
Package ‘catnet’
March 10, 2020

Title Categorical Bayesian Network Inference

Version 1.15.7

Description Structure learning and parameter estimation of discrete Bayesian networks using likeli-
hood-based criteria. Exhaustive search for fixed node orders and stochastic search of optimal or-
ders via simulated annealing algorithm are implemented.

License GPL (>= 2)

Depends R (>= 3.0.2)

Imports methods, stats, utils, graphics

Suggests
Collate catnet.class.R catnet.def.R graph2catnet.R catnet.dags.R

catnet.probs.R catnet.joint.prob.R catnet.marginal.prob.R
catnet.samples.R catnet.loglik.R catnet.entropy.R
catnet.categor.R catnet.dist.R catnet.plot.R catnet.find.R
catnet.search.R catnet.predict.R catnet.chisq.R catnet.histo.R
catnet.cluster.R catnet.bif.R catnet.quant.R catnet.pathway.R
zzz.R

LazyLoad yes

Repository CRAN

Date/Publication 2020-03-10 17:30:03 UTC

NeedsCompilation yes

Author Nikolay Balov [aut, cre] (Balov (2013) <doi:10.1214/13-EJS802>),
Peter Salzman [aut]

Maintainer Nikolay Balov <nhbalov@gmail.com>

R topics documented:
catnet-package . 3
alarm . 4
breast . 4
catNetwork-class . 5
catNetworkDistance-class . 7

1

2 R topics documented:

catNetworkEvaluate-class . 8
classification . 9
cnCatnetFromEdges . 10
cnCatnetFromSif . 11
cnCluster-method . 12
cnCompare-method . 13
cnComplexity-method . 14
cnDiscretize . 15
cnDot-method . 16
cnEdges-method . 18
cnEntropy . 19
cnFind-method . 20
cnFindAIC-method . 21
cnFindBIC-method . 22
cnLoglik-method . 23
cnMatEdges-method . 24
cnMatParents-method . 25
cnNew . 26
cnNodeLoglik . 27
cnNodeMarginalProb-method . 28
cnNodes-method . 29
cnNodeSampleLoglik . 30
cnNumNodes-method . 31
cnOrder-method . 31
cnParents-method . 32
cnParHist-method . 33
cnPearsonTest-method . 34
cnPlot-method . 34
cnPredict-method . 35
cnProb-method . 36
cnRandomCatnet . 37
cnReorderNodes-method . 38
cnSamples-method . 39
cnSearchHist . 40
cnSearchOrder . 42
cnSearchSA . 44
cnSetProb-method . 47
cnSetSeed . 48
cnSubNetwork-method . 48
CPDAG-class . 49
dag2cpdag-method . 50
isDAG . 50
novartis . 51

Index 52

catnet-package 3

catnet-package catnet: Categorical Bayesian network inference

Description

catnet package provides tools for learning categorical Bayesian networks from data with focus on
model selection. A Bayesian network is defined by a graphical structure in form of directed acyclic
graph and a probability model given as a set of conditional distributions, one for each node in the
network. Considered in the package are only categorical Bayesian networks - networks which nodes
represent discrete random variables. The learning functions implemented in catnet are based on
exhaustive search and output sets of networks with increasing complexity that fit the data according
to MLE-based criteria. The final network selection is left to the user. These selected networks
represent the relations between the node-variables in the data optimally.

Before starting to use the package, we suggest the user to take a look at some of the main objects
used in catnet such as catNetwork and catNetworkEvaluate and then familiarize with the main
search functions cnSearchOrder and cnSearchSA. More details and examples can be found in the
manual pages and the vignettes accompanying the package.

Since catnet does not have its own plotting abilities, the user needs to setup some external tools in
order to visualize networks, or more precisely, catNetwork objects. catnet provides interface to
the Graphviz library for visualizing graphs. Graphviz is not a R-package but a platform indepen-
dent library that the user have to install in advance on its machine in order to use this option.

In order to use Graphviz, in addition to installing the library, the user has to register a environmental
variable with name R_DOTVIEWER with the path to the Dot executable file of Graphviz. The Dot
routine generates a postscript or pdf-file from a text dot-file. Also, the user needs a postscript and
pdf-viewer. The full path to it has to be given in another variable with name R_PDFVIEWER. Note that
R_PDFVIEWER variable might be already setup. To check this call Sys.getenv("R_PDFVIEWER") in
R.

The variables R_DOTVIEWER and eventually R_PDFVIEWER can be registered in the .First function
residing in the .Rprofile initializing file.

Below we give two examples. On UNIX platform the user may use code like this one

.First <- function() {

......................

Sys.setenv(R_DOTVIEWER="/usr/bin/dot")

}

On Windows platform the user may have the following two lines in its .First function

.First <- function() {

......................

Sys.setenv(R_PDFVIEWER="\"C:/Program Files (x86)/Adobe/Reader 9.0/Reader/AcroRd32\"")

Sys.setenv(R_DOTVIEWER="\"C:/Program Files (x86)/Graphviz 2.26.3/bin/Dot\"")

}

Note that all paths in Windows should be embraced by comment marks, "\"".

4 breast

Author(s)

N. Balov

alarm The ALARM network

Description

ALARM stands for ’A Logical Alarm Reduction Mechanism’ and it is a medical diagnostic alarm
message system for patients monitoring developed by Beinlich et. all, (Beinlich, I., Suermondth,
G., Chavez, R., Cooper, G., The ALARM monitoring system, 1989, In Proc. 2-nd Euro. Conf. on
AI and Medicine). It is categorical Bayesian network has 37 nodes and 46 directed edges.

Usage

data(alarmnet)

Format

A data frame with 37 variables and 2000 samples.

Source

http://www.norsys.com/netlib/alarm.htm

breast Breast cancer data

Description

Subclass Mapping: Identifying Common Subtypes in Independent Disease Data Sets

Usage

data(breast)

Format

A matrix containing 100 observations on 1214 genes.

Source

"http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi"

catNetwork-class 5

catNetwork-class Class "catNetwork"

Description

This is the base class in the catnet package for representing Bayesian networks with categori-
cal values. It stores both the graph and probability structure of categorical Bayesian networks.
Technically, catNetwork is a S4 type of R-class implemented in object-oriented style, with slots
representing object components and members for accessing and manipulating class objects. Below
we list the slots of catNetwork and some of its main members along with the functions for creating
catNetwork objects.

Details

The catNetwork class provides a comprehensive general structure for representing discrete Bayesian
networks by describing both the graph and probability structures. Although available for direct ac-
cess, the class components, its slots, should not be manipulated directly but using the class members
instead. A catNetwork object integrity can always be checked by calling is(object,"catNetwork").

Objects from the Class

Objects can be created by calls of

cnNew(nodes,cats,parents,probs)

cnRandomCatnet(numnodes,maxParents,numCategories)

cnCatnetFromEdges(nodes,edges,numCategories)

cnCatnetFromSif(file)

Slots

objectName an optional object name of class character.

numnodes: an integer, the number of nodes in the object.

nodes: a vector specifying the node names.

parents: a list specifying the node parents. The list parents must be the same length as nodes.
Parents are kept as indices in the nodes vector.

categories: a list of characters specifying a set of categorical values for each node.

probabilities: a numerical list that for each node specifies a discrete probability distribution -
the distribution of the node conditional on its parent set. The elements of probabilities are
lists themselves. See cnProb function for more details.

maxParents: an integer, the maximum number of node parents.

maxCategories: an integer, the maximum number of node categories.

meta: an object of class character storing some meta-data information.

nodeComplexity: a numerical vector, the node complexities.

6 catNetwork-class

nodeLikelihood: a numerical vector, the node likelihoods of the sample being used for estima-
tion.

complexity: an integer, the network complexity

likelihood: a numerical, the total likelihood of the sample being used for estimation

nodeSampleSizes: a numerical vector, if the object is an estimate, the node sample sizes.

Methods

cnNew signature(nodes="vector", cats="list", parents="list", probs="list"): Creating a
new class object.

cnRandomCatnet signature(numnodes="integer", maxParents="integer", numCategories="integer"):
Creating a random class object.

cnCatnetFromEdges signature(nodes="vector", edges="list", numCategories="integer"): De-
riving a class object from a list of edges.

cnCatnetFromSif signature(file="character"): Creating a class object from a file.

cnNumNodes signature(object="catNetwork"):

cnNodes signature(object="catNetwork", which="vector"):...

cnSubNetwork signature(object="catNetwork", nodeIndices="vector", indirectEdges="logical"):...

cnReorderNodes signature(object="catNetwork", nodeIndices="vector"):...

cnParents signature(object="catNetwork", which="vector"):...

cnMatParents signature(object="catNetwork", nodeorder="vector"):...

cnEdges signature(object="catNetwork", which="vector"):...

cnMatEdges signature(object="catNetwork"):...

cnProb signature(object="catNetwork"):...

cnSetProb signature(object="catNetwork", psamples="matrix"):...

cnPlot signature(object="catNetwork"):...

cnDot signature(object="catNetwork", file="character"):...

cnSamples signature(object="catNetwork", nsamples="integer"):...

cnSamplesPert signature(object="catNetwork", nsamples="integer", perturbations="matrix"):...

cnOrder signature(object="catNetwork"):...

cnLoglik signature(object="catNetwork", psamples="matrix"):...

cnComplexity signature(object="catNetwork"):...

cnEvaluate signature(object="catNetwork", psamples="matrix", perturbations="matrix", max-
Complexity="integer"):...

cnPredict signature(object="catNetwork", psamples="matrix"):...

cnCompare signature(object1="catNetwork", object2="catNetwork"):...

