Package 'bdots'

June 1, 2022
Type Package
Title Bootstrapped Differences of Time Series
Version 1.1.0
Date 2022-05-26
Author Collin Nolte, Michael Seedorff, Jacob Oleson, Grant Brown, Joseph Cavanaugh, and Bob McMurray

Maintainer Collin Nolte collin-nolte@uiowa.edu

BugReports https://github.com/collinn/bdots/issues
Depends R (>= 4.0.0), data.table
Imports nlme, mvtnorm, parallel, stats, graphics, utils, ggplot2, gridExtra

LazyData TRUE
Description Analyze differences among time series curves with p-value adjustment for multiple comparisons introduced in Oleson et al (2015) DOI:10.1177/0962280215607411.

License GPL-3 I file LICENSE

URL https://github.com/collinn/bdots
NeedsCompilation no
Encoding UTF-8
RoxygenNote 7.2.0
Suggests knitr, rmarkdown, tinytest
VignetteBuilder knitr, rmarkdown
Repository CRAN
Date/Publication 2022-05-31 22:20:23 UTC

R topics documented:

ar1Solver 3
bdotsBoot 3
bdotsCorr 6
bdotsFit 6
bdotsFitter 8
bdotsRefit 9
bdRemove 10
ci 10
coef.bdotsObj 11
coefWriteout 11
cohort_unrelated 12
curveFitter 12
df_cohort_unrelated 13
df_target 13
doubleGauss 14
doubleGauss2 14
effectiveAlpha_f 15
expCurve 15
findModifiedAlpha 16
fwerAlpha 17
getFitCorforGroups 17
linear 18
logistic 18
parTest2 19
plot.bdotsBootObj 20
plot.bdotsCorrObj 20
plot.bdotsObj 21
polynomial 22
print.bdotsBootSummary 22
print.bdotsPars_ttest2 23
print.bdotsSummary 23
p_adjust 24
rbindlist.bdObjList 25
split.bdotsObj 25
subset.bdotsBootObj 26
summary.bdotsBootObj 26
summary.bdotsObj 27
target 27
writeCSV 28
Index 29

```
    ar1Solver Compute AR1 correlation coefficient
```


Description

Computes value for AR1 correlation coefficient for use in p_adjust

Usage

ar1Solver (t)

Arguments

$t \quad$ A numeric vector of t-statistics

Value

Estimated AR1 correlation coefficient

See Also

p_adjust

Examples

```
t <- rt(1e3, df = 1)
rho <- ar1Solver(t)
```

 bdotsBoot Create bootstrapped curves from bdotsObj

Description

Creates bootstrapped curves and performs alpha adjustment. Can perform "difference of difference" for nested comparisons

Usage

bdotsBoot
formula, bdObj, Niter = 1000, alpha $=0.05$, padj = "oleson", cores $=0$,
)

Arguments

formula	See details.
bdObj	An object of class 'bdotsObj'
Niter	Number of iterations of bootstrap to draw
alpha	Significance level
padj	Adjustment to make to pvalues for significance. Will be able to use anything from p.adjust function, but for now, just "oleson"
cores	Number of cores to use in parallel. Default is zero, which uses half of what is available.
\ldots	not used

Details

The formula is the only tricky part of this. There will be a minor update to how it works in the future. The three parts we will examine here are Groups, the LHS, and the RHS. For all variable names, special characters should be included with backticks, i.e., `my-var`
\#\# Groups
The Groups are the values input in group in the bdotsFit function, which are columns of the dataset used. These will be denoted G_i Within each group, we will designate the unique values within each group as $v_{-} \mathfrak{j}, \ldots$, whereby $G_{-} i\left(v_{-} 1, v_{-} 2\right)$ will designate unique two unique values within G_i. The possible values of v_i will be implied by the group with which they are associated.

