Rationale Behind beezdemand

Behavioral economic demand is gaining in popularity. The motivation behind beezdemand was to create an alternative tool to conduct these analyses. This package is not necessarily meant to be a replacement for other softwares; rather, it is meant to serve as an additional tool in the behavioral economist's toolbox. It is meant for researchers to conduct behavioral economic (be) demand the easy (ez) way.

R is an open-source statistical programming language. It is powerful and allows for nearly endless customizability.

Note About Use

This package is a work in progress. I welcome suggestions, feedback, questions, and comments regarding what other researchers might be interested in seeing. If you encounter bugs, errors, or other discrepancies please either open an issue on the package's GitHub page or contact me and I will do my best to fix the problem.

Installation

Right now the package can be obtained from my GitHub page. There are plans to make it available properly on CRAN. In any case, to install the package first install Hadley Wickham's devtools package:


Then simply install the package using the following command:

```devtools::install_github("brentkaplan/beezdemand", build_vignettes
= TRUE)```

By indicating `build_vignettes = TRUE`, the installation will compile this vignette.



## Using the Package

### Example Dataset

I include an example dataset to demonstrate how data should be
entered and how to use the functions. This example dataset consists
of participant responses on an alcohol purchase task. Participants (id)
reported the number of alcoholic drinks (y) they would be willing to
purchase and consume at various prices (x; USD). Note the long format:


|   | id|   x|  y|
|:--|--:|---:|--:|
|1  | 19| 0.0| 10|
|2  | 19| 0.5| 10|
|3  | 19| 1.0| 10|
|4  | 19| 1.5|  8|
|5  | 19| 2.0|  8|
|6  | 19| 2.5|  8|
|7  | 19| 3.0|  7|
|8  | 19| 4.0|  7|
|17 | 30| 0.0|  3|
|18 | 30| 0.5|  3|
|19 | 30| 1.0|  3|
|20 | 30| 1.5|  3|
|21 | 30| 2.0|  2|
|22 | 30| 2.5|  2|
|23 | 30| 3.0|  2|
|24 | 30| 4.0|  2|

### Converting from Wide to Long and vice versa

Some datasets read into `R` will be in a "wide" format, where column names indicate dataset identifiers:


|    x| 19| 30| 38| 60| 68| 106| 113| 142| 156| 188|
|----:|--:|--:|--:|--:|--:|---:|---:|---:|---:|---:|
|  0.0| 10|  3|  4| 10| 10|   5|   6|   8|   7|   5|
|  0.5| 10|  3|  4| 10| 10|   5|   6|   8|   7|   5|
|  1.0| 10|  3|  4|  8|  9|   5|   6|   8|   7|   5|
|  1.5|  8|  3|  4|  8|  9|   5|   6|   6|   7|   5|
|  2.0|  8|  2|  4|  6|  8|   4|   5|   6|   6|   4|
|  2.5|  8|  2|  4|  6|  8|   4|   5|   5|   6|   4|
|  3.0|  7|  2|  4|  5|  7|   4|   5|   5|   5|   4|
|  4.0|  7|  2|  3|  5|  6|   3|   5|   4|   5|   3|
|  5.0|  7|  2|  3|  4|  5|   3|   5|   3|   4|   3|
|  6.0|  6|  2|  3|  4|  5|   2|   5|   3|   3|   2|
|  7.0|  6|  2|  3|  3|  5|   2|   4|   3|   3|   2|
|  8.0|  5|  2|  2|  3|  4|   0|   4|   3|   2|   1|
|  9.0|  5|  1|  2|  2|  4|   0|   4|   3|   2|   1|
| 10.0|  4|  1|  2|  2|  3|   0|   4|   3|   2|   1|
| 15.0|  3|  1|  0|  0|  0|   0|   3|   3|   1|   0|
| 20.0|  2|  1|  0|  0|  0|   0|   2|   3|   0|   0|

The functions in this package primarily deal with data that is in long format, for example the provided dataset `apt` described initially. In order to convert from wide to long formats and vice versa, I recommend using the following commands.

__Wide to Long__


```r
long <- tidyr::gather(wide, id, y, -x)

Long to Wide

wide <- tidyr::spread(long, id, y)

Obtain Descriptive Data

Descriptive values of responses at each price. Includes mean, standard deviation, proportion of zeros, numer of NAs, and minimum and maximum values. If bwplot = TRUE, a box-and-whisker plot is also created and saved. Notice the red crosses indicate the mean. User may additionally specify the directory that the plot should save into, the type of file (either "png" or "pdf"), and the filename. Defaults are shown here:

