Package ‘bettermc’

August 2, 2021
Title Enhanced Fork-Based Parallelization
Version 1.1.2
Date 2021-08-02

Description Drop-in replacement for "parallel::mclapply()' adding e.g.
tracebacks, crash dumps, retries, condition handling, improved seeding,
progress bars and faster inter process communication. Some of the internal
functions are also exported for other use: 'etry()' (extended try),
'copy2shm()/allocate_from_shm()' (copy to and allocate from POSIX shared
memory), 'char_map/map2char()' (split a character vector into its unique
elements and a mapping on these) and various semaphore related functions.

Biarch true

License MIT + file LICENSE
URL https://github.com/gfkse/bettermc

BugReports https://github.com/gfkse/bettermc/issues
Encoding UTF-8

Depends R (>=3.5.0)

Imports checkmate, parallel

RoxygenNote 7.2

Suggests progress, spelling, testthat (>= 2.1.0)

Language en-US

NeedsCompilation yes

Author Andreas Kersting [aut, cre, cph],
GfK SE [cph],
R Core team [ctb] (‘etry()' and its print method borrow a lot from base
R)

Maintainer Andreas Kersting <andreas.kersting@gfk.com>
Repository CRAN
Date/Publication 2021-08-02 08:50:02 UTC

https://github.com/gfkse/bettermc
https://github.com/gfkse/bettermc/issues

2 char_map

R topics documented:

char_map e e e 2
compress_chars L e e 3
copy2shm 4
BILY . o o e 6
melapply . ..o 7
SEIML & v v vt e e e e e e e e e 13
SEBIMV « . v v v v e i e e e e e e e e e e e e e e e e e e e 14

Index 15

char_map Split a Character Vector into its Unique Elements and a Mapping on
These
Description

This is implemented using a radix sort on the CHARSXPs directly, i.e. on the addresses of the
strings in the global string cache. Hence, in contrast to unique, this function does not consider
two strings equal which differ only in their encoding. Also, the order of the unique elements is
undefined.

Usage

char_map(x)

map2char (map)

Arguments
X a character vector. Long vectors are supported.
map an object as returned by char_map.

Value

char_map returns an S3 object of class "char_map", which is a list with the following elements:
(chars) the unique set of strings in x in undefined order, (idx) an integer (or - for long vectors
- double) vector such that map$chars[map$idx] is identical to x (except maybe for attributes),
(attributes) the attributes of x as a shallow copy of the corresponding pairlist.

map2char returns a character vector identical to x, including attributes.

Windows Support
Fully supported on Windows.

Lifecycle
[Stable]

compress_chars 3

Examples

x <- sample(letters, 100, replace = TRUE)
map <- char_map(x)
stopifnot(identical(x, map$chars[map$idx]))

names(x) <- 1:100
stopifnot(identical(x, map2char(char_map(x))))

compress_chars Recursively Call char_map/map2char on a List

Description

These originally internal functions are exported because they are also useful for reducing the size
of e.g. a data frame before storing it to disk using saveRDS. This also improves the (de)serialization
speed.

Usage

compress_chars(
1:
limit = oL,
compress_altreps = c("if_allocated”, "yes", "no"),
class = character()

uncompress_chars(l, class = character())

Arguments
1 an object, typically a list
limit the minimum length of a character vector for char_map to be applied

compress_altreps
should a character vector be compressed if it is an ALTREP? The default "if_allocated"
only does so if the regular representation was already created. This was chosen
as the default because in this case is is the regular representation which would
be serialized.

class additional classes to set on the char_map-objects created by compress_chars.
For uncompress_chars, only call map2char on those char_map-objects which
additionally inherit from all these classes.

Value

For compress_chars, 1, but with character vectors replaced by objects of class char_map. For
uncompress_chars, 1, but with all char_map-objects, which also inherit from all classes given in
class, replaced by the original character vectors.

4 copy2shm

Windows Support
Fully supported on Windows.

Lifecycle

[Experimental]

Note

The object returned by compress_chars might be an invalid S3 object, e.g. if 1 is a data frame.
These functions are intended to be called immediately before and after (de)serializing the object,
i.e. compress -> serialize -> store/transfer -> de-serialize -> uncompress.

copy2shm Copy to and Allocate from POSIX Shared Memory

Description

Copy the data of a vector to a POSIX shared memory object and allocate from such.