For example, if we have groups vehicle and color, we could specify that we are interested in all blue cars and trucks with the expression vehicle(car, truck) + color (red).
\#\# Formula

\#\#\# Bootstrapped difference of curves

This illustrates the case in which we are taking a simple bootstraped difference between two curves within a single group
If only one group was provided in bdotsFit, we can take the bootstrapped difference between two values within the group with
y ~Group1 (val1, val2)
If more than two groups were provided, we must specify within which values of the other groups we would like to compare the differences from Group1 in order to uniquely identify the observations. This would be
y ~ Group1 (val1, val2) + Group2 (val1)
For example, bootstrapping the differences between cars and trucks when color was provided as a second group, we would need $\mathrm{y} \sim$ vehicle (car, truck) + color (red).

\#\#\# Bootstrapped difference of difference curves

This next portion illustrates the case in which we are interested in studying the difference between the differences between two groups, which we will call the innerGroup and the outerGroup following a nested container metaphor. Here, we must use caution as the order of these differences matter. Using again the vehicle example, we can describe this in two ways:

1. We may be interested in comparing the difference between red trucks and cars (d_red) with the difference between blue trucks and cars (d_blue). In this case, we will be finding the difference between cars and trucks twice (one for blue, one for red). The vehicle type is the innerGroup, nested within the outerGroup, in this case, color.
2. We may also be interested in comparing the difference between red trucks and blue trucks (d_truck) with the difference between red and blue cars (d_car). Here, innerGroup is the color and outerGroup is the vehicle

As our primary object of interest here is not the difference in outcome itself, but the difference of the outcome within two groups, the LHS of the formula is written diffs(y, Group1 (val1, val2)), where Group1 is the innerGroup. The RHS is then used to specify the groups of which we want to take the inner difference of. The syntax here is the same as above. Together, then, the formula looks like

```
diffs(y, Group1(val1, val2)) ~ Group2(val1, val2)
```

in the case in which only two grouping variables were provided to bdotsFit and

```
diffs(y, Group1(val1, val2)) ~ Group2(val1, val2) + Group3(val1) + . . .
```

is used to uniquely identify the sets of differences when three or more groups were provided.

Value

Object of class 'bdotsBootObj'

Examples

```
## Not run:
## fit <- bdotsFit(cohort_unrelated, ...)
boot1 <- bdotsBoot(formula = diffs(Fixations, LookType(Cohort, Unrelated_Cohort)) ~ Group(50, 65),
    bdObj = fit,
    N.iter = 1000,
    alpha = 0.05,
    p.adj = "oleson",
    cores = 4)
boot2 <- bdotsBoot(formula = Fixations ~ Group(50, 65) + LookType(Cohort),
    bdObj = fit,
    N.iter = 1000,
    alpha = 0.05,
    p.adj = "oleson",
    cores = 4)
## End(Not run)
```

```
bdotsCorr Correlation with fixed value in bdots
```


Description

Find the correlation of a fixed value with the bdots fitted curves at each time point

Usage

bdotsCorr(bdObj, val, ciBands = FALSE, method = "pearson")

Arguments

bdObj	Object of class 'bdotsObj‘
val	Character string of fixed value for correlation in dataset from 'bdotsFit'
ciBands	Boolean for including confidence intervals
method	Arguments for 'cor' or 'cor.test'. The default option us 'method = "pearson"'

Description

Creates observation level curves to use in bdotsBoot

Usage

bdotsFit(data, subject, time,
y,
group,
curveType = doubleGauss(concave = TRUE), cor = TRUE, numRefits $=0$, cores = 0, verbose = FALSE,)

Arguments

data	Dataset used
subject	Column name of dataset containing subject identifiers
time	Column name containing time variable
y	Column name containing outcome of interest
group	Character vector containing column names of groups. Can be greater than one
curveType	See details/vignette
cor	Boolean. Autocorrelation?
numRefits	Integer indicating number of attempts to fit an observation if the first attempt fails
cores	number of cores. Default is 0, indicating half cores available
verbose	currently not used
\ldots	Secret

Details

This is step one of the three step bdots process. Things should be more or less straight forward. The only tricky part involves curveType. For now know that one can use doubleGauss(concave $=$ TRUE/FALSE) or logistic(). Should be passed in as a call. See the vignette on customizing this