GetDescriptives(apt, bwplot = TRUE, outdir = "../plots/", device = "png", filename = "bwplot")
Price Mean Median SD PropZeros NAs Min Max
0 6.8 6.5 2.62 0.0 0 3 10
0.5 6.8 6.5 2.62 0.0 0 3 10
1 6.5 6.5 2.27 0.0 0 3 10
1.5 6.1 6.0 1.91 0.0 0 3 9
2 5.3 5.5 1.89 0.0 0 2 8
2.5 5.2 5.0 1.87 0.0 0 2 8
3 4.8 5.0 1.48 0.0 0 2 7
4 4.3 4.5 1.57 0.0 0 2 7
5 3.9 3.5 1.45 0.0 0 2 7
6 3.5 3.0 1.43 0.0 0 2 6
7 3.3 3.0 1.34 0.0 0 2 6
8 2.6 2.5 1.51 0.1 0 0 5
9 2.4 2.0 1.58 0.1 0 0 5
10 2.2 2.0 1.32 0.1 0 0 4
15 1.1 0.5 1.37 0.5 0 0 3
20 0.8 0.0 1.14 0.6 0 0 3

Box-and-whisker plot

Change Data

There are certain instances in which data are to be modified before fitting, for example when using an equation that logarithmically transforms y values. The following function can help with modifying data:

ChangeData(apt, nrepl = 1, replnum = 0.01, rem0 = FALSE, remq0e = FALSE, replfree = NULL)

Identify Unsystematic Responses

Examine consistency of demand data using Stein et al.'s (2015) alogrithm for identifying unsystematic responses. Default values shown, but they can be customized.

CheckUnsystematic(apt, deltaq = 0.025, bounce = 0.1, reversals = 0, ncons0 = 2)
id TotalPass DeltaQ DeltaQPass Bounce BouncePass Reversals ReversalsPass NumPosValues
19 3 0.2112 Pass 0 Pass 0 Pass 16
30 3 0.1437 Pass 0 Pass 0 Pass 16
38 3 0.7885 Pass 0 Pass 0 Pass 14
60 3 0.9089 Pass 0 Pass 0 Pass 14
68 3 0.9089 Pass 0 Pass 0 Pass 14

Analyze Demand Data

Results of the analysis return both empirical and derived measures for use in additional analyses and model specification. Equations include the linear model, exponential model, and exponentiated model. Soon, I will be including the nonlinear mixed effects model, mixed effects versions of the exponential and exponentiated model, and others.

Obtaining Empirical Measures

Empirical measures can be obtained separately on their own:

GetEmpirical(apt)
id Intensity BP0 BP1 Omaxe Pmaxe
19 10 NA 20 45 15
30 3 NA 20 20 20
38 4 15 10 21 7
60 10 15 10 24 8
68 10 15 10 36 9

Obtaining Derived Measures

FitCurves() has several important arguments that can be passed:

Note: Fitting with an equation that doesn't work happily with zero consumption values results in the following. One, a message will appear saying that zeros are incompatible with the equation. Two, because zeros are removed prior to finding empirical (i.e., observed) measures, resulting BP0 values will be all NAs (reflective of the data transformations). The warning message will look as follows:

Warning message:
Zeros found in data not compatible with equation! Dropping zeros!

The simplest use of FitCurves() is shown here, only needing to specify dat and equation. All other arguments shown are set to their default values.

FitCurves(dat = apt, equation = "hs", k, agg = NULL, detailed = FALSE, xcol = "x", ycol = "y", idcol = "id", groupcol = NULL, lobound, hibound)

Note that this ouput returns a message (No k value specified. Defaulting to empirical mean range +.5) and the aforementioned warning (Warning message: Zeros found in data not compatible with equation! Dropping zeros!). With detailed = FALSE, the only output is the dataframe of results (broken up to show the different types of results). This example fits the exponential equation proposed by Hursh & Silberberg (2008):