Usage
copy2shm(x, name, overwrite = FALSE, copy = TRUE)

allocate_from_shm(obj, copy = obj$copy)

Arguments

X a logical, integer, double, complex or raw vector, an S3 object based hereon or
a factor. Long vectors are supported.

name the name of the shared memory object to create. A portable name starts with a
"/", followed by one or more (up to 253) characters, none of which are slashes.
Note: on macOS the total length of the name must not exceed 31 characters.

overwrite should an already existing shared memory object with the given name be over-
written? If FALSE, the copy fails if such an object already exists. Note: Due to
bugs in the macOS implementation of POSIX shared memory, (as of now) only
FALSE is supported.

copy should the vector placed in shared memory be used directly (FALSE) by allocate_from_shm

or rather a copy of it (TRUE)? FALSE is apparently faster (initially), but might re-
quire more memory in the long run (up to double what is normally required by
such a vector): if we modify elements of such a vector, new memory (pages) will
be allocated to hold these changed values. The original memory (pages) of the
shared memory object will only be freed when the vector is garbage collected.
If we initially copy the whole vector from shared memory to "regular" one, the
former can be freed directly and the latter can be modified in place. Note: The
value passed to copy2shm has no direct effect. It only sets the default value for
allocate_from_shm, which can safely be changed. Note 2: FALSE is silently
ignored on macOS.

copy2shm 5

obj an object as returned by copy2shm, which was typically called in another pro-
cess.

Value

copy2shm returns an S3 object of class "shm_obj", which is a list with the following elements:
(name) the name of the shared memory object as given, (type) an integer specifying the type of x,
(length) the number of elements in x as a double, (size) the size of the shared memory object in
bytes as a double, (attributes) the attributes of x as a shallow copy of the corresponding pairlist,
(copy) the default value for the copy argument passed to allocate_from_shm. Note: this function
will not produce an error if an operation related directly to the copy to shared memory fails. In this
case a character vector of length 1 containing the error message will be returned.

allocate_from_shm returns a vector. Note: this function cannot be called more than once on any
obj, since it unlinks the shared memory object immediately after trying to open it. If copy = TRUE,
the vector will be allocated using a custom allocator, but this is not guaranteed. As of now, vectors
with less than two elements are allocated using R’s default allocator. This implementational detail
must not be relied on. If copy = FALSE, the custom allocator privately maps the shared memory
object into the address space of the current process. In particular this means that changes made to
this memory region by subsequently forked child processes are private to them: neither the parent
nor a sibling process will see these changes. This is most probably what we want and expect.

Windows Support

Not supported on Windows.

Lifecycle
[Stable]

Note

See also the general notes on POSIX shared memory under mclapply.

Examples

if (tolower(Sys.info()[["sysname"]1]) != "windows") {

X <= runif(100)

obj <- copy2shm(x, "/random")

if (inherits(obj, "shm_obj")) {
copy2shm succeeded
y <- allocate_from_shm(obj)
stopifnot(identical(x, y))

} else {
copy2shm failed -> print the error message
print(obj)

}

6 etry

etry Extended try

Description

Extended version of try with support for tracebacks and crash dumps.

Usage

etry(
expr,
silent = FALSE,
outFile = getOption("try.outFile"”, default = stderr()),
max.lines = 100L,

dump.frames = c("partial”, "full”, "full_global”, "no")
)
S3 method for class '‘etry-error‘'
print(

X7

max.lines = getOption("traceback.max.lines"”, getOption("deparse.max.lines", -1L)),

)
Arguments
expr an R expression to try.
silent logical: should the report of error messages be suppressed?
outFile a connection, or a character string naming the file to print to (via cat(x,file =
outFile)); used only if silent is false, as by default.
max.lines for etry, the maximum number of lines to be deparsed per call. For print, the
maximum number of lines to be printed per call. The default for the latter is
unlimited.
dump. frames should a crash dump (cf. dump.frames) be created in case of an error? The
default "partial" omits the frames up to the call of etry. "full" and "no" do the
obvious. "full_global" additionally also includes (a copy of) the global environ-
ment (cf. include.GlobalEnv argument of dump. frames).
X an object of class "etry-error".
further arguments passed to or from other methods.
Value

For etry, the value of the expression if expr is evaluated without error, but an invisible object of
class c("etry-error”,"try-error”) containing the error message if it fails. This object has three
attributes: (condition) the error condition, (traceback) the traceback as returned by .traceback,

(dump.frames) the crash dump which can be examined using utils: :debugger.

mclapply

Windows Support
Fully supported on Windows.

