Package ‘baskexact’

September 15, 2021

Type Package
Title Exact Calculation of Basket Trial Operating Characteristics
Version 0.1.0

Description Calculates the exact operating characteristics of a single-stage
basket trial with the design of
Fujikawa, K., Teramukai, S., Yokota, 1., & Daimon, T. (2020). <doi:10.1002/bimj.201800404>.

License GPL-3

URL https://github.com/1bau7/baskexact
Encoding UTF-8

RoxygenNote 7.1.1

LinkingTo Rcpp, ReppArmadillo

Imports Rcpp, arrangements, methods
Suggests testthat (>= 3.0.0), covr
Config/testthat/edition 3

Collate 'RcppExports.R' 'class.R' 'generics.R' 'adjust_lambda.R’
'analysis.R' 'basket_test.R' 'baskexact-package.R’
'borrowing.R' 'check.R' 'helper.R' 'monotonicity.R' 'pow.R’
'rejection_probabilities.R' 'toer.R' 'validate.R'

NeedsCompilation yes

Author Lukas Baumann [aut, cre] (<https://orcid.org/0000-0001-7931-7470>)
Maintainer Lukas Baumann <baumann@imbi.uni-heidelberg.de>

Repository CRAN

Date/Publication 2021-09-15 18:40:05 UTC

R topics documented:

adjust_lambda
basket_test. e
check_mon_between
check_mon_within e

https://doi.org/10.1002/bimj.201800404
https://github.com/lbau7/baskexact
https://orcid.org/0000-0001-7931-7470

2 adjust_lambda

OneStageBasket-class e

POW o
setupOneStageBasket L
TOBT . . o o o e
Index
adjust_lambda Adjust Lambda
Description

Finds the value for 1ambda such that the family wise error rate is protected at level alpha.

Usage

adjust_lambda(
design,
alpha = 0.025,
thetal = NULL,
n,
epsilon,
tau,
logbase,
prune,
prec_digits,

)

S4 method for signature 'OneStageBasket'
adjust_lambda(
design,
alpha = 0.025,
thetal = NULL,
n,
epsilon,
tau,
logbase,
prune = FALSE,
prec_digits,

Arguments

design An object of class Basket created by setupBasket.

alpha The one-sided signifance level.

basket_test

thetal

n

epsilon

tau

logbase

prune

prec_digits

Details

Probabilities under the alternative hypothesis. If length(thetal) ==1, then
this is a common probability for all baskets. If is.null(thetal) then the type
1 error rate under the global null hypothesis is computed.

The sample size per basket.

A tuning parameter that determines the amount of borrowing. See details for
more information.

A tuning parameter that determines how similar the baskets have to be that bor-
rowing occurs. See details for more information.

A tuning parameter that determines which logarithm base is used to compute the
Jensen-Shannon divergence. See details for more information.

Whether baskets with a number of responses below the critical pooled value
should be pruned before the final analysis.

Number of decimal places that are considered when adjusting lambda

Further arguments.

adjust_alpha finds the greatest value with prec_digits for lambda which controls the family
wise error rate at level alpha (one-sided). A combination of the uniroot function followed by a grid
search is used to finde the correct value for lambda.

This method is implemented for the class OneStageBasket.

Value

The greatest value with prec_digits decimal places for 1ambda which controls the family wise
error rate at level alpha (one-sided) and the exact family wise error rate for this value of lambda.

Methods (by class)

* OneStageBasket: Adjust lambda for a single-stage design.

Examples

design <- setupOneStageBasket(k = 3, shapel = 1, shape2 = 1, theta® = 0.2)
adjust_lambda(design = design, alpha = 0.025, n = 15, epsilon = 1, tau = 0,

logbase =

2, prune = FALSE, prec_digits = 4)

basket_test

Test for the Results of a Basket Trial

Description

basket_test evaluates the results of a basket trial and calculates the posterior distributions with
and without borrowing.

4 basket _test

Usage

basket_test(design, n, r, lambda, epsilon, tau, logbase = 2, prune, ...)

S4 method for signature 'OneStageBasket'

basket_test(design, n, r, lambda, epsilon, tau, logbase = 2, prune, ...)
Arguments

design An object of class Basket created by setupBasket.

n The sample size per basket.

r The vector of observed responses.

lambda The posterior probability threshold. See details for more information.

epsilon A tuning parameter that determines the amount of borrowing. See details for

more information.

tau A tuning parameter that determines how similar the baskets have to be that bor-
rowing occurs. See details for more information.

logbase A tuning parameter that determines which logarithm base is used to compute the
Jensen-Shannon divergence. See details for more information.

prune Whether baskets with a number of responses below the critical pooled value
should be pruned before the final analysis.

