectors of covariances.

n number of observations. Same as rnorm.

log Logical. If log = TRUE then the logarithm of the density is returned.

Details

The default arguments correspond to the standard trivariate normal distribution with correlation pa-
rameters equal to 0, which corresponds to three independent standard normal distributions. Let sd1
(say) be sqrt(var1) and written σ1, etc. Then the general formula for each correlation coefficient
is of the form ρ12 = cov12/(σ1σ2), and similarly for the two others. Thus if the var arguments are
left alone then the cov can be inputted with ρs.

Value

dtrinorm gives the density, rtrinorm generates random deviates (n by 3 matrix).

806 trinormal

Warning

dtrinorm()’s arguments might change in the future! It’s safest to use the full argument names to
future-proof possible changes!

Note

For rtrinorm(), if the ith variance-covariance matrix is not positive-definite then the ith row is all
NAs.

See Also

pnorm, trinormal, uninormal, binormal, rbinorm.

Examples

Not run: nn <- 1000
tdata <- data.frame(x2 = sort(runif(nn)))
tdata <- transform(tdata, mean1 = 1 + 2 * x2,

mean2 = 3 + 1 * x2, mean3 = 4,
var1 = exp(1), var2 = exp(1), var3 = exp(1),
rho12 = rhobit(1, inverse = TRUE),
rho23 = rhobit(1, inverse = TRUE),
rho13 = rhobit(-1, inverse = TRUE))

ymat <- with(tdata, rtrinorm(nn, mean1, mean2, mean3,
var1, var2, var3,
sqrt(var1)*sqrt(var1)*rho12,
sqrt(var2)*sqrt(var3)*rho23,
sqrt(var1)*sqrt(var3)*rho13))

pairs(ymat, col = "blue")

End(Not run)

trinormal Trivariate Normal Distribution Family Function

Description

Maximum likelihood estimation of the nine parameters of a trivariate normal distribution.

Usage

trinormal(zero = c("sd", "rho"), eq.mean = FALSE,
eq.sd = FALSE, eq.cor = FALSE,
lmean1 = "identitylink", lmean2 = "identitylink",
lmean3 = "identitylink",
lsd1 = "loglink", lsd2 = "loglink", lsd3 = "loglink",
lrho12 = "rhobitlink", lrho23 = "rhobitlink", lrho13 = "rhobitlink",
imean1 = NULL, imean2 = NULL, imean3 = NULL,
isd1 = NULL, isd2 = NULL, isd3 = NULL,
irho12 = NULL, irho23 = NULL, irho13 = NULL, imethod = 1)

trinormal 807

Arguments

lmean1, lmean2, lmean3, lsd1, lsd2, lsd3

Link functions applied to the means and standard deviations. See Links for
more choices. Being positive quantities, a log link is the default for the standard
deviations.

lrho12, lrho23, lrho13

Link functions applied to the correlation parameters. See Links for more choices.
By default the correlation parameters are allowed to have a value between -1 and
1, but that may be problematic when eq.cor = TRUE because they should have a
value between -0.5 and 1.

imean1, imean2, imean3, isd1, isd2, isd3

See CommonVGAMffArguments for more information.
irho12, irho23, irho13, imethod, zero

See CommonVGAMffArguments for more information.
eq.mean, eq.sd, eq.cor

Logical. Constrain the means or the standard deviations or correlation parame-
ters to be equal?

Details

For the trivariate normal distribution, this fits a linear model (LM) to the means, and by default,
the other parameters are intercept-only. The response should be a three-column matrix. The three
correlation parameters are prefixed by rho, and the default gives them values between −1 and 1
however, this may be problematic when the correlation parameters are constrained to be equal, etc..
The fitted means are returned as the fitted values, which is in the form of a three-column matrix.
Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

The default parameterization does not make the estimated variance-covariance matrix positive-
definite. In order for the variance-covariance matrix to be positive-definite the quantity 1 - rho12^2
- rho13^2 - rho23^2 + 2 * rho12 * rho13 * rho23 must be positive, and if eq.cor = TRUE then
this means that the rhos must be between -0.5 and 1.

Author(s)

T. W. Yee

See Also

uninormal, binormal, rtrinorm.

808 trplot

Examples

set.seed(123); nn <- 1000
tdata <- data.frame(x2 = runif(nn), x3 = runif(nn))
tdata <- transform(tdata, y1 = rnorm(nn, 1 + 2 * x2),

y2 = rnorm(nn, 3 + 4 * x2),
y3 = rnorm(nn, 4 + 5 * x2))

fit1 <- vglm(cbind(y1, y2, y3) ~ x2, data = tdata,
trinormal(eq.sd = TRUE, eq.cor = TRUE), trace = TRUE)

coef(fit1, matrix = TRUE)
constraints(fit1)
summary(fit1)
Not run: # Try this when eq.sd = TRUE, eq.cor = TRUE:
fit2 <- vglm(cbind(y1, y2, y3) ~ x2, data = tdata, stepsize = 0.25,

trinormal(eq.sd = TRUE, eq.cor = TRUE,
lrho12 = extlogitlink(min = -0.5),
lrho23 = extlogitlink(min = -0.5),
lrho13 = extlogitlink(min = -0.5)), trace = TRUE)

coef(fit2, matrix = TRUE)

End(Not run)

trplot Trajectory Plot

Description

Generic function for a trajectory plot.

Usage

trplot(object, ...)

Arguments

object An object for which a trajectory plot is meaningful.

... Other arguments fed into the specific methods function of the model. They
usually are graphical parameters, and sometimes they are fed into the methods
function for Coef.

Details

Trajectory plots can be defined in different ways for different models. Many models have no such
notion or definition.

For quadratic and additive ordination models they plot the fitted values of two species against each
other (more than two is theoretically possible, but not implemented in this software yet).

Value

The value returned depends specifically on the methods function invoked.

trplot.qrrvglm 809

Author(s)

Thomas W. Yee

References

Yee, T. W. (2020). On constrained and unconstrained quadratic ordination. Manuscript in prepara-
tion.

See Also

trplot.qrrvglm, perspqrrvglm, lvplot.

Examples

Not run: set.seed(123)
hspider[, 1:6] <- scale(hspider[, 1:6]) # Stdze environ. vars
p1cqo <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute,

Arctperi, Auloalbi, Pardlugu, Pardmont,
Pardnigr, Pardpull, Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig +
CoveMoss + CoveHerb + ReflLux,
poissonff, data = hspider, Crow1positive = FALSE)

nos <- ncol(depvar(p1cqo))
clr <- 1:nos # OR (1:(nos+1))[-7] to omit yellow

trplot(p1cqo, which.species = 1:3, log = "xy", lwd = 2,
col = c("blue", "orange", "green"), label = TRUE) -> ii

legend(0.00005, 0.3, paste(ii$species[, 1], ii$species[, 2],
sep = " and "),

lwd = 2, lty = 1, col = c("blue", "orange", "green"))
abline(a = 0, b = 1, lty = "dashed", col = "grey")
End(Not run)

trplot.qrrvglm Trajectory plot for QRR-VGLMs

Description

Produces a trajectory plot for quadratic reduced-rank vector generalized linear models (QRR-
VGLMs). It is only applicable for rank-1 models with argument noRRR = ~ 1.

Usage

trplot.qrrvglm(object, which.species = NULL, add = FALSE,
show.plot = TRUE,
label.sites = FALSE, sitenames = rownames(object@y),
axes.equal = TRUE, cex = par()$cex,
col = 1:(nos * (nos - 1)/2), log = "",

810 trplot.qrrvglm

lty = rep_len(par()$lty, nos * (nos - 1)/2),
lwd = rep_len(par()$lwd, nos * (nos - 1)/2),
tcol = rep_len(par()$col, nos * (nos - 1)/2),
xlab = NULL, ylab = NULL,
main = "", type = "b", check.ok = TRUE, ...)

Arguments

object Object of class "qrrvglm", i.e., a CQO object.

which.species Integer or character vector specifying the species to be plotted. If integer, these
are the columns of the response matrix. If character, these must match exactly
with the species’ names. The default is to use all species.

add Logical. Add to an existing plot? If FALSE (default), a new plot is made.

show.plot Logical. Plot it?

label.sites Logical. If TRUE, the points on the curves/trajectories are labelled with the
sitenames.

sitenames Character vector. The names of the sites.

axes.equal Logical. If TRUE, the x- and y-axes will be on the same scale.

cex Character expansion of the labelling of the site names. Used only if label.sites
is TRUE. See the cex argument in par.

col Color of the lines. See the col argument in par. Here, nos is the number of
species.

log Character, specifying which (if any) of the x- and y-axes are to be on a logarith-
mic scale. See the log argument in par.

lty Line type. See the lty argument of par.

lwd Line width. See the lwd argument of par.

tcol Color of the text for the site names. See the col argument in par. Used only if
label.sites is TRUE.

xlab Character caption for the x-axis. By default, a suitable caption is found. See the
xlab argument in plot or title.

ylab Character caption for the y-axis. By default, a suitable caption is found. See the
xlab argument in plot or title.

main Character, giving the title of the plot. See the main argument in plot or title.

type Character, giving the type of plot. A common option is to use type="l" for
lines only. See the type argument of plot.

check.ok Logical. Whether a check is performed to see that noRRR = ~ 1 was used. It
doesn’t make sense to have a trace plot unless this is so.

... Arguments passed into the plot function when setting up the entire plot. Useful
arguments here include xlim and ylim.

trplot.qrrvglm 811

Details

A trajectory plot plots the fitted values of a ‘second’ species against a ‘first’ species. The argument
which.species must therefore contain at least two species. By default, all of the species that were
fitted in object are plotted. With more than a few species the resulting plot will be very congested,
and so it is recommended that only a few species be selected for plotting.

In the above, M is the number of species selected for plotting, so there will be M(M − 1)/2
curves/trajectories in total.

A trajectory plot will be fitted only if noRRR = ~ 1 because otherwise the trajectory will not be a
smooth function of the latent variables.

Value

A list with the following components.

species.names A matrix of characters giving the ‘first’ and ‘second’ species. The number of
different combinations of species is given by the number of rows. This is useful
for creating a legend.

sitenames A character vector of site names, sorted by the latent variable (from low to high).

Note

Plotting the axes on a log scale is often a good idea. The use of xlim and ylim to control the axis
limits is also a good idea, so as to limit the extent of the curves at low abundances or probabilities.
Setting label.sites = TRUE is a good idea only if the number of sites is small, otherwise there is
too much clutter.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2020). On constrained and unconstrained quadratic ordination. Manuscript in prepara-
tion.

See Also

cqo, par, title.

Examples

Not run: set.seed(111) # Leads to the global solution
hspider[,1:6] <- scale(hspider[,1:6]) # Stdze the environ vars
p1 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute,

Arctperi, Auloalbi, Pardlugu, Pardmont,
Pardnigr, Pardpull, Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss +
CoveHerb + ReflLux,
poissonff, data = hspider, trace = FALSE)

812 Trunc

trplot(p1, which.species = 1:3, log = "xy", type = "b", lty = 1,
main = "Trajectory plot of three hunting spiders species",
col = c("blue","red","green"), lwd = 2, label = TRUE) -> ii

legend(0.00005, 0.3, lwd = 2, lty = 1,
col = c("blue", "red", "green"),
with(ii, paste(species.names[,1], species.names[,2],

sep = " and ")))
abline(a = 0, b = 1, lty = "dashed", col = "grey") # Ref. line

End(Not run)

Trunc Truncated Values for the GT-Expansion Method

Description

Given the minimum and maximum values in a response variable, and a positive multiplier, returns
the truncated values for generally-truncated regression

Usage

Trunc(Range, mux = 2, location = 0, omits = TRUE)

Arguments

Range Numeric, of length 2 containing the minimum and maximum (in that order) of
the untransformed data. Alternatively, if length(Range) > 2 then it is assumed
that the entire untransformed data is passed in so that range is applied.

mux Numeric, the multiplier. A positive integer.

location Numeric, the location parameter, allows a shift to the right.

omits Logical. The default is to return the truncated values (those being omitted). If
FALSE then the multiples are returned.

Details

Generally-truncated regression can handle underdispersion with respect to some parent or base
distribution such as the Poisson. Yee and Ma (2022) call this the GT-Expansion (GTE) method,
which is a special case of the GT-location-scale (GT-LS) method. This is a utility function to help
make life easier. It is assumed that the response is a count variable.

Value

A vector of values to be fed into the truncate argument of a VGAM family function such as
gaitdpoisson. If mux = 1 then the function will return a NULL rather than integer(0).

Truncpareto 813

Author(s)

T. W. Yee

See Also

gaitdpoisson, gaitdlog, gaitdzeta, range, setdiff, goffset.

Examples

Trunc(c(1, 8), 2)

set.seed(1) # The following example is based on the normal
mymean <- 20; m.truth <- 3 # approximation to the Poisson.
gdata <- data.frame(y1 = round(rnorm((nn <- 1000), mymean,

sd = sqrt(mymean / m.truth))))
org1 <- with(gdata, range(y1)) # Original range of the raw data
m.max <- 5 # Try multipliers 1:m.max
logliks <- numeric(m.max)
names(logliks) <- as.character(1:m.max)
for (i in 1:m.max) {

logliks[i] <- logLik(vglm(i * y1 ~ offset(rep(log(i), nn)),
gaitdpoisson(truncate = Trunc(org1, i)), data = gdata))

}
sort(logliks, decreasing = TRUE) # Best to worst
Not run: par(mfrow = c(1, 2))
plot(with(gdata, table(y1))) # Underdispersed wrt Poisson
plot(logliks, col = "blue", type = "b", xlab = "Multiplier")
End(Not run)

Truncpareto The Truncated Pareto Distribution

Description

Density, distribution function, quantile function and random generation for the upper truncated
Pareto(I) distribution with parameters lower, upper and shape.

Usage

dtruncpareto(x, lower, upper, shape, log = FALSE)
ptruncpareto(q, lower, upper, shape, lower.tail = TRUE, log.p = FALSE)
qtruncpareto(p, lower, upper, shape)
rtruncpareto(n, lower, upper, shape)

814 Truncpareto

Arguments

x, q vector of quantiles.

p vector of probabilities.

n, log Same meaning as runif.
lower, upper, shape

the lower, upper and shape (k) parameters. If necessary, values are recycled.
lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See truncpareto, the VGAM family function for estimating the parameter k by maximum like-
lihood estimation, for the formula of the probability density function and the range restrictions
imposed on the parameters.

Value

dtruncpareto gives the density, ptruncpareto gives the distribution function, qtruncpareto
gives the quantile function, and rtruncpareto generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Aban, I. B., Meerschaert, M. M. and Panorska, A. K. (2006). Parameter estimation for the truncated
Pareto distribution, Journal of the American Statistical Association, 101(473), 270–277.

See Also

truncpareto.

Examples

lower <- 3; upper <- 8; kay <- exp(0.5)
Not run: xx <- seq(lower - 0.5, upper + 0.5, len = 401)
plot(xx, dtruncpareto(xx, low = lower, upp = upper, shape = kay),

main = "Truncated Pareto density split into 10 equal areas",
type = "l", ylim = 0:1, xlab = "x")

abline(h = 0, col = "blue", lty = 2)
qq <- qtruncpareto(seq(0.1, 0.9, by = 0.1), low = lower, upp = upper,

shape = kay)
lines(qq, dtruncpareto(qq, low = lower, upp = upper, shape = kay),

col = "purple", lty = 3, type = "h")
lines(xx, ptruncpareto(xx, low = lower, upp = upper, shape = kay),

col = "orange")
End(Not run)
pp <- seq(0.1, 0.9, by = 0.1)

truncweibull 815

qq <- qtruncpareto(pp, lower = lower, upper = upper, shape = kay)

ptruncpareto(qq, lower = lower, upper = upper, shape = kay)
qtruncpareto(ptruncpareto(qq, lower = lower, upper = upper, shape = kay),

lower = lower, upper = upper, shape = kay) - qq # Should be all 0

truncweibull Truncated Weibull Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter Weibull distribution with lower truncation. No
observations should be censored.

Usage

truncweibull(lower.limit = 1e-5,
lAlpha = "loglink", lBetaa = "loglink",
iAlpha = NULL, iBetaa = NULL,
nrfs = 1, probs.y = c(0.2, 0.5, 0.8),
imethod = 1, zero = "Betaa")

Arguments

lower.limit Positive lower truncation limits. Recycled to the same dimension as the re-
sponse, going across rows first. The default, being close to 0, should mean
effectively the same results as weibullR if there are no response values that are
smaller.

lAlpha, lBetaa Parameter link functions applied to the (positive) parameters Alpha (called α
below) and (positive) Betaa (called β below). See Links for more choices.

iAlpha, iBetaa See CommonVGAMffArguments.
imethod, nrfs, zero, probs.y

Details at weibullR and CommonVGAMffArguments.

Details

MLE of the two parameters of the Weibull distribution are computed, subject to lower truncation.
That is, all response values are greater than lower.limit, element-wise. For a particular observa-
tion this is any known positive value. This function is currently based directly on Wingo (1989) and
his parameterization is used (it differs from weibullR.) In particular, β = a and α = (1/b)a where
a and b are as in weibullR and dweibull.

Upon fitting the extra slot has a component called lower.limit which is of the same dimension
as the response. The fitted values are the mean, which are computed using pgamma.deriv and
pgamma.deriv.unscaled.

816 truncweibull

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

This function may be converted to the same parameterization as weibullR at any time. Yet to do:
one element of the EIM may be wrong (due to two interpretations of a formula; but it seems to
work). Convergence is slower than usual and this may imply something is wrong; use argument
maxit. In fact, it’s probably because pgamma.deriv.unscaled is inaccurate at q = 1 and q = 2.
Also, convergence should be monitored, especially if the truncation means that a large proportion
of the data is lost compared to an ordinary Weibull distribution.

Note

More improvements need to be made, e.g., initial values are currently based on no truncation. This
VGAM family function handles multiple responses.

Author(s)

T. W. Yee

References

Wingo, D. R. (1989). The left-truncated Weibull distribution: theory and computation. Statistical
Papers, 30(1), 39–48.

See Also

weibullR, dweibull, pgamma.deriv, pgamma.deriv.unscaled.

Examples

nn <- 5000; prop.lost <- 0.40 # Proportion lost to truncation
wdata <- data.frame(x2 = runif(nn)) # Complete Weibull data
wdata <- transform(wdata,

Betaa = exp(1)) # > 2 okay (satisfies regularity conds)
wdata <- transform(wdata, Alpha = exp(0.5 - 1 * x2))
wdata <- transform(wdata, Shape = Betaa,
aaa = Betaa,
bbb = 1 / Alpha^(1 / Betaa),

Scale = 1 / Alpha^(1 / Betaa))
wdata <- transform(wdata, y2 = rweibull(nn, Shape, scale = Scale))
summary(wdata)

Proportion lost:
lower.limit2 <- with(wdata, quantile(y2, prob = prop.lost))
Smaller due to truncation:
wdata <- subset(wdata, y2 > lower.limit2)

fit1 <- vglm(y2 ~ x2, maxit = 100, trace = TRUE,

ucberk 817

truncweibull(lower.limit = lower.limit2), wdata)
coef(fit1, matrix = TRUE)
summary(fit1)
vcov(fit1)
head(fit1@extra$lower.limit)

ucberk University California Berkeley Graduate Admissions

Description

University California Berkeley Graduate Admissions: counts cross-classified by acceptance/rejection
and gender, for the six largest departments.

Usage

data(ucberk)

Format

A data frame with 6 departmental groups with the following 5 columns.

m.deny Counts of men denied admission.

m.admit Counts of men admitted.

w.deny Counts of women denied admission.

w.admit Counts of women admitted.

dept Department (the six largest), called A, codeB, . . . , codeF.

Details

From Bickel et al. (1975), the data consists of applications for admission to graduate study at
the University of California, Berkeley, for the fall 1973 quarter. In the admissions cycle for that
quarter, the Graduate Division at Berkeley received approximately 15,000 applications, some of
which were later withdrawn or transferred to a different proposed entry quarter by the applicants.
Of the applications finally remaining for the fall 1973 cycle 12,763 were sufficiently complete
to permit a decision. There were about 101 graduate department and interdepartmental graduate
majors. There were 8442 male applicants and 4321 female applicants. About 44 percent of the
males and about 35 percent of the females were admitted. The data are well-known for illustrating
Simpson’s paradox.

References

Bickel, P. J., Hammel, E. A. and O’Connell, J. W. (1975). Sex bias in graduate admissions: data
from Berkeley. Science, 187(4175): 398–404.

Freedman, D., Pisani, R. and Purves, R. (1998). Chapter 2 of Statistics, 3rd. ed., W. W. Norton &
Company.

818 uninormal

Examples

summary(ucberk)

uninormal Univariate Normal Distribution

Description

Maximum likelihood estimation of the two parameters of a univariate normal distribution.

Usage

uninormal(lmean = "identitylink", lsd = "loglink", lvar =
"loglink", var.arg = FALSE, imethod = 1, isd = NULL,
parallel = FALSE, smallno = 1e-05, zero = if (var.arg)
"var" else "sd")

Arguments

lmean, lsd, lvar

Link functions applied to the mean and standard deviation/variance. See Links
for more choices. Being positive quantities, a log link is the default for the
standard deviation and variance (see var.arg).

var.arg Logical. If TRUE then the second parameter is the variance and lsd and esd are
ignored, else the standard deviation is used and lvar and evar are ignored.

smallno Numeric, positive but close to 0. Used specifically for quasi-variances; if the
link for the mean is explink then any non-positive value of eta is replaced by
this quantity (hopefully, temporarily and only during early iterations).

imethod, parallel, isd, zero

See CommonVGAMffArguments for more information. If lmean = loglink then
try imethod = 2. If parallel = TRUE then the parallelism constraint is not ap-
plied to the intercept.

Details

This fits a linear model (LM) as the first linear/additive predictor. So, by default, this is just the
mean. By default, the log of the standard deviation is the second linear/additive predictor. The
Fisher information matrix is diagonal. This VGAM family function can handle multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

uninormal 819

Warning

gaussianff() was deprecated but has been brought back into VGAM nominally. It should be
called Mickey Mouse. It gives a warning and calls uninormal instead (hopefully all the arguments
should pass in correctly). Users should avoid calling gaussianff(); use glm with gaussian in-
stead. It is dangerous to treat what is an uninormal fit as a gaussianff() object.

Note

Yet to do: allow an argument such as eq.sd that enables the standard devations to be the same.
Also, this function used to be called normal1() too, but it has been decommissioned.

Author(s)

T. W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

posnormal, mix2normal, ordsup, normal.vcm, Qvar, tobit, cens.normal, foldnormal, skewnormal,
double.cens.normal, SURff, AR1, huber2, studentt, binormal, trinormal, dnorm, simulate.vlm,
hdeff.vglm.

Examples

udata <- data.frame(x2 = rnorm(nn <- 200))
udata <- transform(udata,

y1 = rnorm(nn, m = 1 - 3*x2, sd = exp(1 + 0.2*x2)),
y2a = rnorm(nn, m = 1 + 2*x2, sd = exp(1 + 2.0*x2)^0.5),
y2b = rnorm(nn, m = 1 + 2*x2, sd = exp(1 + 2.0*x2)^0.5))

fit1 <- vglm(y1 ~ x2, uninormal(zero = NULL), udata, trace = TRUE)
coef(fit1, matrix = TRUE)
fit2 <- vglm(cbind(y2a, y2b) ~ x2, data = udata, trace = TRUE,

uninormal(var = TRUE, parallel = TRUE ~ x2,
zero = NULL))

coef(fit2, matrix = TRUE)

Generate data from N(mu=theta=10, sigma=theta) and estimate theta.
theta <- 10
udata <- data.frame(y3 = rnorm(100, m = theta, sd = theta))
fit3a <- vglm(y3 ~ 1, uninormal(lsd = "identitylink"), data = udata,

constraints = list("(Intercept)" = rbind(1, 1)))
fit3b <- vglm(y3 ~ 1, uninormal(lsd = "identitylink",

parallel = TRUE ~ 1, zero = NULL), udata)
coef(fit3a, matrix = TRUE)
coef(fit3b, matrix = TRUE) # Same as fit3a

820 UtilitiesVGAM

UtilitiesVGAM Utility Functions for the VGAM Package

Description

A set of common utility functions used by VGAM family functions.

Usage

param.names(string, S = 1, skip1 = FALSE, sep = "")
dimm(M, hbw = M)
interleave.VGAM(.M, M1, inverse = FALSE)

Arguments

string Character. Name of the parameter.

M, .M Numeric. The total number of linear/additive predictors, called M . By total, it
is meant summed over the number of responses. Often,M is the total number of
parameters to be estimated (but this is not the same as the number of regression
coefficients, unless the RHS of the formula is an intercept-only). The use of
.M is unfortunate, but it is a compromise solution to what is presented in Yee
(2015). Ideally, .M should be just M.

M1 Numeric. The number of linear/additive predictors for one response, called M1.
This argument used to be called M, but is now renamed properly.

inverse Logical. Useful for the inverse function of interleave.VGAM().

S Numeric. The number of responses.

skip1, sep The former is logical; should one skip (or omit) "1" when S = 1? The latter is
the same argument as paste.

hbw Numeric. The half-bandwidth, which measures the number of bands emanating
from the central diagonal band.

Details

See Yee (2015) for some details about some of these functions.

Value

For param.names(), this function returns the parameter names for S responses, i.e., string is
returned unchanged if S = 1, else paste(string, 1:S, sep = "").

For dimm(), this function returns the number of elements to be stored for each of the working
weight matrices. They are represented as columns in the matrix wz in e.g., vglm.fit(). See the
matrix-band format described in Section 18.3.5 of Yee (2015).

For interleave.VGAM(), this function returns a reordering of the linear/additive predictors depend-
ing on the number of responses. The arguments presented in Table 18.5 may not be valid in your
version of Yee (2015).

V1 821

Author(s)

T. W. Yee. Victor Miranda added the inverse argument to interleave.VGAM().

References

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R.
New York, USA: Springer.

See Also

CommonVGAMffArguments, VGAM-package.

Examples

param.names("shape", 1) # "shape"
param.names("shape", 3) # c("shape1", "shape2", "shape3")

dimm(3, hbw = 1) # Diagonal matrix; the 3 elements need storage.
dimm(3) # A general 3 x 3 symmetrix matrix has 6 unique elements.
dimm(3, hbw = 2) # Tridiagonal matrix; the 3-3 element is 0 and unneeded.

M1 <- 2; ncoly <- 3; M <- ncoly * M1
mynames1 <- param.names("location", ncoly)
mynames2 <- param.names("scale", ncoly)
(parameters.names <- c(mynames1, mynames2)[interleave.VGAM(M, M1 = M1)])
The following is/was in Yee (2015) and has a poor/deceptive style:
(parameters.names <- c(mynames1, mynames2)[interleave.VGAM(M, M = M1)])
parameters.names[interleave.VGAM(M, M1 = M1, inverse = TRUE)]

V1 V1 Flying-Bombs Hits in London

Description

A small count data set. During WWII V1 flying-bombs were fired from sites in France (Pas-de-
Calais) and Dutch coasts towards London. The number of hits per square grid around London were
recorded.

Usage

data(V1)

Format

A data frame with the following variables.

hits Values between 0 and 4, and 7. Actually, the 7 is really imputed from the paper (it was recorded
as "5 and over").

ofreq Observed frequency, i.e., the number of grids with that many hits.

822 V2

Details

The data concerns 576 square grids each of 0.25 square kms about south London. The area was
selected comprising 144 square kms over which the basic probability function of the distribution
was very nearly constant. V1s, which were one type of flying-bomb, were a “Vergeltungswaffen”
or vengeance weapon fired during the summer of 1944 at London. The V1s were informally called
Buzz Bombs or Doodlebugs, and they were pulse-jet-powered with a warhead of 850 kg of explo-
sives. Over 9500 were launched at London, and many were shot down by artillery and the RAF.
Over the period considered the total number of bombs within the area was 537.

It was asserted that the bombs tended to be grouped in clusters. However, a basic Poisson analysis
shows this is not the case. Their guidance system being rather primitive, the data is consistent with
a Poisson distribution (random).

Compared to Clarke (1946), the more modern analysis of Shaw and Shaw (2019). shows a higher
density of hits in south London, hence the distribution is not really uniform over the entire region.

Source

Clarke, R. D. (1946). An application of the Poisson distribution. Journal of the Institute of Actuar-
ies, 72(3), 481.

References

Shaw, L. P. and Shaw, L. F. (2019). The flying bomb and the actuary. Significance, 16(5): 12–17.

See Also

V2, poissonff.

Examples

V1
mean(with(V1, rep(hits, times = ofreq)))
var(with(V1, rep(hits, times = ofreq)))
sum(with(V1, rep(hits, times = ofreq)))

Not run: barplot(with(V1, ofreq),
names.arg = as.character(with(V1, hits)),
main = "London V1 buzz bomb hits",
col = "lightblue", las = 1,
ylab = "Frequency", xlab = "Hits")

End(Not run)

V2 V2 Missile Hits in London

Description

A small count data set. During WWII V2 missiles were fired from the continent mainly towards
London. The number of hits per square grid around London were recorded.

vcovvlm 823

Usage

data(V2)

Format

A data frame with the following variables.

hits Values between 0 and 3.

ofreq Observed frequency, i.e., the number of grids with that many hits.

Details

The data concerns 408 square grids each of 0.25 square kms about south London (south of the River
Thames). They were picked in a rectangular region of 102 square kilometres where the density of
hits were roughly uniformly distributed. The data is somewhat comparable to V1 albeit is a smaller
data set.

Source

Shaw, L. P. and Shaw, L. F. (2019). The flying bomb and the actuary. Significance, 16(5): 12–17.

See Also

V1, poissonff.

Examples

V2
mean(with(V2, rep(hits, times = ofreq)))
var(with(V2, rep(hits, times = ofreq)))
sum(with(V2, rep(hits, times = ofreq)))
Not run: barplot(with(V2, ofreq),

names.arg = as.character(with(V2, hits)),
main = "London V2 rocket hits",
col = "lightgreen", las = 1,
ylab = "Frequency", xlab = "Hits")

End(Not run)

vcovvlm Calculate Variance-Covariance Matrix for a Fitted VLM or RR-
VGLM or QRR-VGLM Object

Description

Returns the variance-covariance matrix of the parameters of a fitted vlm-class object or a fitted
rrvglm-class object.

824 vcovvlm

Usage

vcov(object, ...)
vcovvlm(object, dispersion = NULL, untransform = FALSE,

complete = TRUE)
vcovqrrvglm(object, ...)

Arguments

object A fitted model object, having class vlm-class or rrvglm-class or qrrvglm-class
or a superclass of such. The former includes a vglm object.

dispersion Numerical. A value may be specified, else it is estimated for quasi-GLMs (e.g.,
method of moments). For almost all other types of VGLMs it is usually unity.
The value is multiplied by the raw variance-covariance matrix.

untransform logical. For intercept-only models with trivial constraints; if set TRUE then the
parameter link function is inverted to give the answer for the untransformed/raw
parameter.

complete An argument that is currently ignored. Added only so that linearHypothesis
can be called.

... Same as vcov.

Details

This methods function is based on the QR decomposition of the (large) VLM model matrix and
working weight matrices. Currently vcovvlm operates on the fundamental vlm-class objects be-
cause pretty well all modelling functions in VGAM inherit from this. Currently vcovrrvglm is not
entirely reliable because the elements of the A–C part of the matrix sometimes cannot be computed
very accurately, so that the entire matrix is not positive-definite.

For "qrrvglm" objects, vcovqrrvglm is currently working with Rank = 1 objects or when I.tolerances
= TRUE. Then the answer is conditional given C. The code is based on model.matrixqrrvglm so
that the dimnames are the same.

Value

Same as vcov.

Note

For some models inflated standard errors can occur, such as parameter estimates near the boundary
of the parameter space. Detection for this is available for some models using hdeff.vglm, which
tests for an Hauck-Donner effect (HDE) for each regression coefficient. If the HDE is present, using
lrt.stat.vlm should return more accurate p-values.

Author(s)

Thomas W. Yee

venice 825

See Also

confintvglm, summaryvglm, vcov, hdeff.vglm, lrt.stat.vlm, model.matrixqrrvglm.

Examples

ndata <- data.frame(x2 = runif(nn <- 300))
ndata <- transform(ndata, y1 = rnbinom(nn, mu = exp(3+x2), exp(1)),

y2 = rnbinom(nn, mu = exp(2-x2), exp(0)))
fit1 <- vglm(cbind(y1, y2) ~ x2, negbinomial, ndata, trace = TRUE)
fit2 <- rrvglm(y1 ~ x2, negbinomial(zero = NULL), data = ndata)
coef(fit1, matrix = TRUE)
vcov(fit1)
vcov(fit2)

venice Venice Maximum Sea Levels Data

Description

Some sea levels data sets recorded at Venice, Italy.

Usage

data(venice)
data(venice90)

Format

venice is a data frame with 51 observations on the following 11 variables. It concerns the maximum
heights of sea levels between 1931 and 1981.

year a numeric vector.

r1,r2,r3,r4,r5,r6,r7,r8,r9,r10 numeric vectors; r1 is the highest recorded value, r2 is the second
highest recorded value, etc.

venice90 is a data frame with 455 observations on the following 7 variables.

year, month, day, hour numeric vectors; actual time of the recording.

sealevel numeric; sea level.

ohour numeric; number of hours since the midnight of 31 Dec 1939 and 1 Jan 1940.

Year numeric vector; approximate year as a real number. The formula is start.year + ohour /
(365.26 * 24) where start.year is 1940. One can treat Year as continuous whereas year
can be treated as both continuous and discrete.

826 venice

Details

Sea levels are in cm. For venice90, the value 0 corresponds to a fixed reference point (e.g., the
mean sea level in 1897 at an old palace of Venice). Clearly since the relative (perceived) mean sea
level has been increasing in trend over time (more than an overall 0.4 m increase by 2010), therefore
the value 0 is (now) a very low and unusual measurement.

For venice, in 1935 only the top six values were recorded.

For venice90, this is a subset of a data set provided by Paolo Pirazzoli consisting of hourly sea
levels from 1940 to 2009. Values greater than 90 cm were extracted, and then declustered (each
cluster provides no more than one value, and each value is at least 24 hours apart). Thus the values
are more likely to be independent. Of the original (2009-1940+1)*365.26*24 values about 7
percent of these comprise venice90.

Yet to do: check for consistency between the data sets. Some external data sets elsewhere have
some extremes recorded at times not exactly on the hour.

Source

Pirazzoli, P. (1982) Maree estreme a Venezia (periodo 1872–1981). Acqua Aria, 10, 1023–1039.

Thanks to Paolo Pirazzoli and Alberto Tomasin for the venice90 data.

References

Smith, R. L. (1986). Extreme value theory based on the r largest annual events. Journal of Hydrol-
ogy, 86, 27–43.

Battistin, D. and Canestrelli, P. (2006). La serie storica delle maree a Venezia, 1872–2004 (in
Italian), Comune di Venezia. Istituzione Centro Previsione e Segnalazioni Maree.

See Also

guplot, gev, gpd.

Examples

Not run:
matplot(venice[["year"]], venice[, -1], xlab = "Year",

ylab = "Sea level (cm)", type = "l")

ymat <- as.matrix(venice[, paste("r", 1:10, sep = "")])
fit1 <- vgam(ymat ~ s(year, df = 3), gumbel(R = 365, mpv = TRUE),

venice, trace = TRUE, na.action = na.pass)
head(fitted(fit1))

par(mfrow = c(2, 1), xpd = TRUE)
plot(fit1, se = TRUE, lcol = "blue", llwd = 2, slty = "dashed")

par(mfrow = c(1,1), bty = "l", xpd = TRUE, las = 1)
qtplot(fit1, mpv = TRUE, lcol = c(1, 2, 5), tcol = c(1, 2, 5),

llwd = 2, pcol = "blue", tadj = 0.1)

plot(sealevel ~ Year, data = venice90, type = "h", col = "blue")

vgam 827

summary(venice90)
dim(venice90)
round(100 * nrow(venice90)/((2009-1940+1)*365.26*24), dig = 3)

End(Not run)

vgam Fitting Vector Generalized Additive Models

Description

Fit a vector generalized additive model (VGAM). Both 1st-generation VGAMs (based on backfit-
ting) and 2nd-generation VGAMs (based on P-splines, with automatic smoothing parameter selec-
tion) are implemented. This is a large class of models that includes generalized additive models
(GAMs) and vector generalized linear models (VGLMs) as special cases.

Usage

vgam(formula,
family = stop("argument 'family' needs to be assigned"),
data = list(), weights = NULL, subset = NULL,
na.action = na.fail, etastart = NULL, mustart = NULL,
coefstart = NULL, control = vgam.control(...),
offset = NULL, method = "vgam.fit", model = FALSE,
x.arg = TRUE, y.arg = TRUE, contrasts = NULL,
constraints = NULL, extra = list(), form2 = NULL,
qr.arg = FALSE, smart = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit. The RHS of the formula is applied
to each linear/additive predictor, and should include at least one sm.os term or
sm.ps term or s term. Mixing both together is not allowed. Different variables
in each linear/additive predictor can be chosen by specifying constraint matrices.

family Same as for vglm.

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from environment(formula), typically the environment from
which vgam is called.

weights, subset, na.action

Same as for vglm. Note that subset may be unreliable and to get around this
problem it is best to use subset to create a new smaller data frame and feed
in the smaller data frame. See below for an example. This is a bug that needs
fixing.

etastart, mustart, coefstart

Same as for vglm.

control a list of parameters for controlling the fitting process. See vgam.control for
details.

