Load the library:
Set up the data:
data(lazegalaw)
Y<-lazegalaw$Y[,,2]
Xn<-lazegalaw$X[,c(2,4,5,6)]
Xd<-lazegalaw$Y[,,-2]
Xd<-array( c(Xd,outer(Xn[,4],Xn[,4],"==")),dim=dim(Xd)+c(0,0,1))
dimnames(Xd)[[3]]<-c("advice","cowork","samepractice")
dimnames(Xd)[[3]]
## [1] "advice" "cowork" "samepractice"
## [1] "female" "seniority" "age" "practice"
plot the network with “practice” denoted by plotting color:
##
## Regression coefficients:
## pmean psd z-stat p-val
## intercept -0.243 0.476 -0.510 0.610
## female.row -0.023 0.134 -0.174 0.862
## seniority.row -0.001 0.010 -0.120 0.905
## age.row -0.016 0.008 -1.911 0.056
## practice.row -0.138 0.112 -1.237 0.216
## female.col -0.058 0.120 -0.484 0.629
## seniority.col 0.017 0.009 1.919 0.055
## age.col -0.008 0.008 -0.985 0.324
## practice.col -0.199 0.103 -1.931 0.054
## advice.dyad -0.096 0.082 -1.161 0.246
## cowork.dyad 1.144 0.065 17.687 0.000
## samepractice.dyad 0.449 0.055 8.160 0.000
##
## Variance parameters:
## pmean psd
## va 0.160 0.035
## cab 0.013 0.021
## vb 0.126 0.029
## rho 0.083 0.054
## ve 1.000 0.000
##
## Regression coefficients:
## pmean psd z-stat p-val
## intercept -0.871 0.693 -1.257 0.209
## female.row -0.116 0.189 -0.610 0.542
## seniority.row -0.002 0.015 -0.126 0.900
## age.row -0.023 0.013 -1.736 0.083
## practice.row -0.072 0.167 -0.431 0.666
## female.col -0.102 0.170 -0.603 0.547
## seniority.col 0.010 0.013 0.759 0.448
## age.col -0.006 0.011 -0.537 0.591
## practice.col -0.084 0.139 -0.601 0.548
## advice.dyad -0.136 0.110 -1.236 0.217
## cowork.dyad 1.458 0.092 15.804 0.000
## samepractice.dyad 0.563 0.084 6.709 0.000
##
## Variance parameters:
## pmean psd
## va 0.295 0.075
## cab 0.024 0.041
## vb 0.175 0.052
## rho 0.151 0.088
## ve 1.000 0.000