Further arguments.

Value

A list, including matrices of the weights that are used for borrowing, posterior distribution parame-
ters for all baskets without and with borrowing, as well as the posterior probabilities for all baskets
without and with borrowing.

Methods (by class)

* OneStageBasket: Testing for a single-stage basket design.

Examples

design <- setupOneStageBasket(k = 3, shapel = 1, shape2 = 1, thetad = 0.2)
basket_test(design = design, n = 24, r = ¢c(5, 9, 10), lambda = 0.99,
epsilon = 1, tau = @, logbase = 2, prune = FALSE)

check _mon_between

check_mon_between Check Between-Trial Monotonicity

Description

Checks whether the between-trial monotonicity condition holds.

Usage

check_mon_between(

design,
n,
lambda,
epsilon,
tau,

logbase = 2,

prune,
details,

S4 method for signature 'OneStageBasket'
check_mon_between(

design,
n,
lambda,
epsilon,
tau,

logbase = 2,

prune,
details,

Arguments

design
n
lambda

epsilon

tau

logbase

An object of class Basket created by setupBasket.
The sample size per basket.
The posterior probability threshold. See details for more information.

A tuning parameter that determines the amount of borrowing. See details for
more information.

A tuning parameter that determines how similar the baskets have to be that bor-
rowing occurs. See details for more information.

A tuning parameter that determines which logarithm base is used to compute the
Jensen-Shannon divergence. See details for more information.

6 check_mon_within

prune Whether baskets with a number of responses below the critical pooled value
should be pruned before the final analysis.

details Whether the cases where the monotonicity condition is violated should be re-
turned, in case there are any.

Further arguments.

Details

check_mon_between checks whether the between-trial monotonicity condition holds. For a single-
stage design with equal prior distributions and equal sample sizes for each basket this condition
states that there are no cases where at least one null hypothesis is rejected when when there is a case
with an equal or higher number of responses in each basket for which no null hypothesis is rejected.

If prune = TRUE then the baskets with an observed number of baskets smaller than the pooled critical
value are not borrowed from. The pooled critical value is the smallest integer ¢ for which all null
hypotheses can be rejected if the number of responses is exactly c for all baskets.

This method is implemented for the class OneStageBasket.

Value

If details = FALSE then only a logical value is returned. If details = TRUE then if there are any
cases where the between-trial monotonicity condition is violated, a list of theses cases and their
results are returned.

Methods (by class)

* OneStageBasket: Between-trial monotonicity condition for a single-stage design.

Examples

design <- setupOneStageBasket(k = 4, shapel = 1, shape2 = 1, theta0d = 0.2)
check_mon_between(design = design, n = 24, lambda = .99, epsilon = 3,
tau = @, prune = FALSE, details = TRUE)

check_mon_within Check Within-Trial Monotonicity

Description

Checks whether the within-trial monotonicity condition holds.

check_mon_within 7

Usage

check_mon_within(
design,
n7
lambda,
epsilon,
tau,
logbase = 2,
prune,
details,

S4 method for signature 'OneStageBasket'
check_mon_within(

design,
n ’
lambda,
epsilon,
tau,
logbase = 2,
prune,
details,
)
Arguments
design An object of class Basket created by setupBasket.
n The sample size per basket.
lambda The posterior probability threshold. See details for more information.
epsilon A tuning parameter that determines the amount of borrowing. See details for
more information.
tau A tuning parameter that determines how similar the baskets have to be that bor-
rowing occurs. See details for more information.
logbase A tuning parameter that determines which logarithm base is used to compute the
Jensen-Shannon divergence. See details for more information.
prune Whether baskets with a number of responses below the critical pooled value
should be pruned before the final analysis.
details Whether the cases where the monotonicity condition is violated should be re-
turned, in case there are any.
Further arguments.
Details

check_mon_within checks whether the within-trial monotonicity condition holds. For a single-
stage design with equal prior distributions and equal sample sizes for each basket this condition

8 OneStageBasket-class

states that there are no cases where the null hypothesis of a basket is rejected when there is at least
one other basket with more observed responses for which the null hypothesis cannot be rejected.