id Intensity BP0 BP1 Omaxe Pmaxe
19 10 NA 20 45 15
30 3 NA 20 20 20
38 4 NA 10 21 7
60 10 NA 10 24 8
68 10 NA 10 36 9
Equation Q0d K Alpha R2
hs 10.475734 1.031479 0.0046571 0.9660008
hs 2.932407 1.031479 0.0134557 0.7922379
hs 4.523155 1.031479 0.0087935 0.8662632
hs 10.492134 1.031479 0.0102231 0.9664814
hs 10.651760 1.031479 0.0061262 0.9699408
Q0se Alphase N AbsSS SdRes Q0Low Q0High AlphaLow AlphaHigh
0.4159581 0.0002358 16 0.0193354 0.0371632 9.583592 11.367875 0.0041515 0.0051628
0.2506946 0.0017321 16 0.0978350 0.0835955 2.394720 3.470093 0.0097408 0.0171706
0.2357693 0.0008878 14 0.0259083 0.0464653 4.009458 5.036852 0.0068592 0.0107277
0.6219725 0.0005118 14 0.0236652 0.0444083 9.136972 11.847296 0.0091080 0.0113382
0.3841063 0.0002713 14 0.0109439 0.0301992 9.814865 11.488656 0.0055350 0.0067173
EV Omaxd Pmaxd Notes
2.0496979 45.49394 14.393110 converged
0.7094189 15.74586 17.796221 converged
1.0855466 24.09418 17.654534 converged
0.9337418 20.72481 6.546546 converged
1.5581899 34.58471 10.760891 converged

Here, the simplest form is shown specifying another equation, "koff". This fits the modified exponential equation proposed by Koffarnus et al. (2015):

FitCurves(apt, "koff")
id Intensity BP0 BP1 Omaxe Pmaxe
19 10 NA 20 45 15
30 3 NA 20 20 20
38 4 15 10 21 7
60 10 15 10 24 8
68 10 15 10 36 9
Equation Q0d K Alpha R2
koff 10.131767 1.429419 0.0029319 0.9668576
koff 2.989613 1.429419 0.0093716 0.8136932
koff 4.607551 1.429419 0.0070562 0.8403625
koff 10.371088 1.429419 0.0068127 0.9659117
koff 10.703627 1.429419 0.0044361 0.9444897
Q0se Alphase N AbsSS SdRes Q0Low Q0High AlphaLow AlphaHigh
0.2438729 0.0001663 16 2.908243 0.4557758 9.608712 10.654822 0.0025752 0.0032886
0.1721284 0.0013100 16 1.490454 0.3262837 2.620434 3.358792 0.0065620 0.0121812
0.3078231 0.0010631 16 4.429941 0.5625161 3.947336 5.267766 0.0047761 0.0093362
0.4069382 0.0004577 16 5.010982 0.5982703 9.498292 11.243884 0.0058310 0.0077945
0.4677467 0.0003736 16 8.350830 0.7723263 9.700410 11.706844 0.0036349 0.0052373
EV Omaxd Pmaxd Notes
1.9957818 46.56622 15.140905 converged
0.6243741 14.56810 16.052915 converged
0.8292622 19.34861 13.833934 converged
0.8588915 20.03993 6.365580 converged
1.3190322 30.77608 9.472147 converged
FitCurves(apt, "hs", agg = "Mean")
id Intensity BP0 BP1 Omaxe Pmaxe
mean 6.8 NA 20 23.1 7
Equation Q0d K Alpha R2
hs 7.637437 1.429419 0.0066817 0.9807508
Q0se Alphase N AbsSS SdRes Q0Low Q0High AlphaLow AlphaHigh
0.3258955 0.0002218 16 0.02187 0.039524 6.93846 8.336413 0.0062059 0.0071574
EV Omaxd Pmaxd Notes
0.8757419 20.43309 8.813583 converged
FitCurves(apt, "hs", agg = "Pooled")
id Intensity BP0 BP1 Omaxe Pmaxe
pooled 6.8 NA 20 23.1 7
Equation Q0d K Alpha R2
hs 6.592488 1.031479 0.0085032 0.460412
Q0se Alphase N AbsSS SdRes Q0Low Q0High AlphaLow AlphaHigh
0.4260508 0.0007125 146 4.677846 0.1802361 5.750367 7.434609 0.0070949 0.0099115
EV Omaxd Pmaxd Notes
1.122607 24.91675 12.52644 converged

Share k Globally; Fit Other Parameters Locally

As mentioned earlier, in the function FitCurves, when k = "share" this parameter will be a shared parameter across all datasets (globally) while estimating \(Q_0\) and \(\alpha\) locally. While this works, it may take some time with larger sample sizes.