828 vgam

method the method to be used in fitting the model. The default (and presently only)
method vgam.fit uses iteratively reweighted least squares (IRLS).

constraints, model, offset

Same as for vglm.

x.arg, y.arg logical values indicating whether the model matrix and response vector/matrix
used in the fitting process should be assigned in the x and y slots. Note the
model matrix is the LM model matrix; to get the VGAM model matrix type
model.matrix(vgamfit) where vgamfit is a vgam object.

contrasts, extra, form2, qr.arg, smart

Same as for vglm.

... further arguments passed into vgam.control.

Details

A vector generalized additive model (VGAM) is loosely defined as a statistical model that is a
function of M additive predictors. The central formula is given by

ηj =

p∑
k=1

f(j)k(xk)

where xk is the kth explanatory variable (almost always x1 = 1 for the intercept term), and f(j)k
are smooth functions of xk that are estimated by smoothers. The first term in the summation is
just the intercept. Currently two types of smoothers are implemented: s represents the older and
more traditional one, called a vector (cubic smoothing spline) smoother and is based on Yee and
Wild (1996); it is more similar to the R package gam. The newer one is represented by sm.os and
sm.ps, and these are based on O-splines and P-splines—they allow automatic smoothing parameter
selection; it is more similar to the R package mgcv.

In the above, j = 1, . . . ,M where M is finite. If all the functions are constrained to be linear then
the resulting model is a vector generalized linear model (VGLM). VGLMs are best fitted with vglm.

Vector (cubic smoothing spline) smoothers are represented by s() (see s). Local regression via
lo() is not supported. The results of vgam will differ from the gam() (in the gam) because vgam()
uses a different knot selection algorithm. In general, fewer knots are chosen because the computa-
tion becomes expensive when the number of additive predictors M is large.

Second-generation VGAMs are based on the O-splines and P-splines. The latter is due to Eilers
and Marx (1996). Backfitting is not required, and estimation is performed using IRLS. The func-
tion sm.os represents a smart implementation of O-splines. The function sm.ps represents a smart
implementation of P-splines. Written G2-VGAMs or P-VGAMs, this methodology should not be
used unless the sample size is reasonably large. Usually an UBRE predictive criterion is optimized
(at each IRLS iteration) because the scale parameter for VGAMs is usually assumed to be known.
This search for optimal smoothing parameters does not always converge, and neither is it totally re-
liable. G2-VGAMs implicitly set criterion = "coefficients" so that convergence occurs when
the change in the regression coefficients between 2 IRLS iterations is sufficiently small. Otherwise
the search for the optimal smoothing parameters might cause the log-likelihood to decrease between
2 IRLS iterations. Currently outer iteration is implemented, by default, rather than performance it-
eration because the latter is more easy to converge to a local solution; see Wood (2004) for details.
One can use performance iteration by setting Maxit.outer = 1 in vgam.control.

vgam 829

The underlying algorithm of VGAMs is IRLS. First-generation VGAMs (called G1-VGAMs) are
estimated by modified vector backfitting using vector splines. O-splines are used as the basis func-
tions for the vector (smoothing) splines, which are a lower dimensional version of natural B-splines.
The function vgam.fit() actually does the work. The smoothing code is based on F. O’Sullivan’s
BART code.

A closely related methodology based on VGAMs called constrained additive ordination (CAO)
first forms a linear combination of the explanatory variables (called latent variables) and then fits
a GAM to these. This is implemented in the function cao for a very limited choice of family
functions.

Value

For G1-VGAMs and G2-VGAMs, an object of class "vgam" or "pvgam" respectively (see vgam-class
and pvgam-class for further information).

WARNING

For G1-VGAMs, currently vgam can only handle constraint matrices cmat, say, such that crossprod(cmat)
is diagonal. It can be detected by is.buggy. VGAMs with constraint matrices that have non-
orthogonal columns should be fitted with sm.os or sm.ps terms instead of s.

See warnings in vglm.control.

Note

This function can fit a wide variety of statistical models. Some of these are harder to fit than
others because of inherent numerical difficulties associated with some of them. Successful model
fitting benefits from cumulative experience. Varying the values of arguments in the VGAM family
function itself is a good first step if difficulties arise, especially if initial values can be inputted. A
second, more general step, is to vary the values of arguments in vgam.control. A third step is to
make use of arguments such as etastart, coefstart and mustart.

Some VGAM family functions end in "ff" to avoid interference with other functions, e.g., binomialff,
poissonff. This is because VGAM family functions are incompatible with glm (and also gam() in
gam and gam in mgcv).

The smart prediction (smartpred) library is packed with the VGAM library.

The theory behind the scaling parameter is currently being made more rigorous, but it it should give
the same value as the scale parameter for GLMs.

Author(s)

Thomas W. Yee

References

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized
additive models. J. Amer. Statist. Assoc., 99(467): 673–686.

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

830 vgam

Yee, T. W. (2008). The VGAM Package. R News, 8, 28–39.

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R.
New York, USA: Springer.

Yee, T. W. (2016). Comments on “Smoothing parameter and model selection for general smooth
models” by Wood, S. N. and Pya, N. and Safken, N., J. Amer. Statist. Assoc., 110(516).

See Also

is.buggy, vgam.control, vgam-class, vglmff-class, plotvgam, summaryvgam, summarypvgam,
sm.os, sm.ps, s, magic, vglm, vsmooth.spline, cao.

Examples

Nonparametric proportional odds model
pneumo <- transform(pneumo, let = log(exposure.time))
vgam(cbind(normal, mild, severe) ~ s(let),

cumulative(parallel = TRUE), data = pneumo, trace = TRUE)

Nonparametric logistic regression
hfit <- vgam(agaaus ~ s(altitude, df = 2), binomialff, hunua)
Not run: plot(hfit, se = TRUE)
phfit <- predict(hfit, type = "terms", raw = TRUE, se = TRUE)
names(phfit)
head(phfit$fitted)
head(phfit$se.fit)
phfit$df
phfit$sigma

Fit two species simultaneously
hfit2 <- vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(2, 3)),

binomialff(multiple.responses = TRUE), data = hunua)
coef(hfit2, matrix = TRUE) # Not really interpretable
Not run:
plot(hfit2, se = TRUE, overlay = TRUE, lcol = 3:4, scol = 3:4)
ooo <- with(hunua, order(altitude))
with(hunua, matplot(altitude[ooo], fitted(hfit2)[ooo,],

ylim = c(0, 0.8), las = 1,type = "l", lwd = 2,
xlab = "Altitude (m)", ylab = "Probability of presence",
main = "Two plant species' response curves"))

with(hunua, rug(altitude))

End(Not run)

The 'subset' argument does not work here. Use subset() instead.
set.seed(1)
zdata <- data.frame(x2 = runif(nn <- 500))
zdata <- transform(zdata, y = rbinom(nn, 1, 0.5))
zdata <- transform(zdata, subS = runif(nn) < 0.7)
sub.zdata <- subset(zdata, subS) # Use this instead
if (FALSE)

fit4a <- vgam(cbind(y, y) ~ s(x2, df = 2),
binomialff(multiple.responses = TRUE),

vgam-class 831

data = zdata, subset = subS) # This fails!!!
fit4b <- vgam(cbind(y, y) ~ s(x2, df = 2),

binomialff(multiple.responses = TRUE),
data = sub.zdata) # This succeeds!!!

fit4c <- vgam(cbind(y, y) ~ sm.os(x2),
binomialff(multiple.responses = TRUE),
data = sub.zdata) # This succeeds!!!

Not run: par(mfrow = c(2, 2))
plot(fit4b, se = TRUE, shade = TRUE, shcol = "pink")
plot(fit4c, se = TRUE, shade = TRUE, shcol = "pink")

End(Not run)

vgam-class Class “vgam”

Description

Vector generalized additive models.

Objects from the Class

Objects can be created by calls of the form vgam(...).

Slots

nl.chisq: Object of class "numeric". Nonlinear chi-squared values.

nl.df: Object of class "numeric". Nonlinear chi-squared degrees of freedom values.

spar: Object of class "numeric" containing the (scaled) smoothing parameters.

s.xargument: Object of class "character" holding the variable name of any s() terms.

var: Object of class "matrix" holding approximate pointwise standard error information.

Bspline: Object of class "list" holding the scaled (internal and boundary) knots, and the fitted
B-spline coefficients. These are used for prediction.

extra: Object of class "list"; the extra argument on entry to vglm. This contains any extra
information that might be needed by the family function.

family: Object of class "vglmff". The family function.

iter: Object of class "numeric". The number of IRLS iterations used.

predictors: Object of class "matrix" with M columns which holds the M linear predictors.

assign: Object of class "list", from class "vlm". This named list gives information matching the
columns and the (LM) model matrix terms.

call: Object of class "call", from class "vlm". The matched call.

coefficients: Object of class "numeric", from class "vlm". A named vector of coefficients.

constraints: Object of class "list", from class "vlm". A named list of constraint matrices used
in the fitting.

832 vgam-class

contrasts: Object of class "list", from class "vlm". The contrasts used (if any).

control: Object of class "list", from class "vlm". A list of parameters for controlling the fitting
process. See vglm.control for details.

criterion: Object of class "list", from class "vlm". List of convergence criterion evaluated at
the final IRLS iteration.

df.residual: Object of class "numeric", from class "vlm". The residual degrees of freedom.

df.total: Object of class "numeric", from class "vlm". The total degrees of freedom.

dispersion: Object of class "numeric", from class "vlm". The scaling parameter.

effects: Object of class "numeric", from class "vlm". The effects.

fitted.values: Object of class "matrix", from class "vlm". The fitted values. This is usually
the mean but may be quantiles, or the location parameter, e.g., in the Cauchy model.

misc: Object of class "list", from class "vlm". A named list to hold miscellaneous parameters.

model: Object of class "data.frame", from class "vlm". The model frame.

na.action: Object of class "list", from class "vlm". A list holding information about missing
values.

offset: Object of class "matrix", from class "vlm". If non-zero, a M -column matrix of offsets.

post: Object of class "list", from class "vlm" where post-analysis results may be put.

preplot: Object of class "list", from class "vlm" used by plotvgam; the plotting parameters
may be put here.

prior.weights: Object of class "matrix", from class "vlm" holding the initially supplied weights.

qr: Object of class "list", from class "vlm". QR decomposition at the final iteration.

R: Object of class "matrix", from class "vlm". The R matrix in the QR decomposition used in the
fitting.

rank: Object of class "integer", from class "vlm". Numerical rank of the fitted model.

residuals: Object of class "matrix", from class "vlm". The working residuals at the final IRLS
iteration.

ResSS: Object of class "numeric", from class "vlm". Residual sum of squares at the final IRLS
iteration with the adjusted dependent vectors and weight matrices.

smart.prediction: Object of class "list", from class "vlm". A list of data-dependent parame-
ters (if any) that are used by smart prediction.

terms: Object of class "list", from class "vlm". The terms object used.

weights: Object of class "matrix", from class "vlm". The weight matrices at the final IRLS
iteration. This is in matrix-band form.

x: Object of class "matrix", from class "vlm". The model matrix (LM, not VGLM).

xlevels: Object of class "list", from class "vlm". The levels of the factors, if any, used in fitting.

y: Object of class "matrix", from class "vlm". The response, in matrix form.

Xm2: Object of class "matrix", from class "vlm". See vglm-class).

Ym2: Object of class "matrix", from class "vlm". See vglm-class).

callXm2: Object of class "call", from class "vlm". The matched call for argument form2.

vgam-class 833

Extends

Class "vglm", directly. Class "vlm", by class "vglm".

Methods

cdf signature(object = "vglm"): cumulative distribution function. Useful for quantile regres-
sion and extreme value data models.

deplot signature(object = "vglm"): density plot. Useful for quantile regression models.

deviance signature(object = "vglm"): deviance of the model (where applicable).

plot signature(x = "vglm"): diagnostic plots.

predict signature(object = "vglm"): extract the additive predictors or predict the additive pre-
dictors at a new data frame.

print signature(x = "vglm"): short summary of the object.

qtplot signature(object = "vglm"): quantile plot (only applicable to some models).

resid signature(object = "vglm"): residuals. There are various types of these.

residuals signature(object = "vglm"): residuals. Shorthand for resid.

rlplot signature(object = "vglm"): return level plot. Useful for extreme value data models.

summary signature(object = "vglm"): a more detailed summary of the object.

Note

VGAMs have all the slots that vglm objects have (vglm-class), plus the first few slots described in
the section above.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

See Also

vgam.control, vglm, s, vglm-class, vglmff-class.

Examples

Fit a nonparametric proportional odds model
pneumo <- transform(pneumo, let = log(exposure.time))
vgam(cbind(normal, mild, severe) ~ s(let),

cumulative(parallel = TRUE), data = pneumo)

834 vgam.control

vgam.control Control Function for vgam()

Description

Algorithmic constants and parameters for running vgam are set using this function.

Usage

vgam.control(all.knots = FALSE, bf.epsilon = 1e-07, bf.maxit = 30,
checkwz=TRUE, Check.rank = TRUE, Check.cm.rank = TRUE,
criterion = names(.min.criterion.VGAM),
epsilon = 1e-07, maxit = 30, Maxit.outer = 10,
noWarning = FALSE,
na.action = na.fail,
nk = NULL, save.weights = FALSE, se.fit = TRUE,
trace = FALSE, wzepsilon = .Machine$double.eps^0.75,
xij = NULL, gamma.arg = 1, ...)

Arguments

all.knots logical indicating if all distinct points of the smoothing variables are to be used
as knots. By default, all.knots=TRUE for n ≤ 40, and for n > 40, the number
of knots is approximately 40 + (n− 40)0.25. This increases very slowly with n
so that the number of knots is approximately between 50 and 60 for large n.

bf.epsilon tolerance used by the modified vector backfitting algorithm for testing conver-
gence. Must be a positive number.

bf.maxit maximum number of iterations allowed in the modified vector backfitting algo-
rithm. Must be a positive integer.

checkwz logical indicating whether the diagonal elements of the working weight matri-
ces should be checked whether they are sufficiently positive, i.e., greater than
wzepsilon. If not, any values less than wzepsilon are replaced with this value.

Check.rank, Check.cm.rank

See vglm.control.

criterion character variable describing what criterion is to be used to test for convergence.
The possibilities are listed in .min.criterion.VGAM, but most family functions
only implement a few of these.

epsilon positive convergence tolerance epsilon. Roughly speaking, the Newton-Raphson/Fisher-
scoring/local-scoring iterations are assumed to have converged when two suc-
cessive criterion values are within epsilon of each other.

maxit maximum number of Newton-Raphson/Fisher-scoring/local-scoring iterations
allowed.

Maxit.outer maximum number of outer iterations allowed when there are sm.os or sm.ps
terms. See vgam for a little information about the default outer iteration. Note

vgam.control 835

that one can use performance iteration by setting Maxit.outer = 1; then the
smoothing parameters will be automatically chosen at each IRLS iteration (some
specific programming allows this).

na.action how to handle missing values. Unlike the SPLUS gam function, vgam cannot
handle NAs when smoothing.

nk vector of length d containing positive integers. where d be the number of s terms
in the formula. Recycling is used if necessary. The ith value is the number of
B-spline coefficients to be estimated for each component function of the ith s()
term. nk differs from the number of knots by some constant. If specified, nk
overrides the automatic knot selection procedure.

save.weights logical indicating whether the weights slot of a "vglm" object will be saved on
the object. If not, it will be reconstructed when needed, e.g., summary.

se.fit logical indicating whether approximate pointwise standard errors are to be saved
on the object. If TRUE, then these can be plotted with plot(..., se = TRUE).

trace logical indicating if output should be produced for each iteration.

wzepsilon Small positive number used to test whether the diagonals of the working weight
matrices are sufficiently positive.

noWarning Same as vglm.control.

xij Same as vglm.control.

gamma.arg Numeric; same as gamma in magic. Inflation factor for optimizing the UBRE/GCV
criterion. If given, a suggested value is 1.4 to help avoid overfitting, based on
the work of Gu and co-workers (values between 1.2 and 1.4 appeared reason-
able, based on simulations). A warning may be given if the value is deemed
out-of-range.

... other parameters that may be picked up from control functions that are specific
to the VGAM family function.

Details

Most of the control parameters are used within vgam.fit and you will have to look at that to un-
derstand the full details. Many of the control parameters are used in a similar manner by vglm.fit
(vglm) because the algorithm (IRLS) is very similar.

Setting save.weights=FALSE is useful for some models because the weights slot of the object
is often the largest and so less memory is used to store the object. However, for some VGAM
family function, it is necessary to set save.weights=TRUE because the weights slot cannot be
reconstructed later.

Value

A list with components matching the input names. A little error checking is done, but not much.
The list is assigned to the control slot of vgam objects.

Warning

See vglm.control.

836 vglm

Note

vgam does not implement half-stepsizing, therefore parametric models should be fitted with vglm.
Also, vgam is slower than vglm too.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

See Also

vgam, vglm.control, vsmooth.spline, vglm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
vgam(cbind(normal, mild, severe) ~ s(let, df = 2), multinomial,

data = pneumo, trace = TRUE, eps = 1e-4, maxit = 10)

vglm Fitting Vector Generalized Linear Models

Description

vglm fits vector generalized linear models (VGLMs). This very large class of models includes
generalized linear models (GLMs) as a special case.

Usage

vglm(formula,
family = stop("argument 'family' needs to be assigned"),
data = list(), weights = NULL, subset = NULL,
na.action = na.fail, etastart = NULL, mustart = NULL,
coefstart = NULL, control = vglm.control(...), offset = NULL,
method = "vglm.fit", model = FALSE, x.arg = TRUE, y.arg = TRUE,
contrasts = NULL, constraints = NULL, extra = list(),
form2 = NULL, qr.arg = TRUE, smart = TRUE, ...)

vglm 837

Arguments

formula a symbolic description of the model to be fit. The RHS of the formula is applied
to each linear predictor. The effect of different variables in each linear predictor
can be controlled by specifying constraint matrices—see constraints below.

family a function of class "vglmff" (see vglmff-class) describing what statistical
model is to be fitted. This is called a “VGAM family function”. See CommonVGAMffArguments
for general information about many types of arguments found in this type of
function. The argument name "family" is used loosely and for the ease of ex-
isting glm users; there is no concept of a formal “error distribution” for VGLMs.
Possibly the argument name should be better "model" but unfortunately that
name has already been taken.

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from environment(formula), typically the environment from
which vglm is called.

weights an optional vector or matrix of (prior fixed and known) weights to be used in
the fitting process. If the VGAM family function handles multiple responses
(Q > 1 of them, say) then weights can be a matrix with Q columns. Each
column matches the respective response. If it is a vector (the usually case) then
it is recycled into a matrix with Q columns. The values of weights must be
positive; try setting a very small value such as 1.0e-8 to effectively delete an
observation.
Currently the weights argument supports sampling weights from complex sam-
pling designs via svyVGAM. Some details can be found at https://CRAN.
R-project.org/package=svyVGAM.

subset an optional logical vector specifying a subset of observations to be used in the
fitting process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The “factory-fresh” default is na.omit.

etastart optional starting values for the linear predictors. It is a M -column matrix with
the same number of rows as the response. IfM = 1 then it may be a vector. Note
that etastart and the output of predict(fit) should be comparable. Here,
fit is the fitted object. Almost all VGAM family functions are self-starting.

mustart optional starting values for the fitted values. It can be a vector or a matrix; if a
matrix, then it has the same number of rows as the response. Usually mustart
and the output of fitted(fit) should be comparable. Most family functions
do not make use of this argument because it is not possible to compute all M
columns of eta from mu.

coefstart optional starting values for the coefficient vector. The length and order must
match that of coef(fit).

control a list of parameters for controlling the fitting process. See vglm.control for
details.

offset a vector or M -column matrix of offset values. These are a priori known and are
added to the linear/additive predictors during fitting.

https://CRAN.R-project.org/package=svyVGAM
https://CRAN.R-project.org/package=svyVGAM

838 vglm

method the method to be used in fitting the model. The default (and presently only)
method vglm.fit() uses iteratively reweighted least squares (IRLS).

model a logical value indicating whether the model frame should be assigned in the
model slot.

x.arg, y.arg logical values indicating whether the LM matrix and response vector/matrix
used in the fitting process should be assigned in the x and y slots. Note that the
model matrix is the LM matrix; to get the VGLM matrix type model.matrix(vglmfit)
where vglmfit is a vglm object.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

constraints an optional list of constraint matrices. The components of the list must be
named (labelled) with the term it corresponds to (and it must match in character
format exactly—see below). There are two types of input: "lm"-type and "vlm"-
type. The former is a subset of the latter. The former has a matrix for each term
of the LM matrix. The latter has a matrix for each column of the big VLM
matrix. After fitting, the constraints extractor function may be applied; it
returns the "vlm"-type list of constraint matrices by default. If "lm"-type are
returned by constraints then these can be fed into this argument and it should
give the same model as before.

If the constraints argument is used then the family function’s zero argument
(if it exists) needs to be set to NULL. This avoids what could be a probable con-
tradiction. Sometimes setting other arguments related to constraint matrices to
FALSE is also a good idea, e.g., parallel = FALSE, exchangeable = FALSE.

Properties: each constraint matrix must have M rows, and be of full-column
rank. By default, constraint matrices are the M by M identity matrix unless
arguments in the family function itself override these values, e.g., parallel
(see CommonVGAMffArguments). If constraints is used then it must contain
all the terms; an incomplete list is not accepted.

As mentioned above, the labelling of each constraint matrix must match exactly,
e.g., list("s(x2,df=3)"=diag(2)) will fail as as.character(~ s(x2,df=3))
produces white spaces: "s(x2, df = 3)". Thus list("s(x2, df = 3)" = diag(2))
is needed. See Example 6 below. More details are given in Yee (2015; Section
3.3.1.3) which is on p.101. Note that the label for the intercept is "(Intercept)".

extra an optional list with any extra information that might be needed by the VGAM
family function.

form2 the second (optional) formula. If argument xij is used (see vglm.control)
then form2 needs to have all terms in the model. Also, some VGAM family
functions such as micmen use this argument to input the regressor variable. If
given, the slots @Xm2 and @Ym2 may be assigned. Note that smart prediction
applies to terms in form2 too.

qr.arg logical value indicating whether the slot qr, which returns the QR decomposi-
tion of the VLM model matrix, is returned on the object.

smart logical value indicating whether smart prediction (smartpred) will be used.

... further arguments passed into vglm.control.

vglm 839

Details

A vector generalized linear model (VGLM) is loosely defined as a statistical model that is a function
of M linear predictors and can be estimated by Fisher scoring. The central formula is given by

ηj = βTj x

where x is a vector of explanatory variables (sometimes just a 1 for an intercept), and βj is a vector
of regression coefficients to be estimated. Here, j = 1, . . . ,M , where M is finite. Then one can
write η = (η1, . . . , ηM)T as a vector of linear predictors.

Most users will find vglm similar in flavour to glm. The function vglm.fit actually does the work.

Value

An object of class "vglm", which has the following slots. Some of these may not be assigned to
save space, and will be recreated if necessary later.

extra the list extra at the end of fitting.

family the family function (of class "vglmff").

iter the number of IRLS iterations used.

predictors a M -column matrix of linear predictors.

assign a named list which matches the columns and the (LM) model matrix terms.

call the matched call.

coefficients a named vector of coefficients.

constraints a named list of constraint matrices used in the fitting.

contrasts the contrasts used (if any).

control list of control parameter used in the fitting.

criterion list of convergence criterion evaluated at the final IRLS iteration.

df.residual the residual degrees of freedom.

df.total the total degrees of freedom.

dispersion the scaling parameter.

effects the effects.

fitted.values the fitted values, as a matrix. This is often the mean but may be quantiles, or the
location parameter, e.g., in the Cauchy model.

misc a list to hold miscellaneous parameters.

model the model frame.

na.action a list holding information about missing values.

offset if non-zero, a M -column matrix of offsets.

post a list where post-analysis results may be put.

preplot used by plotvgam, the plotting parameters may be put here.

prior.weights initially supplied weights (the weights argument). Also see weightsvglm.

qr the QR decomposition used in the fitting.

840 vglm

R the R matrix in the QR decomposition used in the fitting.

rank numerical rank of the fitted model.

residuals the working residuals at the final IRLS iteration.

ResSS residual sum of squares at the final IRLS iteration with the adjusted dependent
vectors and weight matrices.

smart.prediction

a list of data-dependent parameters (if any) that are used by smart prediction.

terms the terms object used.

weights the working weight matrices at the final IRLS iteration. This is in matrix-band
form.

x the model matrix (linear model LM, not VGLM).

xlevels the levels of the factors, if any, used in fitting.

y the response, in matrix form.

This slot information is repeated at vglm-class.

WARNING

See warnings in vglm.control. Also, see warnings under weights above regarding sampling
weights from complex sampling designs.

Note

This function can fit a wide variety of statistical models. Some of these are harder to fit than
others because of inherent numerical difficulties associated with some of them. Successful model
fitting benefits from cumulative experience. Varying the values of arguments in the VGAM family
function itself is a good first step if difficulties arise, especially if initial values can be inputted. A
second, more general step, is to vary the values of arguments in vglm.control. A third step is to
make use of arguments such as etastart, coefstart and mustart.

Some VGAM family functions end in "ff" to avoid interference with other functions, e.g., binomialff,
poissonff. This is because VGAM family functions are incompatible with glm (and also gam() in
gam and gam in the mgcv library).

The smart prediction (smartpred) library is incorporated within the VGAM library.

The theory behind the scaling parameter is currently being made more rigorous, but it it should give
the same value as the scale parameter for GLMs.

In Example 5 below, the xij argument to illustrate covariates that are specific to a linear predictor.
Here, lop/rop are the ocular pressures of the left/right eye (artificial data). Variables leye and
reye might be the presence/absence of a particular disease on the LHS/RHS eye respectively. See
vglm.control and fill1 for more details and examples.

Author(s)

Thomas W. Yee

vglm 841

References

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R.
New York, USA: Springer.

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

Yee, T. W. (2008). The VGAM Package. R News, 8, 28–39.

See Also

vglm.control, vglm-class, vglmff-class, smartpred, vglm.fit, fill1, rrvglm, vgam. Meth-
ods functions include add1.vglm, anova.vglm, AICvlm, coefvlm, confintvglm, constraints.vlm,
drop1.vglm, fittedvlm, hatvaluesvlm, hdeff.vglm, linkfunvlm, lrt.stat.vlm, score.stat.vlm,
wald.stat.vlm, nobs.vlm, npred.vlm, plotvglm, predictvglm, residualsvglm, step4vglm,
summaryvglm, lrtest_vglm, update, etc.

Examples

Example 1. See help(glm)
(d.AD <- data.frame(treatment = gl(3, 3),

outcome = gl(3, 1, 9),
counts = c(18,17,15,20,10,20,25,13,12)))

vglm.D93 <- vglm(counts ~ outcome + treatment, poissonff,
data = d.AD, trace = TRUE)

summary(vglm.D93)

Example 2. Multinomial logit model
pneumo <- transform(pneumo, let = log(exposure.time))
vglm(cbind(normal, mild, severe) ~ let, multinomial, pneumo)

Example 3. Proportional odds model
fit3 <- vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo)
coef(fit3, matrix = TRUE)
constraints(fit3)
model.matrix(fit3, type = "lm") # LM model matrix
model.matrix(fit3) # Larger VGLM (or VLM) matrix

Example 4. Bivariate logistic model
fit4 <- vglm(cbind(nBnW, nBW, BnW, BW) ~ age, binom2.or, coalminers)
coef(fit4, matrix = TRUE)
depvar(fit4) # Response are proportions
weights(fit4, type = "prior")

842 vglm-class

Example 5. The use of the xij argument (simple case).
The constraint matrix for 'op' has one column.
nn <- 1000
eyesdat <- round(data.frame(lop = runif(nn),

rop = runif(nn),
op = runif(nn)), digits = 2)

eyesdat <- transform(eyesdat, eta1 = -1 + 2 * lop,
eta2 = -1 + 2 * lop)

eyesdat <- transform(eyesdat,
leye = rbinom(nn, 1, prob = logitlink(eta1, inv = TRUE)),
reye = rbinom(nn, 1, prob = logitlink(eta2, inv = TRUE)))

head(eyesdat)
fit5 <- vglm(cbind(leye, reye) ~ op,

binom2.or(exchangeable = TRUE, zero = 3),
data = eyesdat, trace = TRUE,
xij = list(op ~ lop + rop + fill1(lop)),
form2 = ~ op + lop + rop + fill1(lop))

coef(fit5)
coef(fit5, matrix = TRUE)
constraints(fit5)
fit5@control$xij
head(model.matrix(fit5))

Example 6. The use of the 'constraints' argument.
as.character(~ bs(year,df=3)) # Get the white spaces right
clist <- list("(Intercept)" = diag(3),

"bs(year, df = 3)" = rbind(1, 0, 0))
fit1 <- vglm(r1 ~ bs(year,df=3), gev(zero = NULL),

data = venice, constraints = clist, trace = TRUE)
coef(fit1, matrix = TRUE) # Check

vglm-class Class “vglm”

Description

Vector generalized linear models.

Objects from the Class

Objects can be created by calls of the form vglm(...).

Slots

In the following, M is the number of linear predictors.

extra: Object of class "list"; the extra argument on entry to vglm. This contains any extra
information that might be needed by the family function.

vglm-class 843

family: Object of class "vglmff". The family function.

iter: Object of class "numeric". The number of IRLS iterations used.

predictors: Object of class "matrix" with M columns which holds the M linear predictors.

assign: Object of class "list", from class "vlm". This named list gives information matching the
columns and the (LM) model matrix terms.

call: Object of class "call", from class "vlm". The matched call.

coefficients: Object of class "numeric", from class "vlm". A named vector of coefficients.

constraints: Object of class "list", from class "vlm". A named list of constraint matrices used
in the fitting.

contrasts: Object of class "list", from class "vlm". The contrasts used (if any).

control: Object of class "list", from class "vlm". A list of parameters for controlling the fitting
process. See vglm.control for details.

criterion: Object of class "list", from class "vlm". List of convergence criterion evaluated at
the final IRLS iteration.

df.residual: Object of class "numeric", from class "vlm". The residual degrees of freedom.

df.total: Object of class "numeric", from class "vlm". The total degrees of freedom.

dispersion: Object of class "numeric", from class "vlm". The scaling parameter.

effects: Object of class "numeric", from class "vlm". The effects.

fitted.values: Object of class "matrix", from class "vlm". The fitted values.

misc: Object of class "list", from class "vlm". A named list to hold miscellaneous parameters.

model: Object of class "data.frame", from class "vlm". The model frame.

na.action: Object of class "list", from class "vlm". A list holding information about missing
values.

offset: Object of class "matrix", from class "vlm". If non-zero, a M -column matrix of offsets.

post: Object of class "list", from class "vlm" where post-analysis results may be put.

preplot: Object of class "list", from class "vlm" used by plotvgam; the plotting parameters
may be put here.

prior.weights: Object of class "matrix", from class "vlm" holding the initially supplied weights.

qr: Object of class "list", from class "vlm". QR decomposition at the final iteration.

R: Object of class "matrix", from class "vlm". The R matrix in the QR decomposition used in the
fitting.

rank: Object of class "integer", from class "vlm". Numerical rank of the fitted model.

residuals: Object of class "matrix", from class "vlm". The working residuals at the final IRLS
iteration.

ResSS: Object of class "numeric", from class "vlm". Residual sum of squares at the final IRLS
iteration with the adjusted dependent vectors and weight matrices.

smart.prediction: Object of class "list", from class "vlm". A list of data-dependent parame-
ters (if any) that are used by smart prediction.

terms: Object of class "list", from class "vlm". The terms object used.

844 vglm-class

weights: Object of class "matrix", from class "vlm". The weight matrices at the final IRLS
iteration. This is in matrix-band form.

x: Object of class "matrix", from class "vlm". The model matrix (LM, not VGLM).

xlevels: Object of class "list", from class "vlm". The levels of the factors, if any, used in fitting.

y: Object of class "matrix", from class "vlm". The response, in matrix form.

Xm2: Object of class "matrix", from class "vlm". See vglm-class).

Ym2: Object of class "matrix", from class "vlm". See vglm-class).

callXm2: Object of class "call", from class "vlm". The matched call for argument form2.

Extends

Class "vlm", directly.

Methods

cdf signature(object = "vglm"): cumulative distribution function. Applicable to, e.g., quantile
regression and extreme value data models.

deplot signature(object = "vglm"): Applicable to, e.g., quantile regression.

deviance signature(object = "vglm"): deviance of the model (where applicable).

plot signature(x = "vglm"): diagnostic plots.

predict signature(object = "vglm"): extract the linear predictors or predict the linear predictors
at a new data frame.

print signature(x = "vglm"): short summary of the object.

qtplot signature(object = "vglm"): quantile plot (only applicable to some models).

resid signature(object = "vglm"): residuals. There are various types of these.

residuals signature(object = "vglm"): residuals. Shorthand for resid.

rlplot signature(object = "vglm"): return level plot. Useful for extreme value data models.

summary signature(object = "vglm"): a more detailed summary of the object.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

See Also

vglm, vglmff-class, vgam-class.

vglm.control 845

Examples

Multinomial logit model
pneumo <- transform(pneumo, let = log(exposure.time))
vglm(cbind(normal, mild, severe) ~ let, multinomial, data = pneumo)

vglm.control Control Function for vglm()

Description

Algorithmic constants and parameters for running vglm are set using this function.

Usage

vglm.control(checkwz = TRUE, Check.rank = TRUE, Check.cm.rank = TRUE,
criterion = names(.min.criterion.VGAM),
epsilon = 1e-07, half.stepsizing = TRUE,
maxit = 30, noWarning = FALSE,
stepsize = 1, save.weights = FALSE,
trace = FALSE, wzepsilon = .Machine$double.eps^0.75,
xij = NULL, ...)

Arguments

checkwz logical indicating whether the diagonal elements of the working weight matri-
ces should be checked whether they are sufficiently positive, i.e., greater than
wzepsilon. If not, any values less than wzepsilon are replaced with this value.

Check.rank logical indicating whether the rank of the VLM matrix should be checked. If
this is not of full column rank then the results are not to be trusted. The default
is to give an error message if the VLM matrix is not of full column rank.

Check.cm.rank logical indicating whether the rank of each constraint matrix should be checked.
If this is not of full column rank then an error will occur. Under no circumstances
should any constraint matrix have a rank less than the number of columns.

criterion character variable describing what criterion is to be used to test for convergence.
The possibilities are listed in .min.criterion.VGAM, but most family functions
only implement a few of these.

epsilon positive convergence tolerance epsilon. Roughly speaking, the Newton-Raphson/Fisher-
scoring iterations are assumed to have converged when two successive criterion
values are within epsilon of each other.

half.stepsizing

logical indicating if half-stepsizing is allowed. For example, in maximizing
a log-likelihood, if the next iteration has a log-likelihood that is less than the
current value of the log-likelihood, then a half step will be taken. If the log-
likelihood is still less than at the current position, a quarter-step will be taken etc.
Eventually a step will be taken so that an improvement is made to the conver-
gence criterion. half.stepsizing is ignored if criterion == "coefficients".

846 vglm.control

maxit maximum number of (usually Fisher-scoring) iterations allowed. Sometimes
Newton-Raphson is used.

noWarning logical indicating whether to suppress a warning if convergence is not obtained
within maxit iterations. This is ignored if maxit = 1 is set.

stepsize usual step size to be taken between each Newton-Raphson/Fisher-scoring itera-
tion. It should be a value between 0 and 1, where a value of unity corresponds
to an ordinary step. A value of 0.5 means half-steps are taken. Setting a value
near zero will cause convergence to be generally slow but may help increase the
chances of successful convergence for some family functions.

save.weights logical indicating whether the weights slot of a "vglm" object will be saved on
the object. If not, it will be reconstructed when needed, e.g., summary. Some
family functions have save.weights = TRUE and others have save.weights =
FALSE in their control functions.

trace logical indicating if output should be produced for each iteration. Setting trace
= TRUE is recommended in general because VGAM fits a very broad variety
of models and distributions, and for some of them, convergence is intrinsically
more difficult. Monitoring convergence can help check that the solution is rea-
sonable or that a problem has occurred. It may suggest better initial values are
needed, the making of invalid assumptions, or that the model is inappropriate
for the data, etc.

wzepsilon small positive number used to test whether the diagonals of the working weight
matrices are sufficiently positive.

xij A list of formulas. Each formula has a RHS giving M terms making up a
covariate-dependent term (whose name is the response). That is, it creates a
variable that takes on different values for each linear/additive predictor, e.g., the
ocular pressure of each eye. The M terms must be unique; use fill1, fill2,
fill3, etc. if necessary. Each formula should have a response which is taken
as the name of that variable, and the M terms are enumerated in sequential or-
der. Each of the M terms multiply each successive row of the constraint matrix.
When xij is used, the use of form2 is also required to give every term used by
the model.
A formula or a list of formulas.
The function Select can be used to select variables beginning with the same
character string.

... other parameters that may be picked up from control functions that are specific
to the VGAM family function.

Details

Most of the control parameters are used within vglm.fit and you will have to look at that to
understand the full details.

Setting save.weights = FALSE is useful for some models because the weights slot of the object is
the largest and so less memory is used to store the object. However, for some VGAM family func-
tion, it is necessary to set save.weights = TRUE because the weights slot cannot be reconstructed
later.

vglm.control 847

Value

A list with components matching the input names. A little error checking is done, but not much.
The list is assigned to the control slot of vglm objects.