Author(s)

N. Balov

catNetworkDistance-class 7

See Also

cnRandomCatnet, cnCatnetFromEdges, cnNew, cnNodes, cnEdges, cnComplexity, cnPlot

Examples

set.seed(123)
cnet <- cnRandomCatnet(numnodes=10, maxParents=2, numCategories=2)
cnet

catNetworkDistance-class

Class "catNetworkDistance"

Description

This class contains a list of catNetworks and it is the output format of cnEvaluate function

Details

See in the manual of cnCompare function for description of different distance criteria.

Slots

hamm: an integer, the hamming distance between the parent matrices of the found networks and
the original network.

hammexp: an integer, the hamming distance between the exponents of the parent matrices.

tp: an integer, the number of true positives directed edges.

fp: an integer, the number of false positives directed edges.

fn: an integer, the number of false negatives directed edges.

sp: a numeric, the specificity.

sn: a numeric, the sensitivity.

fscore: a numeric, the F-score.

skel.tp: an integer, the number of true positives undirected edges.

skel.fp: an integer, the number of false positives undirected edges.

skel.fn: an integer, the number of false negatives undirected edges.

order.fp: an integer, the number of false positive order relations.

order.fn: an integer, the number of false negative order relations.

markov.fp: an integer, the number of false positive Markov pairs.

markov.fn: an integer, the number of false negative Markov pairs.

KLdist: a numerical, the KL distance, currently inactive.

Methods

cnPlot signature(object="catNetworkDistance"): Draw some distance plots.

8 catNetworkEvaluate-class

Author(s)

N. Balov

See Also

catNetwork-class, catNetworkEvaluate-class, cnCompare, cnPlot

catNetworkEvaluate-class

Class "catNetworkEvaluate"

Description

This class contains a list of catNetworks together with some diagnostic metrics and information.
catNetworkEvaluate objects are created automatically as result of calling cnEvaluate or one of
the cnSearch functions.

Details

The class catNetworkEvaluate is used to output the result of two functions: cnEvaluate and
cnSearchSA. The usage of it in the first case is explained next. The complexity and log-likelihood of
the networks listed in nets slots are stored in complexity and loglik slots. Function cnEvaluate
and cnCompare fills all the slots from hamm to markov.fn by comparing these networks with a given
network. See in the manual of cnCompare function for description of different distance criteria. By
calling cnPlot upon a catNetworkEvaluate object, some relevant comparison information can be
plotted.

When catNetworkEvaluate is created by calling cnSearchSA or cnSearchSAcluster functions,
complexity and loglik contains the information not about the networks in the nets list, but about
the optimal networks found during the stochastic search process. Also, the slots from hamm to
markov.fn are not used.

Slots

numnodes: an integer, the number of nodes in the network.

numsamples: an integer, the sample size used for evaluation.

nets: a list of resultant networks.

complexity an integer vector, the network complexity.

loglik a numerical vector, the likelihood of the sample being evaluated.

hamm: an integer vector, the hamming distance between the parent matrices of the found networks
and the original network.

hammexp: an integer vector, the hamming distance between the exponents of the parent matrices.

tp: an integer vector, the number of true positives directed edges.

fp: an integer vector, the number of false positives directed edges.

fn: an integer vector, the number of false negatives directed edges.

classification 9

sp: a numeric vector, the specificity.

sn: a numeric vector, the sensitivity.

fscore: a numeric vector, the F-score.

skel.tp: an integer vector, the number of true positives undirected edges.

skel.fp: an integer vector, the number of false positives undirected edges.

skel.fn: an integer vector, the number of false negatives undirected edges.

order.fp: an integer vector, the number of false positive order relations.

order.fn: an integer vector, the number of false negative order relations.

markov.fp: an integer vector, the number of false positive Markov pairs.

markov.fn: an integer vector, the number of false negative Markov pairs.

KLdist: a numerical vector, the KL distance, currently inactive.

time: a numerical, the processing time in seconds.

Methods

cnFind signature(object="catNetworkEvaluate",complexity="integer"): Finds a network
in the list nets with specific complexity.

cnFindAIC signature(object="catNetworkEvaluate"): Finds the optimal network according
to AIC criterion.

cnFindBIC signature(object="catNetworkEvaluate"): Finds the optimal network according
to BIC criterion.

cnPlot signature(object="catNetworkEvaluate"): Draw distance plots.

Author(s)

N. Balov

See Also

catNetwork-class, catNetworkDistance-class, cnCompare, cnPlot

classification Classification demonstration

Description

Detailed information on the analysis can be found in our paper "Discrete Bayesian Network Classi-
fication for Gene Expression Data". From the installation catnet/demo directory copy the files cvK-
forl.r, diabetesLoad.r, diabetes.r, bostonLoad.r and boston.r into a new directory along with the data
files "Diabetes_collapsed_symbols.gct", "Lung_Michigan_collapsed_symbols.gct" and "Lung_Boston_collapsed_symbols.gct"
beforehand downloaded from the GSEA site. Then call demo(diabetes) and demo(boston) or open
the files and execute the code manually. The processing takes hours.

10 cnCatnetFromEdges

cnCatnetFromEdges catNetwork from Edges

Description

Creates a catNetwork object from list of nodes and edges.

Usage

cnCatnetFromEdges(nodes, edges, numCategories=2)

Arguments

nodes a vector of node names

edges a list of node edges

numCategories an integer, the number of categories per node

Details

The function uses a list of nodes and directional edges to create a catNetwork with specified (fixed)
number of node categories. A random probability model is assigned, which can be changed later
by cnSetProb for example. Note that cnSetProb takes a given data sample and changes both the
node categories and their conditional probabilities according to it.

Value

A catNetwork object

Author(s)

N. Balov

See Also

cnNew, cnCatnetFromSif, cnSetProb

cnCatnetFromSif 11

cnCatnetFromSif Categorical Network from Simple Interaction File (SIF) and Bayesian
Networks Interchange Format (BIF)

Description

Creates a catNetwork object from a SIF/BIF file.

Usage

cnCatnetFromSif(file, numcats=2)
cnCatnetFromBif(file)

Arguments

file a file name

numcats an integer, the number of node categories

Details

The function imports a graph structure from a SIF file by assigning equal number numcats of
categories for each of its nodes and a random probability model. Subsequently, the probability
model can be changed by calling cnSetProb function.

Value

A catNetwork object

Author(s)

N. Balov

See Also

cnNew, cnCatnetFromEdges, cnSetProb

12 cnCluster-method

cnCluster-method Network Clustering

Description

Retrieving the clusters, the connected sub-networks, of a given network. Estimating the clusters
from data.

Usage

cnCluster(object)
cnClusterSep(object, data, perturbations=NULL)
cnClusterMI(data, perturbations=NULL, threshold=0)

Arguments

object a catNetwork

data a matrix in row-nodes format or a data.frame in column-nodes format

perturbations a binary perturbation matrix with the dimensions of data

threshold a numeric value

Details

The function cnCluster constructs a list of subsets of nodes of the object, each representing a
connected sub-network. Isolated nodes, these are nodes not connected to any other, are not reported.
Thus, every element of the output list contains at least two nodes. The function cnClusterMI
clusters the nodes of the data using the pairwise mutual information and critical value threshold.

Value

A list of named nodes.

Author(s)

N. Balov

Examples

cnet <- cnRandomCatnet(numnodes=30, maxParents=2, numCategories=2)
cnCluster(object=cnet)

cnCompare-method 13

cnCompare-method Network Comparison

Description

Compares two catNetwork objects by several criteria

Usage

cnCompare(object1, object2, extended = TRUE)

Arguments

object1 a catNetwork object

object2 a catNetwork object, matrix, list of catNetworks or catNetworkEvaluate
object

extended a logical parameter, specifying whether basic but quicker or extended compar-
ison to be performed

Details

Comparison can be performed only between networks with the same sets of nodes. The function
considers several topology-related comparison metrics.

First, directed edge comparison is performed and the true positives (TP), the false positive (FP) and
the false negatives (FN) are reported assuming object1 to be the ’true’ network.

Second, the difference between the binary parent matrices of the two objects is measured as the
number of positions at which they differ. This is the so called Hamming distance and it is coded as
hamm. Also, when extended parameter is set to TRUE, the difference between the exponents of the
parent matrices is calculated, hammexp.

Third, the node order difference between the two networks is measured as follows. Let us call
’order pair’ a pair of indices (i,j) such that there is a directed path from j-th node to i-th node in the
network, which sometimes is denoted by j>i. The order comparison is done by counting the false
positive and false negative order pairs.