FitCurves(apt, "hs", k = "share")
id Intensity BP0 BP1 Omaxe Pmaxe
19 10 NA 20 45 15
30 3 NA 20 20 20
38 4 NA 10 21 7
60 10 NA 10 24 8
68 10 NA 10 36 9
Equation Q0d K Alpha R2
hs 10.014577 3.318335 0.0011616 0.9820968
hs 2.766313 3.318335 0.0033331 0.7641766
hs 4.485810 3.318335 0.0024580 0.8803145
hs 9.721378 3.318335 0.0024219 0.9705985
hs 10.293139 3.318335 0.0015879 0.9722310
Q0se Alphase N AbsSS SdRes Q0Low Q0High AlphaLow AlphaHigh
0.2429150 0.0000308 16 0.0101816 0.0269677 9.493576 10.535578 0.0010955 0.0012277
0.2192797 0.0003739 16 0.1110490 0.0890622 2.296005 3.236621 0.0025312 0.0041350
0.2074990 0.0001963 14 0.0231862 0.0439566 4.033709 4.937912 0.0020302 0.0028858
0.4371060 0.0000778 14 0.0207584 0.0415916 8.769006 10.673751 0.0022523 0.0025914
0.3179670 0.0000523 14 0.0101100 0.0290259 9.600348 10.985930 0.0014740 0.0017018
EV Omaxd Pmaxd Notes
1.4241851 44.55169 13.160535 converged
0.4963278 15.52624 16.603781 converged
0.6730390 21.05416 13.884782 converged
0.6830742 21.36808 6.502491 converged
1.0418467 32.59129 9.366896 converged

Compare Values of \(\alpha\) and \(Q_0\) via Extra Sum-of-Squares F-Test

When one has multiple groups, it may be beneficial to compare whether separate curves are preferred over a single curve. This is accomplished by the Extra Sum-of-Squares F-test. This function (using the argument compare) will determine whether a single \(\alpha\) or a single \(Q_0\) is better than multiple $\alpha$s or $Q0$s. A single curve will be fit, the residual deviations calculated and those residuals are compared to residuals obtained from multiple curves. A resulting _F statistic will be reporting along with a p value.

Example forthcoming.

ExtraF(apt, "hs")

Plots

Plots can be created using the PlotCurves function. This function takes the output from FitCurves when the argument from FitCurves, detailed = TRUE. The default will be to save figures into a plots folder created one directory above the current working directory. Figures can be saved as either PNG or PDF. If the argument ask = TRUE, then plots will be shown interactively and not saved (ask = FALSE is the default). Graphs can automatically be created at both an aggregate and individual level.

Mean Curve

Individual Curve

Learn More About Functions

To learn more about a function and what arguments it takes, type “?” in front of the function name.

?CheckUnsystematic
CheckUnsystematic          package:beezdemand          R Documentation

Systematic Purchase Task Data Checker

Description:

     Applies Stein, Koffarnus, Snider, Quisenberry, & Bickels (2015)
     criteria for identification of nonsystematic purchase task data.

Usage:

     CheckUnsystematic(dat, deltaq = 0.025, bounce = 0.1, reversals = 0,
       ncons0 = 2)

Arguments:

     dat: Dataframe in long form. Colums are id, x, y.

  deltaq: Numeric vector of length equal to one. The criterion by which
          the relative change in quantity purchased will be compared.
          Relative changes in quantity purchased below this criterion
          will be flagged. Default value is 0.025.

  bounce: Numeric vector of length equal to one. The criterion by which
          the number of price-to-price increases in consumption that
          exceed 25% of initial consumption at the lowest price,
          expressed relative to the total number of price increments,
          will be compared. The relative number of price-to-price
          increases above this criterion will be flagged. Default value
          is 0.10.

reversals: Numeric vector of length equal to one. The criterion by
          which the number of reversals from number of consecutive (see
          ncons0) 0s will be compared. Number of reversals above this
          criterion will be flagged. Default value is 0.

  ncons0: Numer of consecutive 0s prior to a positive value is used to
          flag for a reversal. Value can be either 1 (relatively more
          conservative) or 2 (default; as recommended by Stein et al.,
          (2015).

Details:

     This function applies the 3 criteria proposed by Stein et al.,
     (2015) for identification of nonsystematic purchase task data. The
     three criteria include trend (deltaq), bounce, and reversals from
     0. Also reports number of positive consumption values.

Value:

     Dataframe

Author(s):

     Brent Kaplan <bkaplan.ku@gmail.com>

Examples:

     ## Using all default values
     CheckUnsystematic(apt, deltaq = 0.025, bounce = 0.10, reversals = 0, ncons0 = 2)
     ## Specifying just 1 zero to flag as reversal
     CheckUnsystematic(apt, deltaq = 0.025, bounce = 0.10, reversals = 0, ncons0 = 1)

Acknowledgments

Recommended Readings