If prune = TRUE then the baskets with an observed number of baskets smaller than the pooled critical
value are not borrowed from. The pooled critical value is the smallest integer ¢ for which all null
hypotheses can be rejected if the number of responses is exactly c for all baskets.

This method is implemented for the class OneStageBasket.

Value

If details = FALSE then only a logical value is returned. If details = TRUE then if there are any
cases where the within-trial monotonicity condition is violated, a list of these cases and their results
are returned.

Methods (by class)

* OneStageBasket: Within-trial monotonicity condition for a single-stage design.

Examples

design <- setupOneStageBasket(k = 4, shapel = 1, shape2 = 1, theta® = 0.2)
check_mon_within(design = design, n = 24, lambda = .99, epsilon = 0.5,
tau = @, prune = FALSE, details = TRUE)

OneStageBasket-class Class OneStageBasket

Description

OneStageBasket is an S4 class. An object of this class contains the most important design features
of a single-stage basket trial.

Details

This class implements a single-stage basket trial based on the design proposed by Fujikawa et al.
In this design, at first separate posterior distributions are calculated for each basket based on a beta-
binomial model. Information is then borrowed between baskets by calculating weights that reflect
the similarity between the basket and computing posterior distributions for each basket where the
parameters of the beta posterior are calculated as a weighted sum of the individual posterior distri-
butions. The weight between two baskets i and j is found as (1 - JSD(j, j))”*epsilon where JSD(, j) is
the Jensen-Shannon divergence between basket i and j. A small value of epsilon results in stronger
borrowing also across baskets with heterogenous results. If epsilon is large then information is only
borrowed between baskets with similar results. If a weight is smaller than tau it is set to 0, which re-
sults in no borrowing. If for a basket the posterior probability that 6 > theta0 is greater than lambda,
then the null hypothesis is rejected.

Currently only common prior distributions and a common null hypothesis are supported.

pow 9

Slots

k The number of baskets.
shape1 First common shape parameter of the beta prior.
shape2 Second common shape parameter of the beta prior.

theta® A common probability under the null hypothesis.

References

Fujikawa, K., Teramukai, S., Yokota, 1., & Daimon, T. (2020). A Bayesian basket trial design that
borrows information across strata based on the similarity between the posterior distributions of the
response probability. Biometrical Journal, 62(2), 330-338.

pow Power

Description

Computes the exact power for a basket trial.

Usage

pow(
design,
thetal,
n,
lambda,
epsilon,
tau,
logbase = 2,
prune = FALSE,
results = c("ewp”, "group"),

)

S4 method for signature 'OneStageBasket'
pow(

design,

thetal,

n,

lambda,

epsilon,

tau,

loghase = 2,

prune = FALSE,

results = c("ewp”, "group"),

10

Arguments

design
thetal

n
lambda

epsilon

tau

logbase

prune

results

Details

pow

An object of class Basket created by setupBasket.

Probabilities under the alternative hypothesis. If length(thetal) ==1, then
this is a common probability for all baskets.

The sample size per basket.
The posterior probability threshold. See details for more information.

A tuning parameter that determines the amount of borrowing. See details for
more information.

A tuning parameter that determines how similar the baskets have to be that bor-
rowing occurs. See details for more information.

A tuning parameter that determines which logarithm base is used to compute the
Jensen-Shannon divergence. See details for more information.

Whether baskets with a number of responses below the critical pooled value
should be pruned before the final analysis.

Whether only the experimentwise power (option ewp) or also the rejection prob-
abilities per group (option group) should be returned.

Further arguments.

pow computes the exact experimentwise power and the exact rejection probabilities per group. The
experimentwise power is the probability to reject at least one null hypothesis for a basket with thetal
> theta0. The rejection probabilities correspond to the type 1 error rate for baskets with thetal =
theta O and to the power for baskets with thetal > theta 0.

If prune = TRUE then the baskets with an observed number of baskets smaller than the pooled critical
value are not borrowed from. The pooled critical value is the smallest integer ¢ for which all null
hypotheses can be rejected if the number of responses is exactly c for all baskets.

This method is implemented for the class OneStageBasket.

Value

If results = "ewp” then the experimentwise power is returned as a numeric value. If results
= "group” then a list with the rejection probabilities per group and the experimentwise power is
returned. For baskets with thetal = theta0 the rejection probabilities corresponds to the type 1 error
rate, for baskets with thetal > theta0 the rejection probabilities corresponds to the power.

Methods (by class)

* OneStageBasket: Power for a single-stage basket design.