The fourth criteria accounts for the so called ’Markov blanket’. The term ’Markov pair’ is used
to denote a pair of indices which corresponding nodes have a common child. In case of extended
comparison, the numbers of false positive and false negative Markov pairs are calculated.

The cnCompare function returns an object with the following slots: 1) the number of true positive
edges TP; 2) the number of false positive edges FP; 3) the number of false negative edges FN; 4) the
F-score, which is the harmonic average of the specificity and sensitivity 5) the number of differ-
ent elements in the corresponding parent matrices hamm; 6) the total number of different elements
between all powers of the parent matrices hammexp;

Next three numbers identify the difference in the objects’ skeletons (undirected graph structure)

7) the number of true positive undirected edges TP; 8) the number of false positive undirected edges
FP; 9) the number of false negative undirected edges FN;

14 cnComplexity-method

10) the number of false positive order pairs order.fp; 11) the number of false negative order pairs
order.fn; 12) the number of false positive Markov pairs markov.fp; and 13) the number of false
positive Markov pairs markov.fn. It is assumed that the first object represents the ground truth with
respect to which the comparison is performed.

If extended is set off (FALSE) only the edge (TP, FP, FN) and skeleton (TP, FP, FN) numbers
are reported, otherwise all distance parameters are calculated. Turning off the extended option is
recommended for very large networks (e.g. with number of nodes > 500), since the calculation of
some of the distance metrics involve matrix calculations for which the function is not optimized and
can be very slow.

Value

A catNetworkDistance if object2 is catNetwork and catNetworkEvaluate otherwise.

Author(s)

N. Balov

See Also

catNetworkEvaluate-class

Examples

cnet1 <- cnRandomCatnet(numnodes=10, maxParents=2, numCategories=2)
cnet2 <- cnRandomCatnet(numnodes=10, maxParents=2, numCategories=2)
dist <- cnCompare(object1=cnet1, object2=cnet2)
dist

cnComplexity-method Network Complexity

Description

Returns the complexity of a network

Usage

cnComplexity(object, node=NULL, include.unif=TRUE)
cnKLComplexity(object, node=NULL)

Arguments

object a catNetwork object

node an integer, node index

include.unif a logical

cnDiscretize 15

Details

Complexity is a network characteristics that depends both on its graphical structure and the catego-
rization of its nodes.

If node is specified, then the function returns that node complexity, otherwise the total complexity of
object, which is the sum of its node complexities, is reported. A node complexity is determined by
the number of its parents and their categories. For example, a node without parents has complexity
1. A node with k parents with respected number of categories c1,c2,...,ck, has complexity
c1*c2*...*ck. Complexity is always a number that is equal or greater than the number of nodes
in the network. For a network with specified graph structure, its complexity determines the number
of parameters needed to define its probability distribution and hence the importance of complexity
as network characteristic.

If include.unif is set to FALSE

Value

An integer

Author(s)

N. Balov, P. Salzman

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnComplexity(object=cnet)

cnDiscretize Data Categorization

Description

Numerical data discretization using empirical quantiles.

Usage

cnDiscretize(data, numCategories, mode="uniform", qlevels=NULL)

Arguments

data a numerical matrix or data.frame

numCategories an integer, the number of categories per node

mode a character, the discretization method to be used, "quantile" or "uniform"

qlevels a list of integer vectors, the node discretization parameters

16 cnDot-method

Details

The numerical data is discretized into given number of categories, numCategories, using the em-
pirical node quantiles. As in all functions of catnet package that accept data, if the data parameter
is a matrix then it is organized in the row-node format. If it is a data.frame, the column-node
format is assumed.

The mode specifies the discretization model. Currantly, two discretization methods are supported -
"quantile" and "uniform", which is the default choice.

The quantile-based discretization method is applied as follows. For each node, the sample node
distribution is constructed, which is then represented by a sum of non-intersecting classes separated
by the quantile points of the sample distribution. Each node value is assigned the class index in
which it falls into.

The uniform discretization breaks the range of values of each node into numCategories equal
intervals or of lengths proportional to the corresponding qlevels values.

Currently, the function assigns equal number of categories for each node of the data.

Value

A matrix or data.frame of indices.

Author(s)

N. Balov, P. Salzman

See Also

cnSamples

Examples

ps <- t(sapply(1:10, function(i) rnorm(20, i, 0.1)))
dps1 <- cnDiscretize(ps, 3, mode="quantile")
hist(dps1[1,])
qlevels <- lapply(1:10, function(i) rep(1, 3))
qlevels[[1]] <- c(1,2,1)
dps2 <- cnDiscretize(ps, 3, mode="uniform", qlevels)
hist(dps2[1,])

cnDot-method Network Description File

Description

The function generates a dot-file, the native storage format for Graphviz software package, that
describes the graph structure of a catNetwork object.

cnDot-method 17

Usage

cnDot(object, file=NULL, format="ps", style=NULL)

Arguments

object a catNetwork, a list of catNetworks or a parent matrix

file a character, an optional output file name

format a character, an optional output file format, "ps" or "pdf"

style a list of triplets, nodes’ shape, color and edge-color

Details

The function generates a dot-text file as supported by Graphviz library. In order to draw a graph the
user needs a dot-file converter and pdf/postscript viewer. The environment variables R_DOTVIEWER
and R_PDFVIEWER specify the corresponding executable routines.

If Graphviz is installed and the variable R_DOTVIEWER is set with the full path to the dot executable
file (the routine that converts a dot-text file to a postscript or pdf), a pdf or postscript file is created
depending on the value of the format parameter.

If the file variable is not specified, then the function just prints out the resulting string which
otherwise would be written into a dot file. Next, if a pdf-viewer is available, the created postscript
or pdf file is shown.

Value

A character or a dot-file

Author(s)

N. Balov

See Also

catnet-package, cnPlot

Examples

#cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
#cnDot(object=cnet, file="cnet")

18 cnEdges-method

cnEdges-method Network Edges

Description

Returns the set of directed edges of a catNetwork object.

Usage

cnEdges(object, which)

Arguments

object a catNetwork

which a vector of node indices or node names

Details

The edges of a catNetwork are specified as parent-to-child vectors. The function returns a list that
for each node with index in the vector which contains its set of children. If which is not specified,
the children of all nodes are listed.

Value

A list of nodes’ children.

Author(s)

N. Balov, P. Salzman

See Also

cnParents

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnEdges(object=cnet)

cnEntropy 19

cnEntropy Pairwise Node Entropy

Description

Calculates the matrix of conditional entropy for each pair of nodes.

Usage

cnEntropy(data, perturbations=NULL)
cnEdgeDistanceKL(data, perturbations)
cnEdgeDistancePearson(data, perturbations)
cnEntropyOrder(data, perturbations=NULL)

Arguments

data a matrix in row-nodes format or a data.frame in column-nodes format

perturbations a binary matrix with the dimensions of data. A value 1 designates the corre-
sponding node in the sample as perturbed.

Details

The conditional entropy of node X with respect to Y is defined as -P(X|Y)logP(X|Y), where P(X|Y)
is the sample conditional probability, and this is the value at the (X,Y)’th position in the resulting
matrix.

Value

A matrix

Author(s)

N. Balov

See Also

cnParHist

20 cnFind-method

cnFind-method Find Network by Complexity

Description

This is a model selection routine that finds a network in a set of networks for a given complexity.

Usage

cnFind(object, complexity = 0, alpha=0, factor=1)
cnFindKL(object, numsamples)

Arguments

object catNetworkEvaluate or list of catNetworks

complexity an integer, target complexity

alpha a character or numeric

factor a numeric

numsamples an integer

Details

The complexity must be at least the number of nodes of the networks. If no network with the
requested complexity exists in the list, then the one with the closest complexity is returned. Alter-
natively, one can apply some standard model selection with alpha="BIC" and alpha=AIC.

Value

A catNetwork object.

Author(s)

N. Balov, P. Salzman

See Also

cnFindAIC, cnFindBIC

Examples

cnet <- cnRandomCatnet(numnodes=10, maxParents=2, numCategories=2)
psamples <- cnSamples(object=cnet, numsamples=100)
netlist <- cnSearchOrder(data=psamples, maxParentSet=2)
bnet <- cnFind(object=netlist, complexity=cnComplexity(cnet))
bnet

cnFindAIC-method 21

cnFindAIC-method Find Network by AIC

Description

This is a model selection routine that finds a network in a set of networks using the AIC criteria.

Usage

cnFindAIC(object, numsamples)

Arguments

object A list of catNetwork objects or catNetworkEvaluate

numsamples an integer

Details

The function returns the network with maximal AIC value from a list of networks as obtained from
one of the search-functions cnSearchOrder, cnSearchSA and cnSearchSAcluster. The formula
used for the AIC is log(Likelihood) -Complexity.

Value

A catNetwork object with optimal AIC value.

Author(s)

N. Balov, P. Salzman

See Also

cnFind, cnFindBIC

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=12, maxParents=3, numCategories=2)
psamples <- cnSamples(object=cnet, numsamples=10)
nodeOrder <- sample(1:12)
nets <- cnSearchOrder(data=psamples, perturbations=NULL,

maxParentSet=2, maxComplexity=36, nodeOrder)
aicnet <- cnFindAIC(object=nets)
aicnet

22 cnFindBIC-method

cnFindBIC-method Find Network by BIC

Description

This is a model selection routine that finds a network in a set of networks using the BIC criteria.