Value

Object of class 'bdotsObj', inherits from data.table

Examples

```
## Not run:
res <- bdotsFit(data = cohort_unrelated,
    subject = "Subject",
    time = "Time",
    y = "Fixations",
    group = c("Group", "LookType"),
    curveType = doubleGauss(concave = TRUE),
    cor = TRUE,
    numRefits = 2,
    cores = 0,
    verbose = FALSE)
## End(Not run)
```


Description

The one subject version of bdotsFit

Usage

```
bdotsFitter(
    dat,
    curveType,
    rho,
    numRefits = 0,
    verbose,
    getCovOnly = NULL,
    params = NULL,
    splitVars = NULL,
    datVarNames = NULL,
)
```


Arguments

dat data for single subject/group combo
curveType this is actually a function. Should rename
rho correlation coefficient
numRefits number of refit attempts
verbose not used
getCovOnly only find covariance matrix from starting parameter values
params starting parameters, if wanting to add manually
splitVars variables used to identify group. Might combine with datVarNames
datVarNames character vector indicating reponse and time values from parent call
... not used

```
bdotsRefit Refit Observations Returned from bdotsFit
```


Description

Refit Observations Returned from bdotsFit

Usage

bdotsRefit(bdObj, fitCode $=1 \mathrm{~L}$, quickRefit = FALSE, numRefits $=2 \mathrm{~L}$, paramDT = NULL,
)

Arguments

bdObj	An object of class 'bdotsObj' returned from bdotsFit
fitCode	A length one integer indicating observations to refit. See Details
quickRefit	Boolean indicating if a quick refit should be used. If TRUE, rather than prompt- ing the user for adjustments for each observation, bdotsReft will jitter the pa- rameters of all observations indicated by fitCode and attempt to refit. Between the original and the refitted curve, this will place priority on the higher fitCode. If these are equal, R2 will take precedence. Otherwise, the original fit will be kept.
numRefits	Integer indicating the number of refit attempts after jittering parameters, either with quickRefit or when done individually
paramDT	A data. table or data.frame that matches the what is returned by coefWriteout (bdObj). That is, it should have columns uniquely identifying observations with subjects and groups, as well as named columns for the paramters. NA parameters are
	OK. Can also be a subset of the original rows. Note, if this argument is not
	NULL, the remaining arguments will be ignored.
	not used

Details

fitCode indicates lower bound on observations to refit. For example, if fitCode $=4$, bdotsRefit will prompt user to refit all observations with fitCode $=4,5,6$. The quickRit option will attempt to jitter and refit all observations selected by fitCode. Otherwise, the user will be prompted through a menu to individually refit observations

Value

Returns bdObj with updated fits

Description

Remove observations with a specified fitCode and optionally all pairs

Usage

bdRemove(bdObj, fitCode $=6 \mathrm{~L}$, removePairs = TRUE)

Arguments

bdObj	bdots object
fitCode	min fitCode to remove. Default is 6, which removes all subjects with NULL fits (fitCode $=5$ would remove 5 and 6)
removePairs	Boolean. Remove subject pairs is one of pair is removed. Default is TRUE to retain paired t-test

Details

This function is used to remove all bdots observations with a fit code equal to or larger than the argument passed to fitCode without refitting. If removePairs = TRUE, all entries for a subject will be removed if their fit failed in any of the groups in which they were a member

```
    ci ci dataset
```


Description

ci dataset - need to include details

Usage

ci

Format

An object of class data. frame with 108216 rows and 5 columns.

```
    coef.bdotsObj Extract bdotsFit Moedel Coefficients
```


Description

Returns coefficient matrix for bdotsFit object

```
Usage
\#\# S3 method for class 'bdotsObj'
coef(object, ...)
```


Arguments

object
A bdotsObj
... not used

Value

Returns matrix of model coefficients for observations in object
coefWriteout Create data.table with bdotsObj parameters

Description

Creates an object of class data.table that matches parameter values for each observation. This can then be passed to the bdotsRefit function

Usage

coefWriteout(bdObj)