Lifecycle
[Stable]
mclapply parallel::mclapply Wrapper for Better Performance, Error Handling,
Seeding and UX
Description

This wrapper for parallel: :mclapply adds the following features:

* reliably detect if a child process failed with a fatal error or if it was killed.

* get tracebacks after non-fatal errors in child processes.

* retry on fatal and non-fatal errors.

* fail early after non-fatal errors in child processes.

* get crash dumps from failed child processes.

e capture output from child processes.

* track warnings, messages and other conditions signaled in the child processes.

* return results from child processes using POSIX shared memory to improve performance.
» compress character vectors in results to improve performance.

* reproducibly seed all function calls.

* display a progress bar.

Usage

mclapply(
X,
FUN,
mc.preschedule = TRUE,
mc.set.seed = NA,
mc.silent = FALSE,
mc.cores = getOption("mc.cores”, 2L),
mc.cleanup = TRUE,
mc.allow.recursive = TRUE,
affinity.list = NULL,
mc.allow.fatal = FALSE,
mc.allow.error = FALSE,
mc.retry = 0L,
mc.retry.silent = FALSE,

8 mclapply

mc.retry.fixed.seed = FALSE,

mc.fail.early = !(mc.allow.error || mc.retry != 0QL),

mc.dump. frames = c("partial”, "full”, "full_global”, "no"),

mc.dumpto = ifelse(interactive(), "last.dump”, "file://last.dump.rds"),

mc.stdout = c("capture”, "output”, "ignore"),

mc.warnings = c("m_signal”, "signal”, "m_output”, "output”, "m_ignore"”, "ignore",
"stop"),

mc.messages = c("m_signal”, "signal”, "m_output”, "output”, "m_ignore”, "ignore"),

mc.conditions = c("signal”, "ignore"),

mc.compress.chars = TRUE,

mc.compress.altreps = c("if_allocated”, "yes", "no"),

mc.share.vectors = getOption("bettermc.use_shm”, TRUE),

mc.share.altreps = c("no", "yes"”, "if_allocated"),

mc.share.copy = TRUE,

mc.shm.ipc = getOption("bettermc.use_shm”, TRUE),
mc.force.fork = FALSE,

mc.progress = interactive()

crash_dumps # environment with crash dumps created by mclapply (cf. mc.dumpto)

Arguments
X a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.
FUN the function to be applied to (mclapply) each element of X or (mcmapply) in

parallel to

For mclapply, optional arguments to FUN. For mcmapply and mcMap, vector or
list inputs: see mapply.

mc.preschedule if set to TRUE then the computation is first divided to (at most) as many jobs are
there are cores and then the jobs are started, each job possibly covering more
than one value. If set to FALSE then one job is forked for each value of X. The
former is better for short computations or large number of values in X, the latter
is better for jobs that have high variance of completion time and not too many
values of X compared to mc. cores.

mc.set.seed TRUE or FALSE are directly handled by parallel::mclapply. bettermc also
supports two additional values: NA (the default) - seed every invocation of FUN
differently but in a reproducible way based on the current state of the random
number generator in the parent process. integerish value - call set.seed(mc.set.seed)
in the parent and then continue as if mc. set. seed was NA.