Usage

cnFindBIC(object, numsamples)

Arguments

object A list of catNetworkNode objects or catNetworkEvaluate

numsamples The number of samples used for estimating object

Details

The function returns the network with maximal BIC value from a list of networks as obtained from
one of the search-functions cnSearchOrder, cnSearchSA and cnSearchSAcluster. The formula
used for the BIC is log(Likelihood) -0.5*Complexity*log(numNodes).

Value

A catNetwork object with optimal BIC value.

Author(s)

N. Balov, P. Salzman

See Also

cnFindAIC, cnFind

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=12, maxParents=3, numCategories=2)
psamples <- cnSamples(object=cnet, numsamples=10)
nodeOrder <- sample(1:12)
nets <- cnSearchOrder(data=psamples, perturbations=NULL,

maxParentSet=2, maxComplexity=36, nodeOrder)
bicnet <- cnFindBIC(object=nets, numsamples=dim(psamples)[2])
bicnet

cnLoglik-method 23

cnLoglik-method Sample Log-likelihood

Description

Calculate the log-likelihood of a sample with respect to a given catNetwork object

Usage

cnLoglik(object, data, perturbations=NULL, bysample=FALSE)

Arguments

object a catNetwork object

data a data matrix given in the column-sample format, or a data.frame in the row-
sample format

perturbations a binary matrix with the dimensions of data. A value 1 designates the corre-
sponding node in the sample as perturbed.

bysample a logical

Details

If bysample is set to TRUE, the function output is a vector of log-likelihoods of the individual
sample records. Otherwise, the total average of the log-likelihood of the sample is reported.

Value

A numeric value

Author(s)

N. Balov

See Also

cnNodeLoglik

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents = 3, numCategories = 2)
psamples <- cnSamples(object=cnet, numsamples=100)
cnLoglik(object=cnet, data=psamples)

24 cnMatEdges-method

cnMatEdges-method Network Edge Matrix

Description

Returns a matrix representing the edges of a catNetwork object.

Usage

cnMatEdges(object)

Arguments

object a catNetwork object

Details

The resulting matrix has two columns and the number of edges rows. Edges are given as ordered
pairs of the elements of the first and second columns.

Value

A matrix of characters.

Author(s)

N. Balov, P. Salzman

See Also

cnEdges, cnMatParents

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnMatEdges(object=cnet)

cnMatParents-method 25

cnMatParents-method Network Parent Matrix

Description

Returns the binary matrix of parent-child relations of a catNetwork object.

Usage

cnMatParents(object, nodeorder)

Arguments

object a catNetwork or catNetworkFit object

nodeorder an integer vector specifying the order of the nodes to be taken

Details

The resulting matrix has a value 1 at row i and column j if i-th node has j-th node as a parent, and
0 otherwise.

Value

A matrix

Author(s)

N. Balov, P. Salzman

See Also

cnParents, cnMatEdges

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnMatParents(object=cnet)

26 cnNew

cnNew New catNetwork

Description

Creates a new catNetwork with specified nodes, categories, parent sets and probability structure.

Usage

cnNew(nodes, cats, parents, probs=NULL, p.delta1=0.01, p.delta2=0.01)

Arguments

nodes a vector of nodes names

cats a list of node categories

parents a list of node parents

probs a list of probabilities

p.delta1 a numeric

p.delta2 a numeric

Details

If probs is not specified, then a random probability model is assigned with conditional probability
values in the union of the intervals [p.delta1, 0.5-p.delta2] and [0.5+p.delta2, 1-p.delta1]. Because
of the nested list hierarchy of the probability structure, specifying the probability argument explic-
itly can be very elaborated task for large networks. In the following example we create a small
network with only three nodes. The first node has no parents and only its marginal distribution is
given, c(0.2,0.8). Note that all inner most vectors in the probs argument, such as (0.4,0.6),
represent conditional distributions and thus sum to 1.

Value

A catNetwork object.

Author(s)

N. Balov, P. Salzman

See Also

catNetwork-class, cnRandomCatnet

cnNodeLoglik 27

Examples

library(catnet)
cnet <- cnNew(
nodes = c("a", "b", "c"),
cats = list(c("1","2"), c("1","2"), c("1","2")),
parents = list(NULL, c(1), c(1,2)),
probs = list(c(0.2,0.8),
list(c(0.6,0.4),c(0.4,0.6)),
list(list(c(0.3,0.7),c(0.7,0.3)),
list(c(0.9,0.1),c(0.1,0.9))))
)

cnNodeLoglik Node Log-likelihood

Description

For a given data sample, the function calculates the log-likelihood of a node with respect to a
specified parent set.

Usage

cnNodeLoglik(object, node, data, perturbations=NULL)

Arguments

object a catNetwork object
node an integer or a list of integers, node indices in the data

data a matrix or data.frame of categories
perturbations an optional perturbation matrix or data.frame

Value

a numeric value

Author(s)

N. Balov

See Also

cnLoglik

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
psamples <- cnSamples(object=cnet, numsamples=100)
cnNodeLoglik(cnet, node=5, data=psamples)

28 cnNodeMarginalProb-method

cnNodeMarginalProb-method

Probability Calculations

Description

Marginal probability of a node, joint probability of a set of nodes or conditional probability of two
sets of nodes.

Usage

cnNodeMarginalProb(object, node)
cnJointProb(object, nodes)
cnCondProb(object, x, y)

Arguments

object a catNetwork

node an integer, a node index in object

nodes a vector of node names or indices in object

x,y vectors of node categories (either characters or indices) named after nodes of
object

Details

cnJointProb returns a matrix with probability values for each combinations of categories arranged
in columns. cnCondProb calculates the value of P(X=x|Y=y).

Value

a numerical or numerical matrix

Author(s)

N. Balov

See Also

cnProb

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnNodeMarginalProb(cnet, node=5)
cnCondProb(cnet, x=c("N1"=1, "N2"=2), y=c("N3"=1, "N4"=2, "N5"=2))

cnNodes-method 29

cnNodes-method Netwok Nodes

Description

Returns the list of nodes of a catNetwork object.

Usage

cnNodes(object, which)

Arguments

object a catNetwork object

which a vector of node indices

Details

Nodes are represented by characters. When a random catNetwork object is constructed, it takes the
default node names N#, where # are node indices. The function returns the node names with indices
given by parameter which, and all node names if which is not specified.

Value

a list of characters, the node names

Author(s)

N. Balov, P. Salzman

See Also

cnNumNodes

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnNodes(object=cnet)

30 cnNodeSampleLoglik

cnNodeSampleLoglik Node Log-likelihood

Description

For a given data sample, the function calculates the log-likelihood of a node with respect to a
specified parent set.

Usage

cnNodeSampleLoglik(node, parents, data, perturbations=NULL)
cnNodeSampleProb(node, parents, data, perturbations=NULL)

Arguments

node an integer or a list of integers, node indices in the data

parents an integer or a list of integers, vector of parent indices for the nodes

data a matrix or data.frame of categories

perturbations an optional perturbation matrix or data.frame

Value

a numeric value

Author(s)

N. Balov

See Also

cnLoglik

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
psamples <- cnSamples(object=cnet, numsamples=100)
cnNodeSampleLoglik(node=5, parents=c(1,2), data=psamples)

cnNumNodes-method 31

cnNumNodes-method Network Size

Description

Returns the number of nodes of a catNetwork object.

Usage

cnNumNodes(object)

Arguments

object a catNetwork

Value

an integer

Author(s)

N. Balov, P. Salzman

See Also

cnNodes

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnNumNodes(object=cnet)

cnOrder-method Network Node Order

Description

The function returns an order of the nodes of a network that is compatible with its parent structure.

Usage

cnOrder(object)

Arguments

object a catNetwork or a list of node parents.

32 cnParents-method

Details

An order is compatible with the parent structure of a network if each node has as parents only
nodes appearing earlier in that order. That such an order exists is guaranteed by the fact that every
catNetwork is a DAG (Directed Acyclic Graph). The result is one order out of, eventually, many
possible.

Value

a list of node indices.

Author(s)

N. Balov, P. Salzman

Examples

cnet <- cnRandomCatnet(numnodes=20, maxParents=3, numCategories=2)
cnOrder(object=cnet)

cnParents-method Network Parent Structure

Description

Returns the list of parents of selected nodes of a catNetwork object. If which is not specified, the
parents of all nodes are listed.

Usage

cnParents(object, which)

Arguments

object a catNetwork object

which a vector of node indices

Value

A list of named nodes.