Arguments

bdObj An object returned from bdotsFit or bdotsRefit

Value

A data. table matching parameter values to observations

Examples

```
    ## Not run:
    fit <- bdotsFit(data = cohort_unrelated,
        subject = "Subject",
        time = "Time",
        y = "Fixations",
        group = c("Group", "LookType"),
        curveType = doubleGauss(concave = TRUE),
        cor = TRUE,
        numRefits = 2,
        cores = 0,
        verbose = FALSE)
    parDT <- coefWriteout(fit)
    ## End(Not run)
```

 cohort_unrelated cohort_unrelated dataset

Description

cohort_unrelated dataset - need to include details

Usage

cohort_unrelated

Format

An object of class data.frame with 50100 rows and 6 columns.

| curveFitter \quad Curve Fitter |
| :--- | :--- |

Description

Used in bdotsFit

Usage

curveFitter (dat, ff, params, rho, numRefits = 0, getCovOnly = NULL, ...)

Arguments

dat	data used in building curve
ff	formula used in buildilng curve
params	starting parameters
rho	correlation coefficient
numRefits	number of refit attempts
getCovOnly	only find covariance matrix from starting parameter values
\ldots	don't know that this is used, can maybe get rid of it

```
df_cohort_unrelated df_cohort_unrelated dataset
```


Description

df_cohort_unrelated dataset - need to include details

Usage

df_cohort_unrelated

Format

An object of class data. frame with 78156 rows and 5 columns.
df_target df_target dataset

Description

df_target dataset - need to include details

Usage

df_target

Format

An object of class data. frame with 37575 rows and 4 columns.
doubleGauss Double Gauss curve function for nlme

Description

Double Gauss function used in fitting nlme curve for observations

Usage

doubleGauss(dat, y, time, params = NULL, concave = TRUE, ...)

Arguments

dat subject data to be used
y outcome variable, character vector
time time variable, character vector
params NULL unless user wants to specify starting parameters for gnls
concave Boolean
... just in case

Details

User should only have to worry about setting concavity of this function
$y \sim($ time <mu $) *\left(\exp \left(-1 *(\text { time }-m u)^{\wedge} 2 /(2 * \operatorname{sig} 1 \wedge 2)\right) *(h t-b a s e 1)+\right.$ base1 $)+(m u<=$ time $) *(\exp (-1 *($ time $-m u) \wedge 2 /(2 * \operatorname{sig} 2 \wedge 2)) *(h t-b a s e 2)+$ base2 $)$
doubleGauss2 DoubleGauss2 curve function for nlme

Description

DoubleGauss2 function used in fitting nlme curve for observations

Usage

doubleGauss2(dat, y, time, params = NULL, concave = TRUE, ...)

Arguments

dat	subject data to be used
y	outcome variable, character vector
time	time variable, character vector
params	NULL unless user wants to specify starting parameters for gnls
concave	Boolean
\ldots	just in case

Details

User should only have to worry about setting concavity of this function. Presently only work for time series scaled out to 2000 ms
$y \sim($ time $<m u) *\left(\exp \left(-1 *(\text { time }-m u)^{\wedge} 2 /\left(2 * \operatorname{sig} 1^{\wedge} 2\right)\right) *(h t-\right.$ base 1$)+$ base 1$)+(m u<=$ time $)$ * $(\exp (-1 *($ time $-m u) \wedge 2 /(2 * \operatorname{sig} 2 \wedge 2)) *(h t-b a s e 2)+$ base2 $)$

```
effectiveAlpha_f Effective Alpha Functional
```


Description

Functional that returns function for computing effective alpha for given parameters and distribution

Usage

effectiveAlpha_f(rho, $n=10$, $d f=$ NULL, method = "norm")

Arguments

rho	Correlation coefficient
n	Number of observations
df	Degrees of freedom if method = "t"
method	Character string. Determines distribution for adjusted alpha can be either "norm"
	for normal distribution or " $\mathrm{t} "$ for t -dist

expCurve Exponential curve function

Description

Exponential function used in fitting nlme curve for observations

Usage

expCurve(dat, y, time, params = NULL, ...)