In both (NA- and integerish-) cases, the state of the random number generator,
i.e. the object .Random. seed in the global environment, is restored at the end of
the function to what it was when mclapply was called. If the random number
generator is not yet initialized in the current session, it is initialized internally
(by calling runif (1)) and the resulting state is what gets restored later. In par-
ticular, this means that the seed supplied as mc. set . seed does not seed the code
following the call to mclapply. All this ensures that arguments like mc. cores,

mclapply 9

mc.force.fork etc. can be adjusted without affecting the state of the RNG
outside of mclapply.

mc.silent if set to TRUE then all output on ‘stdout’ will be suppressed for all parallel
processes forked (‘stderr’ is not affected).

mc.cores The number of cores to use, i.e. at most how many child processes will be run
simultaneously. The option is initialized from environment variable MC_CORES
if set. Must be at least one, and parallelization requires at least two cores.

mc.cleanup if set to TRUE then all children that have been forked by this function will be
killed (by sending SIGTERM) before this function returns. Under normal cir-
cumstances mclapply waits for the children to deliver results, so this option
usually has only effect when mclapply is interrupted. If set to FALSE then child
processes are collected, but not forcefully terminated. As a special case this
argument can be set to the number of the signal that should be used to kill the
children instead of SIGTERM.

mc.allow.recursive
Unless true, calling mclapply in a child process will use the child and not fork
again.

affinity.list a vector (atomic or list) containing the CPU affinity mask for each element of
X. The CPU affinity mask describes on which CPU (core or hyperthread unit) a
given item is allowed to run, see mcaffinity. To use this parameter preschedul-
ing has to be deactivated (mc.preschedule = FALSE).

mc.allow.fatal should fatal errors in child processes make mclapply fail (FALSE, default) or
merely trigger a warning (TRUE)?

n o n

TRUE returns objects of classes c("fatal-error”,"try-error") for failed in-
vocations. Hence, in contrast to parallel: :mclapply, itis OK for FUN to return
NULL.

mc.allow.fatal can also be NULL. In this case NULL is returned, which corre-
sponds to the behavior of parallel: :mclapply.

mc.allow.error should non-fatal errors in FUN make mclapply fail (FALSE, default) or merely
trigger a warning (TRUE)? In the latter case, errors are stored as class c("etry-error”, "try-error")
objects, which contain full tracebacks and potentially crash dumps (c.f. mc.dump. frames
and etry).

mc.retry abs(mc.retry) is the maximum number of retries of failed applications of FUN
in case of both fatal and non-fatal errors. This is useful if we expect FUN to fail
either randomly (e.g. non-convergence of a model) or temporarily (e.g. database
connections). Additionally, if mc.retry <= -1, the value of mc.cores is gradu-
ally decreased with each retry to a minimum of 1 (2 if mc. force. fork = TRUE).
This is useful if we expect failures due to too many parallel processes, e.g. the
Linux Out Of Memory Killer sacrificing some of the child processes.

The environment variable "BMC_RETRY" indicates the current retry. A value
of "0" means first try, a value of "1" first retry, etc.
mc.retry.silent

should the messages indicating both fatal and non-fatal failures during all but
the last retry be suppressed (TRUE) or not (FALSE, default)?

10

mc.

mc.

mc

mc.

mc.

mc.

retry.fixed.

fail.early

.dump.frames

dumpto

stdout

warnings, mc.

mclapply

seed

should FUN for a particular element of X always be invoked with the same fixed
seed (TRUE) or should a different seed be used on each try (FALSE, default)?
Only effective if mc. set.seed is NA or a number.

should we try to fail fast after encountering the first (non-fatal) error in FUN?

n o n

Such errors will be recorded as objects of classes c("fail-early-error”,"try-error™).

should we dump. frames on non-fatal errors in FUN? The default "partial” omits
the frames (roughly) up to the call of FUN. See etry for the other options.

where to save the result including the dumped frames if mc.dump.frames !=
"no"” & mc.allow.error == FALSE? Either the name of the variable to create
in the environment bettermc: : crash_dumps or a path (prefixed with "file://")
where to save the object.

how should standard output from FUN be handled? "capture" captures the output
(in the child processes) and prints it in the parent process after all calls of FUN
of the current try (cf. mc.retry), such that it can be captured, sinked etc. there.
"output" immediately forwards the output to stdout of the parent; it cannot be
captured, sinked etc. there. "ignore" means that the output is not forwarded in
any way to the parent process. For consistency, all of this also applies if FUN is
called directly from the main process, e.g. because mc.cores = 1.