Author(s)

N. Balov, P. Salzman

See Also

cnMatParents, cnEdges

cnParHist-method 33

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnParents(object=cnet)

cnParHist-method Parenthood Histogram

Description

Calculates the histogram of parent-child edges for a catNetworkEvaluate object or a list of catNetworks

Usage

cnParHist(object)

Arguments

object catNetworkEvaluate or list of catNetwork objects

Value

a numerical matrix

Author(s)

N. Balov, P. Salzman

Examples

cnet <- cnRandomCatnet(numnodes=20, maxParents=3, numCategories=2)
psamples <- cnSamples(cnet, 100)
nodeOrder <- sample(1:20)
nets <- cnSearchOrder(psamples, perturbations=NULL,

maxParentSet=2, maxComplexity=50, nodeOrder)
cnParHist(object=nets)

34 cnPlot-method

cnPearsonTest-method Goodness of Fit Test

Description

The function calculates the Pearson’s chi-square statistics for all nodes of a network.

Usage

cnPearsonTest(object, data)

Arguments

object a catNetwork

data a data matrix or data.frame

Details

For given data and network object, the function reports both the chi-square statistics and the
degree of freedom for each node in the network for the purpose of performing goodness of fit tests.

Value

A list

Author(s)

N. Balov

cnPlot-method Plot Network

Description

Draws the graph structure of catNetwork object or some diagnostic plots associated with a catNetworkEvaluate

Usage

cnPlot(object, file=NULL)

Arguments

object catNetwork or catNetworkEvaluate object

file a file name

cnPredict-method 35

Details

First we consider the case when object is a catNetwork. There are two visualization options
implemented - one using ’igraph’ and the other ’Graphviz’. The usage of these two alternatives is
controlled by two environment variables - the logical one R_CATNET_USE_IGRAPH and the character
one R_DOTVIEWER, correspondingly. If igraph is installed and R_CATNET_USE_IGRAPH is set to
TRUE, the function constructs an igraph compatible object corresponding to the object and plot
it.

If igraph is not found, the function generates a dot-file with name file.dot, if file is specified, or
unknown.dot otherwise. Furthermore, provided that Graphviz library is found and R_DOTVIEWER
points to the dot-file executable, the created earlier dot-file will be compiled to pdf or postscript, if
object is a list. Finally, if the system has pdf or postscript rendering capabilities and R_PDFVIEWER
variable shows the path to the pdf-rendering application, the resulting pdf-file will be shown.

In case object is of class catNetworkEvaluate, then the function draws six relevant plots: like-
lihood vs. complexity, Hamming (hamm) and exponential Hamming (hammexp) distances, Markov
neighbor distance (FP plus FN), and the false positive (fp) and false negative (fn) edges vs. com-
plexity.

Value

A R-plot or dot-file or pdf-file.

Author(s)

N. Balov

See Also

cnDot, catNetworkEvaluate-class, cnCompare

Examples

Set R_CATNET_USE_IGRAPH to TRUE if you want to use 'igraph'
#Sys.setenv(R_CATNET_USE_IGRAPH=FALSE)
#cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
#cnPlot(object=cnet)

cnPredict-method Prediction

Description

Predicts the ’not-available’ elements in an incomplete sample.

Usage

cnPredict(object, data)

36 cnProb-method

Arguments

object a catNetwork

data a data matrix or data.frame

Details

Data should be a matrix or data frame of categorical values or indices. If it is a matrix then the
rows should represent object’s nodes; otherwise, the columns represent the nodes. Data’s values
represent object’s categories either as characters or indices. Indices should be integers in the range
from 1 to the number of categories of the corresponding node. Prediction is made for those nodes
that are marked as not-available (NA) in the data and is based on maximum probability criterion. For
each data instance, the nodes are traversed in their topological order in object and the categorical
values with the maximum probability are assigned.

Value

An updated sample matrix

Author(s)

N. Balov, P. Salzman

Examples

cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=3)
generate a sample of size 2 and set nodes 8, 9 and 10 as not-available
psamples <- matrix(as.integer(1+rbinom(10*2, 2, 0.4)), nrow=10)
psamples[8,] <- rep(NA, 2)
psamples[9,] <- rep(NA, 2)
psamples[10,] <- rep(NA, 2)
make show sample rows are named after the network's nodes
rownames(psamples) <- cnNodes(cnet)
predict the values of nodes 8, 9 and 10
newsamples <- cnPredict(object=cnet, data=psamples)

cnProb-method Conditional Probability Structure

Description

Returns the list of conditional probabilities of nodes specified by which parameter of a catNetwork
object. Node probabilities are reported in the following format. First, node name and its parents are
given, then a list of probability values corresponding to all combination of parent categories (put in
brackets) and node categories. For example, the conditional probability of a node with two parents,
such that both the node and its parents have three categories, is given by 27 values, one for each of
the 3*3*3 combination.

cnRandomCatnet 37

Usage

cnProb(object, which=NULL)
cnPlotProb(object, which=NULL)

Arguments

object a catNetwork object

which a vector of indices

Value

A named list of probability tables.

Author(s)

N. Balov, P. Salzman

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnProb(object=cnet)
cnPlotProb(object=cnet)

cnRandomCatnet Random Network

Description

Creates a random catNetwork with specified number of nodes, number of parents and categories
per node.

Usage

cnRandomCatnet(numnodes, maxParents, numCategories, p.delta1=0.01, p.delta2=0.01)

Arguments

numnodes an integer, the number of nodes

maxParents an integer, the maximum number of parents per node

numCategories an integer, the number of categories for each node. It is the function limitation
to support only constant number of node categories.

p.delta1 a numeric

p.delta2 a numeric

38 cnReorderNodes-method

Details

A random set of parents, no more than maxParents, is assigned to each node along with a ran-
dom conditional probability distribution with values in the union of [p.delta1, 0.5-p.delta2] and
[0.5+p.delta2, 1-p.delta1]. Also, each node is assigned a fixed, thus equal, number of categories,
numCategories.

The function is designed for evaluation and testing purposes only thus lacking much user control
over the networks it create. Once created with cnRandomCatnet, a network can be further modified
manually node by node. However, this requires direct manipulation of the object’s slots and may
result in a wrong network object. It is recommended that after any manual manipulation a call
is(object, "catNetwork") is performed to check the object’s integrity.

Value

A catNetwork object

Author(s)

N. Balov

See Also

cnNew

Examples

cnet <- cnRandomCatnet(numnodes=20, maxParents=3, numCategories=2)

cnReorderNodes-method Reorder Network Nodes

Description

The function rearranges the nodes of a network according to a new order.

Usage

cnReorderNodes(object, nodeIndices)

Arguments

object a catNetwork

nodeIndices a vector representing the new node order

Details

Node reordering affects the list of node names, parents and probabilities. It is a useful operation in
cases when comparison of two networks is needed.

cnSamples-method 39

Value

A catNetwork object.

Author(s)

N. Balov, P. Salzman

Examples

cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnMatParents(cnet)
cnet1 <- cnReorderNodes(object=cnet, nodeIndices=cnOrder(cnet))
cnNodes(object=cnet1)
cnMatParents(cnet1)

cnSamples-method Samples from Network

Description

Generates samples from of a catNetwork object.

Usage

cnSamples(object, numsamples = 1, perturbations = NULL, output="frame",
as.index=FALSE, naRate=0)

Arguments

object a catNetwork

numsamples an integer, the number of samples to be generated

perturbations a vector, node perturbations

output a character, the output format. Can be a data.frame or matrix.

as.index a logical, the output categorical format

naRate a numeric, the proportion of NAs per sample instance

Details

If the output format is "matrix" then the resulting sample matrix is in row-node format - the rows
correspond to the object’s nodes while the individual samples are represented by columns. If the
output format is "frame", which is by default, the result is a data frame with columns representing
the nodes and levels the set of categories of the respected nodes. If as.index is set to TRUE,
the output sample consists of categorical indices, otherwise, and this is by default, of characters
specifying the categories.

A perturbed sample is a sample having nodes with predefined, thus fixed, values. Non-perturbed
nodes, the nodes which values have to be set, are designated with zeros in the perturbation vector

40 cnSearchHist

and their values are generated conditional on the values of their parents. While the non-zero values
in the perturbation vector are carried on unchanged to the output.

If naRate is positive, then floor(numnodes*naRate) NA values are randomly placed in each sam-
ple instance.

Value

A matrix or data.frame of node categories as integers or characters

Author(s)

N. Balov

See Also

cnPredict

Examples

cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=3)
generate a sample of size 100 from cnet
psamples <- cnSamples(object=cnet, numsamples=100, output="frame", as.index=FALSE)
perturbed sample
nsamples <- 20
perturbations <- rbinom(10, 2, 0.4)
generate a perturbed sample of size 100 from cnet
psamples <- cnSamples(object=cnet, numsamples=nsamples, perturbations, as.index=TRUE)

cnSearchHist Parent Histogram Matrix

Description

Estimation of the parent matrix of nodes from data. The frequency of node edges is obtained by
fitting networks consistent to randomly generated node orders.