Warning

For some applications the default convergence criterion should be tightened. Setting something like
criterion = "coef", epsilon = 1e-09 is one way to achieve this, and also add trace = TRUE to
monitor the convergence. Setting maxit to some higher number is usually not needed, and needing
to do so suggests something is wrong, e.g., an ill-conditioned model, over-fitting or under-fitting.

Note

Reiterating from above, setting trace = TRUE is recommended in general.

In Example 2 below there are two covariates that have linear/additive predictor specific values.
These are handled using the xij argument.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

vglm, fill1. The author’s homepage has further documentation about the xij argument; see also
Select.

Examples

Example 1.
pneumo <- transform(pneumo, let = log(exposure.time))
vglm(cbind(normal, mild, severe) ~ let, multinomial, data = pneumo,

crit = "coef", step = 0.5, trace = TRUE, epsil = 1e-8, maxit = 40)

Example 2. The use of the xij argument (simple case).
ymat <- rdiric(n <- 1000, shape = rep(exp(2), len = 4))
mydat <- data.frame(x1 = runif(n), x2 = runif(n), x3 = runif(n),

x4 = runif(n),
z1 = runif(n), z2 = runif(n), z3 = runif(n),
z4 = runif(n))

mydat <- transform(mydat, X = x1, Z = z1)
mydat <- round(mydat, digits = 2)
fit2 <- vglm(ymat ~ X + Z,

dirichlet(parallel = TRUE), data = mydat, trace = TRUE,
xij = list(Z ~ z1 + z2 + z3 + z4,

848 vglm.control

X ~ x1 + x2 + x3 + x4),
form2 = ~ Z + z1 + z2 + z3 + z4 +

X + x1 + x2 + x3 + x4)
head(model.matrix(fit2, type = "lm")) # LM model matrix
head(model.matrix(fit2, type = "vlm")) # Big VLM model matrix
coef(fit2)
coef(fit2, matrix = TRUE)
max(abs(predict(fit2)-predict(fit2, new = mydat))) # Predicts correctly
summary(fit2)
Not run:
plotvgam(fit2, se = TRUE, xlab = "x1", which.term = 1) # Bug!
plotvgam(fit2, se = TRUE, xlab = "z1", which.term = 2) # Bug!
plotvgam(fit2, xlab = "x1") # Correct
plotvgam(fit2, xlab = "z1") # Correct

End(Not run)

Example 3. The use of the xij argument (complex case).
set.seed(123)
coalminers <- transform(coalminers,

Age = (age - 42) / 5,
dum1 = round(runif(nrow(coalminers)), digits = 2),
dum2 = round(runif(nrow(coalminers)), digits = 2),
dum3 = round(runif(nrow(coalminers)), digits = 2),
dumm = round(runif(nrow(coalminers)), digits = 2))

BS <- function(x, ..., df = 3)
sm.bs(c(x,...), df = df)[1:length(x),,drop = FALSE]

NS <- function(x, ..., df = 3)
sm.ns(c(x,...), df = df)[1:length(x),,drop = FALSE]

Equivalently...
BS <- function(x, ..., df = 3)

head(sm.bs(c(x,...), df = df), length(x), drop = FALSE)
NS <- function(x, ..., df = 3)

head(sm.ns(c(x,...), df = df), length(x), drop = FALSE)

fit3 <- vglm(cbind(nBnW,nBW,BnW,BW) ~ Age + NS(dum1, dum2),
fam = binom2.or(exchangeable = TRUE, zero = 3),
xij = list(NS(dum1, dum2) ~ NS(dum1, dum2) +

NS(dum2, dum1) +
fill1(NS(dum1))),

form2 = ~ NS(dum1, dum2) + NS(dum2, dum1) + fill1(NS(dum1)) +
dum1 + dum2 + dum3 + Age + age + dumm,

data = coalminers, trace = TRUE)
head(model.matrix(fit3, type = "lm")) # LM model matrix
head(model.matrix(fit3, type = "vlm")) # Big VLM model matrix
coef(fit3)
coef(fit3, matrix = TRUE)
Not run:
plotvgam(fit3, se = TRUE, lcol = "red", scol = "blue", xlab = "dum1")

End(Not run)

vglmff-class 849

vglmff-class Class “vglmff”

Description

Family functions for the VGAM package

Objects from the Class

Objects can be created by calls of the form new("vglmff", ...).

Slots

In the following, M is the number of linear/additive predictors.

blurb: Object of class "character" giving a small description of the model. Important arguments
such as parameter link functions can be expressed here.

charfun: Object of class "function" which returns the characteristic function or variance func-
tion (usually for some GLMs only). The former uses a dummy variable x. Both use the lin-
ear/additive predictors. The function must have arguments function(x, eta, extra = NULL,
varfun = FALSE). The eta and extra arguments are used to obtain the parameter values. If
varfun = TRUE then the function returns the variance function, else the characteristic function
(default). Note that one should check that the infos slot has a list component called charfun
which is TRUE before attempting to use this slot. This is an easier way to test that this slot is
operable.

constraints: Object of class "expression" which sets up any constraint matrices defined by
arguments in the family function. A zero argument is always fed into cm.zero.vgam, whereas
other constraints are fed into cm.vgam.

deviance: Object of class "function" returning the deviance of the model. This slot is optional.
If present, the function must have arguments function(mu, y, w, residuals = FALSE, eta,
extra = NULL). Deviance residuals are returned if residuals = TRUE.

rqresslot: Object of class "function" returning the randomized quantile residuals of the disti-
bution. This slot is optional. If present, the function must have arguments function(mu, y,
w, eta, extra = NULL).

fini: Object of class "expression" to insert code at a special position in vglm.fit or vgam.fit.
This code is evaluated immediately after the fitting.

first: Object of class "expression" to insert code at a special position in vglm or vgam.

infos: Object of class "function" which returns a list with components such as M1. At present
only a very few VGAM family functions have this feature implemented. Those that do do not
require specifying the M1 argument when used with rcim.

initialize: Object of class "expression" used to perform error checking (especially for the
variable y) and obtain starting values for the model. In general, etastart or mustart are
assigned values based on the variables y, x and w.

linkinv: Object of class "function" which returns the fitted values, given the linear/additive
predictors. The function must have arguments function(eta, extra = NULL).

850 vglmff-class

last: Object of class "expression" to insert code at a special position (at the very end) of
vglm.fit() or vgam.fit(). This code is evaluated after the fitting. The list misc is often
assigned components in this slot, which becomes the misc slot on the fitted object.

linkfun: Object of class "function" which, given the fitted values, returns the linear/additive
predictors. If present, the function must have arguments function(mu, extra = NULL). Most
VGAM family functions do not have a linkfun function. They largely are for classical expo-
nential families, i.e., GLMs.

loglikelihood: Object of class "function" returning the log-likelihood of the model. This slot
is optional. If present, the function must have arguments function(mu, y, w, residuals =
FALSE, eta, extra = NULL). The argument residuals can be ignored because log-likelihood
residuals aren’t defined.

middle: Object of class "expression" to insert code at a special position in vglm.fit or vgam.fit.

middle2: Object of class "expression" to insert code at a special position in vglm.fit or vgam.fit.

simslot: Object of class "function" to allow simulate to work.

hadof: Object of class "function"; experimental.

summary.dispersion: Object of class "logical" indicating whether the general VGLM formula
(based on a residual sum of squares) can be used for computing the scaling/dispersion param-
eter. It is TRUE for most models except for nonlinear regression models.

vfamily: Object of class "character" giving class information about the family function. Al-
though not developed at this stage, more flexible classes are planned in the future. For exam-
ple, family functions sratio, cratio, cumulative, and acat all operate on categorical data,
therefore will have a special class called "VGAMcat", say. Then if fit was a vglm object, then
coef(fit) would print out the vglm coefficients plus "VGAMcat" information as well.

deriv: Object of class "expression" which returns a M -column matrix of first derivatives of the
log-likelihood function with respect to the linear/additive predictors, i.e., the score vector. In
Yee and Wild (1996) this is the di vector. Thus each row of the matrix returned by this slot is
such a vector.

weight: Object of class "expression" which returns the second derivatives of the log-likelihood
function with respect to the linear/additive predictors. This can be either the observed or
expected information matrix, i.e., Newton-Raphson or Fisher-scoring respectively. In Yee and
Wild (1996) this is the Wi matrix. Thus each row of the matrix returned by this slot is such a
matrix. Like the weights slot of vglm/vgam, it is stored in matrix-band form, whereby the first
M columns of the matrix are the diagonals, followed by the upper-diagonal band, followed
by the band above that, etc. In this case, there can be up to M(M + 1) columns, with the last
column corresponding to the (1,M) elements of the weight matrices.

validfitted, validparams: Functions that test that the fitted values and all parameters are within
range. These functions can issue a warning if violations are detected.

Methods

print signature(x = "vglmff"): short summary of the family function.

Warning

VGAM family functions are not compatible with glm, nor gam() (from either gam or mgcv).

vonmises 851

Note

With link functions etc., one must use substitute to embed the options into the code. There are
two different forms: eval(substitute(expression({...}), list(...))) for expressions, and
eval(substitute(function(...) { ... }, list(...))) for functions.

The extra argument in linkinv, linkfun, deviance, loglikelihood, etc. matches with the
argument extra in vglm, vgam and rrvglm. This allows input to be fed into all slots of a VGAM
family function.

The expression derivative is evaluated immediately prior to weight, so there is provision for re-
use of variables etc. Programmers must be careful to choose variable names that do not interfere
with vglm.fit, vgam.fit() etc.

Programmers of VGAM family functions are encouraged to keep to previous conventions regarding
the naming of arguments, e.g., link is the argument for parameter link functions, zero for allowing
some of the linear/additive predictors to be an intercept term only, etc.

In general, Fisher-scoring is recommended over Newton-Raphson where tractable. Although usu-
ally slightly slower in convergence, the weight matrices from using the expected information are
positive-definite over a larger parameter space.

Author(s)

Thomas W. Yee

References

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

See Also

vglm, vgam, rrvglm, rcim.

Examples

cratio()
cratio(link = "clogloglink")
cratio(link = "clogloglink", reverse = TRUE)

vonmises von Mises Distribution Family Function

Description

Estimates the location and scale parameters of the von Mises distribution by maximum likelihood
estimation.

852 vonmises

Usage

vonmises(llocation = extlogitlink(min = 0, max = 2*pi),
lscale = "loglink", ilocation = NULL, iscale = NULL,
imethod = 1, zero = NULL)

Arguments

llocation, lscale

Parameter link functions applied to the location a parameter and scale parameter
k, respectively. See Links for more choices. For k, a log link is the default
because the parameter is positive.

ilocation Initial value for the location a parameter. By default, an initial value is cho-
sen internally using imethod. Assigning a value will override the argument
imethod.

iscale Initial value for the scale k parameter. By default, an initial value is chosen in-
ternally using imethod. Assigning a value will override the argument imethod.

imethod An integer with value 1 or 2 which specifies the initialization method. If failure
to converge occurs try the other value, or else specify a value for ilocation and
iscale.

zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The default is none of them. If used, one can choose
one value from the set {1,2}. See CommonVGAMffArguments for more informa-
tion.

Details

The (two-parameter) von Mises is the most commonly used distribution in practice for circular data.
It has a density that can be written as

f(y; a, k) =
exp[k cos(y − a)]

2πI0(k)

where 0 ≤ y < 2π, k > 0 is the scale parameter, a is the location parameter, and I0(k) is the
modified Bessel function of order 0 evaluated at k. The mean of Y (which is the fitted value) is a
and the circular variance is 1− I1(k)/I0(k) where I1(k) is the modified Bessel function of order 1.
By default, η1 = log(a/(2π − a)) and η2 = log(k) for this family function.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

Numerically, the von Mises can be difficult to fit because of a log-likelihood having multiple maxi-
mums. The user is therefore encouraged to try different starting values, i.e., make use of ilocation
and iscale.

vplot.profile 853

Note

The response and the fitted values are scaled so that 0 ≤ y < 2π. The linear/additive predictors are
left alone. Fisher scoring is used.

Author(s)

T. W. Yee

References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ,
USA: John Wiley and Sons, Fourth edition.

See Also

Bessel, cardioid.

CircStats and circular currently have a lot more R functions for circular data than the VGAM
package.

Examples

vdata <- data.frame(x2 = runif(nn <- 1000))
vdata <- transform(vdata,

y = rnorm(nn, 2+x2, exp(0.2))) # Bad data!!
fit <- vglm(y ~ x2, vonmises(zero = 2), vdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
with(vdata, range(y)) # Original data
range(depvar(fit)) # Processed data is in [0,2*pi)

vplot.profile Plotting Functions for ’profile’ Objects

Description

plot and pairs methods for objects of class "profile", but renamed as vplot and vpairs.

Usage

vplot.profile(x, ...)
vpairs.profile(x, colours = 2:3, ...)

Arguments

x an object inheriting from class "profile".

colours Colours to be used for the mean curves conditional on x and y respectively.

... arguments passed to or from other methods.

854 vsmooth.spline

Details

See profile.glm for details.

Author(s)

T. W. Yee adapted this function from profile.glm, written originally by D. M. Bates and W. N.
Venables. (For S in 1996.)

See Also

profilevglm, confintvglm, lrt.stat, profile.glm, profile.nls.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
fit1 <- vglm(cbind(normal, mild, severe) ~ let, acat,

trace = TRUE, data = pneumo)
pfit1 <- profile(fit1, trace = FALSE)
Not run:
vplot.profile(pfit1)
vpairs.profile(pfit1)

End(Not run)

vsmooth.spline Vector Cubic Smoothing Spline

Description

Fits a vector cubic smoothing spline.

Usage

vsmooth.spline(x, y, w = NULL, df = rep(5, M), spar = NULL,
i.constraint = diag(M),
x.constraint = diag(M),
constraints = list("(Intercepts)" = i.constraint,

x = x.constraint),
all.knots = FALSE, var.arg = FALSE, scale.w = TRUE,
nk = NULL, control.spar = list())

Arguments

x A vector, matrix or a list. If a list, the x component is used. If a matrix, the first
column is used. x may also be a complex vector, in which case the real part is
used, and the imaginary part is used for the response. In this help file, n is the
number of unique values of x.

vsmooth.spline 855

y A vector, matrix or a list. If a list, the y component is used. If a matrix, all but
the first column is used. In this help file, M is the number of columns of y if there
are no constraints on the functions.

w The weight matrices or the number of observations. If the weight matrices, then
this must be a n-row matrix with the elements in matrix-band form (see iam). If
a vector, then these are the number of observations. By default, w is the M by M
identity matrix, denoted by matrix(1, n, M).

df Numerical vector containing the degrees of freedom for each component func-
tion (smooth). If necessary, the vector is recycled to have length equal to the
number of component functions to be estimated (M if there are no constraints),
which equals the number of columns of the x-constraint matrix. A value of 2
means a linear fit, and each element of df should lie between 2 and n. The larger
the values of df the more wiggly the smooths.

spar Numerical vector containing the non-negative smoothing parameters for each
component function (smooth). If necessary, the vector is recycled to have length
equal to the number of component functions to be estimated (M if there are no
constraints), which equals the number of columns of the x-constraint matrix. A
value of zero means the smooth goes through the data and hence is wiggly. A
value of Inf may be assigned, meaning the smooth will be linear. By default,
the NULL value of spar means df is used to determine the smoothing parameters.

all.knots Logical. If TRUE then each distinct value of x will be a knot. By default, only
a subset of the unique values of x are used; typically, the number of knots is
O(n^0.25) for n large, but if n <= 40 then all the unique values of x are used.

i.constraint A M-row constraint matrix for the intercepts. It must be of full column rank.
By default, the constraint matrix for the intercepts is the M by M identity matrix,
meaning no constraints.

x.constraint A M-row constraint matrix for x. It must be of full column rank. By default,
the constraint matrix for the intercepts is the M by M identity matrix, meaning no
constraints.

constraints An alternative to specifying i.constraint and x.constraint, this is a list with
two components corresponding to the intercept and x respectively. They must
both be a M-row constraint matrix with full column rank.

var.arg Logical: return the pointwise variances of the fit? Currently, this corresponds
only to the nonlinear part of the fit, and may be wrong.

scale.w Logical. By default, the weights w are scaled so that the diagonal elements have
mean 1.

nk Number of knots. If used, this argument overrides all.knots, and must lie
between 6 and n+2 inclusive.

control.spar See smooth.spline.

Details

The algorithm implemented is detailed in Yee (2000). It involves decomposing the component
functions into a linear and nonlinear part, and using B-splines. The cost of the computation is O(n
M^3).

The argument spar contains scaled smoothing parameters.

856 vsmooth.spline

Value

An object of class "vsmooth.spline" (see vsmooth.spline-class).

WARNING

See vgam for information about an important bug.

Note

This function is quite similar to smooth.spline but offers less functionality. For example, cross
validation is not implemented here. For M = 1, the results will be generally different, mainly due to
the different way the knots are selected.

The vector cubic smoothing spline which s() represents is computationally demanding for large
M . The cost is approximately O(nM3) where n is the number of unique abscissae.

Yet to be done: return the unscaled smoothing parameters.

Author(s)

Thomas W. Yee

References

Yee, T. W. (2000). Vector Splines and Other Vector Smoothers. Pages 529–534. In: Bethlehem,
J. G. and van der Heijde, P. G. M. Proceedings in Computational Statistics COMPSTAT 2000.
Heidelberg: Physica-Verlag.

See Also

vsmooth.spline-class, plot.vsmooth.spline, predict.vsmooth.spline, iam, sm.os, s, smooth.spline.

Examples

nn <- 20; x <- 2 + 5*(nn:1)/nn
x[2:4] <- x[5:7] # Allow duplication
y1 <- sin(x) + rnorm(nn, sd = 0.13)
y2 <- cos(x) + rnorm(nn, sd = 0.13)
y3 <- 1 + sin(x) + rnorm(nn, sd = 0.13) # For constraints
y <- cbind(y1, y2, y3)
ww <- cbind(rep(3, nn), 4, (1:nn)/nn)

(fit <- vsmooth.spline(x, y, w = ww, df = 5))
Not run:
plot(fit) # The 1st & 3rd functions dont differ by a constant

End(Not run)

mat <- matrix(c(1,0,1, 0,1,0), 3, 2)
(fit2 <- vsmooth.spline(x, y, w = ww, df = 5, i.constr = mat,

x.constr = mat))
The 1st and 3rd functions do differ by a constant:

waitakere 857

mycols <- c("orange", "blue", "orange")
Not run: plot(fit2, lcol = mycols, pcol = mycols, las = 1)

p <- predict(fit, x = model.matrix(fit, type = "lm"), deriv = 0)
max(abs(depvar(fit) - with(p, y))) # Should be 0

par(mfrow = c(3, 1))
ux <- seq(1, 8, len = 100)
for (dd in 1:3) {

pp <- predict(fit, x = ux, deriv = dd)
Not run:
with(pp, matplot(x, y, type = "l", main = paste("deriv =", dd),

lwd = 2, ylab = "", cex.axis = 1.5,
cex.lab = 1.5, cex.main = 1.5))

End(Not run)
}

waitakere Waitakere Ranges Data

Description

The waitakere data frame has 579 rows and 18 columns. Altitude is explanatory, and there are
binary responses (presence/absence = 1/0 respectively) for 17 plant species.

Usage

data(waitakere)

Format

This data frame contains the following columns:

agaaus Agathis australis, or Kauri

beitaw Beilschmiedia tawa, or Tawa

corlae Corynocarpus laevigatus

cyadea Cyathea dealbata

cyamed Cyathea medullaris

daccup Dacrydium cupressinum

dacdac Dacrycarpus dacrydioides

eladen Elaecarpus dentatus

hedarb Hedycarya arborea

hohpop Species name unknown

kniexc Knightia excelsa, or Rewarewa

kuneri Kunzea ericoides

858 wald.stat

lepsco Leptospermum scoparium

metrob Metrosideros robusta

neslan Nestegis lanceolata

rhosap Rhopalostylis sapida

vitluc Vitex lucens, or Puriri

altitude meters above sea level

Details

These were collected from the Waitakere Ranges, a small forest in northern Auckland, New Zealand.
At 579 sites in the forest, the presence/absence of 17 plant species was recorded, as well as the alti-
tude. Each site was of area size 200m2.

Source

Dr Neil Mitchell, University of Auckland.

See Also

hunua.

Examples

fit <- vgam(agaaus ~ s(altitude, df = 2), binomialff, waitakere)
head(predict(fit, waitakere, type = "response"))
Not run: plot(fit, se = TRUE, lcol = "orange", scol = "blue")

wald.stat Wald Test Statistics Evaluated at the Null Values

Description

Generic function that computes Wald test statistics evaluated at the null values (consequently they
do not suffer from the Hauck-Donner effect).

Usage

wald.stat(object, ...)
wald.stat.vlm(object, values0 = 0, subset = NULL, omit1s = TRUE,

all.out = FALSE, orig.SE = FALSE, iterate.SE = TRUE,
trace = FALSE, ...)

wald.stat 859

Arguments

object A vglm fit.
values0 Numeric vector. The null values corresponding to the null hypotheses. Recycled

if necessary.
subset Same as in hdeff.
omit1s Logical. Does one omit the intercepts? Because the default would be to test that

each intercept is equal to 0, which often does not make sense or is unimportant,
the intercepts are not tested by default. If they are tested then each linear pre-
dictor must have at least one coefficient (from another variable) to be estimated.

all.out Logical. If TRUE then a list is returned containing various quantities such as the
SEs, instead of just the Wald statistics.

orig.SE Logical. If TRUE then the standard errors are computed at the MLE (of the
original object). In practice, the (usual or unmodified) Wald statistics etc. are
extracted from summary(object) because it was computed there. These may
suffer from the HDE since all the SEs are evaluated at the MLE of the original
object. If TRUE then argument iterate.SE may be ignored or overwritten. If
orig.SE = FALSE then the kth SE uses the kth value of values0 in its computa-
tion and iterate.SE specifies the choice of the other coefficients.
This argument was previously called as.summary because if TRUE then the Wald
statistics are the same as summary(glm()).
For one-parameter models setting orig.SE = FALSE results in what is called the
null Wald (NW) statistic by some people, e.g., Laskar and King (1997) and Goh
and King (1999). The NW statistic does not suffer from the HDE.

iterate.SE Logical, for the standard error computations. If TRUE then IRLS iterations are
performed to get MLEs of the other regression coefficients, subject to one co-
efficient being equal to the appropriate values0 value. If FALSE then the other
regression coefficients have values obtained at the original fit. It is recommended
that a TRUE be used as the answer tends to be more accurate. If the large (VLM)
model matrix only has one column and iterate.SE = TRUE then an error will
occur because there are no other regression coefficients to estimate.

trace Logical. If TRUE then some output is produced as the IRLS iterations pro-
ceed. The value NULL means to use the trace value of the fitted object; see
vglm.control.

... Ignored for now.

Details

By default, summaryvglm and most regression modelling functions such as summary.glm compute
all the standard errors (SEs) of the estimates at the MLE and not at 0. This corresponds to orig.SE =
TRUE and it is vulnerable to the Hauck-Donner effect (HDE; see hdeff). One solution is to compute
the SEs at 0 (or more generally, at the values of the argument values0). This function does that.
The two variants of Wald statistics are asymptotically equivalent; however in small samples there
can be an appreciable difference, and the difference can be large if the estimates are near to the
boundary of the parameter space.

None of the tests here are joint, hence the degrees of freedom is always unity. For a factor with
more than 2 levels one can use anova.vglm to test for the significance of the factor. If orig.SE =

860 wald.stat

FALSE and iterate.SE = FALSE then one retains the MLEs of the original fit for the values of the
other coefficients, and replaces one coefficient at a time by the value 0 (or whatever specified by
values0). One alternative would be to recompute the MLEs of the other coefficients after replacing
one of the values; this is the default because iterate.SE = TRUE and orig.SE = FALSE. Just like
with the original IRLS iterations, the iterations here are not guaranteed to converge.

Almost all VGAM family functions use the EIM and not the OIM; this affects the resulting standard
errors. Also, regularity conditions are assumed for the Wald, likelihood ratio and score tests; some
VGAM family functions such as alaplace1 are experimental and do not satisfy such conditions,
therefore naive inference is hazardous.

The default output of this function can be seen by setting wald0.arg = TRUE in summaryvglm.

Value

By default the signed square root of the Wald statistics whose SEs are computed at one each of the
null values. If all.out = TRUE then a list is returned with the following components: wald.stat the
Wald statistic, SE0 the standard error of that coefficient, values0 the null values. Approximately,
the default Wald statistics output are standard normal random variates if each null hypothesis is
true.

Altogether, by the four combinations of iterate.SE and orig.SE, there are three different variants
of the Wald statistic that can be returned.

Warning

This function has been tested but not thoroughly. Convergence failure is possible for some models
applied to certain data sets; it is a good idea to set trace = TRUE to monitor convergence. For
example, for a particular explanatory variable, the estimated regression coefficients of a non-parallel
cumulative logit model (see cumulative) are ordered, and perturbing one coefficient might disrupt
the order and create numerical problems.

Author(s)

Thomas W. Yee

References

Laskar, M. R. and M. L. King (1997). Modified Wald test for regression disturbances. Economics
Letters, 56, 5–11.

Goh, K.-L. and M. L. King (1999). A correction for local biasedness of the Wald and null Wald
tests. Oxford Bulletin of Economics and Statistics 61, 435–450.

See Also

lrt.stat, score.stat, summaryvglm, summary.glm, anova.vglm, vglm, hdeff, hdeffsev.

Examples

set.seed(1)
pneumo <- transform(pneumo, let = log(exposure.time),

x3 = rnorm(nrow(pneumo)))

waldff 861

(fit <- vglm(cbind(normal, mild, severe) ~ let + x3, propodds, pneumo))
wald.stat(fit) # No HDE here
summary(fit, wald0 = TRUE) # See them here
coef(summary(fit)) # Usual Wald statistics evaluated at the MLE
wald.stat(fit, orig.SE = TRUE) # Same as previous line

waldff Wald Distribution Family Function

Description

Estimates the parameter of the standard Wald distribution by maximum likelihood estimation.

Usage

waldff(llambda = "loglink", ilambda = NULL)

Arguments

llambda,ilambda

See CommonVGAMffArguments for information.

Details

The standard Wald distribution is a special case of the inverse Gaussian distribution with µ = 1. It
has a density that can be written as

f(y;λ) =
√
λ/(2πy3) exp

(
−λ(y − 1)2/(2y)

)
where y > 0 and λ > 0. The mean of Y is 1 (returned as the fitted values) and its variance is 1/λ.
By default, η = log(λ).

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The VGAM family function inv.gaussianff estimates the location parameter µ too.

Author(s)

T. W. Yee

References

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd
edition, Volume 1, New York: Wiley.

862 weibull.mean

See Also

inv.gaussianff, rinv.gaussian.

Examples

wdata <- data.frame(y = rinv.gaussian(1000, mu = 1, exp(1)))
wfit <- vglm(y ~ 1, waldff(ilambda = 0.2), wdata, trace = TRUE)
coef(wfit, matrix = TRUE)
Coef(wfit)
summary(wfit)

weibull.mean Weibull Distribution Family Function, Parameterized by the Mean

Description

Maximum likelihood estimation of the 2-parameter Weibull distribution. The mean is one of the
parameters. No observations should be censored.

Usage

weibull.mean(lmean = "loglink", lshape = "loglink",
imean = NULL, ishape = NULL,
probs.y = c(0.2, 0.5, 0.8), imethod = 1,
zero = "shape")

Arguments

lmean, lshape Parameter link functions applied to the (positive) mean parameter (called mu
below) and (positive) shape parameter (called a below). See Links for more
choices.

imean, ishape Optional initial values for the mean and shape parameters.
imethod, zero, probs.y

Details at CommonVGAMffArguments.

Details

See weibullR for most of the details for this family function too. The mean of Y is bΓ(1 + 1/a)
(returned as the fitted values), and this is the first parameter (a loglink link is the default because
it is positive). The other parameter is the positive shape paramter a, also having a default loglink
link.

This VGAM family function currently does not handle censored data. Fisher scoring is used to
estimate the two parameters. Although the expected information matrices used here are valid in
all regions of the parameter space, the regularity conditions for maximum likelihood estimation are
satisfied only if a > 2 (according to Kleiber and Kotz (2003)). If this is violated then a warning
message is issued. One can enforce a > 2 by choosing lshape = logofflink(offset = -2).
Common values of the shape parameter lie between 0.5 and 3.5.

weibullR 863

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

See weibullR for more details. This VGAM family function handles multiple responses.

Author(s)

T. W. Yee

See Also

weibullR, dweibull, truncweibull, gev, lognormal, expexpff, maxwell, rayleigh, gumbelII.

Examples

wdata <- data.frame(x2 = runif(nn <- 1000)) # Complete data
wdata <- transform(wdata, mu = exp(-1 + 1 * x2),

x3 = rnorm(nn),
shape1 = exp(1),
shape2 = exp(2))

wdata <- transform(wdata,
y1 = rweibull(nn, shape1, scale = mu / gamma(1 + 1/shape1)),
y2 = rweibull(nn, shape2, scale = mu / gamma(1 + 1/shape2)))

fit <- vglm(cbind(y1, y2) ~ x2 + x3, weibull.mean, wdata,
trace = TRUE)

coef(fit, matrix = TRUE)
sqrt(diag(vcov(fit))) # SEs
summary(fit, presid = FALSE)

weibullR Weibull Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter Weibull distribution. No observations should
be censored.

Usage

weibullR(lscale = "loglink", lshape = "loglink",
iscale = NULL, ishape = NULL, lss = TRUE, nrfs = 1,
probs.y = c(0.2, 0.5, 0.8), imethod = 1, zero = "shape")

864 weibullR

Arguments

lshape, lscale Parameter link functions applied to the (positive) shape parameter (called a
below) and (positive) scale parameter (called b below). See Links for more
choices.

ishape, iscale Optional initial values for the shape and scale parameters.

nrfs Currently this argument is ignored. Numeric, of length one, with value in [0, 1].
Weighting factor between Newton-Raphson and Fisher scoring. The value 0
means pure Newton-Raphson, while 1 means pure Fisher scoring. The default
value uses a mixture of the two algorithms, and retaining positive-definite work-
ing weights.

imethod Initialization method used if there are censored observations. Currently only the
values 1 and 2 are allowed.

zero, probs.y, lss

Details at CommonVGAMffArguments.

Details

The Weibull density for a response Y is

f(y; a, b) = aya−1 exp[−(y/b)a]/(ba)

for a > 0, b > 0, y > 0. The cumulative distribution function is

F (y; a, b) = 1− exp[−(y/b)a].

The mean of Y is bΓ(1 + 1/a) (returned as the fitted values), and the mode is at b (1 − 1/a)1/a

when a > 1. The density is unbounded for a < 1. The kth moment about the origin is E(Y k) =
bk Γ(1 + k/a). The hazard function is ata−1/ba.

This VGAM family function currently does not handle censored data. Fisher scoring is used to
estimate the two parameters. Although the expected information matrices used here are valid in
all regions of the parameter space, the regularity conditions for maximum likelihood estimation are
satisfied only if a > 2 (according to Kleiber and Kotz (2003)). If this is violated then a warning
message is issued. One can enforce a > 2 by choosing lshape = logofflink(offset = -2).
Common values of the shape parameter lie between 0.5 and 3.5.

Summarized in Harper et al. (2011), for inference, there are 4 cases to consider. If a ≤ 1 then the
MLEs are not consistent (and the smallest observation becomes a hyperefficient solution for the lo-
cation parameter in the 3-parameter case). If 1 < a < 2 then MLEs exist but are not asymptotically
normal. If a = 2 then the MLEs exist and are normal and asymptotically efficient but with a slower
convergence rate than when a > 2. If a > 2 then MLEs have classical asymptotic properties.

The 3-parameter (location is the third parameter) Weibull can be estimated by maximizing a profile
log-likelihood (see, e.g., Harper et al. (2011) and Lawless (2003)), else try gev which is a better
parameterization.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

weibullR 865

Warning

This function is under development to handle other censoring situations. The version of this function
which will handle censored data will be called cenweibull(). It is currently being written and will
use SurvS4 as input. It should be released in later versions of VGAM.

If the shape parameter is less than two then misleading inference may result, e.g., in the summary
and vcov of the object.

Note

Successful convergence depends on having reasonably good initial values. If the initial values
chosen by this function are not good, make use the two initial value arguments.

This VGAM family function handles multiple responses.

The Weibull distribution is often an alternative to the lognormal distribution. The inverse Weibull
distribution, which is that of 1/Y where Y has a Weibull(a, b) distribution, is known as the log-
Gompertz distribution.

There are problems implementing the three-parameter Weibull distribution. These are because the
classical regularity conditions for the asymptotic properties of the MLEs are not satisfied because
the support of the distribution depends on one of the parameters.

Other related distributions are the Maxwell and Rayleigh distributions.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd
edition, Volume 1, New York: Wiley.

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2nd ed. Hoboken, NJ,
USA: John Wiley & Sons.

Rinne, Horst. (2009). The Weibull Distribution: A Handbook. Boca Raton, FL, USA: CRC Press.

Gupta, R. D. and Kundu, D. (2006). On the comparison of Fisher information of the Weibull and
GE distributions, Journal of Statistical Planning and Inference, 136, 3130–3144.

Harper, W. V. and Eschenbach, T. G. and James, T. R. (2011). Concerns about Maximum Likelihood
Estimation for the Three-Parameter Weibull Distribution: Case Study of Statistical Software, The
American Statistician, 65(1), 44–54.

Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases. Biometrika,
72, 67–90.

Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estima-
tors for the three-parameter Weibull distribution. Applied Statistics, 36, 358–369.

See Also

weibull.mean, dweibull, truncweibull, gev, lognormal, expexpff, maxwell, rayleigh, gumbelII.

866 weightsvglm

Examples

wdata <- data.frame(x2 = runif(nn <- 1000)) # Complete data
wdata <- transform(wdata,

y1 = rweibull(nn, exp(1), scale = exp(-2 + x2)),
y2 = rweibull(nn, exp(2), scale = exp(1 - x2)))

fit <- vglm(cbind(y1, y2) ~ x2, weibullR, wdata, trace = TRUE)
coef(fit, matrix = TRUE)
vcov(fit)
summary(fit)

weightsvglm Prior and Working Weights of a VGLM fit

Description

Returns either the prior weights or working weights of a VGLM object.

Usage

weightsvglm(object, type = c("prior", "working"),
matrix.arg = TRUE, ignore.slot = FALSE,
deriv.arg = FALSE, ...)

Arguments

object a model object from the VGAM R package that inherits from a vector general-
ized linear model (VGLM), e.g., a model of class "vglm".

type Character, which type of weight is to be returned? The default is the first one.
matrix.arg Logical, whether the answer is returned as a matrix. If not, it will be a vector.
ignore.slot Logical. If TRUE then object@weights is ignored even if it has been assigned,

and the long calculation for object@weights is repeated. This may give a
slightly different answer because of the final IRLS step at convergence may
or may not assign the latest value of quantities such as the mean and weights.

deriv.arg Logical. If TRUE then a list with components deriv and weights is returned.
See below for more details.

... Currently ignored.

Details

Prior weights are usually inputted with the weights argument in functions such as vglm and vgam.
It may refer to frequencies of the individual data or be weight matrices specified beforehand.
Working weights are used by the IRLS algorithm. They correspond to the second derivatives of the
log-likelihood function with respect to the linear predictors. The working weights correspond to
positive-definite weight matrices and are returned in matrix-band form, e.g., the first M columns
correspond to the diagonals, etc.
If one wants to perturb the linear predictors then the fitted.values slots should be assigned to the
object before calling this function. The reason is that, for some family functions, the variable mu is
used directly as one of the parameter estimates, without recomputing it from eta.

weightsvglm 867

Value

If type = "working" and deriv = TRUE then a list is returned with the two components described
below. Otherwise the prior or working weights are returned depending on the value of type.

deriv Typically the first derivative of the log-likelihood with respect to the linear pre-
dictors. For example, this is the variable deriv.mu in vglm.fit(), or equiva-
lently, the matrix returned in the "deriv" slot of a VGAM family function.

weights The working weights.

Note

This function is intended to be similar to weights.glm (see glm).

Author(s)

Thomas W. Yee

See Also

glm, vglmff-class, vglm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = TRUE, reverse = TRUE), pneumo))
depvar(fit) # These are sample proportions
weights(fit, type = "prior", matrix = FALSE) # No. of observations

Look at the working residuals
nn <- nrow(model.matrix(fit, type = "lm"))
M <- ncol(predict(fit))

wwt <- weights(fit, type="working", deriv=TRUE) # Matrix-band format
wz <- m2a(wwt$weights, M = M) # In array format
wzinv <- array(apply(wz, 3, solve), c(M, M, nn))
wresid <- matrix(NA, nn, M) # Working residuals
for (ii in 1:nn)

wresid[ii,] <- wzinv[, , ii, drop = TRUE] %*% wwt$deriv[ii,]
max(abs(c(resid(fit, type = "work")) - c(wresid))) # Should be 0

(zedd <- predict(fit) + wresid) # Adjusted dependent vector

868 wine

wine Bitterness in Wine Data

Description

This oenological data frame concerns the amount of bitterness in 78 bottles of white wine.

Usage

data(wine)

Format

A data frame with 4 rows on the following 7 variables.

temp temperature, with levels cold and warm.

contact whether contact of the juice with the skin was allowed or avoided, for a specified period.
Two levels: no or yes.

bitter1, bitter2, bitter3, bitter4, bitter5 numeric vectors, the counts. The order is none to most
intense.