Arguments

dat subject data to be used
y outcome variable
time time variable
params NULL unless user wants to specify starting parameters for gnls
... just in case

Details

Don't use this function please
$y \sim x _0 \exp (k$ beta)
findModifiedAlpha Find modified alpha

Description

find modified alpha

Usage

```
findModifiedAlpha(
        rho,
        n,
        df,
        alpha = 0.05,
        errorAcc = 0.001,
        gradDiff = ifelse(cores > 3, 0.5, 0.1),
        cores = 0,
        verbose = FALSE,
        method = "t"
    )
```


Arguments

rho correlation coefficient
n number of observations
df degrees of freedom if method $==$ " t "
alpha starting alpha from which to adjust
errorAcc acceptable error for alphastar
gradDiff gradient steps in algorithm
cores number of cores. Default is zero, or half of what's available
verbose will probably remove this
method either "t" or "norm"
fwerAlpha fwerAlpha

Description

Family wise alpha calculation

Usage

fwerAlpha(rho, k, $\mathrm{n}=10$)

Arguments

rho	Correlation coefficient
k	Bounds of non-critical region
n	Number of observations

Details

Returns effective alpha, given number of tests and the correlation coefficient. This isn't explicitly checked, but there is no reason this function should take any non-scalar values. Derivation of this can be found on pg 12 of Jake's 'Detecting time-specific differences'. This function performs the expression

$$
1-P\left(I_{t}\right) P\left(I_{t} \mid I_{t-1}\right)^{N-1}
$$

```
getFitCorforGroups Get Fit Correlations
```


Description

Helper function for finding correlation of fixed value and fitted values within group

Usage

getFitCorforGroups(x, val, ciBands = FALSE, method = "pearson")

Arguments

x
val
ciBands boolean for including cibands
method method for correlation function

linear Linear curve function

Description

Linear function used in fitting nlme curve for observations

Usage

linear (dat, y, time, params = NULL, ...)

Arguments

dat	subject data to be used
y	outcome variable
time	time variable
params	NULL unless user wants to specify starting parameters for gnls
\ldots	just in case

Details

Don't use this function please
$y \sim$ slope*time + intercept
logistic Logistic curve function for nlme

Description

Logistic function used in fitting nlme curve for observations

Usage

logistic(dat, y, time, params = NULL, ...)

Arguments

dat	subject data to be used
y	outcome variable
time	time variable
params	NULL unless user wants to specify starting parameters for gnls
\ldots	just in case

Details

$$
y \sim \operatorname{mini}+(\text { peak }-\operatorname{mini}) /(1+\exp (4 * \text { slope } *(\text { cross }-(\text { time })) /(\text { peak }- \text { mini })))
$$

Description

Perform t-test on curve parameters of bdotsFit object

Usage

parTest2(bdObj, group, vals = NULL)

Arguments

bdObj Object of class bdObj
group Length one character of grouping column in which to perform t-test
vals Character vector of values within grouping column in which to perform the test. If NULL, it will do all pairwise tests

Details

Performs pairwise t -test. Currently only tests at alpha $=0.95$. Also currently only allows t -test within single grouping column. Ability to test across grouping columns to come later

Value

List of t-test results of class bdotsPars_ttest

Examples

```
## Not run:
res <- bdotsFit(data = cohort_unrelated,
    subject = "Subject",
    time = "Time",
    y = "Fixations",
    group = c("Group", "LookType"),
    curveType = doubleGauss(concave = TRUE),
    cor = TRUE,
    numRefits = 2,
    cores = 0,
    verbose = FALSE)
tstats <- parTest(res, group = "LookType", vals = c("Cohort", "Unrelated_Cohort"))
## End(Not run)
```


Description

Allows a number of different but also unstable option for plotting an object of class bdotsBoot

Usage

```
## S3 method for class 'bdotsBootObj'
plot(x, alpha = NULL, ciBands = TRUE, plotDiffs = TRUE, group = NULL, ...)
```


Arguments

x
alpha
ciBands

plotDiffs

group Specify group to plot if difference of difference was used. The user can also subset the bdotsBootObj prior to plotting. Currently not used
... ignore for now, but will eventually allow plot parameters

