library(asymptor)
Let’s start by loading the example data. It’s bundled in the package but originally comes from https://github.com/GoogleCloudPlatform/covid-19-open-data (Apache License 2.0).
<- readRDS(system.file("extdata", "covid19_italy.rds", package = "asymptor"))
df head(df)
#> date new_cases new_deaths
#> 1 2019-12-31 0 0
#> 2 2020-01-01 0 0
#> 3 2020-01-02 0 0
#> 4 2020-01-03 0 0
#> 5 2020-01-04 0 0
#> 6 2020-01-05 0 0
We can feed this data directly to the estimate_asympto()
function. This function requires 3 columns, labelled as date
, new_cases
, new_deaths
, containing the daily counts (not the cumulated total!)
<- estimate_asympto(df$date, df$new_cases, df$new_deaths) asy
We may want to visualise these estimations alongside the empirical data. So, we start by merging the two datasets:
<- merge(df, asy) df
Then, we can the ggplot2 package to plot the result:
library(ggplot2)
ggplot(df, aes(x = date)) +
geom_line(aes(y = new_cases+lower), col = "grey30") +
geom_ribbon(aes(ymin = new_cases+lower,
ymax = new_cases+upper),
fill = "grey30") +
geom_line(aes(y = new_cases), color = "red") +
labs(title = "Estimated total vs detected cases of COVID-19 in Italy",
y = "Cases") +
theme_minimal()
#> Warning: Removed 1 row(s) containing missing values (geom_path).