Details

The data set comes from Randall (1989) and concerns a factorial experiment for investigating factors
that affect the bitterness of white wines. There are two factors in the experiment: temperature at
the time of crushing the grapes and contact of the juice with the skin. Two bottles of wine were
fermented for each of the treatment combinations. A panel of 9 judges were selected and trained
for the ability to detect bitterness. Thus there were 72 bottles in total. Originally, the bitterness of
the wine were taken on a continuous scale in the interval from 0 (none) to 100 (intense) but later
they were grouped using equal lengths into five ordered categories 1, 2, 3, 4 and 5.

Source

Christensen, R. H. B. (2013) Analysis of ordinal data with cumulative link models—estimation with
the R-package ordinal. R Package Version 2013.9-30. https://CRAN.R-project.org/package=
ordinal.

Randall, J. H. (1989). The analysis of sensory data by generalized linear model. Biometrical
Journal 31(7), 781–793.

Kosmidis, I. (2014). Improved estimation in cumulative link models. Journal of the Royal Statisti-
cal Society, Series B, Methodological, 76(1): 169–196.

Examples

wine
summary(wine)

https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=ordinal

wrapup.smart 869

wrapup.smart Cleans Up After Smart Prediction

Description

wrapup.smart deletes any variables used by smart prediction. Needed by both the modelling func-
tion and the prediction function.

Usage

wrapup.smart()

Details

The variables to be deleted are .smart.prediction, .smart.prediction.counter, and .smart.prediction.mode.
The function wrapup.smart is useful in R because these variables are held in smartpredenv.

See Also

setup.smart.

Examples

Not run: # Place this inside modelling functions such as lm, glm, vglm.
wrapup.smart() # Put at the end of lm

End(Not run)

yeo.johnson Yeo-Johnson Transformation

Description

Computes the Yeo-Johnson transformation, which is a normalizing transformation.

Usage

yeo.johnson(y, lambda, derivative = 0,
epsilon = sqrt(.Machine$double.eps), inverse = FALSE)

870 yeo.johnson

Arguments

y Numeric, a vector or matrix.

lambda Numeric. It is recycled to the same length as y if necessary.

derivative Non-negative integer. The default is the ordinary function evaluation, otherwise
the derivative with respect to lambda.

epsilon Numeric and positive value. The tolerance given to values of lambda when
comparing it to 0 or 2.

inverse Logical. Return the inverse transformation?

Details

The Yeo-Johnson transformation can be thought of as an extension of the Box-Cox transformation.
It handles both positive and negative values, whereas the Box-Cox transformation only handles
positive values. Both can be used to transform the data so as to improve normality. They can be
used to perform LMS quantile regression.

Value

The Yeo-Johnson transformation or its inverse, or its derivatives with respect to lambda, of y.

Note

If inverse = TRUE then the argument derivative = 0 is required.

Author(s)

Thomas W. Yee

References

Yeo, I.-K. and Johnson, R. A. (2000). A new family of power transformations to improve normality
or symmetry. Biometrika, 87, 954–959.

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine,
23, 2295–2315.

See Also

lms.yjn, boxcox.

Examples

y <- seq(-4, 4, len = (nn <- 200))
ltry <- c(0, 0.5, 1, 1.5, 2) # Try these values of lambda
lltry <- length(ltry)
psi <- matrix(as.numeric(NA), nn, lltry)
for (ii in 1:lltry)

psi[, ii] <- yeo.johnson(y, lambda = ltry[ii])

Not run:

Yules 871

matplot(y, psi, type = "l", ylim = c(-4, 4), lwd = 2,
lty = 1:lltry, col = 1:lltry, las = 1,
ylab = "Yeo-Johnson transformation",
main = "Yeo-Johnson transformation with some lambda values")

abline(v = 0, h = 0)
legend(x = 1, y = -0.5, lty = 1:lltry, legend = as.character(ltry),

lwd = 2, col = 1:lltry)
End(Not run)

Yules Yule-Simon Distribution

Description

Density, distribution function, quantile function and random generation for the Yule-Simon distri-
bution.

Usage

dyules(x, shape, log = FALSE)
pyules(q, shape, lower.tail = TRUE, log.p = FALSE)
qyules(p, shape)
ryules(n, shape)

Arguments

x, q, p, n Same meaning as in Normal.

shape See yulesimon.
log, lower.tail, log.p

Same meaning as in pnorm or qnorm.

Details

See yulesimon, the VGAM family function for estimating the parameter, for the formula of the
probability density function and other details.

Value

dyules gives the density, pyules gives the distribution function, qyules gives the quantile function,
and ryules generates random deviates.

Note

Numerical problems may occur with qyules() when p is very close to 1.

Author(s)

T. W. Yee

872 yulesimon

See Also

yulesimon.

Examples

dyules(1:20, 2.1)
ryules(20, 2.1)

round(1000 * dyules(1:8, 2))
table(ryules(1000, 2))

Not run: x <- 0:6
plot(x, dyules(x, shape = 2.2), type = "h", las = 1, col = "blue")

End(Not run)

yulesimon Yule-Simon Family Function

Description

Estimating the shape parameter of the Yule-Simon distribution.

Usage

yulesimon(lshape = "loglink", ishape = NULL, nsimEIM = 200,
zero = NULL)

Arguments

lshape Link function for the shape parameter, called ρ below. See Links for more
choices and for general information.

ishape Optional initial value for the (positive) parameter. See CommonVGAMffArguments
for more information. The default is to obtain an initial value internally. Use this
argument if the default fails.

nsimEIM, zero See CommonVGAMffArguments for more information.

Details

The probability function is
f(y; ρ) = ρ ∗ beta(y, ρ+ 1),

where the parameter ρ > 0, beta is the beta function, and y = 1, 2, The function dyules
computes this probability function. The mean of Y , which is returned as fitted values, is ρ/(ρ− 1)
provided ρ > 1. The variance of Y is ρ2/((ρ− 1)2(ρ− 2)) provided ρ > 2.

The distribution was named after Udny Yule and Herbert A. Simon. Simon originally called it the
Yule distribution. This family function can handle multiple responses.

Zabinom 873

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Author(s)

T. W. Yee

References

Simon, H. A. (1955). On a class of skew distribution functions. Biometrika, 42, 425–440.

See Also

ryules, simulate.vlm.

Examples

ydata <- data.frame(x2 = runif(nn <- 1000))
ydata <- transform(ydata, y = ryules(nn, shape = exp(1.5 - x2)))
with(ydata, table(y))
fit <- vglm(y ~ x2, yulesimon, data = ydata, trace = TRUE)
coef(fit, matrix = TRUE)
summary(fit)

Zabinom Zero-Altered Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the zero-altered bino-
mial distribution with parameter pobs0.

Usage

dzabinom(x, size, prob, pobs0 = 0, log = FALSE)
pzabinom(q, size, prob, pobs0 = 0)
qzabinom(p, size, prob, pobs0 = 0)
rzabinom(n, size, prob, pobs0 = 0)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1 then the length is taken to be the

number required.
size, prob, log Parameters from the ordinary binomial distribution (see dbinom).
pobs0 Probability of (an observed) zero, called pobs0. The default value of pobs0 = 0

corresponds to the response having a positive binomial distribution.

874 zabinomial

Details

The probability function of Y is 0 with probability pobs0, else a positive binomial(size, prob)
distribution.

Value

dzabinom gives the density and pzabinom gives the distribution function, qzabinom gives the quan-
tile function, and rzabinom generates random deviates.

Note

The argument pobs0 is recycled to the required length, and must have values which lie in the interval
[0, 1].

Author(s)

T. W. Yee

See Also

zibinomial, Gaitdbinom.

Examples

size <- 10; prob <- 0.15; pobs0 <- 0.05; x <- (-1):7
dzabinom(x, size = size, prob = prob, pobs0 = pobs0)
table(rzabinom(100, size = size, prob = prob, pobs0 = pobs0))

Not run: x <- 0:10
barplot(rbind(dzabinom(x, size = size, prob = prob, pobs0 = pobs0),

dbinom(x, size = size, prob = prob)),
beside = TRUE, col = c("blue", "orange"), cex.main = 0.7, las = 1,
ylab = "Probability", names.arg = as.character(x),
main = paste("ZAB(size = ", size, ", prob = ", prob, ", pobs0 = ", pobs0,

") [blue] vs", " Binom(size = ", size, ", prob = ", prob,
") [orange] densities", sep = ""))

End(Not run)

zabinomial Zero-Altered Binomial Distribution

Description

Fits a zero-altered binomial distribution based on a conditional model involving a Bernoulli distri-
bution and a positive-binomial distribution.

zabinomial 875

Usage

zabinomial(lpobs0 = "logitlink", lprob = "logitlink",
type.fitted = c("mean", "prob", "pobs0"),
ipobs0 = NULL, iprob = NULL, imethod = 1, zero = NULL)

zabinomialff(lprob = "logitlink", lonempobs0 = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "onempobs0"),
iprob = NULL, ionempobs0 = NULL, imethod = 1, zero = "onempobs0")

Arguments

lprob Parameter link function applied to the probability parameter of the binomial
distribution. See Links for more choices.

lpobs0 Link function for the parameter p0, called pobs0 here. See Links for more
choices.

type.fitted See CommonVGAMffArguments and fittedvlm for information.
iprob, ipobs0 See CommonVGAMffArguments.
lonempobs0, ionempobs0

Corresponding argument for the other parameterization. See details below.
imethod, zero See CommonVGAMffArguments.

Details

The response Y is zero with probability p0, else Y has a positive-binomial distribution with prob-
ability 1 − p0. Thus 0 < p0 < 1, which may be modelled as a function of the covariates. The
zero-altered binomial distribution differs from the zero-inflated binomial distribution in that the
former has zeros coming from one source, whereas the latter has zeros coming from the binomial
distribution too. The zero-inflated binomial distribution is implemented in zibinomial. Some
people call the zero-altered binomial a hurdle model.

The input is currently a vector or one-column matrix. By default, the two linear/additive predictors
for zabinomial() are (logit(p0), log(p))T .

The VGAM family function zabinomialff() has a few changes compared to zabinomial().
These are: (i) the order of the linear/additive predictors is switched so the binomial probability
comes first; (ii) argument onempobs0 is now 1 minus the probability of an observed 0, i.e., the
probability of the positive binomial distribution, i.e., onempobs0 is 1-pobs0; (iii) argument zero
has a new default so that the onempobs0 is intercept-only by default. Now zabinomialff() is
generally recommended over zabinomial(). Both functions implement Fisher scoring and neither
can handle multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

The fitted.values slot of the fitted object, which should be extracted by the generic function
fitted, returns the mean µ (default) which is given by

µ = (1− p0)µb/[1− (1− µb)N]

where µb is the usual binomial mean. If type.fitted = "pobs0" then p0 is returned.

876 Zageom

Note

The response should be a two-column matrix of counts, with first column giving the number of
successes.

Note this family function allows p0 to be modelled as functions of the covariates by having zero =
NULL. It is a conditional model, not a mixture model.

These family functions effectively combine posbinomial and binomialff into one family func-
tion.

Author(s)

T. W. Yee

See Also

dzabinom, zibinomial, posbinomial, spikeplot, binomialff, dbinom, CommonVGAMffArguments.

Examples

zdata <- data.frame(x2 = runif(nn <- 1000))
zdata <- transform(zdata, size = 10,

prob = logitlink(-2 + 3*x2, inverse = TRUE),
pobs0 = logitlink(-1 + 2*x2, inverse = TRUE))

zdata <- transform(zdata,
y1 = rzabinom(nn, size = size, prob = prob, pobs0 = pobs0))

with(zdata, table(y1))

zfit <- vglm(cbind(y1, size - y1) ~ x2, zabinomial(zero = NULL),
data = zdata, trace = TRUE)

coef(zfit, matrix = TRUE)
head(fitted(zfit))
head(predict(zfit))
summary(zfit)

Zageom Zero-Altered Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the zero-altered geo-
metric distribution with parameter pobs0.

Usage

dzageom(x, prob, pobs0 = 0, log = FALSE)
pzageom(q, prob, pobs0 = 0)
qzageom(p, prob, pobs0 = 0)
rzageom(n, prob, pobs0 = 0)

Zageom 877

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

prob, log Parameters from the ordinary geometric distribution (see dgeom).

pobs0 Probability of (an observed) zero, called pobs0. The default value of pobs0 = 0
corresponds to the response having a positive geometric distribution.

Details

The probability function of Y is 0 with probability pobs0, else a positive geometric(prob) distribu-
tion.

Value

dzageom gives the density and pzageom gives the distribution function, qzageom gives the quantile
function, and rzageom generates random deviates.

Note

The argument pobs0 is recycled to the required length, and must have values which lie in the interval
[0, 1].

Author(s)

T. W. Yee

See Also

zageometric, zigeometric, rposgeom.

Examples

prob <- 0.35; pobs0 <- 0.05; x <- (-1):7
dzageom(x, prob = prob, pobs0 = pobs0)
table(rzageom(100, prob = prob, pobs0 = pobs0))

Not run: x <- 0:10
barplot(rbind(dzageom(x, prob = prob, pobs0 = pobs0),

dgeom(x, prob = prob)), las = 1,
beside = TRUE, col = c("blue", "orange"), cex.main = 0.7,
ylab = "Probability", names.arg = as.character(x),
main = paste("ZAG(prob = ", prob, ", pobs0 = ", pobs0,

") [blue] vs", " Geometric(prob = ", prob,
") [orange] densities", sep = ""))

End(Not run)

878 zageometric

zageometric Zero-Altered Geometric Distribution

Description

Fits a zero-altered geometric distribution based on a conditional model involving a Bernoulli distri-
bution and a positive-geometric distribution.

Usage

zageometric(lpobs0 = "logitlink", lprob = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "onempobs0"),
imethod = 1, ipobs0 = NULL, iprob = NULL, zero = NULL)

zageometricff(lprob = "logitlink", lonempobs0 = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "onempobs0"),
imethod = 1, iprob = NULL, ionempobs0 = NULL, zero = "onempobs0")

Arguments

lpobs0 Link function for the parameter p0 or φ, called pobs0 or phi here. See Links
for more choices.

lprob Parameter link function applied to the probability of success, called prob or p.
See Links for more choices.

type.fitted See CommonVGAMffArguments and fittedvlm for information.

ipobs0, iprob Optional initial values for the parameters. If given, they must be in range. For
multi-column responses, these are recycled sideways.

lonempobs0, ionempobs0

Corresponding argument for the other parameterization. See details below.

zero, imethod See CommonVGAMffArguments.

Details

The response Y is zero with probability p0, or Y has a positive-geometric distribution with proba-
bility 1− p0. Thus 0 < p0 < 1, which is modelled as a function of the covariates. The zero-altered
geometric distribution differs from the zero-inflated geometric distribution in that the former has
zeros coming from one source, whereas the latter has zeros coming from the geometric distribution
too. The zero-inflated geometric distribution is implemented in the VGAM package. Some people
call the zero-altered geometric a hurdle model.

The input can be a matrix (multiple responses). By default, the two linear/additive predictors of
zageometric are (logit(φ), logit(p))T .

The VGAM family function zageometricff() has a few changes compared to zageometric().
These are: (i) the order of the linear/additive predictors is switched so the geometric probability
comes first; (ii) argument onempobs0 is now 1 minus the probability of an observed 0, i.e., the
probability of the positive geometric distribution, i.e., onempobs0 is 1-pobs0; (iii) argument zero

zageometric 879

has a new default so that the pobs0 is intercept-only by default. Now zageometricff() is gener-
ally recommended over zageometric(). Both functions implement Fisher scoring and can handle
multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

The fitted.values slot of the fitted object, which should be extracted by the generic function
fitted, returns the mean µ (default) which is given by

µ = (1− φ)/p.

If type.fitted = "pobs0" then p0 is returned.

Warning

Convergence for this VGAM family function seems to depend quite strongly on providing good
initial values.

Inference obtained from summary.vglm and summary.vgam may or may not be correct. In particu-
lar, the p-values, standard errors and degrees of freedom may need adjustment. Use simulation on
artificial data to check that these are reasonable.

Note

Note this family function allows p0 to be modelled as functions of the covariates. It is a conditional
model, not a mixture model.

This family function effectively combines binomialff and posgeometric() and geometric into
one family function. However, posgeometric() is not written because it is trivially related to
geometric.

Author(s)

T. W. Yee

See Also

dzageom, geometric, zigeometric, spikeplot, dgeom, CommonVGAMffArguments, simulate.vlm.

Examples

zdata <- data.frame(x2 = runif(nn <- 1000))
zdata <- transform(zdata, pobs0 = logitlink(-1 + 2*x2, inverse = TRUE),

prob = logitlink(-2 + 3*x2, inverse = TRUE))
zdata <- transform(zdata, y1 = rzageom(nn, prob = prob, pobs0 = pobs0),

y2 = rzageom(nn, prob = prob, pobs0 = pobs0))
with(zdata, table(y1))

fit <- vglm(cbind(y1, y2) ~ x2, zageometric, data = zdata, trace = TRUE)
coef(fit, matrix = TRUE)

880 Zanegbin

head(fitted(fit))
head(predict(fit))
summary(fit)

Zanegbin Zero-Altered Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the zero-altered negative
binomial distribution with parameter pobs0.

Usage

dzanegbin(x, size, munb, pobs0 = 0, log = FALSE)
pzanegbin(q, size, munb, pobs0 = 0)
qzanegbin(p, size, munb, pobs0 = 0)
rzanegbin(n, size, munb, pobs0 = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

size, munb, log Parameters from the ordinary negative binomial distribution (see dnbinom). Some
arguments have been renamed slightly.

pobs0 Probability of zero, called pobs0. The default value of pobs0 = 0 corresponds to
the response having a positive negative binomial distribution.

Details

The probability function of Y is 0 with probability pobs0, else a positive negative binomial(µnb,
size) distribution.

Value

dzanegbin gives the density and pzanegbin gives the distribution function, qzanegbin gives the
quantile function, and rzanegbin generates random deviates.

Note

The argument pobs0 is recycled to the required length, and must have values which lie in the interval
[0, 1].

Author(s)

T. W. Yee

zanegbinomial 881

See Also

Gaitdnbinom, zanegbinomial.

Examples

munb <- 3; size <- 4; pobs0 <- 0.3; x <- (-1):7
dzanegbin(x, munb = munb, size = size, pobs0 = pobs0)
table(rzanegbin(100, munb = munb, size = size, pobs0 = pobs0))

Not run: x <- 0:10
barplot(rbind(dzanegbin(x, munb = munb, size = size, pobs0 = pobs0),

dnbinom(x, mu = munb, size = size)),
beside = TRUE, col = c("blue", "green"), cex.main = 0.7,
ylab = "Probability", names.arg = as.character(x), las = 1,
main = paste0("ZANB(munb = ", munb, ", size = ", size,",

pobs0 = ", pobs0,
") [blue] vs", " NB(mu = ", munb, ", size = ", size,
") [green] densities"))

End(Not run)

zanegbinomial Zero-Altered Negative Binomial Distribution

Description

Fits a zero-altered negative binomial distribution based on a conditional model involving a binomial
distribution and a positive-negative binomial distribution.

Usage

zanegbinomial(zero = "size", type.fitted = c("mean", "munb", "pobs0"),
mds.min = 1e-3, nsimEIM = 500, cutoff.prob = 0.999,
eps.trig = 1e-7, max.support = 4000, max.chunk.MB = 30,
lpobs0 = "logitlink", lmunb = "loglink", lsize = "loglink",
imethod = 1, ipobs0 = NULL,
imunb = NULL, iprobs.y = NULL, gprobs.y = (0:9)/10,
isize = NULL, gsize.mux = exp(c(-30, -20, -15, -10, -6:3)))

zanegbinomialff(lmunb = "loglink", lsize = "loglink", lonempobs0 = "logitlink",
type.fitted = c("mean", "munb", "pobs0", "onempobs0"),
isize = NULL, ionempobs0 = NULL, zero = c("size",

"onempobs0"), mds.min = 1e-3, iprobs.y = NULL, gprobs.y = (0:9)/10,
cutoff.prob = 0.999, eps.trig = 1e-7, max.support = 4000,
max.chunk.MB = 30, gsize.mux = exp(c(-30, -20, -15, -10, -6:3)),
imethod = 1, imunb = NULL,
nsimEIM = 500)

882 zanegbinomial

Arguments

lpobs0 Link function for the parameter p0, called pobs0 here. See Links for more
choices.

lmunb Link function applied to the munb parameter, which is the mean µnb of an ordi-
nary negative binomial distribution. See Links for more choices.

lsize Parameter link function applied to the reciprocal of the dispersion parameter,
called k. That is, as k increases, the variance of the response decreases. See
Links for more choices.

type.fitted See CommonVGAMffArguments and fittedvlm for information.
lonempobs0, ionempobs0

Corresponding argument for the other parameterization. See details below.
ipobs0, imunb, isize

Optional initial values for p0 and munb and k. If given then it is okay to give
one value for each response/species by inputting a vector whose length is the
number of columns of the response matrix.

zero Specifies which of the three linear predictors are modelled as intercept-only.
All parameters can be modelled as a function of the explanatory variables by
setting zero = NULL (not recommended). A negative value means that the value
is recycled, e.g., setting −3 means all k are intercept-only for zanegbinomial.
See CommonVGAMffArguments for more information.

nsimEIM, imethod

See CommonVGAMffArguments.
iprobs.y, gsize.mux, gprobs.y

See negbinomial.
cutoff.prob, eps.trig

See negbinomial.
mds.min, max.support, max.chunk.MB

See negbinomial.

Details

The response Y is zero with probability p0, or Y has a positive-negative binomial distribution with
probability 1− p0. Thus 0 < p0 < 1, which is modelled as a function of the covariates. The zero-
altered negative binomial distribution differs from the zero-inflated negative binomial distribution
in that the former has zeros coming from one source, whereas the latter has zeros coming from the
negative binomial distribution too. The zero-inflated negative binomial distribution is implemented
in the VGAM package. Some people call the zero-altered negative binomial a hurdle model.

For one response/species, by default, the three linear/additive predictors for zanegbinomial() are
(logit(p0), log(µnb), log(k))T . This vector is recycled for multiple species.

The VGAM family function zanegbinomialff() has a few changes compared to zanegbinomial().
These are: (i) the order of the linear/additive predictors is switched so the negative binomial mean
comes first; (ii) argument onempobs0 is now 1 minus the probability of an observed 0, i.e., the
probability of the positive negative binomial distribution, i.e., onempobs0 is 1-pobs0; (iii) argument
zero has a new default so that the pobs0 is intercept-only by default. Now zanegbinomialff() is
generally recommended over zanegbinomial(). Both functions implement Fisher scoring and can
handle multiple responses.

zanegbinomial 883

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

The fitted.values slot of the fitted object, which should be extracted by the generic function
fitted, returns the mean µ (default) which is given by

µ = (1− p0)µnb/[1− (k/(k + µnb))
k].

If type.fitted = "pobs0" then p0 is returned.

Warning

This family function is fragile; it inherits the same difficulties as posnegbinomial. Convergence
for this VGAM family function seems to depend quite strongly on providing good initial values.

This VGAM family function is computationally expensive and usually runs slowly; setting trace
= TRUE is useful for monitoring convergence.

Inference obtained from summary.vglm and summary.vgam may or may not be correct. In particu-
lar, the p-values, standard errors and degrees of freedom may need adjustment. Use simulation on
artificial data to check that these are reasonable.

Note

Note this family function allows p0 to be modelled as functions of the covariates provided zero
is set correctly. It is a conditional model, not a mixture model. Simulated Fisher scoring is the
algorithm.

This family function effectively combines posnegbinomial and binomialff into one family func-
tion.

This family function can handle multiple responses, e.g., more than one species.

Author(s)

T. W. Yee

References

Welsh, A. H., Cunningham, R. B., Donnelly, C. F. and Lindenmayer, D. B. (1996). Modelling the
abundances of rare species: statistical models for counts with extra zeros. Ecological Modelling,
88, 297–308.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

See Also

gaitdnbinomial, posnegbinomial, Gaitdnbinom, negbinomial, binomialff, zinegbinomial,
zipoisson, spikeplot, dnbinom, CommonVGAMffArguments, simulate.vlm.

884 Zapois

Examples

Not run:
zdata <- data.frame(x2 = runif(nn <- 2000))
zdata <- transform(zdata, pobs0 = logitlink(-1 + 2*x2, inverse = TRUE))
zdata <- transform(zdata,

y1 = rzanegbin(nn, munb = exp(0+2*x2), size = exp(1), pobs0 = pobs0),
y2 = rzanegbin(nn, munb = exp(1+2*x2), size = exp(1), pobs0 = pobs0))

with(zdata, table(y1))
with(zdata, table(y2))

fit <- vglm(cbind(y1, y2) ~ x2, zanegbinomial, data = zdata, trace = TRUE)
coef(fit, matrix = TRUE)
head(fitted(fit))
head(predict(fit))

End(Not run)

Zapois Zero-Altered Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the zero-altered Poisson
distribution with parameter pobs0.

Usage

dzapois(x, lambda, pobs0 = 0, log = FALSE)
pzapois(q, lambda, pobs0 = 0)
qzapois(p, lambda, pobs0 = 0)
rzapois(n, lambda, pobs0 = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1 then the length is taken to be the
number required.

lambda Vector of positive means.

pobs0 Probability of zero, called pobs0. The default value of pobs0 = 0 corresponds to
the response having a positive Poisson distribution.

log Logical. Return the logarithm of the answer?

Details

The probability function of Y is 0 with probability pobs0, else a positive Poisson(λ).

zapoisson 885

Value

dzapois gives the density, pzapois gives the distribution function, qzapois gives the quantile
function, and rzapois generates random deviates.

Note

The argument pobs0 is recycled to the required length, and must have values which lie in the interval
[0, 1].

Author(s)

T. W. Yee

See Also

zapoisson, Gaitdpois, dzipois.

Examples

lambda <- 3; pobs0 <- 0.2; x <- (-1):7
(ii <- dzapois(x, lambda, pobs0))
max(abs(cumsum(ii) - pzapois(x, lambda, pobs0))) # Should be 0
table(rzapois(100, lambda, pobs0))
table(qzapois(runif(100), lambda, pobs0))
round(dzapois(0:10, lambda, pobs0) * 100) # Should be similar

Not run: x <- 0:10
barplot(rbind(dzapois(x, lambda, pobs0), dpois(x, lambda)),

beside = TRUE, col = c("blue", "green"), las = 1,
main = paste0("ZAP(", lambda, ", pobs0 = ", pobs0, ") [blue]",

"vs Poisson(", lambda, ") [green] densities"),
names.arg = as.character(x), ylab = "Probability")

End(Not run)

zapoisson Zero-Altered Poisson Distribution

Description

Fits a zero-altered Poisson distribution based on a conditional model involving a Bernoulli distribu-
tion and a positive-Poisson distribution.

Usage

zapoisson(lpobs0 = "logitlink", llambda = "loglink", type.fitted =
c("mean", "lambda", "pobs0", "onempobs0"), imethod = 1,
ipobs0 = NULL, ilambda = NULL, ishrinkage = 0.95, probs.y = 0.35,
zero = NULL)

886 zapoisson

zapoissonff(llambda = "loglink", lonempobs0 = "logitlink", type.fitted =
c("mean", "lambda", "pobs0", "onempobs0"), imethod = 1,
ilambda = NULL, ionempobs0 = NULL, ishrinkage = 0.95,
probs.y = 0.35, zero = "onempobs0")

Arguments

lpobs0 Link function for the parameter p0, called pobs0 here. See Links for more
choices.

llambda Link function for the usual λ parameter. See Links for more choices.

type.fitted See CommonVGAMffArguments and fittedvlm for information.

lonempobs0 Corresponding argument for the other parameterization. See details below.
imethod, ipobs0, ionempobs0, ilambda, ishrinkage

See CommonVGAMffArguments for information.

probs.y, zero See CommonVGAMffArguments for information.

Details

The response Y is zero with probability p0, else Y has a positive-Poisson(λ) distribution with
probability 1− p0. Thus 0 < p0 < 1, which is modelled as a function of the covariates. The zero-
altered Poisson distribution differs from the zero-inflated Poisson distribution in that the former has
zeros coming from one source, whereas the latter has zeros coming from the Poisson distribution
too. Some people call the zero-altered Poisson a hurdle model.

For one response/species, by default, the two linear/additive predictors for zapoisson() are (logit(p0), log(λ))T .

The VGAM family function zapoissonff() has a few changes compared to zapoisson(). These
are: (i) the order of the linear/additive predictors is switched so the Poisson mean comes first; (ii)
argument onempobs0 is now 1 minus the probability of an observed 0, i.e., the probability of the
positive Poisson distribution, i.e., onempobs0 is 1-pobs0; (iii) argument zero has a new default so
that the onempobs0 is intercept-only by default. Now zapoissonff() is generally recommended
over zapoisson(). Both functions implement Fisher scoring and can handle multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

The fitted.values slot of the fitted object, which should be extracted by the generic function
fitted, returns the mean µ (default) which is given by

µ = (1− p0)λ/[1− exp(−λ)].

If type.fitted = "pobs0" then p0 is returned.

Note

There are subtle differences between this family function and zipoisson and yip88. In particular,
zipoisson is a mixture model whereas zapoisson() and yip88 are conditional models.

Note this family function allows p0 to be modelled as functions of the covariates.

zapoisson 887

This family function effectively combines pospoisson and binomialff into one family function.
This family function can handle multiple responses, e.g., more than one species.

It is recommended that Gaitdpois be used, e.g., rgaitdpois(nn, lambda, pobs.mlm = pobs0,
a.mlm = 0) instead of rzapois(nn, lambda, pobs0 = pobs0).

Author(s)

T. W. Yee

References

Welsh, A. H., Cunningham, R. B., Donnelly, C. F. and Lindenmayer, D. B. (1996). Modelling the
abundances of rare species: statistical models for counts with extra zeros. Ecological Modelling,
88, 297–308.

Angers, J-F. and Biswas, A. (2003). A Bayesian analysis of zero-inflated generalized Poisson
model. Computational Statistics & Data Analysis, 42, 37–46.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

See Also

Gaitdpois, rzapois, zipoisson, gaitdpoisson, pospoisson, posnegbinomial, spikeplot,
binomialff, CommonVGAMffArguments, simulate.vlm.

Examples

zdata <- data.frame(x2 = runif(nn <- 1000))
zdata <- transform(zdata, pobs0 = logitlink(-1 + 1*x2, inverse = TRUE),

lambda = loglink(-0.5 + 2*x2, inverse = TRUE))
zdata <- transform(zdata, y = rgaitdpois(nn, lambda, pobs.mlm = pobs0,

a.mlm = 0))

with(zdata, table(y))
fit <- vglm(y ~ x2, zapoisson, data = zdata, trace = TRUE)
fit <- vglm(y ~ x2, zapoisson, data = zdata, trace = TRUE, crit = "coef")
head(fitted(fit))
head(predict(fit))
head(predict(fit, untransform = TRUE))
coef(fit, matrix = TRUE)
summary(fit)

Another example ------------------------------
Data from Angers and Biswas (2003)
abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, 0, 0, 1))
abdata <- subset(abdata, w > 0)
Abdata <- data.frame(yy = with(abdata, rep(y, w)))
fit3 <- vglm(yy ~ 1, zapoisson, data = Abdata, trace = TRUE, crit = "coef")
coef(fit3, matrix = TRUE)
Coef(fit3) # Estimate lambda (they get 0.6997 with SE 0.1520)
head(fitted(fit3), 1)
with(Abdata, mean(yy)) # Compare this with fitted(fit3)

888 zero

zero The zero Argument in VGAM Family Functions

Description

The zero argument allows users to conveniently model certain linear/additive predictors as intercept-
only.

Details

Often a certain parameter needs to be modelled simply while other parameters in the model may
be more complex, for example, the λ parameter in LMS-Box-Cox quantile regression should be
modelled more simply compared to its µ parameter. Another example is the ξ parameter in a GEV
distribution which is should be modelled simpler than its µ parameter. Using the zero argument
allows this to be fitted conveniently without having to input all the constraint matrices explicitly.

The zero argument can be assigned an integer vector from the set {1:M} where M is the number of
linear/additive predictors. Full details about constraint matrices can be found in the references. See
CommonVGAMffArguments for more information.

Value

Nothing is returned. It is simply a convenient argument for constraining certain linear/additive
predictors to be an intercept only.

Warning

The use of other arguments may conflict with the zero argument. For example, using constraints
to input constraint matrices may conflict with the zero argument. Another example is the argument
parallel. In general users should not assume any particular order of precedence when there is
potential conflict of definition. Currently no checking for consistency is made.

The argument zero may be renamed in the future to something better.

Side Effects

The argument creates the appropriate constraint matrices internally.

Note

In all VGAM family functions zero = NULL means none of the linear/additive predictors are mod-
elled as intercepts-only. Almost all VGAM family function have zero = NULL as the default, but
there are some exceptions, e.g., binom2.or.

Typing something like coef(fit, matrix = TRUE) is a useful way to ensure that the zero argument
has worked as expected.

Author(s)

T. W. Yee

Zeta 889

References

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal
Statistical Society, Series B, Methodological, 58, 481–493.

Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

See Also

CommonVGAMffArguments, constraints.

Examples

args(multinomial)
args(binom2.or)
args(gpd)

#LMS quantile regression example
fit <- vglm(BMI ~ sm.bs(age, df = 4), lms.bcg(zero = c(1, 3)),

data = bmi.nz, trace = TRUE)
coef(fit, matrix = TRUE)

Zeta The Zeta Distribution

Description

Density, distribution function, quantile function and random generation for the zeta distribution.

Usage

dzeta(x, shape, log = FALSE)
pzeta(q, shape, lower.tail = TRUE)
qzeta(p, shape)
rzeta(n, shape)

Arguments

x, q, p, n Same as Poisson.

shape The positive shape parameter p.
lower.tail, log

Same meaning as in Normal.

Details

The density function of the zeta distribution is given by

y−s−1/ζ(s+ 1)

where s > 0, y = 1, 2, . . ., and ζ is Riemann’s zeta function.

890 zeta

Value

dzeta gives the density, pzeta gives the distribution function, qzeta gives the quantile function,
and rzeta generates random deviates.

Note

qzeta() runs slower and slower as shape approaches 0 and p approaches 1. The VGAM family
function zetaff estimates the shape parameter s.

Author(s)

T. W. Yee

References

Johnson N. L., Kotz S., and Balakrishnan N. (1993). Univariate Discrete Distributions, 2nd ed.
New York: Wiley.

See Also

zeta, zetaff, Oazeta, Oizeta, Otzeta.

Examples

dzeta(1:20, shape = 2)
myshape <- 0.5
max(abs(pzeta(1:200, myshape) -

cumsum(1/(1:200)^(1+myshape)) / zeta(myshape+1))) # Should be 0

Not run: plot(1:6, dzeta(1:6, 2), type = "h", las = 1,
col = "orange", ylab = "Probability",

main = "zeta probability function; orange: shape = 2; blue: shape = 1")
points(0.10 + 1:6, dzeta(1:6, 1), type = "h", col = "blue")
End(Not run)

zeta Riemann’s Zeta Function

Description

Computes Riemann’s zeta function and its first two derivatives. Also can compute the Hurwitz zeta
function.

Usage

zeta(x, deriv = 0, shift = 1)

zeta 891

Arguments

x A complex-valued vector/matrix whose real values must be ≥ 1. Otherwise, x
may be real. It is called s below. If deriv is 1 or 2 then x must be real and
positive.

deriv An integer equalling 0 or 1 or 2, which is the order of the derivative. The default
means it is computed ordinarily.

shift Positive and numeric, called A below. Allows for the Hurwitz zeta to be re-
turned. The default corresponds to the Riemann formula.

Details

The (Riemann) formula for real s is
∞∑
n=1

1/ns.

While the usual definition involves an infinite series that converges when the real part of the argu-
ment is > 1, more efficient methods have been devised to compute the value. In particular, this
function uses Euler-Maclaurin summation. Theoretically, the zeta function can be computed over
the whole complex plane because of analytic continuation.

The (Riemann) formula used here for analytic continuation is

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s).

This is actually one of several formulas, but this one was discovered by Riemann himself and is
called the functional equation.

The Hurwitz zeta function for real s > 0 is

∞∑
n=0

1/(A+ n)s.

where 0 < A is known here as the shift. Since A = 1 by default, this function will therefore
return Riemann’s zeta function by default. Currently derivatives are unavailable.

Value

The default is a vector/matrix of computed values of Riemann’s zeta function. If shift contains
values not equal to 1, then this is Hurwitz’s zeta function.

Warning

This function has not been fully tested, especially the derivatives. In particular, analytic continuation
does not work here for complex x with Re(x)<1 because currently the gamma function does not
handle complex arguments.

Note

Estimation of the parameter of the zeta distribution can be achieved with zetaff.

892 zeta

Author(s)

T. W. Yee, with the help of Garry J. Tee.

References

Riemann, B. (1859). Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse. Monats-
berichte der Berliner Akademie, November 1859.

Edwards, H. M. (1974). Riemann’s Zeta Function. Academic Press: New York.

Markman, B. (1965). The Riemann zeta function. BIT, 5, 138–141.

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, New York: Dover Publications Inc.

See Also

zetaff, Zeta, oazeta, oizeta, otzeta, lerch, gamma.