Usage

cnSearchHist(data, perturbations=NULL,
maxParentSet=1, parentSizes=NULL, maxComplexity=0,
nodeCats=NULL, parentsPool=NULL, fixedParents=NULL,
score = "BIC", weight="likelihood",
maxIter=32, numThreads=2, echo=FALSE)

cnSearchHist 41

Arguments

data a matrix in row-nodes format or a data.frame in column-nodes format

perturbations a binary matrix with the dimensions of data. A value 1 designates the corre-
sponding node in the sample as perturbed

maxParentSet an integer, the maximal number of parents per node

parentSizes an integer vector, maximal number of parents per node

maxComplexity an integer, the maximal network complexity for the search

nodeCats a list of node categories

parentsPool a list of parent sets to choose from

fixedParents a list of parent sets to choose from

score a character, network selection score such as "AIC" and "BIC"

weight a character, specifies how the

maxIter an integer, the number of single order searches to be performed

numThreads an integer value, the number of parallel threads

echo a boolean that sets on/off some functional progress and debug information

Details

The function performs niter calls of cnSearchOrder for randomly generated node orders (uni-
formly over the space of all possible node orders), selects networks according to score and sum
their parent matrices weighted by weight. Three scoring criteria are currently supported: "BIC",
"AIC" and maximum complexity for any other value of score. The weight can be 1) "likelihhod",
then the parent matrices are multiplied by the network likelihood, 1) "score", then the parent ma-
trices are multiplied by the exponential of the network score, 3) any other value of weihgt uses
multiplier 1. In this case the entries in the output matrix show how many times the corresponding
parent-child pairs were found.

The function can runs numThreads number of parallel threads each processing different order.
cnSearchHist function can be useful for empirical estimation of the relationships in some mul-
tivariate categorical data.

Value

A matrix

Author(s)

N. Balov

See Also

cnMatParents, cnSearchOrder

42 cnSearchOrder

Examples

cnet <- cnRandomCatnet(numnodes=8, maxParents=3, numCategories=2)
psamples <- cnSamples(object=cnet, numsamples=100)
mhisto <- cnSearchHist(data=psamples, perturbations=NULL,

maxParentSet=2, maxComplexity=20)
mhisto

cnSearchOrder Network Search for Given Node Order

Description

The function implements a MLE based algorithm to search for optimal networks complying with
a given node order. It returns a list of networks, with complexities up to some maximal value, that
best fit the data.

Usage

cnSearchOrder(data, perturbations=NULL,
maxParentSet=0, parentSizes=NULL, maxComplexity=0,
nodeOrder=NULL,
nodeCats=NULL, parentsPool=NULL, fixedParents=NULL, edgeProb=NULL,
echo=FALSE)

Arguments

data a matrix in row-nodes format or a data.frame in column-nodes format

perturbations a binary matrix with the dimensions of data. A value 1 marks that the node in
the corresponding sample as perturbed

maxParentSet an integer, maximal number of parents for all nodes

parentSizes an integer vector, maximal number of parents per node

maxComplexity an integer, the maximal network complexity for the search

nodeOrder a vector specifying a node order; the search is among the networks consistent
with this topological order

nodeCats a list of node categories

parentsPool a list of parent sets to choose from

fixedParents a list of parent sets to choose from

edgeProb a square matrix of length the number of nodes specifying prior edge probabili-
ties

echo a logical that sets on/off some functional progress and debug information

cnSearchOrder 43

Details

The data can be a matrix of character categories with rows specifying the node-variables and
columns assumed to be independent samples from an unknown network, or a data.frame with
columns specifying the nodes and rows being the samples.

The number of node categories are obtained from the sample. If given, the nodeCats is used as a
list of categories. In that case, nodeCats should include the node categories presented in the data.

The function returns a list of networks, one for each admissible complexity within the specified
range. The networks in the list are the Maximum Likelihood estimates in the class of networks
having the given topological order of the nodes and complexity. When maxComplexity is not
given, thus zero, its value is reset to the maximum possible complexity for the given parent set size.
When nodeOrder is not given or NULL, the order of the nodes in the data is taken, 1,2,....

The parameters parentsPool and fixedParents allow the user to put some exclusion/inclusion
constrains on the possible parenthood of the nodes. They should be given as lists of index vectors,
one for each node.

The rows in edgeProb correspond to the nodes in the sample. The [i,j]-th element in edgeProb
specifies a prior probability for the j-th node to be a parent of the i-th one. In calculating the
prior probability of a network all edges are assumed independent Bernoulli random variables. The
elements of edgeProb are cropped in the range [0,1], such that the zero probabilities effectively
exclude the corresponding edges, while the ones force them.

Value

A catNetworkEvaluate object

Author(s)

N. Balov, P. Salzman

See Also

cnSearchSA

Examples

cnet <- cnRandomCatnet(numnodes=12, maxParents=3, numCategories=2)
psamples <- cnSamples(object=cnet, numsamples=100)
nodeOrder <- sample(1:12)
nets <- cnSearchOrder(data=psamples, perturbations=NULL,

maxParentSet=2, maxComplexity=36, nodeOrder)
next we find the network with complexity of the original one and plot it
cc <- cnComplexity(object=cnet)
cnFind(object=nets, complexity=cc)

44 cnSearchSA

cnSearchSA Stochastic Network Search

Description

This function provides a MLE based network search in the space of node orders by Simulated
Annealing. For a given sample from an unknown categorical network, it returns a list of catNetwork
objects, with complexity up to some maximal value, that best fit the data.

Usage

cnSearchSA(data, perturbations,
maxParentSet=0, parentSizes=NULL,
maxComplexity=0, nodeCats=NULL,
parentsPool=NULL, fixedParents=NULL,
edgeProb=NULL, dirProb=NULL,
selectMode = "BIC",
tempStart=1, tempCoolFact=0.9, tempCheckOrders=10, maxIter=100,
orderShuffles=1, stopDiff=0,
numThreads=2, priorSearch=NULL, echo=FALSE)

Arguments

data a matrix in row-nodes format or a data.frame in column-nodes format

perturbations a binary matrix with the dimensions of data. A value 1 designates the node in
the corresponding sample as perturbed

maxParentSet an integer, maximal number of parents for all nodes

parentSizes an integer vector, maximal number of parents per node

maxComplexity an integer, maximal network complexity for the search

nodeCats a list of node categories

parentsPool a list of parent sets to choose from

fixedParents a list of fixed parent sets

edgeProb a square matrix of length the number of nodes specifying prior edge probabili-
ties

dirProb a square matrix of length the number of nodes specifying prior directional prob-
abilities

selectMode a character, optimization network selection criterion such as "AIC" and "BIC"

tempStart a numeric value, the initial temperature for the annealing

tempCoolFact a numeric value, the temperature multiplicative decreasing factor
tempCheckOrders

an integer, the number of iteration, orders to be searched, with constant tem-
perature

maxIter an integer, the total number of iterations, thus orders, to be processed

cnSearchSA 45

orderShuffles a numeric, the number of shuffles for generating new candidate orders from the
last accepted

stopDiff a numeric value, stopping epsilon criterion

numThreads an integer value, the number of parallel threads

priorSearch a catNetworkEvaluate object from a previous search

echo a logical that sets on/off some functional progress and debug information

Details

The function implements a Simulated Annealing version of the Metropolis algorithm by construct-
ing a Markov chain in the space of node orders. Given a currently selected order, the algorithm
tries to improve its likelihood score by exploring its neighborhood. The order score is defined as
the likelihood of the selected according to selectMode network from the set of estimated networks
compatible with that order.

The data can be a matrix of character categories with rows specifying the node-variables and
columns assumed to be independent samples from an unknown network, or a data.frame with
columns specifying the nodes and rows being the samples.

The number of categories for each node is obtained from the data. It is the user responsibility
to make sure the data can be categorized reasonably. If the data is numerical it will be forcibly
coerced to integer one, which however may result to NA entries or too many node categories per
some nodes, and in either case to the function failure. Use cnDiscretize to convert numeric data
into categorical. If given, the nodeCats is used as a list of categories. In that case, nodeCats should
include the node categories presented in the data.

The function returns a list of networks, one for any possible complexity within the specified range.
Stochastic optimization, based on the criterion of maximizing the likelihood, is carried on the net-
work with complexity closest to, but not above, maxComplexity. If maxComplexity is not specified,
thus the function is called with the default zero value, then maxComplexity is set to be the com-
plexity of a network with all nodes having the maximum, maxParentSet, the number of parents.
The selectMode parameter sets the selection criterion for the network upon which the maximum
likelihood optimization is carried on. "BIC" is the default choice, while any value different from
"AIC" and "BIC" results in the maximum complexity criterion to be used, the one which selects the
network with complexity given by maxComplexity.

The parameters tempStart, tempCoolFact and tempCheckOrders control the Simulated Anneal-
ing schedule.

tempStart is the starting temperature of the annealing process.

tempCoolFact is the cooling factor from one temperature step to another. It is a number between 0
and 1, inclusively; For example, if tempStart is the temperature in the first step, tempStart*tempCoolFact
will be temperature in the second.

tempCheckOrders is the number of proposals, that is, the candidate orders from the current order
neighborhood, to be checked before decreasing the temperature. If for example maxIter is 40 and
tempCheckOrders is 4, then 10 temperature decreasing steps will be eventually performed.