messages, mc.conditions

how should warnings, messages and other conditions signaled by FUN be han-
dled? "signal" records all warnings/messages/conditions (in the child processes)
and signals them in the master process after all calls of FUN of the current try
(cf. mc.retry). "stop" converts warnings (only) into non-fatal errors in the
child processes directly. "output" immediately forwards the messages to stderr
of the parent; no condition is signaled in the parent process nor is the output
capturable/sinkable. "ignore" means that the conditions are not forwarded in
any way to the parent process. Options prefixed with "m" additionally try to
invoke the "muffleWarning"/"muffleMessage" restart in the child process. Note
that, if FUN is called directly from the main process, conditions might be signaled
twice in the main process, depending on these arguments.

mc.compress.chars

should character vectors be compressed using char_map before returning them
from the child process? Can also be the minimum length of character vectors
for which to enable compression. This generally increases performance because
(de)serialization of character vectors is particularly expensive.

mc.compress.altreps

should a character vector be compressed if it is an ALTREP? The default "if_allocated"

only does so if the regular representation was already created. This was chosen
as the default because in this case is is the regular representation which would
be serialized.

mc.share.vectors

should non-character atomic vectors, S3 objects based hereon and factors be
returned from the child processes using POSIX shared memory (cf. copy2shm)?
Can also be the minimum length of vectors for which to use shared memory.
This generally increases performance because shared memory is a much faster
form of inter process communication compared to pipes and we do not need to
serialize the vectors.

mclapply 11

mc.share.altreps

should a non-character vector be returned from the child process using POSIX
shared memory if it is an ALTREP?

mc.share.copy should the parent process use a vector placed in shared memory due to mc. share.vectors
directly (FALSE) or rather a copy of it (TRUE)? See copy2shm for the implications.

mc.shm.ipc should the results be returned from the child processes using POSIX shared
memory (cf. copy2shm)?

mc.force.fork should it be ensured that FUN is always called in a forked child process, even if
length(X) ==1? This is useful if we use forking to protect the main R process
from fatal errors, memory corruption, memory leaks etc. occurring in FUN. This
feature requires that mc. cores >= 2 and also ensures that the effective value for
mc. cores never drops to less than 2 as a result of mc. retry being negative.

mc.progress should a progress bar be printed to stderr of the parent process (package progress
must be installed)?

Format

crash_dumps is an initially empty environment used to store the return values of mclapply (see be-
low) including crash dumps in case of non-fatal errors and if mc.dump. frames != "no” & mc.allow.error
== FALSE.

Value

mclapply returns a list of the same length as X and named by X. In case of fatal/non-fatal errors
and depending onmc.allow. fatal/mc.allow.error/mc.fail.early, some of the elements might
inherit from "fatal-error"/"etry-error"/"fail-early-error" and "try-error" or be NULL.

POSIX Shared Memory

The shared memory objects created by mclapply are named as follows (this may be subject to
change): /bmc_ppid_timestamp_idx_cntr (e.g. /bmc_21479_1601366973201_16_10), with

ppid the process id of the parent process.

timestamp the time at which mclapply was invoked (in milliseconds since epoch; on macOS:
seconds since epoch, due to its 31-character limit w.r.t. POSIX names).

idx the index of the current element of X (1-based).

cntr an internal counter (1-based) referring to all the objects created due to mc. share. vectors for
the current value of X; a value of @ is used for the object created due to mc. shm. ipc.

bettermc: :mclapply does not err if copying data to shared memory fails. It will rather only print
a message and return results the usual way.

POSIX shared memory has (at least) kernel persistence, i.e. it is not automatically freed due to
process termination, except if the object is/was unlinked. bettermc tries hard to not leave any byte
behind, but it could happen that unlinking is incomplete if the parent process is terminated while
bettermc: :mclapply is running.

On Linux you can generally inspect the (not-unlinked) objects currently stored in shared memory
by listing the files under /dev/shm.

12 mclapply

(Linux) Size of POSIX Shared Memory

On Linux, POSIX shared memory is implemented using a tmpfs typically mounted under /dev/shm.
If not changed by the distribution, the default size of it is 50% of physical RAM. It can be changed

(temporarily) by remounting it with a different value for the size option, e.g. mount -o "remount, size=90%"
/dev/shm.