Examples

zeta(2:10)

Not run:
curve(zeta, -13, 0.8, xlim = c(-12, 10), ylim = c(-1, 4), col = "orange",

las = 1, main = expression({zeta}(x)))
curve(zeta, 1.2, 12, add = TRUE, col = "orange")
abline(v = 0, h = c(0, 1), lty = "dashed", col = "gray")

curve(zeta, -14, -0.4, col = "orange", main = expression({zeta}(x)))
abline(v = 0, h = 0, lty = "dashed", col = "gray") # Close up plot

x <- seq(0.04, 0.8, len = 100) # Plot of the first derivative
plot(x, zeta(x, deriv = 1), type = "l", las = 1, col = "blue",

xlim = c(0.04, 3), ylim = c(-6, 0), main = "zeta'(x)")
x <- seq(1.2, 3, len = 100)
lines(x, zeta(x, deriv = 1), col = "blue")
abline(v = 0, h = 0, lty = "dashed", col = "gray")
End(Not run)

zeta(2) - pi^2 / 6 # Should be 0
zeta(4) - pi^4 / 90 # Should be 0
zeta(6) - pi^6 / 945 # Should be 0
zeta(8) - pi^8 / 9450 # Should be 0
zeta(0, deriv = 1) + 0.5 * log(2*pi) # Should be 0
gamma0 <- 0.5772156649
gamma1 <- -0.07281584548
zeta(0, deriv = 2) -

gamma1 + 0.5 * (log(2*pi))^2 + pi^2/24 - gamma0^2 / 2 # Should be 0
zeta(0.5, deriv = 1) + 3.92264613 # Should be 0
zeta(2.0, deriv = 1) + 0.93754825431 # Should be 0

zetaff 893

zetaff Zeta Distribution Family Function

Description

Estimates the parameter of the zeta distribution.

Usage

zetaff(lshape = "loglink", ishape = NULL, gshape = 1 + exp(-seq(7)),
zero = NULL)

Arguments

lshape, ishape, zero

These arguments apply to the (positive) parameter p. See Links for more choices.
Choosing loglog constrains p > 1, but may fail if the maximum likelihood es-
timate is less than one. See CommonVGAMffArguments for more information.

gshape See CommonVGAMffArguments for more information.

Details

In this long tailed distribution the response must be a positive integer. The probability function for
a response Y is

P (Y = y) = 1/[yp+1ζ(p+ 1)], p > 0, y = 1, 2, ...

where ζ is Riemann’s zeta function. The parameter p is positive, therefore a log link is the default.
The mean of Y is µ = ζ(p)/ζ(p+ 1) (provided p > 1) and these are the fitted values. The variance
of Y is ζ(p− 1)/ζ(p+ 1)− µ2 provided p > 2.

It appears that good initial values are needed for successful convergence. If convergence is not
obtained, try several values ranging from values near 0 to values about 10 or more.

Multiple responses are handled.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The zeta function may be used to compute values of the zeta function.

Author(s)

T. W. Yee

894 Zibinom

References

pp.527– of Chapter 11 of Johnson N. L., Kemp, A. W. and Kotz S. (2005). Univariate Discrete
Distributions, 3rd edition, Hoboken, New Jersey: Wiley.

Knight, K. (2000). Mathematical Statistics. Boca Raton, FL, USA: Chapman & Hall/CRC Press.

See Also

zeta, Zeta, gaitdzeta, oazeta, oizeta, otzeta, diffzeta, hzeta, zipf.

Examples

zdata <- data.frame(y = 1:5, w = c(63, 14, 5, 1, 2)) # Knight, p.304
fit <- vglm(y ~ 1, zetaff, data = zdata, trace = TRUE, weight = w, crit = "c")
(phat <- Coef(fit)) # 1.682557
with(zdata, cbind(round(dzeta(y, phat) * sum(w), 1), w))

with(zdata, weighted.mean(y, w))
fitted(fit, matrix = FALSE)
predict(fit)

The following should be zero at the MLE:
with(zdata, mean(log(rep(y, w))) + zeta(1+phat, deriv = 1) / zeta(1+phat))

Zibinom Zero-Inflated Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the zero-inflated bino-
mial distribution with parameter pstr0.

Usage

dzibinom(x, size, prob, pstr0 = 0, log = FALSE)
pzibinom(q, size, prob, pstr0 = 0)
qzibinom(p, size, prob, pstr0 = 0)
rzibinom(n, size, prob, pstr0 = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

size number of trials. It is the N symbol in the formula given in zibinomial.

prob probability of success on each trial.

n Same as in runif.

log Same as pbinom.

Zibinom 895

pstr0 Probability of a structural zero (i.e., ignoring the binomial distribution), called
φ. The default value of φ = 0 corresponds to the response having an ordinary
binomial distribution.

Details

The probability function of Y is 0 with probability φ, and Binomial(size, prob) with probability
1− φ. Thus

P (Y = 0) = φ+ (1− φ)P (W = 0)

where W is distributed Binomial(size, prob).

Value

dzibinom gives the density, pzibinom gives the distribution function, qzibinom gives the quantile
function, and rzibinom generates random deviates.

Note

The argument pstr0 is recycled to the required length, and must have values which lie in the interval
[0, 1].

These functions actually allow for zero-deflation. That is, the resulting probability of a zero count
is less than the nominal value of the parent distribution. See Zipois for more information.

Author(s)

T. W. Yee

See Also

zibinomial, Gaitdbinom, Binomial.

Examples

prob <- 0.2; size <- 10; pstr0 <- 0.5
(ii <- dzibinom(0:size, size, prob, pstr0 = pstr0))
max(abs(cumsum(ii) - pzibinom(0:size, size, prob, pstr0 = pstr0))) # 0?
table(rzibinom(100, size, prob, pstr0 = pstr0))

table(qzibinom(runif(100), size, prob, pstr0 = pstr0))
round(dzibinom(0:10, size, prob, pstr0 = pstr0) * 100) # Similar?

Not run: x <- 0:size
barplot(rbind(dzibinom(x, size, prob, pstr0 = pstr0),

dbinom(x, size, prob)),
beside = TRUE, col = c("blue", "green"), ylab = "Probability",
main = paste0("ZIB(", size, ", ", prob, ", pstr0 = ", pstr0, ")",

" (blue) vs Binomial(", size, ", ", prob, ") (green)"),
names.arg = as.character(x), las = 1, lwd = 2)

End(Not run)

896 zibinomial

zibinomial Zero-Inflated Binomial Distribution Family Function

Description

Fits a zero-inflated binomial distribution by maximum likelihood estimation.

Usage

zibinomial(lpstr0 = "logitlink", lprob = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "pstr0", "onempstr0"),
ipstr0 = NULL, zero = NULL, multiple.responses = FALSE,
imethod = 1)

zibinomialff(lprob = "logitlink", lonempstr0 = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "pstr0", "onempstr0"),
ionempstr0 = NULL, zero = "onempstr0",
multiple.responses = FALSE, imethod = 1)

Arguments

lpstr0, lprob Link functions for the parameter φ and the usual binomial probability µ param-
eter. See Links for more choices. For the zero-deflated model see below.

type.fitted See CommonVGAMffArguments and fittedvlm.

ipstr0 Optional initial values for φ, whose values must lie between 0 and 1. The default
is to compute an initial value internally. If a vector then recyling is used.

lonempstr0, ionempstr0

Corresponding arguments for the other parameterization. See details below.
multiple.responses

Logical. Currently it must be FALSE to mean the function does not handle
multiple responses. This is to remain compatible with the same argument in
binomialff.

zero, imethod See CommonVGAMffArguments for information. Argument zero changed its de-
fault value for version 0.9-2.

Details

These functions are based on

P (Y = 0) = φ+ (1− φ)(1− µ)N ,

for y = 0, and

P (Y = y) = (1− φ)

(
N

Ny

)
µNy(1− µ)N(1−y).

for y = 1/N, 2/N, . . . , 1. That is, the response is a sample proportion out of N trials, and the
argument size in rzibinom is N here. The parameter φ is the probability of a structural zero,
and it satisfies 0 < φ < 1. The mean of Y is E(Y) = (1 − φ)µ and these are returned as

zibinomial 897

the fitted values by default. By default, the two linear/additive predictors for zibinomial() are
(logit(φ), logit(µ))T .

The VGAM family function zibinomialff() has a few changes compared to zibinomial().
These are: (i) the order of the linear/additive predictors is switched so the binomial probability
comes first; (ii) argument onempstr0 is now 1 minus the probability of a structural zero, i.e., the
probability of the parent (binomial) component, i.e., onempstr0 is 1-pstr0; (iii) argument zero
has a new default so that the onempstr0 is intercept-only by default. Now zibinomialff() is
generally recommended over zibinomial(). Both functions implement Fisher scoring.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Numerical problems can occur. Half-stepping is not uncommon. If failure to converge occurs, make
use of the argument ipstr0 or ionempstr0, or imethod.

Note

The response variable must have one of the formats described by binomialff, e.g., a factor or two
column matrix or a vector of sample proportions with the weights argument specifying the values
of N .

To work well, one needs large values of N and µ > 0, i.e., the larger N and µ are, the better. If
N = 1 then the model is unidentifiable since the number of parameters is excessive.

Setting stepsize = 0.5, say, may aid convergence.

Estimated probabilities of a structural zero and an observed zero are returned, as in zipoisson.

The zero-deflated binomial distribution might be fitted by setting lpstr0 = identitylink, albeit,
not entirely reliably. See zipoisson for information that can be applied here. Else try the zero-
altered binomial distribution (see zabinomial).

Author(s)

T. W. Yee

References

Welsh, A. H., Lindenmayer, D. B. and Donnelly, C. F. (2013). Fitting and interpreting occupancy
models. PLOS One, 8, 1–21.

See Also

rzibinom, binomialff, posbinomial, spikeplot, Binomial.

898 Zigeom

Examples

size <- 10 # Number of trials; N in the notation above
nn <- 200
zdata <- data.frame(pstr0 = logitlink(0, inverse = TRUE), # 0.50

mubin = logitlink(-1, inverse = TRUE), # Mean of usual binomial
sv = rep(size, length = nn))

zdata <- transform(zdata,
y = rzibinom(nn, size = sv, prob = mubin, pstr0 = pstr0))

with(zdata, table(y))
fit <- vglm(cbind(y, sv - y) ~ 1, zibinomialff, data = zdata, trace = TRUE)
fit <- vglm(cbind(y, sv - y) ~ 1, zibinomialff, data = zdata, trace = TRUE,

stepsize = 0.5)

coef(fit, matrix = TRUE)
Coef(fit) # Useful for intercept-only models
head(fitted(fit, type = "pobs0")) # Estimate of P(Y = 0)
head(fitted(fit))
with(zdata, mean(y)) # Compare this with fitted(fit)
summary(fit)

Zigeom Zero-Inflated Geometric Distribution

Description

Density, and random generation for the zero-inflated geometric distribution with parameter pstr0.

Usage

dzigeom(x, prob, pstr0 = 0, log = FALSE)
pzigeom(q, prob, pstr0 = 0)
qzigeom(p, prob, pstr0 = 0)
rzigeom(n, prob, pstr0 = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

prob see dgeom.

n Same as in runif.

pstr0 Probability of structural zero (ignoring the geometric distribution), called φ. The
default value corresponds to the response having an ordinary geometric distri-
bution.

log Logical. Return the logarithm of the answer?

Zigeom 899

Details

The probability function of Y is 0 with probability φ, and geometric(prob) with probability 1−φ.
Thus

P (Y = 0) = φ+ (1− φ)P (W = 0)

where W is distributed geometric(prob).

Value

dzigeom gives the density, pzigeom gives the distribution function, qzigeom gives the quantile
function, and rzigeom generates random deviates.

Note

The argument pstr0 is recycled to the required length, and must have values which lie in the interval
[0, 1].

These functions actually allow for zero-deflation. That is, the resulting probability of a zero count
is less than the nominal value of the parent distribution. See Zipois for more information.

Author(s)

T. W. Yee

See Also

zigeometric, dgeom.

Examples

prob <- 0.5; pstr0 <- 0.2; x <- (-1):20
(ii <- dzigeom(x, prob, pstr0))
max(abs(cumsum(ii) - pzigeom(x, prob, pstr0))) # Should be 0
table(rzigeom(1000, prob, pstr0))

Not run: x <- 0:10
barplot(rbind(dzigeom(x, prob, pstr0), dgeom(x, prob)),

beside = TRUE, col = c("blue","orange"),
ylab = "P[Y = y]", xlab = "y", las = 1,
main = paste0("zigeometric(", prob, ", pstr0 = ", pstr0,

") (blue) vs", " geometric(", prob, ") (orange)"),
names.arg = as.character(x))

End(Not run)

900 zigeometric

zigeometric Zero-Inflated Geometric Distribution Family Function

Description

Fits a zero-inflated geometric distribution by maximum likelihood estimation.

Usage

zigeometric(lpstr0 = "logitlink", lprob = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "pstr0", "onempstr0"),
ipstr0 = NULL, iprob = NULL,
imethod = 1, bias.red = 0.5, zero = NULL)

zigeometricff(lprob = "logitlink", lonempstr0 = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "pstr0", "onempstr0"),
iprob = NULL, ionempstr0 = NULL,
imethod = 1, bias.red = 0.5, zero = "onempstr0")

Arguments

lpstr0, lprob Link functions for the parameters φ and p (prob). The usual geometric proba-
bility parameter is the latter. The probability of a structural zero is the former.
See Links for more choices. For the zero-deflated model see below.

lonempstr0, ionempstr0

Corresponding arguments for the other parameterization. See details below.

bias.red A constant used in the initialization process of pstr0. It should lie between 0
and 1, with 1 having no effect.

type.fitted See CommonVGAMffArguments and fittedvlm for information.

ipstr0, iprob See CommonVGAMffArguments for information.

zero, imethod See CommonVGAMffArguments for information.

Details

Function zigeometric() is based on

P (Y = 0) = φ+ (1− φ)p,

for y = 0, and
P (Y = y) = (1− φ)p(1− p)y.

for y = 1, 2, The parameter φ satisfies 0 < φ < 1. The mean of Y is E(Y) = (1−φ)p/(1−p)
and these are returned as the fitted values by default. By default, the two linear/additive predictors
are (logit(φ), logit(p))T . Multiple responses are handled.

Estimated probabilities of a structural zero and an observed zero can be returned, as in zipoisson;
see fittedvlm for information.

zigeometric 901

The VGAM family function zigeometricff() has a few changes compared to zigeometric().
These are: (i) the order of the linear/additive predictors is switched so the geometric probability
comes first; (ii) argument onempstr0 is now 1 minus the probability of a structural zero, i.e., the
probability of the parent (geometric) component, i.e., onempstr0 is 1-pstr0; (iii) argument zero
has a new default so that the onempstr0 is intercept-only by default. Now zigeometricff() is
generally recommended over zigeometric(). Both functions implement Fisher scoring and can
handle multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The zero-deflated geometric distribution might be fitted by setting lpstr0 = identitylink, albeit,
not entirely reliably. See zipoisson for information that can be applied here. Else try the zero-
altered geometric distribution (see zageometric).

Author(s)

T. W. Yee

See Also

rzigeom, geometric, zageometric, spikeplot, rgeom, simulate.vlm.

Examples

gdata <- data.frame(x2 = runif(nn <- 1000) - 0.5)
gdata <- transform(gdata, x3 = runif(nn) - 0.5,

x4 = runif(nn) - 0.5)
gdata <- transform(gdata, eta1 = 1.0 - 1.0 * x2 + 2.0 * x3,

eta2 = -1.0,
eta3 = 0.5)

gdata <- transform(gdata, prob1 = logitlink(eta1, inverse = TRUE),
prob2 = logitlink(eta2, inverse = TRUE),
prob3 = logitlink(eta3, inverse = TRUE))

gdata <- transform(gdata, y1 = rzigeom(nn, prob1, pstr0 = prob3),
y2 = rzigeom(nn, prob2, pstr0 = prob3),
y3 = rzigeom(nn, prob2, pstr0 = prob3))

with(gdata, table(y1))
with(gdata, table(y2))
with(gdata, table(y3))
head(gdata)

fit1 <- vglm(y1 ~ x2 + x3 + x4, zigeometric(zero = 1), data = gdata, trace = TRUE)
coef(fit1, matrix = TRUE)
head(fitted(fit1, type = "pstr0"))

fit2 <- vglm(cbind(y2, y3) ~ 1, zigeometric(zero = 1), data = gdata, trace = TRUE)

902 Zinegbin

coef(fit2, matrix = TRUE)
summary(fit2)

Zinegbin Zero-Inflated Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the zero-inflated nega-
tive binomial distribution with parameter pstr0.

Usage

dzinegbin(x, size, prob = NULL, munb = NULL, pstr0 = 0, log = FALSE)
pzinegbin(q, size, prob = NULL, munb = NULL, pstr0 = 0)
qzinegbin(p, size, prob = NULL, munb = NULL, pstr0 = 0)
rzinegbin(n, size, prob = NULL, munb = NULL, pstr0 = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n Same as in runif.
size, prob, munb, log

Arguments matching dnbinom. The argument munb corresponds to mu in dnbinom
and has been renamed to emphasize the fact that it is the mean of the negative
binomial component.

pstr0 Probability of structural zero (i.e., ignoring the negative binomial distribution),
called φ.

Details

The probability function of Y is 0 with probability φ, and a negative binomial distribution with
probability 1− φ. Thus

P (Y = 0) = φ+ (1− φ)P (W = 0)

where W is distributed as a negative binomial distribution (see rnbinom.) See negbinomial, a
VGAM family function, for the formula of the probability density function and other details of the
negative binomial distribution.

Value

dzinegbin gives the density, pzinegbin gives the distribution function, qzinegbin gives the quan-
tile function, and rzinegbin generates random deviates.

zinegbinomial 903

Note

The argument pstr0 is recycled to the required length, and must have values which lie in the interval
[0, 1].

These functions actually allow for zero-deflation. That is, the resulting probability of a zero count
is less than the nominal value of the parent distribution. See Zipois for more information.

Author(s)

T. W. Yee

See Also

zinegbinomial, rnbinom, rzipois.

Examples

munb <- 3; pstr0 <- 0.2; size <- k <- 10; x <- 0:10
(ii <- dzinegbin(x, pstr0 = pstr0, mu = munb, size = k))
max(abs(cumsum(ii) - pzinegbin(x, pstr0 = pstr0, mu = munb, size = k)))
table(rzinegbin(100, pstr0 = pstr0, mu = munb, size = k))

table(qzinegbin(runif(1000), pstr0 = pstr0, mu = munb, size = k))
round(dzinegbin(x, pstr0 = pstr0, mu = munb, size = k) * 1000) # Similar?

Not run: barplot(rbind(dzinegbin(x, pstr0 = pstr0, mu = munb, size = k),
dnbinom(x, mu = munb, size = k)), las = 1,

beside = TRUE, col = c("blue", "green"), ylab = "Probability",
main = paste("ZINB(mu = ", munb, ", k = ", k, ", pstr0 = ", pstr0,

") (blue) vs NB(mu = ", munb,
", size = ", k, ") (green)", sep = ""),

names.arg = as.character(x))
End(Not run)

zinegbinomial Zero-Inflated Negative Binomial Distribution Family Function

Description

Fits a zero-inflated negative binomial distribution by full maximum likelihood estimation.

Usage

zinegbinomial(zero = "size",
type.fitted = c("mean", "munb", "pobs0", "pstr0",
"onempstr0"),
mds.min = 1e-3, nsimEIM = 500, cutoff.prob = 0.999,
eps.trig = 1e-7, max.support = 4000, max.chunk.MB = 30,
lpstr0 = "logitlink", lmunb = "loglink", lsize = "loglink",

904 zinegbinomial

imethod = 1, ipstr0 = NULL, imunb = NULL,
iprobs.y = NULL, isize = NULL,
gprobs.y = (0:9)/10,
gsize.mux = exp(c(-30, -20, -15, -10, -6:3)))

zinegbinomialff(lmunb = "loglink", lsize = "loglink", lonempstr0 = "logitlink",
type.fitted = c("mean", "munb", "pobs0", "pstr0",
"onempstr0"), imunb = NULL, isize = NULL, ionempstr0 =
NULL, zero = c("size", "onempstr0"), imethod = 1,
iprobs.y = NULL, cutoff.prob = 0.999,
eps.trig = 1e-7, max.support = 4000, max.chunk.MB = 30,
gprobs.y = (0:9)/10, gsize.mux = exp((-12:6)/2),
mds.min = 1e-3, nsimEIM = 500)

Arguments

lpstr0, lmunb, lsize

Link functions for the parameters φ, the mean and k; see negbinomial for de-
tails, and Links for more choices. For the zero-deflated model see below.

type.fitted See CommonVGAMffArguments and fittedvlm for more information.
ipstr0, isize, imunb

Optional initial values for φ and k and µ. The default is to compute an initial
value internally for both. If a vector then recycling is used.

lonempstr0, ionempstr0

Corresponding arguments for the other parameterization. See details below.

imethod An integer with value 1 or 2 or 3 which specifies the initialization method
for the mean parameter. If failure to converge occurs try another value. See
CommonVGAMffArguments for more information.

zero Specifies which linear/additive predictors are to be modelled as intercept-only.
They can be such that their absolute values are either 1 or 2 or 3. The default is
the φ and k parameters (both for each response). See CommonVGAMffArguments
for more information.

nsimEIM See CommonVGAMffArguments for information.
iprobs.y, cutoff.prob, max.support, max.chunk.MB

See negbinomial and/or posnegbinomial for details.
mds.min, eps.trig

See negbinomial for details.
gprobs.y, gsize.mux

These arguments relate to grid searching in the initialization process. See negbinomial
and/or posnegbinomial for details.

Details

These functions are based on

P (Y = 0) = φ+ (1− φ)(k/(k + µ))k,

and for y = 1, 2, . . .,
P (Y = y) = (1− φ) dnbinom(y, µ, k).

zinegbinomial 905

The parameter φ satisfies 0 < φ < 1. The mean of Y is (1− φ)µ (returned as the fitted values). By
default, the three linear/additive predictors for zinegbinomial() are (logit(φ), log(µ), log(k))T .
See negbinomial, another VGAM family function, for the formula of the probability density func-
tion and other details of the negative binomial distribution.

Independent multiple responses are handled. If so then arguments ipstr0 and isize may be vectors
with length equal to the number of responses.

The VGAM family function zinegbinomialff() has a few changes compared to zinegbinomial().
These are: (i) the order of the linear/additive predictors is switched so the NB mean comes first;
(ii) onempstr0 is now 1 minus the probability of a structural 0, i.e., the probability of the parent
(NB) component, i.e., onempstr0 is 1-pstr0; (iii) argument zero has a new default so that the
onempstr0 is intercept-only by default. Now zinegbinomialff() is generally recommended over
zinegbinomial(). Both functions implement Fisher scoring and can handle multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

This model can be difficult to fit to data, and this family function is fragile. The model is especially
difficult to fit reliably when the estimated k parameter is very large (so the model approaches a
zero-inflated Poisson distribution) or much less than 1 (and gets more difficult as it approaches
0). Numerical problems can also occur, e.g., when the probability of a zero is actually less than,
and not more than, the nominal probability of zero. Similarly, numerical problems can occur if
there is little or no 0-inflation, or when the sample size is small. Half-stepping is not uncommon.
Successful convergence is sensitive to the initial values, therefore if failure to converge occurs, try
using combinations of arguments stepsize (in vglm.control), imethod, imunb, ipstr0, isize,
and/or zero if there are explanatory variables. Else try fitting an ordinary negbinomial model or a
zipoisson model.

This VGAM family function can be computationally expensive and can run slowly; setting trace
= TRUE is useful for monitoring convergence.

Note

Estimated probabilities of a structural zero and an observed zero can be returned, as in zipoisson;
see fittedvlm for more information.

If k is large then the use of VGAM family function zipoisson is probably preferable. This follows
because the Poisson is the limiting distribution of a negative binomial as k tends to infinity.

The zero-deflated negative binomial distribution might be fitted by setting lpstr0 = identitylink,
albeit, not entirely reliably. See zipoisson for information that can be applied here. Else try the
zero-altered negative binomial distribution (see zanegbinomial).

Author(s)

T. W. Yee

906 zipebcom

See Also

gaitdnbinomial, Zinegbin, negbinomial, spikeplot, rpois, CommonVGAMffArguments.

Examples

Not run:
Example 1
ndata <- data.frame(x2 = runif(nn <- 1000))
ndata <- transform(ndata, pstr0 = logitlink(-0.5 + 1 * x2, inverse = TRUE),

munb = exp(3 + 1 * x2),
size = exp(0 + 2 * x2))

ndata <- transform(ndata,
y1 = rzinegbin(nn, mu = munb, size = size, pstr0 = pstr0))

with(ndata, table(y1)["0"] / sum(table(y1)))
nfit <- vglm(y1 ~ x2, zinegbinomial(zero = NULL), data = ndata)
coef(nfit, matrix = TRUE)
summary(nfit)
head(cbind(fitted(nfit), with(ndata, (1 - pstr0) * munb)))
round(vcov(nfit), 3)

Example 2: RR-ZINB could also be called a COZIVGLM-ZINB-2
ndata <- data.frame(x2 = runif(nn <- 2000))
ndata <- transform(ndata, x3 = runif(nn))
ndata <- transform(ndata, eta1 = 3 + 1 * x2 + 2 * x3)
ndata <- transform(ndata, pstr0 = logitlink(-1.5 + 0.5 * eta1, inverse = TRUE),

munb = exp(eta1),
size = exp(4))

ndata <- transform(ndata,
y1 = rzinegbin(nn, pstr0 = pstr0, mu = munb, size = size))

with(ndata, table(y1)["0"] / sum(table(y1)))
rrzinb <- rrvglm(y1 ~ x2 + x3, zinegbinomial(zero = NULL), data = ndata,

Index.corner = 2, str0 = 3, trace = TRUE)
coef(rrzinb, matrix = TRUE)
Coef(rrzinb)

End(Not run)

zipebcom Exchangeable Bivariate cloglog Odds-ratio Model From a Zero-
inflated Poisson Distribution

Description

Fits an exchangeable bivariate odds-ratio model to two binary responses with a complementary
log-log link. The data are assumed to come from a zero-inflated Poisson distribution that has been
converted to presence/absence.

zipebcom 907

Usage

zipebcom(lmu12 = "clogloglink", lphi12 = "logitlink", loratio = "loglink",
imu12 = NULL, iphi12 = NULL, ioratio = NULL,
zero = c("phi12", "oratio"), tol = 0.001, addRidge = 0.001)

Arguments

lmu12, imu12 Link function, extra argument and optional initial values for the first (and sec-
ond) marginal probabilities. Argument lmu12 should be left alone. Argument
imu12 may be of length 2 (one element for each response).

lphi12 Link function applied to the φ parameter of the zero-inflated Poisson distribution
(see zipoisson). See Links for more choices.

loratio Link function applied to the odds ratio. See Links for more choices.
iphi12, ioratio

Optional initial values for φ and the odds ratio. See CommonVGAMffArguments
for more details. In general, good initial values (especially for iphi12) are
often required, therefore use these arguments if convergence failure occurs. If
inputted, the value of iphi12 cannot be more than the sample proportions of
zeros in either response.

zero Which linear/additive predictor is modelled as an intercept only? A NULL means
none. The default has both φ and the odds ratio as not being modelled as a
function of the explanatory variables (apart from an intercept).

tol Tolerance for testing independence. Should be some small positive numerical
value.

addRidge Some small positive numerical value. The first two diagonal elements of the
working weight matrices are multiplied by 1+addRidge to make it diagonally
dominant, therefore positive-definite.

Details

This VGAM family function fits an exchangeable bivariate odds ratio model (binom2.or) with a
clogloglink link. The data are assumed to come from a zero-inflated Poisson (ZIP) distribution
that has been converted to presence/absence. Explicitly, the default model is

cloglog[P (Yj = 1)/(1− φ)] = η1, j = 1, 2

for the (exchangeable) marginals, and

logit[φ] = η2,

for the mixing parameter, and

log[P (Y00 = 1)P (Y11 = 1)/(P (Y01 = 1)P (Y10 = 1))] = η3,

specifies the dependency between the two responses. Here, the responses equal 1 for a success and
a 0 for a failure, and the odds ratio is often written ψ = p00p11/(p10p01). We have p10 = p01
because of the exchangeability.

908 zipebcom

The second linear/additive predictor models the φ parameter (see zipoisson). The third lin-
ear/additive predictor is the same as binom2.or, viz., the log odds ratio.

Suppose a dataset1 comes from a Poisson distribution that has been converted to presence/absence,
and that both marginal probabilities are the same (exchangeable). Then binom2.or("clogloglink",
exch=TRUE) is appropriate. Now suppose a dataset2 comes from a zero-inflated Poisson distribu-
tion. The first linear/additive predictor of zipebcom() applied to dataset2 is the same as that of
binom2.or("clogloglink", exch=TRUE) applied to dataset1. That is, the φ has been taken care
of by zipebcom() so that it is just like the simpler binom2.or.

Note that, for η1, mu12 = prob12 / (1-phi12) where prob12 is the probability of a 1 under the ZIP
model. Here, mu12 correspond to mu1 and mu2 in the binom2.or-Poisson model.

If φ = 0 then zipebcom() should be equivalent to binom2.or("clogloglink", exch=TRUE). Full
details are given in Yee and Dirnbock (2009).

The leading 2 × 2 submatrix of the expected information matrix (EIM) is of rank-1, not 2! This
is due to the fact that the parameters corresponding to the first two linear/additive predictors are
unidentifiable. The quick fix around this problem is to use the addRidge adjustment. The model
is fitted by maximum likelihood estimation since the full likelihood is specified. Fisher scoring is
implemented.

The default models η2 and η3 as single parameters only, but this can be circumvented by setting
zero=NULL in order to model the φ and odds ratio as a function of all the explanatory variables.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

When fitted, the fitted.values slot of the object contains the four joint probabilities, labelled as
(Y1, Y2) = (0,0), (0,1), (1,0), (1,1), respectively. These estimated probabilities should be extracted
with the fitted generic function.

Warning

The fact that the EIM is not of full rank may mean the model is naturally ill-conditioned. Not
sure whether there are any negative consequences wrt theory. For now it is certainly safer to fit
binom2.or to bivariate binary responses.

Note

The "12" in the argument names reinforce the user about the exchangeability assumption. The
name of this VGAM family function stands for zero-inflated Poisson exchangeable bivariate com-
plementary log-log odds-ratio model or ZIP-EBCOM.

See binom2.or for details that are pertinent to this VGAM family function too. Even better initial
values are usually needed here.

The xij (see vglm.control) argument enables environmental variables with different values at the
two time points to be entered into an exchangeable binom2.or model. See the author’s webpage
for sample code.

Zipf 909

References

Yee, T. W. and Dirnbock, T. (2009). Models for analysing species’ presence/absence data at two
time points. Journal of Theoretical Biology, 259(4), 684–694.

See Also

binom2.or, zipoisson, clogloglink, CommonVGAMffArguments.

Examples

zdata <- data.frame(x2 = seq(0, 1, len = (nsites <- 2000)))
zdata <- transform(zdata, eta1 = -3 + 5 * x2,

phi1 = logitlink(-1, inverse = TRUE),
oratio = exp(2))

zdata <- transform(zdata, mu12 = clogloglink(eta1, inverse = TRUE) * (1-phi1))
tmat <- with(zdata, rbinom2.or(nsites, mu1 = mu12, oratio = oratio, exch = TRUE))
zdata <- transform(zdata, ybin1 = tmat[, 1], ybin2 = tmat[, 2])

with(zdata, table(ybin1, ybin2)) / nsites # For interest only
Not run:
Various plots of the data, for interest only
par(mfrow = c(2, 2))
plot(jitter(ybin1) ~ x2, data = zdata, col = "blue")

plot(jitter(ybin2) ~ jitter(ybin1), data = zdata, col = "blue")

plot(mu12 ~ x2, data = zdata, col = "blue", type = "l", ylim = 0:1,
ylab = "Probability", main = "Marginal probability and phi")

with(zdata, abline(h = phi1[1], col = "red", lty = "dashed"))

tmat2 <- with(zdata, dbinom2.or(mu1 = mu12, oratio = oratio, exch = TRUE))
with(zdata, matplot(x2, tmat2, col = 1:4, type = "l", ylim = 0:1,

ylab = "Probability", main = "Joint probabilities"))
End(Not run)

Now fit the model to the data.
fit <- vglm(cbind(ybin1, ybin2) ~ x2, zipebcom, data = zdata, trace = TRUE)
coef(fit, matrix = TRUE)
summary(fit)
vcov(fit)

Zipf The Zipf Distribution

Description

Density, distribution function, quantile function and random generation for the Zipf distribution.

910 Zipf

Usage

dzipf(x, N, shape, log = FALSE)
pzipf(q, N, shape, log.p = FALSE)
qzipf(p, N, shape)
rzipf(n, N, shape)

Arguments

x, q, p, n Same as Poisson.

N, shape the number of elements, and the exponent characterizing the distribution. See
zipf for more details.

log, log.p Same meaning as in Normal.

Details

This is a finite version of the zeta distribution. See zetaff for more details. In general, these
functions runs slower and slower as N increases.

Value

dzipf gives the density, pzipf gives the cumulative distribution function, qzipf gives the quantile
function, and rzipf generates random deviates.

Author(s)

T. W. Yee

See Also

zipf, Zipfmb.

Examples

N <- 10; shape <- 0.5; y <- 1:N
proby <- dzipf(y, N = N, shape = shape)
Not run: plot(proby ~ y, type = "h", col = "blue",

ylim = c(0, 0.2), ylab = "Probability", lwd = 2, las = 1,
main = paste0("Zipf(N = ", N, ", shape = ", shape, ")"))

End(Not run)
sum(proby) # Should be 1
max(abs(cumsum(proby) - pzipf(y, N = N, shape = shape))) # 0?

zipf 911

zipf Zipf Distribution Family Function

Description

Estimates the parameter of the Zipf distribution.

Usage

zipf(N = NULL, lshape = "loglink", ishape = NULL)

Arguments

N Number of elements, an integer satisfying 1 < N < Inf. The default is to use the
maximum value of the response. If given, N must be no less that the largest
response value. If N = Inf and s > 1 then this is the zeta distribution (use
zetaff instead).

lshape Parameter link function applied to the (positive) shape parameter s. See Links
for more choices.

ishape Optional initial value for the parameter s. The default is to choose an initial
value internally. If converge failure occurs use this argument to input a value.

Details

The probability function for a response Y is

P (Y = y) = y−s/

N∑
i=1

i−s, s > 0, y = 1, 2, . . . , N,

where s is the exponent characterizing the distribution. The mean of Y , which are returned as the
fitted values, is µ = HN,s−1/HN,s where Hn,m =

∑n
i=1 i

−m is the nth generalized harmonic
number.

Zipf’s law is an experimental law which is often applied to the study of the frequency of words
in a corpus of natural language utterances. It states that the frequency of any word is inversely
proportional to its rank in the frequency table. For example, "the" and "of" are first two most
common words, and Zipf’s law states that "the" is twice as common as "of". Many other natural
phenomena conform to Zipf’s law.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

Upon convergence, the N is stored as @misc$N.

912 Zipfmb

Author(s)

T. W. Yee

References

pp.526– of Chapter 11 of Johnson N. L., Kemp, A. W. and Kotz S. (2005). Univariate Discrete
Distributions, 3rd edition, Hoboken, New Jersey, USA: Wiley.

See Also

dzipf, zetaff, simulate.vlm.

Examples

zdata <- data.frame(y = 1:5, ofreq = c(63, 14, 5, 1, 2))
zfit <- vglm(y ~ 1, zipf, data = zdata, trace = TRUE, weight = ofreq)
zfit <- vglm(y ~ 1, zipf(lshape = "identitylink", ishape = 3.4), data = zdata,

trace = TRUE, weight = ofreq, crit = "coef")
zfit@misc$N
(shape.hat <- Coef(zfit))
with(zdata, weighted.mean(y, ofreq))
fitted(zfit, matrix = FALSE)

Zipfmb The Zipf-Mandelbrot Distribution

Description

Density, distribution function, quantile function and random generation for the Mandelbrot distri-
bution.

Usage

dzipfmb(x, shape, start = 1, log = FALSE)
pzipfmb(q, shape, start = 1, lower.tail = TRUE, log.p = FALSE)
qzipfmb(p, shape, start = 1)
rzipfmb(n, shape, start = 1)

Arguments

x vector of (non-negative integer) quantiles.
q vector of quantiles.
p vector of probabilities.
n number of random values to return.
shape vector of positive shape parameter.
start integer, the minimum value of the support of the distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

Zipfmb 913

Details

The probability mass function of the Zipf-Mandelbrot distribution is given by

Pr(Y = y; s) =
s Γ(ymin)

Γ(ymin − s)
· Γ(y − s)

Γ(y + 1)

where 0 ≤ b < 1 and the starting value start being by default 1.

Value

dzipfmb gives the density, pzipfmb gives the distribution function, qzipfmb gives the quantile
function, and rzipfmb generates random deviates.

Author(s)

M. Chou, with edits by T. W. Yee.

References

Mandelbrot, B. (1961). On the theory of word frequencies and on related Markovian models of
discourse. In R. Jakobson, Structure of Language and its Mathematical Aspects, pp. 190–219,
Providence, RI, USA. American Mathematical Society.

Moreno-Sanchez, I. and Font-Clos, F. and Corral, A. (2016). Large-Scale Analysis of Zipf’s Law
in English Texts. PLos ONE, 11(1), 1–19.

See Also

Zipf.

Examples

aa <- 1:10
(pp <- pzipfmb(aa, shape = 0.5, start = 1))
cumsum(dzipfmb(aa, shape = 0.5, start = 1)) # Should be same
qzipfmb(pp, shape = 0.5, start = 1) - aa # Should be all 0s

rdiffzeta(30, 0.5)

Not run: x <- 1:10
plot(x, dzipfmb(x, shape = 0.5), type = "h", ylim = 0:1,

sub = "shape=0.5", las = 1, col = "blue", ylab = "Probability",
main = "Zipf-Mandelbrot distribution: blue=PMF; orange=CDF")

lines(x+0.1, pzipfmb(x, shape = 0.5), col = "red", lty = 3, type = "h")

End(Not run)

914 Zipois

Zipois Zero-Inflated Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the zero-inflated and
zero-deflated Poisson distribution with parameter pstr0.