The orderShuffles parameters controls the extend of the current order neighborhood. A value of
zero indicates that random orders should be used as proposals. For positive orderShuffles’s, a
candidate order is obtained from the current one by performing orderShuffles number of times
the following operation: a random position is picked up at random (uniformly) and it is exchanged

46 cnSearchSA

with the position right up next to it. If orderShuffles is negative, then the operation is: two
positions are picked up at random and their values are exchanged.

maxIter is the maximum length of the Markov chain.

orderShuffles is a number that controls the extent of the order neighborhoods. Each new proposed
order is obtained from the last accepted one by orderShuffles switches of two node indices.

stopDiff is a stopping criterion. If at a current temperature, after tempCheckOrders orders being
checked, no likelihood improvement of level at least stopDiff is found, then the SA stops and the
function exists. Setting this parameter to zero guarantees exhausting all of the maximum allowed
maxIter order searches.

The function speeds up the Markov Chain by implementing a pre-computing buffer. It runs numThreads
number of parallel threads each of which process a proposed order. If we have more than one ac-
ceptance in the batch, the first one is taken as next order selection. The performance boost is more
apparent when the Markov chain has a low acceptance rate, in which case the chain can run up to
numThreads-times faster.

priorSearch is a result from previous search. This parameters allows a new search to be initi-
ated from the best order found so far. Thus a chain of searches can be constructed with varying
parameters providing greater adaptability and user control.

See the vignettes for more details on the algorithm.

Value

A catNetworkEvaluate object.

Author(s)

N. Balov, P. Salzman

See Also

cnSearchOrder

Examples

cnet <- cnRandomCatnet(numnodes=6, maxParents=2, numCategories=2)
psamples <- cnSamples(object=cnet, numsamples=100)
nets <- cnSearchSA(data=psamples, perturbations=NULL,

maxParentSet=1, maxComplexity=16)
cc <- cnComplexity(object=cnet)
cnFind(object=nets, complexity=cc)

cnSetProb-method 47

cnSetProb-method Set Probability from Data

Description

The function sets the probability structure of a network from data according to the Maximum Like-
lihood criterion.

Usage

cnSetProb(object, data, perturbations=NULL, nodeCats=NULL)

Arguments

object a catNetwork

data a data matrix or data.frame

perturbations a binary matrix with the dimensions of data

nodeCats a list of node categories

Details

The function generates a new probability table for object and returns an updated catNetwork. The
graph structure of the object is kept unchanged.

The data can be a matrix in the node-rows format, or a data.frame in the node-column format. If
given, the nodeCats is used as a list of categories. In that case, nodeCats should include the node
categories presented in the data.

Value

catNetwork

Author(s)

N. Balov

Examples

library(catnet)
cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=3)
psamples <- matrix(as.integer(1+rbinom(10*100, 2, 0.4)), nrow=10)
rownames(psamples) <- cnet@nodes
newcnet <- cnSetProb(object=cnet, data=psamples)

48 cnSubNetwork-method

cnSetSeed Random Generator Seed

Description

Sets a seed for the random number generator.

Usage

cnSetSeed(seed)

Arguments

seed an integer

Details

Setting a fixed seed before any stochastic function guaratees repeated results.

Value

NA

Author(s)

N. Balov

cnSubNetwork-method Sub-Network

Description

Returns a sub-network of a given catNetwork object.

Usage

cnSubNetwork(object, nodeIndices, indirectEdges)

Arguments

object a catNetwork

nodeIndices a vector, the subset of nodes to be taken

indirectEdges a logical, should the indirect connectivity be preserved

CPDAG-class 49

Details

The function creates a new network from a given one using a subset of its nodes, specified by
nodeIndices. If indirectIndices is set to TRUE, then the resulting network contains edges
between all nodes that are connected by chains of directed edges in the original one. The default
value of indirectIndices is FALSE, thus the new set of edges is subset of the original one.

Value

A catNetwork object.

Author(s)

N. Balov

Examples

cnet <- cnRandomCatnet(numnodes=10, maxParents=3, numCategories=2)
cnet1 <- cnSubNetwork(object=cnet, nodeIndices=c(1,2,3,4,5), indirectEdges=TRUE)
cnNodes(object=cnet)
cnNodes(object=cnet1)

CPDAG-class Class CPDAG

Description

Base class implementing Complete Partially Directed Acyclic Graphs (CPDAGs)

Slots

numnodes: an integer, the number of nodes

nodes: a vector of node names

edges: a list of graph edges

Author(s)

N. Balov

See Also

dag2cpdag

50 isDAG

dag2cpdag-method Complete Network Representation

Description

Generate the complete graphical structure for a catNetwork object.

Usage

dag2cpdag(object)

Arguments

object a catNetwork object

Value

A non-DAG catNetwork object.

Author(s)

N. Balov

isDAG Check Direct Acyclic Graph (DAG) Condition

Description

For a pair of node and parent lists, the function checks whether the DAG condition holds or not.

Usage

isDAG(lnodes, lpars)

Arguments

lnodes a list of nodes

lpars a list of node parents

Details

The DAG verification algorithm is based on the topological ordering of the graph nodes. If node
ordering is not possible, the graph is not a DAG.

Value

A logical TRUE/FALSE value.

novartis 51

Author(s)

N. Balov

Examples

cnet <- cnRandomCatnet(numnodes=20, maxParents=3, numCategories=2)
isDAG(lnodes=cnet@nodes, lpars=cnet@parents)

novartis Novartis multi-tissue data

Description

Consensus Clustering: A re-sampling-based method for class discovery and visualization of gene
expression microarray data

Usage

data(novartis)

Format

A matrix containing 105 observations on 500 genes.

Source

"http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi"

Index

∗Topic analysis
classification, 9

∗Topic aplot
cnDot-method, 16
cnPlot-method, 34

∗Topic classes
catNetwork-class, 5
catNetworkDistance-class, 7
catNetworkEvaluate-class, 8
cnNew, 26
CPDAG-class, 49

∗Topic datasets
alarm, 4
breast, 4
classification, 9
novartis, 51

∗Topic distribution
cnLoglik-method, 23
cnProb-method, 36

∗Topic graphs
catNetwork-class, 5
catNetworkDistance-class, 7
catNetworkEvaluate-class, 8
cnCatnetFromEdges, 10
cnCatnetFromSif, 11
cnCluster-method, 12
cnCompare-method, 13
cnComplexity-method, 14
cnDot-method, 16
cnEdges-method, 18
cnEntropy, 19
cnFind-method, 20
cnFindAIC-method, 21
cnFindBIC-method, 22
cnLoglik-method, 23
cnMatEdges-method, 24
cnNew, 26
cnNodeLoglik, 27
cnNodeMarginalProb-method, 28

cnNodes-method, 29
cnNodeSampleLoglik, 30
cnNumNodes-method, 31
cnOrder-method, 31
cnParents-method, 32
cnParHist-method, 33
cnPearsonTest-method, 34
cnPlot-method, 34
cnPredict-method, 35
cnProb-method, 36
cnRandomCatnet, 37
cnReorderNodes-method, 38
cnSamples-method, 39
cnSearchHist, 40
cnSearchOrder, 42
cnSearchSA, 44
cnSetProb-method, 47
cnSetSeed, 48
cnSubNetwork-method, 48
CPDAG-class, 49
dag2cpdag-method, 50
isDAG, 50

∗Topic methods
cnCluster-method, 12
cnCompare-method, 13
cnComplexity-method, 14
cnDot-method, 16
cnEdges-method, 18
cnEntropy, 19
cnFind-method, 20
cnFindAIC-method, 21
cnFindBIC-method, 22
cnLoglik-method, 23
cnMatEdges-method, 24
cnMatParents-method, 25
cnNodeLoglik, 27
cnNodeMarginalProb-method, 28
cnNodes-method, 29
cnNodeSampleLoglik, 30

52

INDEX 53

cnNumNodes-method, 31
cnOrder-method, 31
cnParents-method, 32
cnParHist-method, 33
cnPearsonTest-method, 34
cnPlot-method, 34
cnPredict-method, 35
cnProb-method, 36
cnRandomCatnet, 37
cnReorderNodes-method, 38
cnSamples-method, 39
cnSearchHist, 40
cnSearchOrder, 42
cnSearchSA, 44
cnSetProb-method, 47
cnSetSeed, 48
cnSubNetwork-method, 48
dag2cpdag-method, 50

alarm, 4
alarmnet (alarm), 4

boston (classification), 9
breast, 4

catnet (catnet-package), 3
catnet-package, 3
catNetwork (catNetwork-class), 5
catNetwork-class, 5
catNetworkDistance

(catNetworkDistance-class), 7
catNetworkDistance-class, 7
catNetworkEvaluate

(catNetworkEvaluate-class), 8
catNetworkEvaluate-class, 8
classification, 9
cnCatnetFromBif (cnCatnetFromSif), 11
cnCatnetFromBif,character-method

(cnCatnetFromSif), 11
cnCatnetFromEdges, 7, 10, 11
cnCatnetFromEdges,character-method

(cnCatnetFromEdges), 10
cnCatnetFromSif, 10, 11
cnCatnetFromSif,character-method

(cnCatnetFromSif), 11
cnCluster (cnCluster-method), 12
cnCluster,catNetwork-method