Details

This plot function is also a bit unstable and is expected to change

Value

List of ggplot objects, which may be helpful if the margins are weird

```
plot.bdotsCorrObj Plots for bdotsCorr
```


Description

Plots correlation of fixed value wtih fitted curves over time

Usage

```
## S3 method for class 'bdotsCorrObj'
plot(x, ciBands = FALSE, window = NULL, ...)
```


Arguments

x
ciBands
window
. . .
object of class 'bdotsCorrObj'
boolean. Whether or not to include confidence intervals in plots. Must have been selected in 'bdotsCorr'

A length 2 numeric vector with start and end points for the plotting window super secret, don't use

```
plot.bdotsObj Plot a bdotsFit object
```


Description

Plot individual fits or model fit parameters from an object of class 'bdotsObj'. These functions are not very stable

Usage

\#\# S3 method for class 'bdotsObj'
plot(x, fitCode = NULL, gridSize = NULL, plotfun = "fits", ...)

Arguments

x
fitCode
gridSize Length one numeric indicating size of plot grid. Default is 2×2. For right now, they are square
plotfun Plot either subject fits or model parameters with "fits" or "pars"
... ignore for now (other args to plot.generic)

Details

Right now, these functions are a bit unstable and expected to change. The largest current issue is with the placement of the legend, which cannot be adjusted. If you are running into issues with seeing things correctly, try making the "Plots" window in RStudio larger before running this function

Value

This will return a list of all of the plots rendered.

```
polynomial Polynomial curve function for nlme
```


Description

Polynomial function used in fitting nlme curve for observations

Usage

polynomial(dat, y, time, degree, raw = TRUE, params = NULL, ...)

Arguments

dat subject data to be used
y outcome variable
time time variable
degree degree of polynomial
raw Boolean, use raw polynomials?
params NULL unless user wants to specify starting parameters for gnls
... just in case

Details

It's recommended that one uses raw polynomials for this function for numerical stability. As inference is not performed on the parameters themselves, this should have minimial consequences
$y \sim \operatorname{mini}+($ peak $-m i n i) /(1+\exp (4 *$ slope * (cross - (time)) /(peak - mini)))

```
print.bdotsBootSummary
```

Print bdotsBoot Summary

Description

That's pretty much it. This is a print method, so there is likely not much need to call it directly

Usage

\#\# S3 method for class 'bdotsBootSummary'
print(x, ...)

Arguments

x generic name, but this will be an object of bdotsBootSummary
... ignored for now

```
print.bdotsPars_ttest2
Print Parameter Test Summary
```


Description

Print Parameter Test Summary

Usage

\#\# S3 method for class 'bdotsPars_ttest2'
print(x, ...)

Arguments

x	object to be printed
\ldots	not used

Details

That's pretty much it. This is a print method, so there is likely not much need to call it directly

```
print.bdotsSummary Print bdotsObj Summary
```


Description

Print bdotsObj Summary

Usage

```
## S3 method for class 'bdotsSummary'
print(x, ...)
```


Arguments

x	object to be printed
\ldots	not used

Details

That's pretty much it. This is a print method, so there is likely not much need to call it directly
p_adjust Adjust P-values for Multiple Comparisons

Description

Identical to stats::p.adjust, but includes method = "oleson"

Usage

p_adjust(p, method $=$ "oleson", $\mathrm{n}=$ length (p), alpha $=0.05, \mathrm{df}$, rho, cores $=0$)

Arguments

p

numeric vector of p-values (possibly with NAs).
method correction method, a character string. Can be any of the methods in p.adjust.methods, with the additional value method = "oleson"
$\mathrm{n} \quad$ number of comparisons, must be at least length (p); only set this (to nondefault) when you know what you are doing!
alpha adjustment to be made with method oleson
df degrees of freedom, if using method = "oleson"
rho AR1 correlation coefficient, if using method = "oleson"
cores number of cores for use in parallel, only valid for method = "oleson". Default is zero, using half of the available cores

Details

This function works identically to the function p. adjust, with the additional option to use method = "oleson". For this option, user must include a value for df, alpha. If method = "oleson" and no value is given for rho, 0.9 will be used. To compute a value for rho from t-statistics, use ar 1 Solver.