Usage

dzipois(x, lambda, pstr0 = 0, log = FALSE)
pzipois(q, lambda, pstr0 = 0)
qzipois(p, lambda, pstr0 = 0)
rzipois(n, lambda, pstr0 = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Must be a single positive integer.

lambda Vector of positive means.

pstr0 Probability of a structural zero (i.e., ignoring the Poisson distribution), called φ.
The default value of φ = 0 corresponds to the response having an ordinary Pois-
son distribution. If φ lies in (0, 1) then this is known as the zero-inflated Pois-
son (ZIP) distribution. This argument may be negative to allow for 0-deflation,
hence its interpretation as a probability ceases.

log Logical. Return the logarithm of the answer?

Details

The probability function of Y is 0 with probability φ, and Poisson(λ) with probability 1−φ. Thus

P (Y = 0) = φ+ (1− φ)P (W = 0)

where W is distributed Poisson(λ).

Value

dzipois gives the density, pzipois gives the distribution function, qzipois gives the quantile
function, and rzipois generates random deviates.

Zipois 915

Note

The argument pstr0 is recycled to the required length, and must have values which lie in the interval
[0, 1].

These functions actually allow for the zero-deflated Poisson (ZDP) distribution. Here, pstr0 is
also permitted to lie in the interval [-1/expm1(lambda), 0]. The resulting probability of a zero
count is less than the nominal Poisson value, and the use of pstr0 to stand for the probability of a
structural zero loses its meaning. When pstr0 equals -1/expm1(lambda) this corresponds to the
positive-Poisson distribution (e.g., see Gaitdpois), also called the zero-truncated Poisson or ZTP.

The zero-modified Poisson (ZMP) is a combination of the ZIP and ZDP and ZTP distributions. The
family function

Author(s)

T. W. Yee

See Also

zipoisson, Gaitdpois, dpois, rzinegbin.

Examples

lambda <- 3; pstr0 <- 0.2; x <- (-1):7
(ii <- dzipois(x, lambda, pstr0 = pstr0))
max(abs(cumsum(ii) - pzipois(x, lambda, pstr0 = pstr0))) # 0?
table(rzipois(100, lambda, pstr0 = pstr0))

table(qzipois(runif(100), lambda, pstr0))
round(dzipois(0:10, lambda, pstr0 = pstr0) * 100) # Similar?

Not run: x <- 0:10
par(mfrow = c(2, 1)) # Zero-inflated Poisson
barplot(rbind(dzipois(x, lambda, pstr0 = pstr0), dpois(x, lambda)),

beside = TRUE, col = c("blue", "orange"),
main = paste0("ZIP(", lambda,

", pstr0 = ", pstr0, ") (blue) vs",
" Poisson(", lambda, ") (orange)"),

names.arg = as.character(x))

deflat.limit <- -1 / expm1(lambda) # Zero-deflated Poisson
newpstr0 <- round(deflat.limit / 1.5, 3)
barplot(rbind(dzipois(x, lambda, pstr0 = newpstr0),

dpois(x, lambda)),
beside = TRUE, col = c("blue","orange"),
main = paste0("ZDP(", lambda, ", pstr0 = ", newpstr0, ")",

" (blue) vs Poisson(", lambda, ") (orange)"),
names.arg = as.character(x))

End(Not run)

916 zipoisson

zipoisson Zero-Inflated Poisson Distribution Family Function

Description

Fits a zero-inflated or zero-deflated Poisson distribution by full maximum likelihood estimation.

Usage

zipoisson(lpstr0 = "logitlink", llambda = "loglink", type.fitted =
c("mean", "lambda", "pobs0", "pstr0", "onempstr0"),
ipstr0 = NULL, ilambda = NULL, gpstr0 = NULL, imethod = 1,
ishrinkage = 0.95, probs.y = 0.35, parallel = FALSE, zero = NULL)

zipoissonff(llambda = "loglink", lonempstr0 = "logitlink",
type.fitted = c("mean", "lambda", "pobs0", "pstr0", "onempstr0"),
ilambda = NULL, ionempstr0 = NULL, gonempstr0 = NULL,
imethod = 1, ishrinkage = 0.95, probs.y = 0.35, zero = "onempstr0")

Arguments

lpstr0, llambda

Link function for the parameter φ and the usual λ parameter. See Links for
more choices; see CommonVGAMffArguments for more information. For the zero-
deflated model see below.

ipstr0, ilambda

Optional initial values for φ, whose values must lie between 0 and 1. Optional
initial values for λ, whose values must be positive. The defaults are to compute
an initial value internally for each. If a vector then recycling is used.

lonempstr0, ionempstr0

Corresponding arguments for the other parameterization. See details below.

type.fitted Character. The type of fitted value to be returned. The first choice (the expected
value) is the default. The estimated probability of an observed 0 is an alterna-
tive, else the estimated probability of a structural 0, or one minus the estimated
probability of a structural 0. See CommonVGAMffArguments and fittedvlm for
more information.

imethod An integer with value 1 or 2 which specifies the initialization method for λ.
If failure to converge occurs try another value and/or else specify a value for
ishrinkage and/or else specify a value for ipstr0. See CommonVGAMffArguments
for more information.

ishrinkage How much shrinkage is used when initializing λ. The value must be between
0 and 1 inclusive, and a value of 0 means the individual response values are
used, and a value of 1 means the median or mean is used. This argument is used
in conjunction with imethod. See CommonVGAMffArguments for more informa-
tion.

zipoisson 917

zero Specifies which linear/additive predictors are to be modelled as intercept-only.
If given, the value can be either 1 or 2, and the default is none of them. Setting
zero = 1 makes φ a single parameter. See CommonVGAMffArguments for more
information.

gpstr0, gonempstr0, probs.y

Details at CommonVGAMffArguments.

parallel Details at CommonVGAMffArguments, but unlikely to be practically used actually.

Details

These models are a mixture of a Poisson distribution and the value 0; it has value 0 with probability
φ else is Poisson(λ) distributed. Thus there are two sources for zero values, and φ is the probability
of a structural zero. The model for zipoisson() can be written

P (Y = 0) = φ+ (1− φ) exp(−λ),

and for y = 1, 2, . . .,
P (Y = y) = (1− φ) exp(−λ)λy/y!.

Here, the parameter φ satisfies 0 < φ < 1. The mean of Y is (1−φ)λ and these are returned as the
fitted values, by default. The variance of Y is (1−φ)λ(1 +φλ). By default, the two linear/additive
predictors of zipoisson() are (logit(φ), log(λ))T .

The VGAM family function zipoissonff() has a few changes compared to zipoisson(). These
are: (i) the order of the linear/additive predictors is switched so the Poisson mean comes first;
(ii) onempstr0 is now 1 minus the probability of a structural 0, i.e., the probability of the parent
(Poisson) component, i.e., onempstr0 is 1-pstr0; (iii) argument zero has a new default so that
the onempstr0 is intercept-only by default. Now zipoissonff() is generally recommended over
zipoisson() (and definitely recommended over yip88). Both functions implement Fisher scoring
and can handle multiple responses.

Both family functions can fit the zero-modified Poisson (ZMP), which is a combination of the ZIP
and zero-deflated Poisson (ZDP); see Zipois for some details and the example below. The key is
to set the link function to be identitylink. However, problems might occur when iterations get
close to or go past the boundary of the parameter space, especially when there are covariates. The
PMF of the ZMP is best written not as above but in terms of onempstr0 which may be greater than
unity; when using pstr0 the above PMF is negative for non-zero values.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

Numerical problems can occur, e.g., when the probability of zero is actually less than, not more
than, the nominal probability of zero. For example, in the Angers and Biswas (2003) data below,
replacing 182 by 1 results in nonconvergence. Half-stepping is not uncommon. If failure to con-
verge occurs, try using combinations of imethod, ishrinkage, ipstr0, and/or zipoisson(zero =
1) if there are explanatory variables. The default for zipoissonff() is to model the structural zero
probability as an intercept-only.

918 zipoisson

Note

This family function can be used to estimate the 0-deflated model, hence pstr0 is not to be inter-
preted as a probability. One should set, e.g., lpstr0 = "identitylink". Likewise, the functions
in Zipois can handle the zero-deflated Poisson distribution too. Although the iterations might fall
outside the parameter space, the validparams slot should keep them inside. A (somewhat) similar
alternative for zero-deflation is to try the zero-altered Poisson model (see zapoisson).

The use of this VGAM family function with rrvglm can result in a so-called COZIGAM or
COZIGLM. That is, a reduced-rank zero-inflated Poisson model (RR-ZIP) is a constrained zero-
inflated generalized linear model. See COZIGAM. A RR-ZINB model can also be fitted easily;
see zinegbinomial. Jargon-wise, a COZIGLM might be better described as a COZIVGLM-ZIP.

Author(s)

T. W. Yee

References

Thas, O. and Rayner, J. C. W. (2005). Smooth tests for the zero-inflated Poisson distribution.
Biometrics, 61, 808–815.

Data: Angers, J-F. and Biswas, A. (2003). A Bayesian analysis of zero-inflated generalized Poisson
model. Computational Statistics & Data Analysis, 42, 37–46.

Cameron, A. C. and Trivedi, P. K. (1998). Regression Analysis of Count Data. Cambridge Univer-
sity Press: Cambridge.

M’Kendrick, A. G. (1925). Applications of mathematics to medical problems. Proc. Edinb. Math.
Soc., 44, 98–130.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Com-
putational Statistics and Data Analysis, 71, 889–902.

See Also

gaitdpoisson, zapoisson, Zipois, yip88, spikeplot, lpossums, rrvglm, negbinomial, zipebcom,
rpois, simulate.vlm, hdeff.vglm.

Examples

Example 1: simulated ZIP data
zdata <- data.frame(x2 = runif(nn <- 1000))
zdata <- transform(zdata,

pstr01 = logitlink(-0.5 + 1*x2, inverse = TRUE),
pstr02 = logitlink(0.5 - 1*x2, inverse = TRUE),
Ps01 = logitlink(-0.5 , inverse = TRUE),
Ps02 = logitlink(0.5 , inverse = TRUE),
lambda1 = loglink(-0.5 + 2*x2, inverse = TRUE),
lambda2 = loglink(0.5 + 2*x2, inverse = TRUE))

zdata <- transform(zdata, y1 = rzipois(nn, lambda1, pstr0 = Ps01),
y2 = rzipois(nn, lambda2, pstr0 = Ps02))

with(zdata, table(y1)) # Eyeball the data

zipoisson 919

with(zdata, table(y2))
fit1 <- vglm(y1 ~ x2, zipoisson(zero = 1), zdata, crit = "coef")
fit2 <- vglm(y2 ~ x2, zipoisson(zero = 1), zdata, crit = "coef")
coef(fit1, matrix = TRUE) # Should agree with the above values
coef(fit2, matrix = TRUE) # Should agree with the above values

Fit all two simultaneously, using a different parameterization:
fit12 <- vglm(cbind(y1, y2) ~ x2, zipoissonff, zdata, crit = "coef")
coef(fit12, matrix = TRUE) # Should agree with the above values

For the first observation compute the probability that y1 is
due to a structural zero.
(fitted(fit1, type = "pstr0") / fitted(fit1, type = "pobs0"))[1]

Example 2: McKendrick (1925). From 223 Indian village households
cholera <- data.frame(ncases = 0:4, # Number of cholera cases,

wfreq = c(168, 32, 16, 6, 1)) # Frequencies
fit <- vglm(ncases ~ 1, zipoisson, wei = wfreq, cholera)
coef(fit, matrix = TRUE)
with(cholera, cbind(actual = wfreq,

fitted = round(dzipois(ncases, Coef(fit)[2],
pstr0 = Coef(fit)[1]) *

sum(wfreq), digits = 2)))

Example 3: data from Angers and Biswas (2003)
abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, 0, 0, 1))
abdata <- subset(abdata, w > 0)
fit3 <- vglm(y ~ 1, zipoisson(lpstr0 = probitlink, ipstr0 = 0.8),

data = abdata, weight = w, trace = TRUE)
fitted(fit3, type = "pobs0") # Estimate of P(Y = 0)
coef(fit3, matrix = TRUE)
Coef(fit3) # Estimate of pstr0 and lambda
fitted(fit3)
with(abdata, weighted.mean(y, w)) # Compare this with fitted(fit)
summary(fit3)

Example 4: zero-deflated (ZDP) model for intercept-only data
zdata <- transform(zdata, lambda3 = loglink(0.0, inverse = TRUE))
zdata <- transform(zdata, deflat.limit=-1/expm1(lambda3)) # Bndy
The 'pstr0' parameter is negative and in parameter space:
Not too near the boundary:
zdata <- transform(zdata, usepstr0 = deflat.limit / 2)
zdata <- transform(zdata,

y3 = rzipois(nn, lambda3, pstr0 = usepstr0))
head(zdata)
with(zdata, table(y3)) # A lot of deflation
fit4 <- vglm(y3 ~ 1, data = zdata, trace = TRUE, crit = "coef",

zipoisson(lpstr0 = "identitylink"))
coef(fit4, matrix = TRUE)
Check how accurate it was:
zdata[1, "usepstr0"] # Answer
coef(fit4)[1] # Estimate

920 Zoabeta

Coef(fit4)
vcov(fit4) # Is positive-definite

Example 5: This RR-ZIP is known as a COZIGAM or COZIVGLM-ZIP
set.seed(123)
rrzip <- rrvglm(Alopacce ~ sm.bs(WaterCon, df = 3),

zipoisson(zero = NULL),
data = hspider, trace = TRUE, Index.corner = 2)

coef(rrzip, matrix = TRUE)
Coef(rrzip)
summary(rrzip)
Not run: plotvgam(rrzip, lcol = "blue")

Zoabeta The Zero/One-Inflated Beta Distribution

Description

Density, distribution function, and random generation for the zero/one-inflated beta distribution.

Usage

dzoabeta(x, shape1, shape2, pobs0 = 0, pobs1 = 0, log = FALSE,
tol = .Machine$double.eps)

pzoabeta(q, shape1, shape2, pobs0 = 0, pobs1 = 0,
lower.tail = TRUE, log.p = FALSE, tol = .Machine$double.eps)

qzoabeta(p, shape1, shape2, pobs0 = 0, pobs1 = 0,
lower.tail = TRUE, log.p = FALSE, tol = .Machine$double.eps)

rzoabeta(n, shape1, shape2, pobs0 = 0, pobs1 = 0,
tol = .Machine$double.eps)

Arguments

x, q, p, n Same as Beta.

pobs0, pobs1 vector of probabilities that 0 and 1 are observed (ω0 and ω1).

shape1, shape2 Same as Beta. They are called a and b in beta respectively.
lower.tail, log, log.p

Same as Beta.

tol Numeric, tolerance for testing equality with 0 and 1.

Details

This distribution is a mixture of a discrete distribution with a continuous distribution. The cumula-
tive distribution function of Y is

F (y) = (1− ω0 − ω1)B(y) + ω0 × I[0 ≤ y] + ω1 × I[1 ≤ y]

zoabetaR 921

where B(y) is the cumulative distribution function of the beta distribution with the same shape
parameters (pbeta), ω0 is the inflated probability at 0 and ω1 is the inflated probability at 1. The
default values of ωj mean that these functions behave like the ordinary Beta when only the essential
arguments are inputted.

Value

dzoabeta gives the density, pzoabeta gives the distribution function, qzoabeta gives the quantile,
and rzoabeta generates random deviates.

Author(s)

Xiangjie Xue and T. W. Yee

See Also

zoabetaR, beta, betaR, Betabinom.

Examples

Not run:
N <- 1000; y <- rzoabeta(N, 2, 3, 0.2, 0.2)
hist(y, probability = TRUE, border = "blue", las = 1,

main = "Blue = 0- and 1-altered; orange = ordinary beta")
sum(y == 0) / N # Proportion of 0s
sum(y == 1) / N # Proportion of 1s
Ngrid <- 1000
lines(seq(0, 1, length = Ngrid),

dbeta(seq(0, 1, length = Ngrid), 2, 3), col = "orange")
lines(seq(0, 1, length = Ngrid), col = "blue",

dzoabeta(seq(0, 1, length = Ngrid), 2 , 3, 0.2, 0.2))

End(Not run)

zoabetaR Zero- and One-Inflated Beta Distribution Family Function

Description

Estimation of the shape parameters of the two-parameter beta distribution plus the probabilities of
a 0 and/or a 1.

Usage

zoabetaR(lshape1 = "loglink", lshape2 = "loglink", lpobs0 = "logitlink",
lpobs1 = "logitlink", ishape1 = NULL, ishape2 = NULL, trim = 0.05,
type.fitted = c("mean", "pobs0", "pobs1", "beta.mean"),
parallel.shape = FALSE, parallel.pobs = FALSE, zero = NULL)

922 zoabetaR

Arguments

lshape1, lshape2, lpobs0, lpobs1

Details at CommonVGAMffArguments. See Links for more choices.
ishape1, ishape2

Details at CommonVGAMffArguments.

trim, zero Same as betaR.
parallel.shape, parallel.pobs

See CommonVGAMffArguments for more information.

type.fitted The choice "beta.mean" mean to return the mean of the beta distribution; the
0s and 1s are ignored. See CommonVGAMffArguments for more information.

Details

The standard 2-parameter beta distribution has a support on (0,1), however, many datasets have 0
and/or 1 values too. This family function handles 0s and 1s (at least one of them must be present) in
the data set by modelling the probability of a 0 by a logistic regression (default link is the logit), and
similarly for the probability of a 1. The remaining proportion, 1-pobs0-pobs1, of the data comes
from a standard beta distribution. This family function therefore extends betaR. One has M = 3 or
M = 4 per response. Multiple responses are allowed.

Value

Similar to betaR.

Author(s)

Thomas W. Yee and Xiangjie Xue.

See Also

Zoabeta, betaR, betaff, Beta, zipoisson.

Examples

nn <- 1000; set.seed(1)
bdata <- data.frame(x2 = runif(nn))
bdata <- transform(bdata,

pobs0 = logitlink(-2 + x2, inverse = TRUE),
pobs1 = logitlink(-2 + x2, inverse = TRUE))

bdata <- transform(bdata,
y1 = rzoabeta(nn, shape1 = exp(1 + x2), shape2 = exp(2 - x2),

pobs0 = pobs0, pobs1 = pobs1))
summary(bdata)
fit1 <- vglm(y1 ~ x2, zoabetaR(parallel.pobs = TRUE),

data = bdata, trace = TRUE)
coef(fit1, matrix = TRUE)
summary(fit1)

Index

∗ DFBETAs
hatvalues, 402

∗ classes
biplot-methods, 122
calibrate-methods, 138
Coef.qrrvglm-class, 181
Coef.rrvglm-class, 184
concoef-methods, 197
rrvglm-class, 723
SurvS4-class, 786
vgam-class, 831
vglm-class, 842
vglmff-class, 849

∗ datagen
posbernUC, 648
rcqo, 696
simulate.vlm, 745

∗ datasets
auuc, 52
backPain, 54
beggs, 55
bmi.nz, 128
cfibrosis, 169
chest.nz, 171
chinese.nz, 172
coalminers, 177
corbet, 202
crashes, 210
deermice, 221
ducklings, 246
enzyme, 248
finney44, 285
flourbeetle, 294
gew, 373
grain.us, 385
hormone, 409
hspider, 411
Huggins89.t1, 414
hunua, 416

lakeO, 448
leukemia, 459
lirat, 475
lpossums, 514
machinists, 529
marital.nz, 535
melbmaxtemp, 543
olympics, 589
oxtemp, 596
pneumo, 629
prats, 662
prinia, 669
ruge, 730
toxop, 798
ucberk, 817
V1, 821
V2, 822
venice, 825
waitakere, 857
wine, 868

∗ distribution
alaplaceUC, 31
Benford, 57
Benini, 58
Betabinom, 61
Betageom, 73
Betanorm, 77
Biamhcop, 82
Biclaytoncop, 85
Bifgmcop, 89
bilogis, 97
Binom2.or, 100
Binom2.rho, 105
Binorm, 112
Binormcop, 117
Biplackett, 119
Bisa, 122
Bistudentt, 125
Bort, 130

923

924 INDEX

Card, 154
Dagum, 216
dAR1, 220
dextlogF, 225
dhuber, 230
Diffzeta, 232
dlogF, 241
Expectiles-Exponential, 251
Expectiles-Normal, 253
Expectiles-sc.t2, 254
Expectiles-Uniform, 256
expgeom, 262
explog, 268
exppois, 272
Felix, 279
Fisk, 288
Foldnorm, 295
Frank, 301
Frechet, 303
Gaitdbinom, 308
Gaitdlog, 311
Gaitdnbinom, 316
Gaitdpois, 322
Gaitdzeta, 332
GenbetaII, 345
gengammaUC, 351
Genpois0, 352
Genpois1, 354
genray, 361
gevUC, 371
Gompertz, 375
gpdUC, 384
Gumbel-II, 394
gumbelUC, 398
Hzeta, 421
Inv.gaussian, 429
Inv.lomax, 432
Inv.paralogistic, 435
Kumar, 446
laplaceUC, 453
lgammaUC, 463
Lindley, 464
Lino, 471
Log, 484
loglapUC, 500
Lomax, 511
Makeham, 530
Maxwell, 538

Nakagami, 568
Paralogistic, 596
Pareto, 599
ParetoIV, 603
Perks, 607
PoissonPoints, 634
Polono, 635
posbernUC, 648
Posgeom, 651
Posnorm, 656
Rayleigh, 691
rcqo, 696
rdiric, 700
Rice, 709
Simplex, 743
Sinmad, 747
Skellam, 750
skewnorm, 753
Slash, 756
Tobit, 788
Topple, 796
Triangle, 799
Trinorm, 805
Truncpareto, 813
UtilitiesVGAM, 820
Yules, 871
Zabinom, 873
Zageom, 876
Zanegbin, 880
Zapois, 884
Zeta, 889
Zibinom, 894
Zigeom, 898
Zinegbin, 902
Zipf, 909
Zipfmb, 912
Zipois, 914
Zoabeta, 920

∗ dplot
plotdeplot.lmscreg, 616
plotqrrvglm, 618
plotvgam.control, 626

∗ graphs
deplot.lmscreg, 222
dgaitdplot, 227
lvplot.qrrvglm, 522
lvplot.rrvglm, 526
perspqrrvglm, 610

INDEX 925

plotdgaitd.vglm, 617
plotqtplot.lmscreg, 620
plotvgam, 624
plotvglm, 628
prplot, 674
qtplot.gumbel, 681
qtplot.lmscreg, 683
rlplot.gevff, 713
spikeplot, 770
trplot.qrrvglm, 809

∗ hplot
vplot.profile, 853

∗ htest
anova.vglm, 43
hdeff, 404
hdeffsev, 407
lrt.stat, 517
lrtest, 519
score.stat, 734
wald.stat, 858

∗ manip
iam, 423

∗ math
bell, 56
cauchitlink, 157
clogloglink, 175
erf, 249
expint, 265
explink, 266
fisherzlink, 286
foldsqrtlink, 298
gordlink, 378
identitylink, 425
kendall.tau, 443
lambertW, 450
lerch, 457
logclink, 486
logitlink, 492
logitoffsetlink, 495
loglink, 506
logloglink, 507
logofflink, 510
mills.ratio, 548
multilogitlink, 563
nbcanlink, 572
nbordlink, 574
ordpoisson, 592
pgamma.deriv, 613

pgamma.deriv.unscaled, 614
pordlink, 637
powerlink, 661
probitlink, 670
reciprocallink, 704
rhobitlink, 708
round2, 717
zeta, 890

∗ methods
biplot-methods, 122
calibrate-methods, 138
concoef-methods, 197

∗ models
A1A2A3, 16
AA.Aa.aa, 18
AB.Ab.aB.ab, 19
ABO, 20
acat, 21
add1.vglm, 23
AICvlm, 24
alaplace, 26
altered, 32
amlbinomial, 34
amlexponential, 36
amlnormal, 38
amlpoisson, 40
AR1, 45
aux.posbernoulli.t, 53
benini1, 60
betabinomial, 65
betabinomialff, 68
betaff, 71
betageometric, 74
betaII, 76
betaprime, 79
betaR, 80
biamhcop, 83
biclaytoncop, 86
BICvlm, 88
bifgmcop, 90
bifgmexp, 91
bifrankcop, 93
bigamma.mckay, 94
bigumbelIexp, 96
bilogistic, 99
binom2.or, 102
binom2.rho, 107
binomialff, 110

926 INDEX

binormal, 114
binormalcop, 116
biplackettcop, 120
biplot-methods, 122
bisa, 123
bistudentt, 126
borel.tanner, 129
Brat, 131
brat, 133
bratt, 135
calibrate, 137
calibrate-methods, 138
calibrate.qrrvglm, 139
calibrate.qrrvglm.control, 142
calibrate.rrvglm, 144
calibrate.rrvglm.control, 146
cao, 147
cao.control, 151
cardioid, 156
cauchitlink, 157
cauchy, 159
cdf.lmscreg, 161
cens.gumbel, 163
cens.normal, 165
cens.poisson, 166
cgo, 170
chisq, 173
clo, 174
clogloglink, 175
Coef, 178
Coef.qrrvglm, 179
Coef.rrvglm, 183
Coef.vlm, 185
coefvgam, 186
coefvlm, 187
CommonVGAMffArguments, 188
concoef, 196
concoef-methods, 197
confintvglm, 198
constraints, 200
cqo, 203
cratio, 211
cumulative, 213
dagum, 218
deplot.lmscreg, 222
depvar, 224
df.residual, 226
dgaitdplot, 227

diffzeta, 233
dirichlet, 235
dirmul.old, 236
dirmultinomial, 238
double.cens.normal, 242
double.expbinomial, 243
eCDF, 247
erlang, 250
expexpff, 258
expexpff1, 260
expgeometric, 263
explink, 266
explogff, 269
exponential, 270
exppoisson, 274
extlogF1, 275
familyname, 278
felix, 280
fff, 281
fill1, 282
fisherzlink, 286
fisk, 289
fittedvlm, 291
fix.crossing, 292
foldnormal, 296
foldsqrtlink, 298
formulavlm, 300
frechet, 304
freund61, 306
gaitdlog, 313
gaitdnbinomial, 318
gaitdpoisson, 325
gaitdzeta, 334
gamma1, 337
gamma2, 338
gammahyperbola, 340
gammaR, 341
garma, 343
genbetaII, 346
gengamma.stacy, 349
genpoisson0, 356
genpoisson1, 358
genpoisson2, 360
genrayleigh, 363
geometric, 364
get.smart, 366
get.smart.prediction, 367
gev, 368

INDEX 927

gompertz, 377
gordlink, 378
gpd, 380
grc, 386
gumbel, 391
gumbelII, 396
guplot, 399
has.interceptvlm, 401
hdeff, 404
hdeffsev, 407
huber2, 413
hyperg, 418
hypersecant, 419
hzeta, 422
identitylink, 425
Influence, 426
inv.binomial, 427
inv.gaussianff, 430
inv.lomax, 433
inv.paralogistic, 436
is.buggy, 438
is.crossing, 439
is.parallel, 440
is.smart, 441
is.zero, 442
KLD, 444
kumar, 447
laplace, 451
latvar, 454
leipnik, 456
levy, 459
lgamma1, 461
lindley, 465
linkfun, 467
Links, 468
lino, 473
lms.bcg, 476
lms.bcn, 478
lms.yjn, 481
logclink, 486
logF, 487
logff, 489
logistic, 490
logitlink, 492
logitoffsetlink, 495
loglaplace, 496
logLik.vlm, 501
loglinb2, 503

loglinb3, 504
loglink, 506
logloglink, 507
lognormal, 509
logofflink, 510
lomax, 513
lqnorm, 515
lrt.stat, 517
lvplot, 520
lvplot.qrrvglm, 522
lvplot.rrvglm, 526
makeham, 531
margeff, 533
Max, 536
maxwell, 539
mccullagh89, 540
meangaitd, 542
meplot, 544
micmen, 546
mix2exp, 549
mix2normal, 551
mix2poisson, 553
MNSs, 555
model.framevlm, 557
model.matrixqrrvglm, 558
model.matrixvlm, 559
multilogitlink, 563
multinomial, 564
nakagami, 570
nbcanlink, 572
nbordlink, 574
negbinomial, 576
negbinomial.size, 583
normal.vcm, 584
nparam.vlm, 588
Opt, 590
ordpoisson, 592
ordsup, 594
paralogistic, 598
paretoff, 601
paretoIV, 605
perks, 608
perspqrrvglm, 610
plotdeplot.lmscreg, 616
plotdgaitd.vglm, 617
plotqrrvglm, 618
plotqtplot.lmscreg, 620
plotvgam, 624

928 INDEX

plotvgam.control, 626
plotvglm, 628
poisson.points, 630
poissonff, 632
pordlink, 637
posbernoulli.b, 639
posbernoulli.t, 642
posbernoulli.tb, 645
posbinomial, 649
posnegbinomial, 653
posnormal, 657
pospoisson, 659
powerlink, 661
predictqrrvglm, 663
predictvglm, 665
prentice74, 667
probitlink, 670
profilevglm, 671
propodds, 673
prplot, 674
put.smart, 675
qrrvglm.control, 676
qtplot.gumbel, 681
qtplot.lmscreg, 683
Qvar, 685
qvar, 688
R2latvar, 689
Rank, 690
rayleigh, 693
rec.exp1, 701
rec.normal, 703
reciprocallink, 704
residualsvglm, 705
rhobitlink, 708
riceff, 710
rigff, 712
rlplot.gevff, 713
rootogram4, 715
rrar, 718
rrvglm, 720
rrvglm.control, 726
rrvglm.optim.control, 729
s, 731
sc.studentt2, 733
score.stat, 734
seglines, 736
Select, 737
seq2binomial, 740

setup.smart, 741
simplex, 744
simulate.vlm, 745
sinmad, 748
skellam, 751
skewnormal, 754
slash, 757
sm.os, 759
sm.ps, 763
smart.expression, 765
smart.mode.is, 766
smartpred, 767
specials, 769
spikeplot, 770
sratio, 772
step4, 774
studentt, 775
summarypvgam, 777
summaryvgam, 778
summaryvglm, 779
SURff, 782
TIC, 787
tobit, 790
Tol, 794
topple, 797
triangle, 801
trim.constraints, 803
trinormal, 806
trplot, 808
trplot.qrrvglm, 809
Trunc, 812
truncweibull, 815
uninormal, 818
UtilitiesVGAM, 820
vcovvlm, 823
vgam, 827
vgam-class, 831
VGAM-package, 13
vgam.control, 834
vglm, 836
vglm.control, 845
vonmises, 851
vplot.profile, 853
wald.stat, 858
waldff, 861
weibull.mean, 862
weibullR, 863
weightsvglm, 866

INDEX 929

wrapup.smart, 869
yeo.johnson, 869
yulesimon, 872
zabinomial, 874
zageometric, 878
zanegbinomial, 881
zapoisson, 885
zero, 888
zetaff, 893
zibinomial, 896
zigeometric, 900
zinegbinomial, 903
zipebcom, 906
zipf, 911
zipoisson, 916

∗ package
VGAM-package, 13

∗ programming
get.smart, 366
get.smart.prediction, 367
iam, 423
is.smart, 441
put.smart, 675
setup.smart, 741
smart.expression, 765
smart.mode.is, 766
smartpred, 767
UtilitiesVGAM, 820
wrapup.smart, 869
zero, 888

∗ regression
A1A2A3, 16
AA.Aa.aa, 18
AB.Ab.aB.ab, 19
ABO, 20
acat, 21
AICvlm, 24
alaplace, 26
amlbinomial, 34
amlexponential, 36
amlnormal, 38
amlpoisson, 40
AR1, 45
aux.posbernoulli.t, 53
benini1, 60
betabinomial, 65
betabinomialff, 68
betaff, 71

betageometric, 74
betaII, 76
betaprime, 79
betaR, 80
biamhcop, 83
biclaytoncop, 86
BICvlm, 88
bifgmcop, 90
bifgmexp, 91
bifrankcop, 93
bigamma.mckay, 94
bigumbelIexp, 96
bilogistic, 99
binom2.or, 102
binom2.rho, 107
binomialff, 110
binormal, 114
binormalcop, 116
biplackettcop, 120
biplot-methods, 122
bisa, 123
bistudentt, 126
borel.tanner, 129
Brat, 131
brat, 133
bratt, 135
calibrate, 137
calibrate-methods, 138
calibrate.qrrvglm, 139
calibrate.qrrvglm.control, 142
calibrate.rrvglm, 144
calibrate.rrvglm.control, 146
cao, 147
cao.control, 151
cardioid, 156
cauchitlink, 157
cauchy, 159
cdf.lmscreg, 161
cens.gumbel, 163
cens.normal, 165
cens.poisson, 166
cgo, 170
chisq, 173
clo, 174
clogloglink, 175
Coef, 178
Coef.qrrvglm, 179
Coef.rrvglm, 183

930 INDEX

Coef.vlm, 185
coefvgam, 186
coefvlm, 187
concoef, 196
concoef-methods, 197
confintvglm, 198
constraints, 200
cqo, 203
cratio, 211
cumulative, 213
dagum, 218
deplot.lmscreg, 222
depvar, 224
df.residual, 226
dgaitdplot, 227
diffzeta, 233
dirichlet, 235
dirmul.old, 236
dirmultinomial, 238
double.cens.normal, 242
double.expbinomial, 243
eCDF, 247
erlang, 250
expexpff, 258
expexpff1, 260
expgeometric, 263
explink, 266
explogff, 269
exponential, 270
exppoisson, 274
extlogF1, 275
familyname, 278
felix, 280
fff, 281
fill1, 282
fisherzlink, 286
fisk, 289
fittedvlm, 291
fix.crossing, 292
foldnormal, 296
foldsqrtlink, 298
formulavlm, 300
frechet, 304
freund61, 306
gaitdlog, 313
gaitdnbinomial, 318
gaitdpoisson, 325
gaitdzeta, 334

gamma1, 337
gamma2, 338
gammahyperbola, 340
gammaR, 341
garma, 343
genbetaII, 346
gengamma.stacy, 349
genpoisson0, 356
genpoisson1, 358
genpoisson2, 360
genrayleigh, 363
geometric, 364
get.smart, 366
get.smart.prediction, 367
gev, 368
gompertz, 377
gordlink, 378
gpd, 380
grc, 386
gumbel, 391
gumbelII, 396
guplot, 399
has.interceptvlm, 401
hatvalues, 402
hdeff, 404
hdeffsev, 407
huber2, 413
hyperg, 418
hypersecant, 419
hzeta, 422
identitylink, 425
inv.binomial, 427
inv.gaussianff, 430
inv.lomax, 433
inv.paralogistic, 436
is.buggy, 438
is.crossing, 439
is.parallel, 440
is.smart, 441
is.zero, 442
KLD, 444
kumar, 447
laplace, 451
latvar, 454
leipnik, 456
levy, 459
lgamma1, 461
lindley, 465

INDEX 931

linkfun, 467
lino, 473
lms.bcg, 476
lms.bcn, 478
lms.yjn, 481
logclink, 486
logF, 487
logff, 489
logistic, 490
logitlink, 492
logitoffsetlink, 495
loglaplace, 496
logLik.vlm, 501
loglinb2, 503
loglinb3, 504
loglink, 506
logloglink, 507
lognormal, 509
logofflink, 510
lomax, 513
lqnorm, 515
lrt.stat, 517
lvplot, 520
lvplot.qrrvglm, 522
lvplot.rrvglm, 526
makeham, 531
margeff, 533
Max, 536
maxwell, 539
mccullagh89, 540
meangaitd, 542
meplot, 544
micmen, 546
mix2exp, 549
mix2normal, 551
mix2poisson, 553
MNSs, 555
multilogitlink, 563
multinomial, 564
nakagami, 570
nbcanlink, 572
nbordlink, 574
negbinomial, 576
negbinomial.size, 583
normal.vcm, 584
nparam.vlm, 588
Opt, 590
ordpoisson, 592

ordsup, 594
paralogistic, 598
paretoff, 601
paretoIV, 605
perks, 608
perspqrrvglm, 610
plotdeplot.lmscreg, 616
plotdgaitd.vglm, 617
plotqrrvglm, 618
plotqtplot.lmscreg, 620
plotvgam, 624
plotvgam.control, 626
plotvglm, 628
poisson.points, 630
poissonff, 632
pordlink, 637
posbernoulli.b, 639
posbernoulli.t, 642
posbernoulli.tb, 645
posbinomial, 649
posnegbinomial, 653
posnormal, 657
pospoisson, 659
powerlink, 661
predictqrrvglm, 663
predictvglm, 665
prentice74, 667
probitlink, 670
profilevglm, 671
propodds, 673
prplot, 674
put.smart, 675
qrrvglm.control, 676
qtplot.gumbel, 681
qtplot.lmscreg, 683
Qvar, 685
qvar, 688
R2latvar, 689
Rank, 690
rayleigh, 693
rec.exp1, 701
rec.normal, 703
reciprocallink, 704
residualsvglm, 705
rhobitlink, 708
riceff, 710
rigff, 712
rlplot.gevff, 713

