Package ‘ast2ast’

March 14, 2022
Type Package

Title Translates a R Function into an External Pointer to a C++
Function

Version 0.1
Date 2022-02-28
Author Krimer Konrad [aut, cre]

Maintainer Kriamer Konrad <konrad_kraemer@yahoo.de>
BugReports https://github.com/Konrad1991/ast2ast

URL https://github.com/Konrad1991/ast2ast

Description Enable translation of a tiny subset of R to C++. The user has to define a R func-
tion which gets translated. For a full list of possible functions check the documentation. Af-
ter translation an external pointer to the C++ function is returned to the user. The inten-
tion of the package is to generate fast functions which can be used as ode-system or during opti-
mization.

License GPL-2
Imports Rcpp (>= 1.0.4), purrr, R6, ReppXPtrUtils, RcppArmadillo
VignetteBuilder knitr

Suggests knitr, kableExtra, rmarkdown, tinytest, microbenchmark,
r2sundials, paropt

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-03-14 09:00:05 UTC

R topics documented:
translate L e 2

Index 5

https://github.com/Konrad1991/ast2ast
https://github.com/Konrad1991/ast2ast

2 translate

translate Translates a R function into a C++ function and returns an external
pointer (XPtr) to this function. Further information can be found in
the vignette: ’Detailed Documentation’.

Description
Translates a R function into a C++ function and returns an external pointer (XPtr) to this function.
Further information can be found in the vignette: *Detailed Documentation’.

Usage

translate(f, verbose = FALSE, reference = FALSE)

Arguments
f The function which should be translated from R to C++.
verbose If set to TRUE the output of ReppXPtrUtils::cppXPtr is printed.
reference If set to true the arguments are passed by reference.

Details

The following types are supported:

1. numeric vectors

2. numeric matrices
Variables can be either numeric vectors or matrices. Notably, it is possible that the variables change
the type within the function. It is possible to declare a variable of a scalar numeric data type.

This is done by adding ’_db’ to the end of the variable. Each time ’_db’ is found the variable
is declared as a scalar numeric data type. In this case the object cannot change its type!

The following functions are supported:

. assignment: = and <-
. allocation: vector and matrix
. information about objects: length and dim

. Basic operations: +, -, ¥, /

1

2

3

4

5. Indices: [] and at

6. mathematical functions: sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, log, * and exp
7. concatenate objects: ¢
8. comparison: ==, |=, >, <, >=and <=
9. printing: print
10. returning objects: return

11. catmull-rome spline: cmr

translate

12.

to get a range of numbers the ’:” function can be used

Some details about the implemented functions

* allocation of memory works: Following forms are possible: vector(size_of_elements), vec-

tor(value, size_of_elements), vector(other_vec, size_of_other_vec), matrix(nrows, ncols), ma-
trix(value, nrows, ncols) and matrix(vector, nrows, ncols). The latter fills the matrix or the
vector with the specified "value’.

For indices squared brackets '[]” can be used as common in R. Despite the results of calcu-
lations cannot be used! Beyond that the function ’at’ exists which accepts as first argument
a variable and as the second argument you pass the desired index. The caveat of using ’at’
is that only one entry can be accessed. The function ’[]’ can return more then one element.
The ’at’function returns a reference to the vector entry. Therefore variable[index] can
behave differently then at(variable, index). The function has to be used carefully when
’at’ is used. Especially if ’[]’ and ’at’ are mixed the function behaviour is difficult to
predict. Please test it before using it in a serious project.

For-loops can be written as common in R
- Nr.1

for(index in variable){
do whatever

}

— Nr.2
for(index in 1:length(variable){
do whatever

}

Be aware that it is not possible to assign the result of a comparison to a variable.
The print function accepts either a scalar, vector, matrix, string, bool or nothing (empty line).
In order to return an object use the 'return’ function (The last object is not returned automati-
cally as in R).
In order to interpolate values the ’cmr’ function can be used. The function needs three argu-
ments.

1. the first argument is the point of the independent variable (x) for which the dependent

variable should be calculated (y). This has to be a vector of length one.

2. the second argument is a vector defining the points of the independent variable (x). This
has to be a vector of at least length four.

3. the third argument is a vector defining the points of the dependent variable (y). This has
to be a vector of at least length four.

Be aware that the R code is translated to ETR an expression template library which tries to
mimic R. However, it does not behave exactly like R! Please check your compiled function
before using it in a serious project. If you want to see how ast2ast differs from R in detail
check the vignette: ’Detailed Documentation’.

Value

The external pointer of the generated C++ function

4 translate

Examples

#Further examples can be found in the vignette: 'Detailed Documentation'.
#Hello World

Not run:

f <- function() { print("Hello World!")}

pointer_to_f_cpp <- ast2ast::translate(f)

Rcpp: : sourceCpp(code = "

#include <Rcpp.h>

typedef void (*fp)();

// [[Rcpp::export]]

void call_fct(Rcpp::XPtr<fp> inp) {
fp f = *inp;
fO;

3

")

call_fct(pointer_to_f_cpp)

End(Not run)

Index

translate, 2

	translate
	Index