Value

Returns a vector of adjusted p -values just as in p . adjust, but with additional attributes for alphastar and rho.

See Also

```
ar1Solver
```


Description

Similar to data.table::rbindlist, but preserves botsObjects attributes

Usage

\#\# S3 method for class 'bdObjList'
rbindlist(x, ...)

Arguments

x bdotsObject
... for compatability with data.table
split.bdotsObj Split object of class bdotsObj

Description

Analogous to other splitting functions, but retains necessary attributes across the split object. As of now, it can only be unsplit with bdots::rbindlist

Usage

```
\#\# S3 method for class 'bdotsObj'
split(x, f, drop = FALSE, by, ...)
```


Arguments

x	Object of class bdotsObj
f	For consistency with generic, but is not used
drop	logical. Default FALSE will not drop empty list elements caused by factor levels not referred by that factor. Analagous to data.table::split
by	Character vector of column names on which to split. Usually will be Subject or one of the fitted groups
\ldots	not used

Description

Subset a nested group bdotsBoot objects

Usage

\#\# S3 method for class 'bdotsBootObj'
subset(x, group, adjustAlpha = NULL, ...)

Arguments

x	An object returned from bdotsBoot
group	A group to subset. Must be an outer group
adjustAlpha	currently not used. Will give option to recompute adjusted alpha
\ldots.	Not used

Details

This function is used to subset a bdotsBootObject that was fit to compute the difference of differences. This allows the user to subset out the outer group in the comparison for plotting and investigation

```
summary.bdotsBootObj Summary for bdotsBootObj
```


Description

Provides summary information for bdotsBootObj

Usage

\#\# S3 method for class 'bdotsBootObj'
summary (object, ...)

Arguments

object An object of class bdotsObj
... Ignored for now

Value

Returns an object of class "bdotsBootSummary". There is some summarized information included if assigned to an object, i.e., 'summ <-summary(bdBootObj)' then 'str(summ)'

```
summary.bdotsObj Summary for bdotsObj
```


Description

Provides summary information for bdotsObj

```
Usage
\#\# S3 method for class 'bdotsObj'
summary (object, ...)
```


Arguments

object	An object of class bdotsObj
\ldots	not used

Value

Returns an object of class "bdotsSummary". There is some summarized information included if assigned to an object, i.e., 'summ <- summary(bdObj)' then 'str(summ)'

target \quad target daset

Description

target dataset - need to include details

Usage

target

Format

An object of class data. frame with 25050 rows and 4 columns.

```
    writeCSV Write fits from bdotsBoot to csv file
```


Description

The function is used to write out columns for each group for which a curve was bootstrapped

Usage

writeCSV(bootObj, file, alpha $=0.05, \ldots$...)

Arguments

bootObj	An object of class bdotsBootObj
file	file name to write out csv
alpha	alpha level for upper/lower CI
\ldots.	Other arguments passed to data.table: : fread

Details

This is potentially useful for constructing plots in a separate application. There is an additional column, Significant indicating if a particular time point was considered significant between the difference curves. For difference of difference objects, this only indicates significance for the outer difference.

Index

```
* datasets
    ci, 10
    cohort_unrelated, 12
    df_cohort_unrelated, 13
    df_target, 13
    target,27
ar1Solver, 3, 24
bdotsBoot, 3
bdotsCorr, }
bdotsFit,6
bdotsFitter, 8
bdotsRefit, }
bdRemove, 10
ci, 10
coef.bdotsObj, 11
coefWriteout, 11
cohort_unrelated, 12
curveFitter, 12
df_cohort_unrelated, 13
df_target, 13
doubleGauss,14
doubleGauss2,14
effectiveAlpha_f,15
expCurve,15
findModifiedAlpha, 16
fwerAlpha, 17
getFitCorforGroups,17
linear,18
logistic,18
p_adjust, 3, 24
parTest2,19
plot.bdotsBootObj, 20
```