932 INDEX

rrar, 718
rrvglm, 720
rrvglm.control, 726
rrvglm.optim.control, 729
s, 731
sc.studentt2, 733
score.stat, 734
seglines, 736
Select, 737
seq2binomial, 740
setup.smart, 741
simplex, 744
sinmad, 748
skellam, 751
skewnormal, 754
slash, 757
sm.os, 759
sm.ps, 763
smart.expression, 765
smart.mode.is, 766
smartpred, 767
spikeplot, 770
sratio, 772
studentt, 775
summarypvgam, 777
summaryvgam, 778
summaryvglm, 779
SURff, 782
TIC, 787
tobit, 790
Tol, 794
topple, 797
triangle, 801
trim.constraints, 803
trinormal, 806
trplot, 808
trplot.qrrvglm, 809
Trunc, 812
truncweibull, 815
uninormal, 818
UtilitiesVGAM, 820
vcovvlm, 823
vgam, 827
vgam-class, 831
VGAM-package, 13
vgam.control, 834
vglm, 836
vglm.control, 845

vonmises, 851
vsmooth.spline, 854
wald.stat, 858
waldff, 861
weibull.mean, 862
weibullR, 863
weightsvglm, 866
wrapup.smart, 869
yeo.johnson, 869
yulesimon, 872
zabinomial, 874
zageometric, 878
zanegbinomial, 881
zapoisson, 885
zero, 888
zetaff, 893
zibinomial, 896
zigeometric, 900
zinegbinomial, 903
zipebcom, 906
zipf, 911
zipoisson, 916
zoabetaR, 921

∗ smooth
plotvgam, 624
plotvgam.control, 626
plotvglm, 628
s, 731
sm.os, 759
sm.ps, 763
vgam, 827
vgam-class, 831
vgam.control, 834
vsmooth.spline, 854

∗ survival
SurvS4, 784

∗ ts
rrar, 718

.Machine, 353

.Random.seed, 698
[.SurvS4 (SurvS4), 784

A1A2A3, 16, 19–21, 556
AA.Aa.aa, 17, 18, 20, 21, 556
AB.Ab.aB.ab, 17, 19, 19, 21, 556
ABO, 17, 19, 20, 20, 556
acat, 21, 190, 213–215, 440, 534, 535, 567,

706, 773, 850
add1.glm, 23, 24, 774

INDEX 933

add1.vglm, 23, 24, 44, 560, 774, 841
AIC, 26, 89, 502, 788
AICc,vglm-method (AICvlm), 24
AICqrrvglm (AICvlm), 24
AICrrvgam (AICvlm), 24
AICrrvglm (AICvlm), 24
AICvgam (AICvlm), 24
AICvlm, 24, 88, 89, 588, 644, 650, 651, 788,

841
alaplace, 26
alaplace1, 28, 35, 37, 39, 42, 275–277, 480,

497, 498, 746, 860
alaplace1 (alaplace), 26
alaplace2, 388, 452, 746
alaplace2 (alaplace), 26
alaplace3, 31, 32, 500, 501
alaplace3 (alaplace), 26
alaplaceUC, 31
alclevels (crashes), 210
alcoff, 390, 561, 562
alcoff (crashes), 210
altered, 32, 770
amlbinomial, 34, 37, 39, 42, 111
amlexponential, 35, 36, 37, 39, 271, 477
amlnormal, 29, 35, 37, 38, 42, 254, 480, 483
amlpoisson, 35, 37, 39, 40, 633
anova, 519
anova.glm, 43, 44
anova.vglm, 24, 43, 227, 502, 518, 520, 735,

841, 859, 860
AR1, 45, 49–51, 220, 221, 819
AR1EIM, 46, 47, 48
arima.sim, 47
array, 786
as.character.SurvS4 (SurvS4), 784
as.data.frame.SurvS4 (SurvS4), 784
auuc, 52, 390
aux.posbernoulli.t, 53, 640

backPain, 54
backPain2, 24, 44, 774
backPain2 (backPain), 54
beggs, 55
bell, 56, 450
bellff, 56
Benford, 57
Benini, 58, 61
benini1, 59, 60, 602
Bessel, 853

besselI, 711
Beta, 62–64, 72, 73, 80, 82, 920–922
beta, 62, 66, 71, 73, 78, 81, 473, 488, 872,

920, 921
Betabinom, 61, 63, 67, 70, 921
betabinomial, 63, 64, 65, 69, 70, 111, 239,

240, 663, 746
betabinomialff, 63, 64, 67, 68, 72, 82, 238,

240, 663, 746
betaff, 67, 70, 71, 73, 75, 77, 80–82, 348,

448, 746, 922
Betageom, 73
betageometric, 72, 74, 82, 365
betaII, 72, 76, 82, 220, 290, 348, 434, 437,

514, 599, 750
Betanorm, 77
betaprime, 72, 79, 82
betaR, 72, 80, 746, 921, 922
Biamhcop, 82
biamhcop, 82, 83, 83, 98, 746
BIC, 89
Biclaytoncop, 85
biclaytoncop, 85, 86, 746
BICvgam (BICvlm), 88
BICvlm, 26, 88, 644, 650, 651, 788
Bifgmcop, 89
bifgmcop, 84, 89, 90, 90, 92, 94, 746
bifgmexp, 91, 91, 97
bifrankcop, 91, 93, 119, 121, 302, 746
bigamma.mckay, 94, 339, 342
bigumbelIexp, 84, 92, 96
bilogis, 97, 98
bilogistic, 98, 99, 492, 746
Binom2.or, 100
binom2.or, 101, 102, 102, 104, 108, 109, 503,

504, 888, 907–909
Binom2.rho, 105
binom2.Rho (binom2.rho), 107
binom2.rho, 103, 104, 106, 107, 107, 504, 709
Binomial, 309, 895, 897
binomial, 110, 111
binomialff, 34, 66–70, 104, 109, 110, 133,

134, 136, 140, 141, 144, 150, 176,
203, 207, 244, 245, 294, 299, 329,
404, 405, 419, 633, 640, 650, 651,
681, 689, 699, 706, 741, 745, 746,
829, 840, 876, 879, 883, 887, 896,
897

934 INDEX

Binorm, 112
binormal, 85, 114, 114, 118, 127, 746, 806,

807, 819
binormalcop, 85, 116, 118, 444, 746
Binormcop, 117
Biplackett, 119
biplackettcop, 119, 120
biplot,qrrvglm-method (biplot-methods),

122
biplot,rrvglm-method (biplot-methods),

122
biplot-methods, 122
biplot.rrvglm, 528, 722
biplot.rrvglm (lvplot.rrvglm), 526
Bisa, 122
bisa, 122, 123, 123, 431
Bistudentt, 125
bistudentt, 115, 126, 126
bmi.nz, 39, 128, 477, 483, 536
borel.tanner, 129, 130, 131, 281, 404
Bort, 130
boxcox, 870
Brat, 131, 134, 136
brat, 131, 132, 133, 134–136
bratt, 131–134, 135
bs, 275, 283, 369, 382, 438, 439, 520, 534,

732, 761, 764, 766–768, 804

calibrate, 137, 141, 145, 666
calibrate,Coef.qrrvglm-method

(calibrate-methods), 138
calibrate,qrrvglm-method

(calibrate-methods), 138
calibrate,rrvgam-method

(calibrate-methods), 138
calibrate,rrvglm-method

(calibrate-methods), 138
calibrate-methods, 138
calibrate.qrrvglm, 138, 139, 142–145, 150,

207, 664
calibrate.qrrvglm.control, 140, 141, 142,

146, 147
calibrate.rrvglm, 138, 141, 144, 146, 147,

722
calibrate.rrvglm.control, 144, 145, 146
cao, 13, 110, 111, 141, 147, 151, 154, 176,

205, 207, 418, 470, 520, 580, 581,
632, 633, 680, 829, 830

cao.control, 148–150, 151

Card, 154
cardioid, 155, 156, 853
cauchit, 161
cauchitlink, 103, 104, 157, 176, 177, 213,

215, 343, 469, 494, 585, 671, 773
Cauchy, 158, 161
cauchy, 158, 159, 746
cauchy1, 158, 746, 776
cauchy1 (cauchy), 159
cbind, 200, 738, 739
cdf.lmscreg, 161, 477, 480, 483
cennormal (cens.normal), 165
cens.gumbel, 163, 393
cens.normal, 165, 243, 791, 792, 819
cens.poisson, 166, 549, 633, 785
cens.rayleigh (rayleigh), 693
cfibrosis, 169, 741
cgo, 170
chest.nz, 171, 536
chinese.nz, 172
chisq, 173, 350, 746
chisq.test, 706, 707
Chisquare, 174
choose, 237, 239
clo, 174
clogloglink, 103, 104, 110, 149, 158, 175,

176, 203, 213–215, 267, 343, 469,
487, 494, 497, 585, 671, 689, 690,
773, 907, 909

coalminers, 104, 109, 177
Coef, 149, 178, 186, 454, 520, 536, 590, 794,

808
coef, 13, 178, 179, 185–188, 197, 198
coef,vgam-method (coefvgam), 186
Coef.qrrvglm, 143, 179, 179, 180, 182, 207,

522, 524, 525, 611, 612, 663, 681
Coef.qrrvglm-class, 181
Coef.rrvglm, 147, 179, 183, 185, 528, 722
Coef.rrvglm-class, 184
Coef.vlm, 179, 185
coefficients,vgam-method (coefvgam), 186
coefvgam, 186, 188
coefvlm, 186, 187, 187, 841
colMeans, 646
colnames, 327, 389
CommonVGAMffArguments, 15, 18, 20, 22, 27,

29, 34, 36, 38, 41, 45, 60, 65, 68, 71,
76, 79, 81, 84, 86, 90, 93, 95, 99,

INDEX 935

103, 108, 110, 114, 116, 120,
124–126, 129, 132, 147, 156, 160,
165, 166, 173, 188, 201, 203, 212,
214, 215, 218, 219, 235, 242, 244,
245, 250, 260, 261, 264, 269, 271,
274, 276, 280, 281, 289, 291, 296,
297, 304, 306, 314, 315, 319–321,
327, 328, 331, 335–339, 342,
347–349, 356, 359, 360, 363, 364,
368–370, 377, 381, 392, 396, 413,
414, 422, 427, 430, 433, 436, 447,
451, 461, 466, 473, 478, 480, 482,
488, 489, 491, 492, 503, 505, 509,
513, 515, 532, 539, 541, 547, 550,
552, 554, 564–566, 575, 577, 578,
581, 585, 598, 601, 609, 632, 639,
642, 645, 648, 650, 653–655, 658,
659, 667, 693, 703, 711, 733, 744,
749, 752, 754, 758, 772, 775, 782,
790–792, 797, 807, 815, 818, 821,
837, 838, 852, 861, 862, 864, 872,
875, 876, 878, 879, 882, 883,
886–889, 893, 896, 900, 904, 906,
907, 909, 916, 917, 922

concoef, 149, 196, 196
concoef,cao-method (concoef-methods),

197
concoef,Coef.cao-method

(concoef-methods), 197
concoef,Coef.qrrvglm-method

(concoef-methods), 197
concoef,Coef.rrvglm-method

(concoef-methods), 197
concoef,qrrvglm-method

(concoef-methods), 197
concoef,rrvglm-method

(concoef-methods), 197
concoef-method (concoef-methods), 197
concoef-methods, 197
confint, 139, 198, 199
confint.default, 198
confint.lm, 199
confintrrvglm (confintvglm), 198
confintvgam (confintvglm), 198
confintvglm, 198, 407, 518, 594, 672, 781,

825, 841, 854
constraints, 200, 327, 440, 441, 443, 804,

838, 889

constraints.vlm, 560, 841
cor, 444
corbet, 202, 655
coxph, 404
cqo, 13, 15, 110, 111, 141, 147, 148, 150, 170,

175, 176, 181, 182, 203, 338, 388,
390, 412, 418, 470, 520, 525, 558,
559, 577, 578, 580, 581, 612, 619,
632, 633, 664, 676, 681, 699, 721,
722, 728, 768, 795, 811

crashbc (crashes), 210
crashes, 210
crashf (crashes), 210
crashi, 390, 562, 722
crashi (crashes), 210
crashmc (crashes), 210
crashp (crashes), 210
crashtr (crashes), 210
cratio, 23, 190, 211, 214, 215, 440, 534, 535,

567, 706, 772, 773, 850
cumsum, 545
cumulative, 23, 88, 190, 198, 213, 213, 278,

299, 379, 403, 404, 440, 492, 534,
535, 566, 567, 574, 575, 594, 595,
630, 637, 638, 673–675, 689, 690,
706, 773, 850, 860

cut, 592, 696, 698, 699

Dagum, 216, 220
dagum, 77, 217, 218, 290, 348, 434, 437, 514,

599, 746, 750
dalap, 226, 276, 277, 501
dalap (alaplaceUC), 31
dAR1, 47, 220
data.frame, 557
dbenf (Benford), 57
dbenini (Benini), 58
dbetabinom (Betabinom), 61
dbetageom (Betageom), 73
dbetanorm (Betanorm), 77
dbiamhcop (Biamhcop), 82
dbiclaytoncop, 87
dbiclaytoncop (Biclaytoncop), 85
dbifgmcop (Bifgmcop), 89
dbifrankcop (Frank), 301
dbilogis (bilogis), 97
dbinom, 62, 310, 873, 876
dbinom2.or (Binom2.or), 100
dbinom2.rho (Binom2.rho), 105

936 INDEX

dbinorm (Binorm), 112
dbinormcop (Binormcop), 117
dbiplackcop (Biplackett), 119
dbisa (Bisa), 122
dbistudentt, 127
dbistudentt (Bistudentt), 125
dbort (Bort), 130
dcard (Card), 154
ddagum (Dagum), 216
ddiffzeta (Diffzeta), 232
deermice, 53, 221, 640, 644, 647
deexp, 37, 254, 257
deexp (Expectiles-Exponential), 251
deflated (altered), 32
denorm, 35, 39, 252, 257, 480
denorm (Expectiles-Normal), 253
deparse1, 771
deplot.lmscreg, 162, 222, 477, 480, 483,

616, 617, 684
depvar, 179, 224
deunif, 252–254
deunif (Expectiles-Uniform), 256
deviance, 227
dexp, 252
dexpgeom, 264
dexpgeom (expgeom), 262
dexplog, 270
dexplog (explog), 268
dexppois, 275
dexppois (exppois), 272
dextlogF, 31, 32, 225, 241, 277
df.residual, 226
df.residual_vlm (df.residual), 226
dfbeta (hatvalues), 402
dfbetavlm (hatvalues), 402
dfelix, 281
dfelix (Felix), 279
dfisk (Fisk), 288
dfoldnorm (Foldnorm), 295
dfrechet (Frechet), 303
dgaitdbinom (Gaitdbinom), 308
dgaitdlog, 229
dgaitdlog (Gaitdlog), 311
dgaitdnbinom (Gaitdnbinom), 316
dgaitdplot, 227, 309, 325, 542, 543, 617,

618, 771
dgaitdpois, 229
dgaitdpois (Gaitdpois), 322

dgaitdzeta (Gaitdzeta), 332
dgamma, 337
dgenbetaII, 348
dgenbetaII (GenbetaII), 345
dgengamma.stacy (gengammaUC), 351
dgenpois0 (Genpois0), 352
dgenpois1 (Genpois1), 354
dgenpois2 (Genpois1), 354
dgenray, 364
dgenray (genray), 361
dgeom, 877, 879, 898, 899
dgev, 369
dgev (gevUC), 371
dgompertz, 378, 399
dgompertz (Gompertz), 375
dgpd, 381, 382
dgpd (gpdUC), 384
dgumbel, 376, 395
dgumbel (gumbelUC), 398
dgumbelII, 393, 397
dgumbelII (Gumbel-II), 394
dhuber, 230
dhyper, 418, 419
dhzeta, 423
dhzeta (Hzeta), 421
Diffzeta, 232, 234
diffzeta, 232, 233, 233, 894
digamma, 668
dimm (UtilitiesVGAM), 820
dinv.gaussian (Inv.gaussian), 429
dinv.lomax (Inv.lomax), 432
dinv.paralogistic (Inv.paralogistic),

435
dirichlet, 235, 238, 240, 247, 424, 567, 701,

745, 746
dirmul.old, 236, 240
dirmultinomial, 67, 70, 236–238, 238, 567
dkumar, 448
dkumar (Kumar), 446
dlaplace (laplaceUC), 453
dlgamma (lgammaUC), 463
dlind, 466
dlind (Lindley), 464
dlino (Lino), 471
dlog, 311, 312
dlog (Log), 484
dlogF, 241, 488
dlogis, 491

INDEX 937

dloglap, 498
dloglap (loglapUC), 500
dlomax (Lomax), 511
dmakeham, 376, 532, 533
dmakeham (Makeham), 530
dmaxwell (Maxwell), 538
dnaka (Nakagami), 568
dnbinom, 317, 880, 883, 902
dnorm, 254, 298, 658, 819
do.call, 229
double.cens.normal, 166, 242, 704, 792,

819
double.expbinomial, 111, 243, 799
dparalogistic (Paralogistic), 596
dpareto (Pareto), 599
dparetoI (ParetoIV), 603
dparetoII (ParetoIV), 603
dparetoIII (ParetoIV), 603
dparetoIV (ParetoIV), 603
dperks, 610
dperks (Perks), 607
dpois, 141, 324, 354, 357, 554, 634, 751, 752,

915
dpois.points (PoissonPoints), 634
dpolono (Polono), 635
dposbern, 640, 644
dposbern (posbernUC), 648
dposgeom (Posgeom), 651
dposnorm (Posnorm), 656
drayleigh (Rayleigh), 691
drice, 711
drice (Rice), 709
drop1.glm, 23, 24, 774
drop1.vglm, 26, 44, 560, 774, 804, 841
drop1.vglm (add1.vglm), 23
dsc.t2, 257, 733, 734
dsc.t2 (Expectiles-sc.t2), 254
dsimplex, 745
dsimplex (Simplex), 743
dsinmad (Sinmad), 747
dskellam, 752
dskellam (Skellam), 750
dskewnorm (skewnorm), 753
dslash (Slash), 756
dt, 126, 255, 491
dtobit, 791
dtobit (Tobit), 788
dtopple (Topple), 796

dtriangle (Triangle), 799
dtrinorm (Trinorm), 805
dtruncpareto (Truncpareto), 813
ducklings, 246
dunif, 257
dweibull, 815, 816, 863, 865
dyules, 872
dyules (Yules), 871
dzabinom, 876
dzabinom (Zabinom), 873
dzageom, 879
dzageom (Zageom), 876
dzanegbin (Zanegbin), 880
dzapois (Zapois), 884
dzeta, 333
dzeta (Zeta), 889
dzibinom (Zibinom), 894
dzigeom (Zigeom), 898
dzinegbin (Zinegbin), 902
dzipf, 912
dzipf (Zipf), 909
dzipfmb (Zipfmb), 912
dzipois, 885
dzipois (Zipois), 914
dzoabeta, 72
dzoabeta (Zoabeta), 920
dzoibetabinom (Betabinom), 61

eCDF, 247, 277, 480
edhuber (dhuber), 230
eexp (Expectiles-Exponential), 251
enorm (Expectiles-Normal), 253
enzyme, 248, 548
erf, 249
erfc (erf), 249
erlang, 250, 404, 746
eunif (Expectiles-Uniform), 256
exp, 266, 450, 486
Expectiles-Exponential, 251
Expectiles-Normal, 253
Expectiles-sc.t2, 254
Expectiles-Uniform, 256
expexpff, 258, 261, 339, 342, 863, 865
expexpff1, 259, 260, 260
expexpint (expint), 265
expgeom, 262
expgeometric, 263, 263, 271, 365
expint, 265
explink, 266, 507, 685, 686, 688, 818

938 INDEX

explog, 268
explogff, 268, 269, 271, 490
expm1, 485, 486
Exponential, 271, 385
exponential, 36, 37, 251, 263, 264, 268, 270,

270, 275, 307, 341, 452, 551, 702,
706, 746

exppois, 272
exppoisson, 273, 274
extlogF1, 28, 29, 32, 35, 37, 39, 42, 225, 226,

247, 248, 275, 293, 439, 440, 480,
488

extlogitlink, 71, 72, 157, 370, 420, 469
extlogitlink (logitlink), 492
extractAIC.vglm, 24, 26, 774

familyname, 278
FDist, 282
Felix, 279
felix, 130, 279, 280, 404
fff, 281
fill1, 222, 282, 566, 567, 647, 739, 840, 841,

846, 847
finney44, 285
fisherz, 709
fisherzlink, 109, 286, 469, 585, 708
Fisk, 288, 290
fisk, 77, 220, 288, 289, 289, 348, 434, 437,

514, 599, 746, 750
fitted, 292
fitted.values.vlm (fittedvlm), 291
fittedvlm, 191, 291, 665, 841, 875, 878, 882,

886, 896, 900, 904, 905, 916
fix.crossing, 275, 277, 292, 440
flourbeetle, 294
Foldnorm, 295
foldnormal, 295, 296, 755, 819
foldsqrtlink, 298, 469
format.SurvS4 (SurvS4), 784
formula, 301, 519, 738, 739
formula.vlm (formulavlm), 300
formulavlm, 300, 402
Frank, 301
Frechet, 303
frechet, 303, 304, 304, 370
freund61, 271, 306

Gaitdbinom, 308, 318, 325, 874, 895
Gaitdlog, 310, 311, 314, 315, 318, 325, 485

gaitdlog, 33, 229, 312, 313, 321, 327, 331,
336, 374, 375, 490, 813

Gaitdnbinom, 228, 230, 310, 316, 321, 325,
881, 883

gaitdnbinomial, 318, 318, 331, 374, 375,
445, 581, 655, 883, 906

Gaitdpois, 33, 228, 230, 309, 310, 312, 315,
317, 318, 320, 322, 328, 329, 331,
333, 336, 543, 567, 660, 770, 885,
887, 915

gaitdpoisson, 33, 228–230, 313–315,
319–321, 325, 325, 327, 335, 336,
374, 375, 445, 543, 564, 567, 617,
618, 633, 660, 770, 771, 812, 813,
887, 918

Gaitdzeta, 310, 312, 318, 325, 332, 335, 336
gaitdzeta, 33, 315, 321, 331, 333, 334, 374,

375, 715, 813, 894
gam, 829, 840
gamma, 95, 250, 337, 339, 342, 891, 892
gamma1, 337, 339, 342, 350, 462, 746
gamma2, 96, 150, 203, 207, 338, 342, 350, 379,

571, 678, 681, 697, 699, 746
GammaDist, 339
gammahyperbola, 340
gammaR, 251, 260, 337–339, 341, 466, 746
garma, 343
gaussian, 819
gaussianff (uninormal), 818
GenbetaII, 345
genbetaII, 72, 77, 82, 217, 219, 220, 289,

290, 346, 346, 433, 434, 436, 437,
474, 512, 514, 597, 599, 748–750

gengamma.stacy, 349, 351, 352, 462, 668, 746
gengammaUC, 351
Genpois0, 352, 355, 358
Genpois1, 353, 354, 354, 359
Genpois2, 361
Genpois2 (Genpois1), 354
genpoisson0, 352–354, 356, 357, 359–361,

580, 581, 633
genpoisson1, 357, 358, 358, 361, 580, 581,

633
genpoisson2, 191, 357–359, 360, 580, 581,

633
genray, 361
genrayleigh, 362, 363, 694
Geometric, 365

INDEX 939

geometric, 73, 75, 263, 264, 364, 746, 879,
901

get.smart, 366, 366, 367, 676, 766–768
get.smart.prediction, 366, 367, 768
gev, 164, 305, 368, 372, 383, 392, 393, 397,

399, 401, 826, 863–865
gevff, 372, 393, 425, 715
gevff (gev), 368
gevUC, 371
gew, 373, 783
glm, 13, 188, 366, 470, 560, 581, 716, 742,

767, 819, 829, 837, 839, 840, 850,
867

goffset, 315, 321, 331, 336, 374, 813
Gompertz, 375
gompertz, 376, 377, 533, 746
gordlink, 213, 215, 339, 378, 469, 575, 638
gpd, 271, 370, 380, 384, 385, 545, 546, 602,

607, 826
gpdUC, 384
grain.us, 385, 719
grc, 55, 211, 386, 589, 722
grep, 192
gumbel, 163, 164, 370, 391, 397–399, 401,

682, 683
Gumbel-II, 394
gumbelff, 164, 370, 399, 401, 682
gumbelff (gumbel), 391
gumbelII, 395, 396, 746, 863, 865
gumbelUC, 398
guplot, 164, 370, 393, 399, 826

has.intercept (has.interceptvlm), 401
has.interceptvlm, 301, 401
hatplot (hatvalues), 402
hatvalues, 402, 707
hatvaluesvlm, 841
hatvaluesvlm (hatvalues), 402
hdeff, 14, 15, 331, 404, 406–408, 508, 518,

735, 737, 859, 860
hdeff.vglm, 110, 111, 215, 633, 781, 819,

824, 825, 841, 918
hdeffsev, 405–407, 407, 736, 737, 860
hist, 550, 554, 770
hormone, 409
hspider, 207, 411
huber1 (huber2), 413
huber2, 231, 232, 413, 776, 819
Huggins89.t1, 414, 644, 647

Huggins89table1, 644, 647
Huggins89table1 (Huggins89.t1), 414
hunua, 416, 505, 858
hyperg, 418
hypersecant, 241, 419
hypersecant01 (hypersecant), 419
Hzeta, 421, 423
hzeta, 421, 422, 422, 746, 894

I, 731
iam, 423
identity, 586, 632, 711
identitylink, 191, 425, 469, 585, 594, 705,

917
inflated, 770
inflated (altered), 32
Influence, 426
influence.measures, 403
integrate, 635, 636, 756, 757
interleave.VGAM (UtilitiesVGAM), 820
inv.binomial, 427, 581, 633
Inv.gaussian, 429, 431
inv.gaussianff, 125, 429, 430, 430, 861, 862
Inv.lomax, 432
inv.lomax, 77, 220, 290, 348, 432, 433, 433,

434, 437, 514, 599, 746, 750
Inv.paralogistic, 435, 437
inv.paralogistic, 77, 220, 290, 348,

434–436, 436, 514, 599, 746, 750
iris, 567
is.altered (altered), 32
is.buggy, 438, 732, 829, 830
is.crossing, 275–277, 293, 439
is.deflated (altered), 32
is.inflated (altered), 32
is.na.SurvS4 (SurvS4), 784
is.parallel, 201, 440
is.smart, 441, 761, 764
is.SurvS4 (SurvS4), 784
is.truncated (altered), 32
is.zero, 201, 442

kendall.tau, 87, 117, 443
KLD, 321, 331, 444
KLDvglm (KLD), 444
Kumar, 446
kumar, 72, 82, 446, 447, 746

lakeO, 448

940 INDEX

lambertW, 450, 507, 530, 531
laplace, 29, 271, 414, 451, 453, 454
laplaceUC, 453
latvar, 150, 454, 455, 521
lbeta, 62
legend, 736
leipnik, 456, 542
lerch, 457, 892
leukemia, 459, 785
levy, 459
lfactorial, 353
lgamma, 418, 462, 668
lgamma1, 338, 461, 463, 464, 746
lgamma3, 464, 668, 746
lgamma3 (lgamma1), 461
lgammaUC, 463
Lindley, 464
lindley, 338, 404, 465, 465, 746
linearHypothesis, 824
linkfun, 467, 467, 470
linkfunvlm, 841
linkfunvlm (linkfun), 467
Links, 15, 17–20, 22, 27, 45, 60, 65, 68, 74,

76, 79, 81, 83, 86, 90, 92, 93, 95, 96,
99, 103, 108, 110, 111, 114, 116,
120, 124, 126, 129, 156, 157, 160,
163, 165–167, 176, 177, 189, 194,
212, 213, 215, 219, 235, 237, 239,
242, 244, 250, 258, 261, 264, 267,
271, 274, 276, 280, 281, 286, 287,
289, 296, 298, 299, 304, 306, 314,
327, 335, 337, 338, 340, 342, 347,
349, 356, 359, 360, 363, 364, 368,
377, 379, 381, 392, 396, 413, 418,
420, 422, 425–427, 430, 433, 436,
447, 451, 456, 460, 461, 466, 468,
473, 478, 486–489, 491, 493–497,
506–511, 513, 515, 532, 539, 541,
547, 550, 551, 554, 556, 563, 564,
570, 572–575, 577, 598, 601, 605,
609, 630, 632, 633, 637, 638, 653,
658, 659, 661, 667, 670, 671, 693,
702–704, 708, 709, 711, 712, 733,
740, 744, 749, 752, 754, 758, 772,
775, 790, 801, 807, 815, 818, 852,
862, 864, 872, 875, 878, 882, 886,
893, 896, 900, 904, 907, 911, 916,
922

Lino, 471, 474
lino, 348, 472, 473, 746
lirat, 67, 70, 475
list, 838
lm, 39, 188, 227, 366, 367, 560, 586, 742, 767
lm.influence, 427
lms.bcg, 37, 162, 224, 476, 480, 483, 684
lms.bcn, 29, 39, 162, 224, 247, 248, 254, 275,

277, 293, 440, 476, 477, 478, 482,
483, 544, 684

lms.yjn, 162, 223, 224, 477, 480, 481, 620,
684, 870

lms.yjn2 (lms.yjn), 481
Log, 484, 490
log, 266, 450, 486, 489, 490, 507
log10, 294
log1mexp, 485
log1p, 485, 486
log1pexp (log1mexp), 485
logclink, 469, 486, 507
loge, 469
logF, 241, 277, 487
logff, 58, 315, 484, 485, 488, 489, 655, 746
logffMlink, 314, 315, 374
Logistic, 494
logistic, 100, 490, 493, 746, 776
logistic1, 215, 491, 494, 746
logistic1 (logistic), 490
logit, 469
logitlaplace1, 498
logitlaplace1 (loglaplace), 496
logitlink, 104, 110, 149, 158, 176, 177, 191,

203, 213, 215, 276, 287, 329, 343,
357, 426, 469, 489, 492, 492,
495–497, 507, 563, 564, 585, 594,
671, 689, 690, 773

logitoffsetlink, 177, 494, 495
loglaplace, 496
loglaplace1, 501
loglaplace1 (loglaplace), 496
loglapUC, 500
logLik, 519
logLik.vlm, 501
loglinb2, 104, 109, 503, 505
loglinb3, 504, 504
loglink, 158, 191, 267, 276, 343, 426, 469,

473, 487, 489, 490, 494, 497, 506,
508, 510, 511, 534, 573, 585, 632,

INDEX 941

633, 661, 862
loglog, 423, 508, 775, 893
loglog (logloglink), 507
logloglink, 469, 487, 507, 507, 577, 585
loglogloglink, 469
loglogloglink (logloglink), 507
logneglink (loglink), 506
Lognormal, 509, 635
lognormal, 350, 509, 636, 746, 863, 865
logofflink, 368, 381, 469, 487, 490, 507,

508, 510, 542, 585
Lomax, 511, 514
lomax, 77, 220, 290, 348, 434, 437, 512, 513,

599, 746, 750
lpossums, 514, 918
lqnorm, 515
lrt.stat, 407, 408, 517, 672, 735, 854, 860
lrt.stat.vlm, 44, 199, 406, 520, 780, 781,

824, 825, 841
lrtest, 44, 518, 519
lrtest_vglm, 841
lrtest_vglm (lrtest), 519
lv, 455
lv (latvar), 454
lvplot, 122, 149, 206, 455, 520, 525, 528, 809
lvplot.qrrvglm, 180, 181, 207, 521, 522,

611, 612, 619, 680
lvplot.rrvglm, 526, 528, 722, 725

machinists, 529
magic, 760, 761, 764, 830, 835
Makeham, 530
makeham, 377, 378, 530, 531, 531, 746
mapply, 353
margeff, 23, 213, 215, 533, 567, 773, 792
marital.nz, 535
match.call, 765
Math.SurvS4 (SurvS4), 784
matrix, 101, 106, 193, 250, 323, 404, 405,

583, 786, 791
Max, 149, 150, 536, 591, 795
Maxwell, 538, 540, 634
maxwell, 538, 539, 539, 630, 631, 692, 694,

863, 865
mccullagh89, 457, 540
meangaitd, 230, 321, 331, 542
median, 452
medpolish, 388, 390
melbmaxtemp, 543

meplot, 383, 544
methods, 777–779
micmen, 248, 546, 838
mills.ratio, 166, 167, 548, 792
mills.ratio2 (mills.ratio), 548
mix2exp, 271, 549
mix2normal, 551, 555, 819
mix2poisson, 551, 553, 553, 633
MNSs, 17, 19–21, 555
model.frame, 557
model.framevlm, 557, 560
model.matrix, 225, 560
model.matrix.default, 148, 838
model.matrixqrrvglm, 207, 558, 824, 825
model.matrixvlm, 557, 559, 559, 804
moffset, 390, 561, 562, 623, 695, 696
multilogitlink, 189, 194, 230, 321, 331,

467, 494, 563, 567, 585
multinom, 566
Multinomial, 567
multinomial, 22, 23, 133, 134, 145, 212–215,

236, 238, 240, 283, 310, 312, 318,
321, 325, 327, 331, 333, 390, 424,
440, 527, 534, 535, 563, 564, 564,
706, 773

Nakagami, 568
nakagami, 569, 570
nbcanlink, 572, 581, 584
nbordlink, 213, 215, 379, 469, 574, 581, 638
nef.hs (hypersecant), 419
NegBinomial, 319, 581
negbinomial, 150, 192, 203, 207, 320, 321,

355, 358, 359, 361, 365, 388, 428,
508, 529, 572–575, 576, 583, 584,
632, 633, 636, 653–655, 678, 681,
697, 699, 722, 746, 882, 883, 902,
904–906, 918

negbinomial.size, 572, 573, 581, 582, 746
negidentitylink, 469
negidentitylink (identitylink), 425
negloglink, 339, 342, 469, 577, 579, 606
negloglink (loglink), 506
negreciprocallink, 469
negreciprocallink (reciprocallink), 704
nobs.vlm, 841
Normal, 78, 549, 553, 671, 871, 889, 910
normal.vcm, 189, 194, 406, 564, 584, 819
nparam (nparam.vlm), 588

942 INDEX

nparam.vlm, 588
npred.vlm, 841
ns, 283, 369, 382, 438, 439, 520, 732, 767, 768

Oalog, 312
oalog, 314, 315, 490
Oazeta, 333, 890
oazeta, 335, 336, 892, 894
offset, 375
Oilog, 312, 485
oilog, 314, 315, 490
oipospoisson, 633
Oizeta, 233, 333, 890
oizeta, 335, 336, 892, 894
oldClass, 786
olym08, 390
olym08 (olympics), 589
olym12, 390
olym12 (olympics), 589
olympics, 589
Ops.SurvS4 (SurvS4), 784
Opt, 149, 150, 537, 590, 795
optim, 140, 141, 143, 145, 148, 152, 678, 679,

681, 729, 730
options, 148, 203, 837
order, 182
ordered, 22, 212, 214, 593, 673, 773
ordpoisson, 592, 633, 638
ordsup, 215, 594, 819
Otlog, 312, 485
otlog, 314, 315, 490
otpospoisson, 633, 660
Otzeta, 333, 890
otzeta, 335, 336, 892, 894
oxtemp, 370, 596

pairs, 853
palap (alaplaceUC), 31
par, 228, 229, 400, 403, 522–525, 527, 528,

545, 611, 612, 616, 619–622, 628,
674, 675, 682, 713, 714, 770, 771,
810, 811

Paralogistic, 596, 599
paralogistic, 77, 220, 290, 348, 434, 437,

514, 597, 598, 746, 750
param.names (UtilitiesVGAM), 820
Pareto, 599, 602, 604
paretoff, 383, 600, 601, 606, 607
ParetoI (ParetoIV), 603

ParetoII (ParetoIV), 603
paretoII (paretoIV), 605
ParetoIII (ParetoIV), 603
paretoIII (paretoIV), 605
ParetoIV, 600, 603, 607
paretoIV, 602, 604, 605
paste, 820
pbenf (Benford), 57
pbenini (Benini), 58
pbeta, 921
pbetabinom (Betabinom), 61
pbetabinom.ab, 63
pbetageom (Betageom), 73
pbetanorm (Betanorm), 77
pbiamhcop (Biamhcop), 82
pbifgmcop (Bifgmcop), 89
pbifrankcop (Frank), 301
pbilogis (bilogis), 97
pbinom, 310, 894
pbinorm, 109, 115, 116
pbinorm (Binorm), 112
pbinormcop (Binormcop), 117
pbiplackcop (Biplackett), 119
pbisa, 125
pbisa (Bisa), 122
pcard (Card), 154
pchisq, 518
pdagum (Dagum), 216
pdiffzeta (Diffzeta), 232
peexp (Expectiles-Exponential), 251
penorm (Expectiles-Normal), 253
Perks, 607
perks, 608, 608, 746
persp, 611, 612
perspqrrvglm, 207, 525, 610, 809
peunif (Expectiles-Uniform), 256
pexp, 252
pexpgeom (expgeom), 262
pexplog (explog), 268
pexppois (exppois), 272
pfisk (Fisk), 288
pfoldnorm (Foldnorm), 295
pfrechet (Frechet), 303
pgaitdbinom (Gaitdbinom), 308
pgaitdlog (Gaitdlog), 311
pgaitdnbinom (Gaitdnbinom), 316
pgaitdpois (Gaitdpois), 322
pgaitdzeta (Gaitdzeta), 332

INDEX 943

pgamma, 613–615
pgamma.deriv, 613, 614, 615, 815, 816
pgamma.deriv.unscaled, 614, 614, 815, 816
pgengamma.stacy (gengammaUC), 351
pgenpois0 (Genpois0), 352
pgenpois1 (Genpois1), 354
pgenpois2 (Genpois1), 354
pgenray (genray), 361
pgev (gevUC), 371
pgompertz (Gompertz), 375
pgpd (gpdUC), 384
pgumbel, 177
pgumbel (gumbelUC), 398
pgumbelII (Gumbel-II), 394
phuber (dhuber), 230
phzeta (Hzeta), 421
pinv.gaussian (Inv.gaussian), 429
pinv.lomax (Inv.lomax), 432
pinv.paralogistic (Inv.paralogistic),