(Linux) POSIX Shared Memory and Transparent Hugepage Support

When allocating a shared memory object of at least getOption("bettermc.hugepage_limit",6 104857600)
bytes of size (default is 100 MiB), we use madvise(...,MADV_HUGEPAGE) to request the alloca-

tion of (transparent) huge pages. For this to have any effect, the rmpfs used to implement POSIX

shared memory on Linux (typically mounted under /dev/shm) must be (re)mounted with option
huge=advise, i.e. mount -o remount,huge=advise /dev/shm. (The default is huge=never, but

this might be distribution-specific.)

Windows Support

On Windows, otherwise valid values for various arguments are silently replaced as follows:

mc.cores <- 1L
mc.share.vectors <- Inf
mc.shm.ipc <- FALSE
mc.force.fork <- FALSE
mc.progress <- FALSE

if (mc.stdout == "output”) mc.stdout <- "ignore"”
if (mc.warnings == "output”) mc.warnings <- "ignore"
if (mc.messages == "output”) mc.messages <- "ignhore"

Note: parallel: :mclapply demands mc.cores to be exactly 1 on Windows; bettermc: :mclapply
sets it to 1 on Windows.

Furthermore, parallel: :mclapply ignores the following arguments on Windows: mc.preschedule,mc.silent,mc.clean
For mc.set.seed, only the values TRUE and FALSE are ignored (by parallel::mclapply); the
other values are handled by bettermc: :mclapply as documented above.

Lifecycle

[Stable]

See Also

copy2shm, char_map, parallel: :mclapply

https://man7.org/linux/man-pages/man5/tmpfs.5.html
https://man7.org/linux/man-pages/man2/madvise.2.html
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://man7.org/linux/man-pages/man5/tmpfs.5.html

sem 13

sem Named POSIX Semaphores
Description
Named POSIX Semaphores
Usage

sem_open(name, create = FALSE, overwrite = FALSE, value = 0)
sem_post(sem)
sem_wait(sem)
sem_close(sem)

sem_unlink(name)

Arguments
name the name of the semaphore. Consult man sem_overview for what makes a valid
name.
create should the semaphore be created if it currently does not exist?
overwrite if create == TRUE, should we overwrite an already existing semaphore with the
name (TRUE) or rather fail (FALSE).
value the initial value of the semaphore (>=).
sem an object as returned by sem_open.
Value

For sem_open, an object of class "sem", which is an external pointer to the POSIX semaphore. All
other functions return NULL invisibly and are called for their side effects.

Windows Support

Not supported on Windows.

Lifecycle

[Experimental]

14 semv

semv POSIX-style System V Semaphores

Description

Mimic the POSIX semaphore API with System V semaphores.

Usage

semv_open(value = 0)

semv_post(sid, undo = TRUE)
semv_wait(sid, undo = TRUE)

semv_unlink(sid)

Arguments
value the initial value of the semaphore to create (>= 0).
sid the semaphore id as returned by semv_open.
undo should the operations (decrement/increment) on the semaphore be undone on
process termination. This feature is probably the main reason to prefer System
V semaphores to POSIX ones.
Value

For semv_open, an object of class "semv", which is an integer referring to the System V semaphore.
All other functions return NULL invisibly and are called for their side effects.

Windows Support

Not supported on Windows.

Lifecycle

[Experimental]

Index

+ datasets
mclapply, 7
.traceback, 6

allocate_from_shm (copy2shm), 4
as.list, 8
atomic, 10

cat, 6
char_map, 2, 3, 10, 12
compress_chars, 3
connection, 6
copy2shm, 4, 10-12

crash dumps, 71
crash_dumps (mclapply), 7

dump. frames, 6, 10
etry, 6,9, 10

map2char, 3

map2char (char_map), 2
mapply, 8
mcaffinity, 9
mclapply, 5,7

parallel::mclapply, 7-9, 12
print.etry-error (etry), 6

saveRDS, 3

sem, 13

sem_close (sem), 13
sem_open (sem), 13
sem_post (sem), 13
sem_unlink (sem), 13
sem_wait (sem), 13
semv, 14

semv_open (semv), 14
semv_post (semv), 14
semv_unlink (semv), 14
semv_wait (semv), 14

15

try, 6

uncompress_chars (compress_chars), 3
unique, 2
utils: :debugger, 6

	char_map
	compress_chars
	copy2shm
	etry
	mclapply
	sem
	semv
	Index