Examples

design <- setupOneStageBasket(k = 3, thetad = 0.2)
pow(design, thetal = c(0.2, 0.5, 0.5), n = 15, lambda = .99, epsilon = 2,

tau =

2)

setupOneStageBasket 11

setupOneStageBasket Setup OneStageBasket

Description

Creates an object of class OneStageBasket.

Usage

setupOneStageBasket(k, shapel = 1, shape2 = 1, theta0)

Arguments
k The number of baskets.
shape1 First common shape parameter of the beta prior.
shape2 Second common shape parameter of the beta prior.
theta®@ A common probability under the null hypothesis.
Details

A OneStageBasket object contains the most important design features of a basket trial. Currently
only common prior distributions and a common null hypothesis are supported.

Value

An S4 object of class OneStageBasket.

Examples

design <- setupOneStageBasket(k = 3, thetad = 0.2)

toer Type 1 Error Rate

Description

Computes the exact family wise type 1 error rate of a basket trial .

12

toer

Usage
toer(
design,
thetal = NULL,
n,
lambda,
epsilon,
tau,
logbase
prune = FALSE,
results = c("fwer”, "group”),
)
S4 method for signature 'OneStageBasket'
toer(
design,
thetal = NULL,
n ki
lambda,
epsilon,
tau,
logbase
prune = FALSE,
results = c("fwer"”, "group"),
)
Arguments
design An object of class Basket created by setupBasket.
thetal Probabilities under the alternative hypothesis. If length(thetal) ==1, then
this is a common probability for all baskets. If is.null(thetal) then the type
1 error rate under the global null hypothesis is computed.
n The sample size per basket.
lambda The posterior probability threshold. See details for more information.
epsilon A tuning parameter that determines the amount of borrowing. See details for
more information.
tau A tuning parameter that determines how similar the baskets have to be that bor-
rowing occurs. See details for more information.
logbase A tuning parameter that determines which logarithm base is used to compute the
Jensen-Shannon divergence. See details for more information.
prune Whether baskets with a number of responses below the critical pooled value
should be pruned before the final analysis.
results Whether only the family wise error rate (option fwer) or also the rejection prob-

abilities per group (option group) should be returned.
Further arguments.

toer 13

Details

toer computes the exact family wise type 1 error rate and the exact rejection probabilities per
group. The family wise type 1 error rate is the probability to reject at least one null hypothesis for
a basket with thetal = theta0. If all thetal > thetaO then the family wise type 1 error rate under the
global null hypothesis is computed. The rejection probabilities correspond to the type 1 error rate
for baskets with thetal = theta O and to the power for baskets with thetal > theta 0.

If prune = TRUE then the baskets with an observed number of baskets smaller than the pooled critical
value are not borrowed from. The pooled critical value is the smallest integer ¢ for which all null
hypotheses can be rejected if the number of responses is exactly c for all baskets.

This method is implemented for the class OneStageBasket.

Value

If results = "fwer"” then the family wise type 1 error rate is returned as a numeric value. If
results = "group” then a list with the rejection probabilities per group and the family wise type 1
error rate is returned. If all thetal > theta0 then the family wise type 1 error rate is calculated under
the global null hypothesis. For baskets with thetal = theta0 the rejection probabilities corresponds
to the type 1 error rate, for baskets with thetal > theta0 the rejection probabilities corresponds to
the power.

Methods (by class)

* OneStageBasket: Type 1 error rate for a single-stage basket design.

Examples
design <- setupOneStageBasket(k = 3, thetad = 0.2)
toer(design, n = 15, lambda = 0.99, epsilon = 2, tau = 0)

Index

adjust_lambda, 2
adjust_lambda,OneStageBasket-method
(adjust_lambda), 2

basket_test, 3
basket_test,OneStageBasket-method
(basket_test), 3

check_mon_between, 5
check_mon_between,OneStageBasket-method
(check_mon_between), 5
check_mon_within, 6
check_mon_within,OneStageBasket-method
(check_mon_within), 6

OneStageBasket, 3,6, 8, 10, 11, 13
OneStageBasket (OneStageBasket-class), 8
OneStageBasket-class, 8

pow, 9
pow,OneStageBasket-method (pow), 9

setupOneStageBasket, 11

toer, 11
toer,OneStageBasket-method (toer), 11

14

	adjust_lambda
	basket_test
	check_mon_between
	check_mon_within
	OneStageBasket-class
	pow
	setupOneStageBasket
	toer
	Index