435
pkumar (Kumar), 446
plaplace (laplaceUC), 453
plgamma (lgammaUC), 463
plind (Lindley), 464
plino (Lino), 471
plog, 233, 312
plog (Log), 484
ploglap (loglapUC), 500
plomax (Lomax), 511
plot, 228, 400, 545, 611, 628, 770, 771, 810,

853
plot.default, 228, 229, 622, 623
plot.profile, 672
plot.vgam (plotvgam), 624
plot.window, 623
plotdeplot.lmscreg, 223, 224, 616
plotdgaitd, 230, 321, 331, 771
plotdgaitd (plotdgaitd.vglm), 617
plotdgaitd.vglm, 617
plotqrrvglm, 618
plotqtplot.lmscreg, 620, 684
plotrcim0, 390, 562, 622, 696
plotvgam, 624, 627, 628, 706, 724, 830, 832,

839, 843
plotvgam.control, 625, 626, 626, 628
plotvglm, 626, 628, 841
pmakeham, 530
pmakeham (Makeham), 530

pmaxwell (Maxwell), 538
pnaka (Nakagami), 568
pnbinom, 317
pneumo, 23, 213, 215, 565, 629, 773
pnorm, 31, 57, 59, 113, 114, 116, 117, 122,

124, 155, 217, 231, 249, 250, 253,
273, 288, 295, 297, 351, 362, 376,
395, 421, 432, 435, 446, 453, 463,
465, 472, 500, 511, 530, 538, 569,
597, 600, 604, 608, 658, 692, 709,
747, 756, 796, 800, 806, 814, 871

pnorm2 (Binorm), 112
points, 771
Poisson, 323, 325, 353, 358, 359, 361, 633,

889, 910
poisson, 275, 633
poisson.points, 540, 630, 633, 634, 694
poissonff, 41, 130, 140, 141, 144, 145, 150,

167, 203, 207, 271, 329, 331, 355,
357–359, 361, 390, 404, 405, 428,
529, 555, 581, 584, 592, 593, 631,
632, 636–638, 660, 681, 699, 706,
746, 752, 822, 823, 829, 840

PoissonPoints, 634
polf, 593, 633
Polono, 635
poly, 534, 766–768, 804
polya, 746
polya (negbinomial), 576
polyaR, 746
polyaR (negbinomial), 576
pordlink, 213, 215, 379, 469, 575, 637
posbernoulli.b, 222, 506, 507, 639, 643,

644, 646–649, 651
posbernoulli.t, 53, 222, 639, 640, 642, 643,

645–651, 738
posbernoulli.tb, 25, 639, 640, 643, 644,

645, 649–651, 788
posbernUC, 648
Posbinom, 310
posbinomial, 25, 111, 193, 640, 643, 644,

646, 647, 649, 746, 876, 897
Posgeom, 651
Posnegbin, 317
posnegbinomial, 581, 653, 660, 746, 883,

887, 904
Posnorm, 656
posnormal, 657, 657, 746, 792, 819

944 INDEX

Pospois, 324, 325, 660
pospoisson, 331, 633, 655, 659, 746, 887
powerlink, 426, 469, 661, 705
pparalogistic (Paralogistic), 596
ppareto (Pareto), 599
pparetoI (ParetoIV), 603
pparetoII (ParetoIV), 603
pparetoIII (ParetoIV), 603
pparetoIV (ParetoIV), 603
pperks (Perks), 607
ppoints, 581
ppois, 166, 324
ppolono (Polono), 635
pposgeom (Posgeom), 651
pposnorm (Posnorm), 656
prats, 662
prayleigh (Rayleigh), 691
predict, 13, 137, 138, 666
predict.bs, 768
predict.lm, 742
predict.poly, 768
predictqrrvglm, 207, 663
predictvglm, 291, 292, 557, 560, 663, 664,

665, 841
prentice74, 350, 462, 464, 667
price (Rice), 709
prinia, 640, 644, 647, 669
probitlink, 103, 104, 158, 176, 177, 213,

215, 294, 343, 426, 469, 494, 497,
585, 594, 670, 689, 690, 773

profile, 672
profile.glm, 198, 199, 672, 854
profile.nls, 854
profilevglm, 198, 407, 518, 671, 854
propodds, 215, 278, 440, 535, 595, 673, 674,

690
prplot, 215, 674
psc.t2 (Expectiles-sc.t2), 254
psinmad (Sinmad), 747
pslash, 757
pslash (Slash), 756
pt, 127, 255
ptobit (Tobit), 788
ptopple (Topple), 796
ptriangle (Triangle), 799
ptruncpareto (Truncpareto), 813
punif, 256, 257, 303, 372, 384, 398
put.smart, 675, 766–768

pyules (Yules), 871
pzabinom (Zabinom), 873
pzageom (Zageom), 876
pzanegbin (Zanegbin), 880
pzapois (Zapois), 884
pzeta, 333
pzeta (Zeta), 889
pzibinom (Zibinom), 894
pzigeom (Zigeom), 898
pzinegbin (Zinegbin), 902
pzipf (Zipf), 909
pzipfmb (Zipfmb), 912
pzipois (Zipois), 914
pzoabeta (Zoabeta), 920
pzoibetabinom (Betabinom), 61

qalap (alaplaceUC), 31
qbenf (Benford), 57
qbenini (Benini), 58
qbetanorm (Betanorm), 77
qbinom, 310
qbisa (Bisa), 122
qcard (Card), 154
qdagum (Dagum), 216
qdiffzeta (Diffzeta), 232
qeexp (Expectiles-Exponential), 251
qenorm (Expectiles-Normal), 253
qeunif (Expectiles-Uniform), 256
qexp, 252
qexpgeom (expgeom), 262
qexplog (explog), 268
qexppois (exppois), 272
qfisk (Fisk), 288
qfoldnorm (Foldnorm), 295
qfrechet (Frechet), 303
qgaitdbinom (Gaitdbinom), 308
qgaitdlog (Gaitdlog), 311
qgaitdnbinom (Gaitdnbinom), 316
qgaitdpois (Gaitdpois), 322
qgaitdzeta (Gaitdzeta), 332
qgamma, 337
qgengamma.stacy (gengammaUC), 351
qgenpois0 (Genpois0), 352
qgenpois1 (Genpois1), 354
qgenpois2 (Genpois1), 354
qgenray (genray), 361
qgev (gevUC), 371
qgompertz (Gompertz), 375
qgpd (gpdUC), 384

INDEX 945

qgumbel (gumbelUC), 398
qgumbelII (Gumbel-II), 394
qhuber (dhuber), 230
qhzeta (Hzeta), 421
qinv.lomax (Inv.lomax), 432
qinv.paralogistic (Inv.paralogistic),

435
qkumar (Kumar), 446
qlaplace (laplaceUC), 453
qlgamma (lgammaUC), 463
qlino (Lino), 471
qlog, 312
qlog (Log), 484
qloglap (loglapUC), 500
qlomax (Lomax), 511
qmakeham (Makeham), 530
qmaxwell (Maxwell), 538
qnaka (Nakagami), 568
qnbinom, 317, 577
qnorm, 31, 57, 59, 122, 155, 217, 231, 253,

273, 288, 295, 351, 362, 376, 395,
421, 432, 435, 446, 453, 463, 465,
472, 500, 511, 530, 538, 569, 597,
600, 604, 608, 692, 706, 709, 747,
756, 796, 800, 814, 871

qparalogistic (Paralogistic), 596
qpareto (Pareto), 599
qparetoI (ParetoIV), 603
qparetoII (ParetoIV), 603
qparetoIII (ParetoIV), 603
qparetoIV, 606
qparetoIV (ParetoIV), 603
qperks (Perks), 607
qpois, 324
qposgeom (Posgeom), 651
qposnorm (Posnorm), 656
qrayleigh (Rayleigh), 691
qrice (Rice), 709
qrrvglm.control, 152, 153, 204–207, 338,

559, 577, 676, 698, 699
qsc.t2 (Expectiles-sc.t2), 254
qsinmad (Sinmad), 747
qt, 255
qtobit (Tobit), 788
qtopple (Topple), 796
qtplot.gumbel, 681
qtplot.gumbelff (qtplot.gumbel), 681
qtplot.lmscreg, 162, 224, 477, 480, 483,

621, 683
qtriangle (Triangle), 799
qtruncpareto (Truncpareto), 813
quantile, 190, 191, 550, 552, 554, 579, 758,

760
quasipoisson, 357–359, 361, 578, 581
qunif, 256, 257, 303, 372, 384, 398
Qvar, 267, 390, 685, 688, 819
qvar, 686, 688
qyules (Yules), 871
qzabinom (Zabinom), 873
qzageom (Zageom), 876
qzanegbin (Zanegbin), 880
qzapois (Zapois), 884
qzeta, 333
qzeta (Zeta), 889
qzibinom (Zibinom), 894
qzigeom (Zigeom), 898
qzinegbin (Zinegbin), 902
qzipf (Zipf), 909
qzipfmb (Zipfmb), 912
qzipois (Zipois), 914
qzoabeta (Zoabeta), 920

R2latvar, 215, 673, 689
ralap, 29
ralap (alaplaceUC), 31
range, 812, 813
Rank, 690
rank, 691
Rayleigh, 539, 691, 694
rayleigh, 350, 362, 364, 539, 540, 571, 630,

631, 692, 693, 694, 711, 746, 863,
865

rbell, 56
rbenf (Benford), 57
rbenini (Benini), 58
rbetabinom (Betabinom), 61
rbetageom, 72, 75, 82, 365
rbetageom (Betageom), 73
rbetanorm, 72, 82
rbetanorm (Betanorm), 77
rbiamhcop, 84
rbiamhcop (Biamhcop), 82
rbiclaytoncop, 87
rbiclaytoncop (Biclaytoncop), 85
rbifgmcop, 91
rbifgmcop (Bifgmcop), 89
rbifrankcop, 93, 94

946 INDEX

rbifrankcop (Frank), 301
rbilogis, 84, 100
rbilogis (bilogis), 97
rbinom, 310
rbinom2.or, 104
rbinom2.or (Binom2.or), 100
rbinom2.rho, 109
rbinom2.rho (Binom2.rho), 105
rbinorm, 806
rbinorm (Binorm), 112
rbinormcop, 117
rbinormcop (Binormcop), 117
rbiplackcop, 121
rbiplackcop (Biplackett), 119
rbisa (Bisa), 122
rbort, 130, 131
rbort (Bort), 130
rcard, 157
rcard (Card), 154
Rcim, 390, 562, 623, 695
rcim, 13, 15, 55, 211, 267, 561, 562, 622, 623,

685, 686, 688, 695, 696, 795, 849,
851

rcim (grc), 386
rcqo, 207, 681, 696
rdagum (Dagum), 216
rdiffzeta (Diffzeta), 232
rdiric, 236, 700
rec.exp1, 701
rec.normal, 406, 703
reciprocal, 343
reciprocallink, 469, 577, 579, 704
reexp (Expectiles-Exponential), 251
renorm (Expectiles-Normal), 253
resid, 707
residualsvglm, 111, 331, 633, 705, 841
reunif (Expectiles-Uniform), 256
rexp, 252, 271, 551
rexpgeom (expgeom), 262
rexplog (explog), 268
rexppois (exppois), 272
rfisk (Fisk), 288
rfoldnorm, 298
rfoldnorm (Foldnorm), 295
rfrechet, 305
rfrechet (Frechet), 303
rgaitdbinom (Gaitdbinom), 308
rgaitdlog (Gaitdlog), 311

rgaitdnbinom (Gaitdnbinom), 316
rgaitdpois (Gaitdpois), 322
rgaitdzeta (Gaitdzeta), 332
rgamma, 251, 337, 339, 342
rgengamma.stacy, 350
rgengamma.stacy (gengammaUC), 351
rgenpois0 (Genpois0), 352
rgenpois1 (Genpois1), 354
rgenpois2 (Genpois1), 354
rgenray (genray), 361
rgeom, 652, 901
rgev, 370
rgev (gevUC), 371
rgompertz (Gompertz), 375
rgpd, 382, 383
rgpd (gpdUC), 384
rgumbel, 164, 393
rgumbel (gumbelUC), 398
rgumbelII (Gumbel-II), 394
rhobitlink, 109, 115, 287, 357, 469, 542,

585, 708
rhuber, 413, 414
rhuber (dhuber), 230
rhzeta (Hzeta), 421
Rice, 709
riceff, 694, 709, 710, 710, 746
rig, 745
rigff, 712
rinv.gaussian, 862
rinv.gaussian (Inv.gaussian), 429
rinv.lomax (Inv.lomax), 432
rinv.paralogistic (Inv.paralogistic),

435
rkumar (Kumar), 446
rlaplace, 452
rlaplace (laplaceUC), 453
rlgamma, 462
rlgamma (lgammaUC), 463
rlind (Lindley), 464
rlino (Lino), 471
rlog, 312
rlog (Log), 484
rlogis, 98, 492
rloglap (loglapUC), 500
rlomax (Lomax), 511
rlplot.gev (rlplot.gevff), 713
rlplot.gevff, 370, 713
rmakeham (Makeham), 530

INDEX 947

rmaxwell (Maxwell), 538
rnaka, 571
rnaka (Nakagami), 568
rnbinom, 317, 577, 579, 580, 583, 584, 655,

902, 903
RNG, 746
rnorm, 85, 113, 118, 253, 295, 656, 789, 792,

805
rootogram4, 315, 321, 331, 336, 715
rootogram4vglm (rootogram4), 715
Round, 27, 34, 36, 38, 41
round, 717, 718
round2, 717, 791, 792
rownames, 389
rowSums, 327
rparalogistic (Paralogistic), 596
rpareto (Pareto), 599
rparetoI (ParetoIV), 603
rparetoII (ParetoIV), 603
rparetoIII (ParetoIV), 603
rparetoIV (ParetoIV), 603
rperks (Perks), 607
rpois, 271, 324, 555, 906, 918
rpois.points (PoissonPoints), 634
rpolono (Polono), 635
rposbern, 640, 644
rposbern (posbernUC), 648
rposgeom, 877
rposgeom (Posgeom), 651
rposnorm (Posnorm), 656
rrar, 718
rrayleigh (Rayleigh), 691
rrice (Rice), 709
rrvglm, 13, 15, 22, 55, 79, 81, 100, 111,

144–146, 149, 156, 174, 175,
183–185, 207, 211, 212, 214, 235,
237, 240, 314, 321, 329, 336, 387,
389, 390, 410, 418, 431, 456, 470,
476, 479, 491, 503, 505, 520, 528,
540, 541, 565–567, 579–581, 583,
624, 631–633, 654, 660, 694, 719,
720, 723, 725, 727, 728, 733, 768,
772, 787, 841, 851, 852, 917, 918

rrvglm-class, 723
rrvglm.control, 206, 387, 389, 390, 528,

680, 720–722, 726, 730
rrvglm.optim.control, 727, 728, 729
rsc.t2 (Expectiles-sc.t2), 254

rsimplex (Simplex), 743
rsinmad, 191
rsinmad (Sinmad), 747
rskellam (Skellam), 750
rskewnorm (skewnorm), 753
rslash, 759
rslash (Slash), 756
rstandard, 707
rtobit, 792
rtobit (Tobit), 788
rtopple (Topple), 796
rtriangle (Triangle), 799
rtrinorm, 807
rtrinorm (Trinorm), 805
rtruncpareto (Truncpareto), 813
ruge, 633, 730
runif, 59, 62, 73, 78, 82, 89, 101, 106, 119,

122, 155, 232, 255–257, 302, 303,
351–354, 375, 395, 421, 453, 463,
465, 472, 484, 530, 569, 599, 604,
607, 648, 652, 692, 706, 709, 743,
751, 753, 756, 800, 814, 894, 898,
902

rweibull, 191
ryules, 873
ryules (Yules), 871
rzabinom (Zabinom), 873
rzageom (Zageom), 876
rzanegbin (Zanegbin), 880
rzapois, 887
rzapois (Zapois), 884
rzeta, 333
rzeta (Zeta), 889
rzibinom, 896, 897
rzibinom (Zibinom), 894
rzigeom, 901
rzigeom (Zigeom), 898
rzinegbin, 915
rzinegbin (Zinegbin), 902
rzipf (Zipf), 909
rzipfmb (Zipfmb), 912
rzipois, 903
rzipois (Zipois), 914
rzoabeta (Zoabeta), 920
rzoibetabinom (Betabinom), 61

s, 13, 187, 283, 369, 382, 383, 438, 731, 731,
760, 761, 764, 778, 827–830, 833,
835, 856

948 INDEX

sc.studentt2, 29, 255, 733, 776
scale, 149, 622, 680, 767, 768
score.stat, 407, 518, 734, 781, 860
score.stat.vlm, 44, 406, 520, 780, 841
seglines, 408, 736
Select, 283, 390, 644, 647, 737, 846, 847
seq2binomial, 111, 169, 740
set.seed, 149, 150, 205, 207, 698, 706
setdiff, 813
setMethod, 534, 781
setup.smart, 741, 768, 869
ships, 686, 688
show,SurvS4-method (SurvS4-class), 786
show.summary.pvgam (summarypvgam), 777
show.summary.vgam (summaryvgam), 778
show.summary.vglm (summaryvglm), 779
show.SurvS4 (SurvS4), 784
Simplex, 743
simplex, 111, 236, 713, 743, 744, 746
simulate, 745, 850
simulate.vlm, 29, 67, 70, 72, 82, 84, 91, 94,

111, 161, 220, 251, 271, 290, 315,
321, 331, 336, 338, 339, 342, 350,
365, 378, 422, 423, 434, 437, 448,
466, 490, 492, 509, 514, 533, 581,
584, 610, 633, 651, 655, 660, 694,
711, 745, 750, 759, 776, 802, 819,
873, 879, 883, 887, 901, 912, 918

Sinmad, 747, 750
sinmad, 77, 191, 220, 290, 348, 434, 437, 514,

599, 746–748, 748
Skellam, 750
skellam, 633, 751, 751
skewnorm, 753, 755
skewnormal, 298, 753, 754, 754, 819
Slash, 756
slash, 746, 756, 757, 757
sm.bs, 367, 804
sm.bs (smartpred), 767
sm.ns, 804
sm.ns (smartpred), 767
sm.os, 13, 732, 759, 761, 763, 764, 777, 778,

827–830, 834, 856
sm.poly, 366, 804
sm.poly (smartpred), 767
sm.ps, 13, 438, 732, 760, 761, 763, 768, 777,

778, 827–830, 834
sm.scale (smartpred), 767

smart.expression, 765, 767, 768
smart.mode.is, 766, 768
smartpred, 148, 204, 557, 560, 666, 721, 722,

761, 764, 767, 829, 838, 840, 841
smooth.spline, 760, 761, 855, 856
specials, 321, 325, 331, 769
specialsvglm, 33
specialsvglm (specials), 769
spikeplot, 230, 315, 321, 325, 328, 329, 331,

336, 618, 770, 876, 879, 883, 887,
897, 901, 906, 918

splineDesign, 760, 761, 764
sratio, 23, 190, 212–215, 440, 534, 535, 567,

706, 772, 850
stat.anova, 44
step, 774
step4, 774
step4vglm, 24, 560, 804, 841
step4vglm (step4), 774
stop, 44
structure, 786
studentt, 161, 491, 746, 775, 819
studentt2, 733, 734, 746
studentt2 (studentt), 775
studentt3, 746
studentt3 (studentt), 775
subset, 738, 739, 827
subsetcol (Select), 737
sum, 502
summary, 149, 781
summary.gam, 777–779
summary.glm, 735, 778–781, 859, 860
summary.lm, 690, 778, 779, 781
Summary.SurvS4 (SurvS4), 784
summarypvgam, 761, 764, 777, 779, 830
summaryvgam, 778, 778, 830
summaryvglm, 14, 199, 406, 407, 518, 735,

777, 778, 779, 803, 804, 825, 841,
859, 860

SURff, 373, 374, 782, 819
Surv, 167
survreg, 785, 786
SurvS4, 167, 784, 786, 865
SurvS4-class, 786

table, 770, 771
TDist, 776
term.names (formulavlm), 300
term.namesvlm (formulavlm), 300

INDEX 949

terms, 724, 832, 840, 843
TIC, 787
TICvlm, 26
TICvlm (TIC), 787
title, 228, 611, 612, 682, 713, 810, 811
Tobit, 788
tobit, 165, 166, 243, 549, 659, 718, 789, 790,

819
Tol, 537, 591, 794
Topple, 796, 798, 802
topple, 404, 796, 797, 797, 800
toxop, 245, 798
trapO, 150, 207, 449
Triangle, 797, 798, 799, 802
triangle, 746, 800, 801
trigamma, 578
trim.constraints, 24, 201, 560, 774, 803
Trinorm, 805
trinormal, 115, 806, 806, 819
trplot, 521, 808
trplot.qrrvglm, 207, 809, 809
Trunc, 315, 321, 331, 336, 375, 812
truncated, 770
truncated (altered), 32
truncgeometric (geometric), 364
Truncpareto, 602, 813
truncpareto, 814
truncpareto (paretoff), 601
truncweibull, 615, 815, 863, 865
TypicalVGAMfamilyFunction, 15, 470
TypicalVGAMfamilyFunction

(CommonVGAMffArguments), 188
TypicalVGAMlink (Links), 468

ucberk, 817
Uniform, 538, 796
uninormal, 45, 114, 115, 165, 166, 174, 242,

243, 267, 297, 298, 388, 404, 410,
414, 509, 516, 553, 585, 586, 594,
595, 659, 671, 685, 686, 688, 704,
746, 755, 776, 783, 791, 792, 806,
807, 818, 819

uniroot, 39, 139–141, 145, 295, 569
update, 24, 44, 519, 774, 841
uqo, 205, 207
uqo (grc), 386
UtilitiesVGAM, 194, 820

V1, 633, 821, 823

V2, 633, 822, 822
valt.control, 727
vcov, 824, 825
vcov (vcovvlm), 823
vcovqrrvglm, 207, 559, 824
vcovqrrvglm (vcovvlm), 823
vcovrrvglm, 824
vcovrrvglm (vcovvlm), 823
vcovvlm, 199, 781, 823, 824
vector, 786
venice, 164, 370, 393, 401, 825
venice90 (venice), 825
VGAM (VGAM-package), 13
vgam, 13, 15, 17–19, 21, 22, 28, 34, 37, 39, 41,

46, 61, 72, 75, 76, 79, 81, 84, 86,
91–93, 95, 97, 100, 104, 108, 111,
115, 116, 121, 124, 127, 129, 148,
156, 160, 162, 163, 165, 167, 174,
186, 187, 193, 201, 212, 214, 219,
223, 234, 235, 237, 240, 242, 251,
259, 261, 264, 270, 271, 274, 277,
278, 280, 281, 283, 290, 297, 305,
307, 314, 321, 329, 336, 337, 339,
341, 342, 347, 349, 357, 359, 361,
363, 365, 369, 377, 379, 382, 383,
393, 397, 413, 418, 420, 423, 428,
431, 434, 437, 438, 448, 452, 455,
456, 460, 462, 466, 470, 473, 476,
479, 482, 488, 489, 491, 497, 498,
503, 505, 509, 513, 516, 520, 521,
532, 534, 540, 541, 547, 550, 552,
554, 556, 566, 571, 575, 579, 583,
585, 588, 593, 598, 602, 606, 609,
620, 624, 626, 631, 632, 637, 640,
643, 646, 650, 654, 658, 660, 668,
673, 682, 684, 694, 702, 703, 711,
712, 716, 719, 721, 731–733, 740,
744, 746, 749, 752, 755, 758, 760,
761, 763, 764, 768, 772, 776–779,
782, 787, 791, 798, 801, 807, 816,
818, 827, 834–836, 841, 849, 851,
852, 856, 861, 863, 864, 866, 873,
875, 879, 883, 886, 893, 897, 901,
905, 908, 911, 917

vgam-class, 831
VGAM-package, 13
vgam.control, 151, 827–830, 833, 834
vglm, 13, 15, 17–19, 21–24, 28, 33, 34, 37, 39,

950 INDEX

41, 43, 44, 46, 49, 61, 66, 69, 72, 75,
76, 79, 81, 84, 86, 88, 91–93, 95, 97,
100, 104, 108, 111, 115, 116, 121,
124, 127, 129, 133, 135, 156, 160,
162, 163, 165, 167, 174, 179, 187,
188, 190, 193, 198, 201, 206, 207,
212, 214, 219, 223, 225–227, 234,
235, 237, 240, 242, 244, 247, 248,
251, 259, 261, 264, 270, 271, 274,
277, 278, 280, 281, 283, 290, 293,
297, 305, 307, 314, 321, 329, 336,
337, 339, 341–344, 347, 349, 357,
359, 361, 363, 365, 369, 375, 377,
379, 382, 383, 387, 389, 393, 397,
401–404, 407, 413, 418, 420, 423,
427, 428, 431, 434, 437–443, 448,
452, 455, 456, 460, 462, 466, 467,
470, 473, 476, 479, 482, 488, 489,
491, 497, 498, 503, 505, 509, 513,
516, 518–521, 532, 534, 535, 540,
541, 547, 550, 552, 554, 556, 560,
566, 571, 575, 579, 581, 583, 585,
593, 594, 598, 602, 606, 609, 620,
624, 626, 628, 631, 632, 637, 640,
643, 646, 650, 654, 658, 660, 665,
666, 668, 672, 673, 682, 684–686,
689–691, 694, 702, 703, 706, 707,
711–713, 716, 718–722, 728,
731–733, 735, 739, 740, 744, 746,
749, 752, 755, 758, 761, 767, 768,
770, 772, 774, 776, 779, 781–783,
785–787, 791, 798, 801, 803, 804,
807, 816, 818, 824, 827, 828, 830,
833, 835, 836, 836, 844, 847, 849,
851, 852, 859–861, 863, 864, 866,
867, 873, 875, 879, 883, 886, 893,
897, 901, 905, 908, 911, 917

vglm-class, 842
vglm.control, 47, 104, 198, 277, 283, 293,

348, 372, 389, 566, 625, 672, 680,
724, 727, 728, 782, 829, 832,
834–838, 840, 841, 843, 845, 859,
905, 908

vglmff-class, 849
vonmises, 157, 851
vpairs.profile (vplot.profile), 853
vplot.profile, 853
vsmooth.spline, 27, 478, 732, 830, 836, 854

waitakere, 417, 857
wald.stat, 199, 407, 518, 735, 781, 858
wald.stat.vlm, 44, 406, 517, 518, 520, 735,

780, 841
waldff, 430, 431, 861
weibull.mean, 862, 865
weibullR, 191, 260, 350, 370, 396, 397, 694,

815, 816, 862, 863, 863
weightsvglm, 145, 839, 866
wine, 868
wrapup.smart, 768, 869

xs.nz, 565

yeo.johnson, 869
yip88, 886, 917, 918
Yules, 871
yulesimon, 746, 871, 872, 872

Zabinom, 873
zabinomial, 874, 897
zabinomialff (zabinomial), 874
Zageom, 876
zageometric, 365, 652, 746, 877, 878, 901
zageometricff, 746
zageometricff (zageometric), 878
Zanegbin, 880
zanegbinomial, 655, 746, 881, 881, 905
zanegbinomialff, 746
zanegbinomialff (zanegbinomial), 881
Zapois, 324, 325, 884
zapoisson, 328, 331, 660, 716, 746, 885, 885,

918
zapoissonff, 328, 746
zapoissonff (zapoisson), 885
zero, 201, 888
Zeta, 889, 892, 894
zeta, 234, 422, 423, 458, 890, 890, 893, 894
zetaff, 233, 234, 336, 422, 423, 890–892,

893, 910–912
zetaffMlink, 335, 336, 374
Zibinom, 894
zibinomial, 111, 874–876, 894, 895, 896
zibinomialff (zibinomial), 896
Zigeom, 898
zigeometric, 365, 652, 746, 877, 879, 899,

900
zigeometricff, 746
zigeometricff (zigeometric), 900

INDEX 951

Zinegbin, 902, 906
zinegbinomial, 192, 581, 722, 746, 883, 903,

903, 918
zinegbinomialff (zinegbinomial), 903
ziP, 330
zipebcom, 104, 906, 918
Zipf, 909, 913
zipf, 233, 234, 746, 894, 910, 911
Zipfmb, 910, 912
Zipois, 323–325, 895, 899, 903, 914, 917, 918
zipoisson, 33, 328, 331, 387, 389, 404, 633,

660, 716, 722, 746, 883, 886, 887,
897, 900, 901, 905, 907–909, 915,
916, 922

zipoissonff, 328, 387–389, 404, 515, 746
zipoissonff (zipoisson), 916
Zoabeta, 64, 920, 922
zoabetaR, 921, 921

	VGAM-package
	A1A2A3
	AA.Aa.aa
	AB.Ab.aB.ab
	ABO
	acat
	add1.vglm
	AICvlm
	alaplace
	alaplaceUC
	altered
	amlbinomial
	amlexponential
	amlnormal
	amlpoisson
	anova.vglm
	AR1
	AR1EIM
	auuc
	aux.posbernoulli.t
	backPain
	beggs
	bell
	Benford
	Benini
	benini1
	Betabinom
	betabinomial
	betabinomialff
	betaff
	Betageom
	betageometric
	betaII
	Betanorm
	betaprime
	betaR
	Biamhcop
	biamhcop
	Biclaytoncop
	biclaytoncop
	BICvlm
	Bifgmcop
	bifgmcop
	bifgmexp
	bifrankcop
	bigamma.mckay
	bigumbelIexp
	bilogis
	bilogistic
	Binom2.or
	binom2.or
	Binom2.rho
	binom2.rho
	binomialff
	Binorm
	binormal
	binormalcop
	Binormcop
	Biplackett
	biplackettcop
	biplot-methods
	Bisa
	bisa
	Bistudentt
	bistudentt
	bmi.nz
	borel.tanner
	Bort
	Brat
	brat
	bratt
	calibrate
	calibrate-methods
	calibrate.qrrvglm
	calibrate.qrrvglm.control
	calibrate.rrvglm
	calibrate.rrvglm.control
	cao
	cao.control
	Card
	cardioid
	cauchitlink
	cauchy
	cdf.lmscreg
	cens.gumbel
	cens.normal
	cens.poisson
	cfibrosis
	cgo
	chest.nz
	chinese.nz
	chisq
	clo
	clogloglink
	coalminers
	Coef
	Coef.qrrvglm
	Coef.qrrvglm-class
	Coef.rrvglm
	Coef.rrvglm-class
	Coef.vlm
	coefvgam
	coefvlm
	CommonVGAMffArguments
	concoef
	concoef-methods
	confintvglm
	constraints
	corbet
	cqo
	crashes
	cratio
	cumulative
	Dagum
	dagum
	dAR1
	deermice
	deplot.lmscreg
	depvar
	dextlogF
	df.residual
	dgaitdplot
	dhuber
	Diffzeta
	diffzeta
	dirichlet
	dirmul.old
	dirmultinomial
	dlogF
	double.cens.normal
	double.expbinomial
	ducklings
	eCDF
	enzyme
	erf
	erlang
	Expectiles-Exponential
	Expectiles-Normal
	Expectiles-sc.t2
	Expectiles-Uniform
	expexpff
	expexpff1
	expgeom
	expgeometric
	expint
	explink
	explog
	explogff
	exponential
	exppois
	exppoisson
	extlogF1
	familyname
	Felix
	felix
	fff
	fill1
	finney44
	fisherzlink
	Fisk
	fisk
	fittedvlm
	fix.crossing
	flourbeetle
	Foldnorm
	foldnormal
	foldsqrtlink
	formulavlm
	Frank
	Frechet
	frechet
	freund61
	Gaitdbinom
	Gaitdlog
	gaitdlog
	Gaitdnbinom
	gaitdnbinomial
	Gaitdpois
	gaitdpoisson
	Gaitdzeta
	gaitdzeta
	gamma1
	gamma2
	gammahyperbola
	gammaR
	garma
	GenbetaII
	genbetaII
	gengamma.stacy
	gengammaUC
	Genpois0
	Genpois1
	genpoisson0
	genpoisson1
	genpoisson2
	genray
	genrayleigh
	geometric
	get.smart
	get.smart.prediction
	gev
	gevUC
	gew
	goffset
	Gompertz
	gompertz
	gordlink
	gpd
	gpdUC
	grain.us
	grc
	gumbel
	Gumbel-II
	gumbelII
	gumbelUC
	guplot
	has.interceptvlm
	hatvalues
	hdeff
	hdeffsev
	hormone
	hspider
	huber2
	Huggins89.t1
	hunua
	hyperg
	hypersecant
	Hzeta
	hzeta
	iam
	identitylink
	Influence
	inv.binomial
	Inv.gaussian
	inv.gaussianff
	Inv.lomax
	inv.lomax
	Inv.paralogistic
	inv.paralogistic
	is.buggy
	is.crossing
	is.parallel
	is.smart
	is.zero
	kendall.tau
	KLD
	Kumar
	kumar
	lakeO
	lambertW
	laplace
	laplaceUC
	latvar
	leipnik
	lerch
	leukemia
	levy
	lgamma1
	lgammaUC
	Lindley
	lindley
	linkfun
	Links
	Lino
	lino
	lirat
	lms.bcg
	lms.bcn
	lms.yjn
	Log
	log1mexp
	logclink
	logF
	logff
	logistic
	logitlink
	logitoffsetlink
	loglaplace
	loglapUC
	logLik.vlm
	loglinb2
	loglinb3
	loglink
	logloglink
	lognormal
	logofflink
	Lomax
	lomax
	lpossums
	lqnorm
	lrt.stat
	lrtest
	lvplot
	lvplot.qrrvglm
	lvplot.rrvglm
	machinists
	Makeham
	makeham
	margeff
	marital.nz
	Max
	Maxwell
	maxwell
	mccullagh89
	meangaitd
	melbmaxtemp
	meplot
	micmen
	mills.ratio
	mix2exp
	mix2normal
	mix2poisson
	MNSs
	model.framevlm
	model.matrixqrrvglm
	model.matrixvlm
	moffset
	multilogitlink
	multinomial
	Nakagami
	nakagami
	nbcanlink
	nbordlink
	negbinomial
	negbinomial.size
	normal.vcm
	nparam.vlm
	olympics
	Opt
	ordpoisson
	ordsup
	oxtemp
	Paralogistic
	paralogistic
	Pareto
	paretoff
	ParetoIV
	paretoIV
	Perks
	perks
	perspqrrvglm
	pgamma.deriv
	pgamma.deriv.unscaled
	plotdeplot.lmscreg
	plotdgaitd.vglm
	plotqrrvglm
	plotqtplot.lmscreg
	plotrcim0
	plotvgam
	plotvgam.control
	plotvglm
	pneumo
	poisson.points
	poissonff
	PoissonPoints
	Polono
	pordlink
	posbernoulli.b
	posbernoulli.t
	posbernoulli.tb
	posbernUC
	posbinomial
	Posgeom
	posnegbinomial
	Posnorm
	posnormal
	pospoisson
	powerlink
	prats
	predictqrrvglm
	predictvglm
	prentice74
	prinia
	probitlink
	profilevglm
	propodds
	prplot
	put.smart
	qrrvglm.control
	qtplot.gumbel
	qtplot.lmscreg
	Qvar
	qvar
	R2latvar
	Rank
	Rayleigh
	rayleigh
	Rcim
	rcqo
	rdiric
	rec.exp1
	rec.normal
	reciprocallink
	residualsvglm
	rhobitlink
	Rice
	riceff
	rigff
	rlplot.gevff
	rootogram4
	round2
	rrar
	rrvglm
	rrvglm-class
	rrvglm.control
	rrvglm.optim.control
	ruge
	s
	sc.studentt2
	score.stat
	seglines
	Select
	seq2binomial
	setup.smart
	Simplex
	simplex
	simulate.vlm
	Sinmad
	sinmad
	Skellam
	skellam
	skewnorm
	skewnormal
	Slash
	slash
	sm.os
	sm.ps
	smart.expression
	smart.mode.is
	smartpred
	specials
	spikeplot
	sratio
	step4
	studentt
	summarypvgam
	summaryvgam
	summaryvglm
	SURff
	SurvS4
	SurvS4-class
	TIC
	Tobit
	tobit
	Tol
	Topple
	topple
	toxop
	Triangle
	triangle
	trim.constraints
	Trinorm
	trinormal
	trplot
	trplot.qrrvglm
	Trunc
	Truncpareto
	truncweibull
	ucberk
	uninormal
	UtilitiesVGAM
	V1
	V2
	vcovvlm
	venice
	vgam
	vgam-class
	vgam.control
	vglm
	vglm-class
	vglm.control
	vglmff-class
	vonmises
	vplot.profile
	vsmooth.spline
	waitakere
	wald.stat
	waldff
	weibull.mean
	weibullR
	weightsvglm
	wine
	wrapup.smart
	yeo.johnson
	Yules
	yulesimon
	Zabinom
	zabinomial
	Zageom
	zageometric
	Zanegbin
	zanegbinomial
	Zapois
	zapoisson
	zero
	Zeta
	zeta
	zetaff
	Zibinom
	zibinomial
	Zigeom
	zigeometric
	Zinegbin
	zinegbinomial
	zipebcom
	Zipf
	zipf
	Zipfmb
	Zipois
	zipoisson
	Zoabeta
	zoabetaR
	Index

