The goal of arkdb
is to provide a convenient way to move
data from large compressed text files (tsv, csv, etc) into any
DBI-compliant database connection (e.g. MYSQL, Postgres, SQLite; see DBI), and
move tables out of such databases into text files. The key feature of
arkdb
is that files are moved between databases and text
files in chunks of a fixed size, allowing the package functions to work
with tables that would be much too large to read into memory all at
once. There is also functionality for filtering and applying
transformation to data as it is extracted from the database.
The arkdb
package is easily extended to use custom read
and write methods allowing you to dictate your own output formats. See
R/streamable_table.R
for examples that include using:
readr
package for c/tsvYou can install arkdb from GitHub with:
# install.packages("devtools")
::install_github("cboettig/arkdb") devtools
library(arkdb)
# additional libraries just for this demo
library(dbplyr)
library(dplyr)
library(fs)
Consider the nycflights
database in SQLite:
<- tempdir() # Or can be your working directory, "."
tmp <- dbplyr::nycflights13_sqlite(tmp)
db #> Caching nycflights db at /tmp/Rtmpm6YZ0e/nycflights13.sqlite
#> Creating table: airlines
#> Creating table: airports
#> Creating table: flights
#> Creating table: planes
#> Creating table: weather
Create an archive of the database:
<- fs::dir_create(fs::path(tmp, "nycflights"))
dir ark(db, dir, lines = 50000)
#> Exporting airlines in 50000 line chunks:
#> ...Done! (in 0.005531788 secs)
#> Exporting airports in 50000 line chunks:
#> ...Done! (in 0.02239442 secs)
#> Exporting flights in 50000 line chunks:
#> ...Done! (in 11.78997 secs)
#> Exporting planes in 50000 line chunks:
#> ...Done! (in 0.03349638 secs)
#> Exporting weather in 50000 line chunks:
#> ...Done! (in 0.8155148 secs)
Import a list of compressed tabular files
(i.e. *.csv.bz2
) into a local SQLite database:
<- fs::dir_ls(dir)
files <- DBI::dbConnect(RSQLite::SQLite(), fs::path(tmp, "local.sqlite"))
new_db
unark(files, new_db, lines = 50000)
#> Importing /tmp/Rtmpm6YZ0e/nycflights/airlines.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 0.0131464 secs)
#> Importing /tmp/Rtmpm6YZ0e/nycflights/airports.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 0.02401853 secs)
#> Importing /tmp/Rtmpm6YZ0e/nycflights/flights.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 7.150884 secs)
#> Importing /tmp/Rtmpm6YZ0e/nycflights/planes.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 0.0348866 secs)
#> Importing /tmp/Rtmpm6YZ0e/nycflights/weather.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 0.2378168 secs)
This package can also be used to generate slices of data that are required for analytical or operational purposes. In the example below we archive to disk only the flight data that occurred in the month of December. It is recommended to use filters on a single table at a time.
ark(db, dir, lines = 50000, tables = "flights", filter_statement = "WHERE month = 12")
It is possible to use a callback to perform just-in-time data
transformations before ark writes your data object to disk in your
preferred format. In the example below, we write a simple transformation
to convert the flights data arr_delay
field, from minutes,
to hours. It is recommended to use callbacks on a single table at a
time. A callback function can be anything you can imagine so long as it
returns a data.frame that can be written to disk.
<- function(data) {
mins_to_hours $arr_delay <- data$arr_delay/60
data
data
}
ark(db, dir, lines = 50000, tables = "flights", callback = mins_to_hours)
There are two strategies for using ark
in parallel. One
is to loop over the tables, re-using the ark function per table in
parallel. The other, introduced in 0.0.15, is to use the
“window-parallel” method which loops over chunks of your table. This is
particularly useful if your tables are very large and can speed up the
process significantly.
Note: window-parallel
currently only works in
conjunction with streamable_parquet
# Strategy 1: Parallel over tables
library(arkdb)
library(future.apply)
plan(multisession)
# Any streamable_table method is acceptable
future_lapply(vector_of_tables, function(x) ark(db, dir, lines, tables = x))
# Strategy 2: Parallel over chunks of a table
library(arkdb)
library(future.apply)
plan(multisession)
ark(
db,
dir, streamable_table = streamable_parquet(), # required for window-parallel
lines = 50000,
tables = "flights",
method = "window-parallel"
)
# Strategy 3: Parallel over tables and chunks of tables
library(arkdb)
library(future.apply)
# 16 core machine for example
plan(list(tweak(multisession, n = 4), tweak(multisession, n = 4)))
# 4 tables at a time, 4 threads per table
future_lapply(vector_of_tables, function(x) {
ark(
db,
dir, streamable_table = streamable_parquet(), # required for window-parallel
lines = 50000,
tables = x,
method = "window-parallel")
} )
The arkdb
package can also be used to create a number of
ETL pipelines involving text archives or databases given its ability to
filter, and use callbacks. In the example below, we leverage
duckdb
to read a fictional folder of files by US state,
filter by var_filtered
, apply a callback transformation
transform_fun
to var_transformed
save as
parquet, and then load a folder of parquet files for analysis with
Apache Arrow.
library(arrow)
library(duckdb)
<- dbConnect(duckdb::duckdb())
db
<- function(data) {
transform_fun $var_transformed <- sqrt(data$var_transformed)
data
data
}
for(state in c("DC", state.abb)) {
<- paste0("path/to/archives/", state, ".gz")
path
ark(
db,dir = paste0("output/", state),
streamable_table = streamable_parquet(), # parquet files of nline rows
lines = 100000,
# See: https://duckdb.org/docs/data/csv
tables = sprintf("read_csv_auto('%s')", path),
compress = "none", # Compression meaningless for parquet as it's already compressed
overwrite = T,
filenames = state, # Overload tablename
filter_statement = "WHERE var_filtered = 1",
callback = transform_fun
)
}
# The result is trivial to read in with arrow
<- open_dataset("output", partitioning = "state") ds
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.