(cnCluster-method), 12
cnCluster-method, 12

cnClusterMI (cnCluster-method), 12
cnClusterSep (cnCluster-method), 12
cnClusterSep,catNetwork-method

(cnCluster-method), 12
cnCompare, 8, 9, 35
cnCompare (cnCompare-method), 13
cnCompare,catNetwork,catNetwork-method

(cnCompare-method), 13
cnCompare,catNetwork,catNetworkEvaluate-method

(cnCompare-method), 13
cnCompare,catNetwork,list-method

(cnCompare-method), 13
cnCompare,catNetwork,matrix-method

(cnCompare-method), 13
cnCompare-method, 13
cnComplexity, 7
cnComplexity (cnComplexity-method), 14
cnComplexity,catNetwork,integer-method

(cnComplexity-method), 14
cnComplexity,catNetwork-method

(cnComplexity-method), 14
cnComplexity-method, 14
cnCondProb (cnNodeMarginalProb-method),

28
cnCondProb,catNetwork-method

(cnNodeMarginalProb-method), 28
cnDiscretize, 15
cnDot, 35
cnDot (cnDot-method), 16
cnDot,catNetwork,character-method

(cnDot-method), 16
cnDot,catNetwork,character-method,character-method

(cnDot-method), 16
cnDot,catNetwork-method (cnDot-method),

16
cnDot,list,character-method

(cnDot-method), 16
cnDot,list,character-method,character-method

(cnDot-method), 16
cnDot,list-method (cnDot-method), 16
cnDot,matrix,character-method

(cnDot-method), 16
cnDot,matrix,character-method,character-method

(cnDot-method), 16
cnDot,matrix-method (cnDot-method), 16
cnDot-method, 16
cnEdgeDistanceKL (cnEntropy), 19
cnEdgeDistancePearson (cnEntropy), 19

54 INDEX

cnEdges, 7, 24, 32
cnEdges (cnEdges-method), 18
cnEdges,catNetwork,character-method

(cnEdges-method), 18
cnEdges,catNetwork,missing-method

(cnEdges-method), 18
cnEdges,catNetwork,vector-method

(cnEdges-method), 18
cnEdges-method, 18
cnEntropy, 19
cnEntropyOrder (cnEntropy), 19
cnFind, 21, 22
cnFind (cnFind-method), 20
cnFind,catNetworkEvaluate-method

(cnFind-method), 20
cnFind,list-method (cnFind-method), 20
cnFind-method, 20
cnFindAIC, 20, 22
cnFindAIC (cnFindAIC-method), 21
cnFindAIC,catNetworkEvaluate-method

(cnFindAIC-method), 21
cnFindAIC,list-method

(cnFindAIC-method), 21
cnFindAIC-method, 21
cnFindBIC, 20, 21
cnFindBIC (cnFindBIC-method), 22
cnFindBIC,catNetworkEvaluate-method

(cnFindBIC-method), 22
cnFindBIC,list-method

(cnFindBIC-method), 22
cnFindBIC-method, 22
cnFindKL (cnFind-method), 20
cnFindKL,catNetworkEvaluate-method

(cnFind-method), 20
cnFindKL,list-method (cnFind-method), 20
cnJointProb

(cnNodeMarginalProb-method), 28
cnJointProb,catNetwork-method

(cnNodeMarginalProb-method), 28
cnKLComplexity (cnComplexity-method), 14
cnKLComplexity,catNetwork-method

(cnComplexity-method), 14
cnKLComplexity,catNetwork-method,integer-method

(cnComplexity-method), 14
cnLoglik, 27, 30
cnLoglik (cnLoglik-method), 23
cnLoglik,catNetwork-method

(cnLoglik-method), 23

cnLoglik-method, 23
cnMatEdges, 25
cnMatEdges (cnMatEdges-method), 24
cnMatEdges,catNetwork-method

(cnMatEdges-method), 24
cnMatEdges-method, 24
cnMatParents, 24, 32, 41
cnMatParents (cnMatParents-method), 25
cnMatParents,catNetwork,missing-method

(cnMatParents-method), 25
cnMatParents,catNetwork,vector-method

(cnMatParents-method), 25
cnMatParents-method, 25
cnNew, 7, 10, 11, 26, 38
cnNodeLoglik, 23, 27
cnNodeLoglik,catNetwork-method

(cnNodeLoglik), 27
cnNodeMarginalProb

(cnNodeMarginalProb-method), 28
cnNodeMarginalProb,catNetwork-method

(cnNodeMarginalProb-method), 28
cnNodeMarginalProb-method, 28
cnNodes, 7, 31
cnNodes (cnNodes-method), 29
cnNodes,catNetwork,missing-method

(cnNodes-method), 29
cnNodes,catNetwork,vector-method

(cnNodes-method), 29
cnNodes-method, 29
cnNodeSampleLoglik, 30
cnNodeSampleProb (cnNodeSampleLoglik),

30
cnNumNodes, 29
cnNumNodes (cnNumNodes-method), 31
cnNumNodes,catNetwork-method

(cnNumNodes-method), 31
cnNumNodes-method, 31
cnOrder (cnOrder-method), 31
cnOrder,catNetwork-method

(cnOrder-method), 31
cnOrder,list-method (cnOrder-method), 31
cnOrder-method, 31
cnParents, 18, 25
cnParents (cnParents-method), 32
cnParents,catNetwork,character-method

(cnParents-method), 32
cnParents,catNetwork,missing-method

(cnParents-method), 32

INDEX 55

cnParents,catNetwork,vector-method
(cnParents-method), 32

cnParents-method, 32
cnParHist, 19
cnParHist (cnParHist-method), 33
cnParHist,catNetworkEvaluate-method

(cnParHist-method), 33
cnParHist,list-method

(cnParHist-method), 33
cnParHist-method, 33
cnPearsonTest (cnPearsonTest-method), 34
cnPearsonTest,catNetwork-method

(cnPearsonTest-method), 34
cnPearsonTest-method, 34
cnPlot, 7–9, 17
cnPlot (cnPlot-method), 34
cnPlot,catNetwork-method

(cnPlot-method), 34
cnPlot,catNetworkEvaluate-method

(cnPlot-method), 34
cnPlot-method, 34
cnPlotProb (cnProb-method), 36
cnPlotProb,catNetwork-method

(cnProb-method), 36
cnPredict, 40
cnPredict (cnPredict-method), 35
cnPredict,catNetwork-method

(cnPredict-method), 35
cnPredict-method, 35
cnProb, 28
cnProb (cnProb-method), 36
cnProb,catNetwork-method

(cnProb-method), 36
cnProb-method, 36
cnRandomCatnet, 7, 26, 37
cnReorderNodes (cnReorderNodes-method),

38
cnReorderNodes,catNetwork,vector-method

(cnReorderNodes-method), 38
cnReorderNodes-method, 38
cnSamples, 16
cnSamples (cnSamples-method), 39
cnSamples,catNetwork-method

(cnSamples-method), 39
cnSamples-method, 39
cnSearchHist, 40
cnSearchOrder, 41, 42, 46
cnSearchSA, 43, 44

cnSetProb, 10, 11
cnSetProb (cnSetProb-method), 47
cnSetProb,catNetwork-method

(cnSetProb-method), 47
cnSetProb,catSampleNetwork-method

(cnSetProb-method), 47
cnSetProb-method, 47
cnSetSeed, 48
cnSubNetwork (cnSubNetwork-method), 48
cnSubNetwork,catNetwork,vector,logical-method

(cnSubNetwork-method), 48
cnSubNetwork,catNetwork-method

(cnSubNetwork-method), 48
cnSubNetwork-method, 48
CPDAG (CPDAG-class), 49
CPDAG-class, 49
cvKfold (classification), 9

dag2cpdag, 49
dag2cpdag (dag2cpdag-method), 50
dag2cpdag,catNetwork-method

(dag2cpdag-method), 50
dag2cpdag-method, 50
diabetes (classification), 9
diabetesLoad (classification), 9

isDAG, 50

lungLoad (classification), 9

novartis, 51

	catnet-package
	alarm
	breast
	catNetwork-class
	catNetworkDistance-class
	catNetworkEvaluate-class
	classification
	cnCatnetFromEdges
	cnCatnetFromSif
	cnCluster-method
	cnCompare-method
	cnComplexity-method
	cnDiscretize
	cnDot-method
	cnEdges-method
	cnEntropy
	cnFind-method
	cnFindAIC-method
	cnFindBIC-method
	cnLoglik-method
	cnMatEdges-method
	cnMatParents-method
	cnNew
	cnNodeLoglik
	cnNodeMarginalProb-method
	cnNodes-method
	cnNodeSampleLoglik
	cnNumNodes-method
	cnOrder-method
	cnParents-method
	cnParHist-method
	cnPearsonTest-method
	cnPlot-method
	cnPredict-method
	cnProb-method
	cnRandomCatnet
	cnReorderNodes-method
	cnSamples-method
	cnSearchHist
	cnSearchOrder
	cnSearchSA
	cnSetProb-method
	cnSetSeed
	cnSubNetwork-method
	CPDAG-class
	dag2cpdag-method
	isDAG
	novartis
	Index

