
Package ‘cchsflow’
May 26, 2022

Type Package

Title Transforming and Harmonizing CCHS Variables

Version 2.1.0

Date 2022-05-05

Depends R (>= 3.5.0), haven (>= 1.1.2), dplyr (>= 0.8.2), sjlabelled
(>= 1.0.17), stringr (>= 1.2.0), magrittr

Description Supporting the use of the Canadian Community Health Survey
(CCHS) by transforming variables from each cycle into harmonized,
consistent versions that span survey cycles (currently, 2001 to
2018). CCHS data used in this library is accessed and adapted in
accordance to the Statistics Canada Open Licence Agreement. This
package uses rec_with_table(), which was developed from 'sjmisc'
rec(). Lüdecke D (2018). ``sjmisc: Data and Variable Transformation
Functions''. Journal of Open Source Software, 3(26), 754.
<doi:10.21105/joss.00754>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/Big-Life-Lab/cchsflow

BugReports https://github.com/Big-Life-Lab/cchsflow/issues

RoxygenNote 7.1.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Doug Manuel [aut, cph] (<https://orcid.org/0000-0003-0912-0845>),
Warsame Yusuf [aut],
Rostyslav Vyuha [aut],
Kitty Chen [aut, cre],
Carol Bennett [aut],
Yulric Sequeira [ctb],
The Ottawa Hospital [cph]

1

https://doi.org/10.21105/joss.00754
https://github.com/Big-Life-Lab/cchsflow
https://github.com/Big-Life-Lab/cchsflow/issues
https://orcid.org/0000-0003-0912-0845

2 R topics documented:

Maintainer Kitty Chen <kitchen@ohri.ca>

Repository CRAN

Date/Publication 2022-05-26 14:10:02 UTC

R topics documented:
active_transport1_fun . 4
active_transport2_fun . 5
active_transport3_fun . 6
adjusted_bmi_fun . 7
adl_fun . 9
adl_score_5_fun . 11
age_cat_fun . 13
ALCDTTM . 14
ALCDTYP . 15
ALWDDLY . 16
ALWDWKY . 17
ALW_1 . 17
ALW_2A1 . 18
ALW_2A2 . 19
ALW_2A3 . 20
ALW_2A4 . 20
ALW_2A5 . 21
ALW_2A6 . 22
ALW_2A7 . 23
binge_drinker_fun . 24
bmi_fun . 26
bmi_fun_cat . 28
cchs2001_p . 29
cchs2003_p . 30
cchs2005_p . 31
cchs2007_2008_p . 31
cchs2009_2010_p . 32
cchs2009_s . 33
cchs2010_p . 34
cchs2010_s . 34
cchs2011_2012_p . 35
cchs2012_p . 36
cchs2012_s . 37
cchs2013_2014_p . 37
cchs2014_p . 38
cchs2015_2016_p . 39
cchs2017_2018_p . 40
compare_value_based_on_interval . 40
COPD_Emph_der_fun1 . 41
COPD_Emph_der_fun2 . 43
diet_score_fun . 44

R topics documented: 3

diet_score_fun_cat . 45
DPSDPP . 47
DPSDSF . 48
energy_exp_fun . 49
food_insecurity_der . 51
GEN_02A2 . 52
get_data_variable_name . 53
if_else2 . 54
immigration_fun . 55
is_equal . 56
label_data . 57
LBFA_31A . 58
LBFA_31A_a . 59
LBFA_31A_b . 60
low_drink_long_fun . 61
low_drink_score_fun . 63
low_drink_score_fun1 . 65
low_drink_short_fun . 66
merge_rec_data . 69
multiple_conditions_fun1 . 70
multiple_conditions_fun2 . 72
pack_years_fun . 74
pack_years_fun_cat . 76
pct_time_fun . 77
pct_time_fun_cat . 78
RACDPAL_fun . 80
recode_columns . 81
recode_variable_NA_formating . 82
rec_with_table . 83
resp_condition_fun1 . 85
resp_condition_fun2 . 87
resp_condition_fun3 . 88
set_data_labels . 90
SMKDSTY_fun . 91
SMKG040_fun . 92
SMKG203_fun . 94
SMKG207_fun . 95
smoke_simple_fun . 96
SPS_5_fun . 97
time_quit_smoking_fun . 99
variables . 100
variable_details . 101

Index 102

4 active_transport1_fun

active_transport1_fun Daily active transportation (2001-2005)

Description

This function creates a derived variable for daily time spent traveling in active ways. This includes
walking and biking. This function is used for CCHS 2001-2005.

Usage

active_transport1_fun(PAC_4A_cont, PAC_4B_cont)

Arguments

PAC_4A_cont number of hours walk work/school in week in the past 3 months.

PAC_4B_cont number of hours bike work/school in week in the past 3 months.

Value

Continuous variable for active transportation (active_transport)

Examples

Using active_transport1_fun() to determine daily time spent
traveling in active ways values across CCHS 2001-2005.

active_transport1_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform active_transport across cycles, use rec_with_table() for each
CCHS cycle and specify active_transport, along with each activity variable.
Then by using merge_rec_data(), you can combine active_transport across
cycles

library(cchsflow)
active_transport2001 <- rec_with_table(

cchs2001_p, c(
"PAC_4A_cont", "PAC_4B_cont", "active_transport"

)
)

head(active_transport2001)

active_transport2005 <- rec_with_table(
cchs2005_p, c(

"PAC_4A_cont", "PAC_4B_cont", "active_transport"
)

)

active_transport2_fun 5

tail(active_transport2005)

combined_active_transport <- suppressWarnings(merge_rec_data(active_transport2001,
active_transport2005))

head(combined_active_transport)
tail(combined_active_transport)

active_transport2_fun Daily active transportation (2007-2014)

Description

This function creates a derived variable for daily time spent traveling in active ways. This includes
walking and biking. This function is used for CCHS 2007-2014.

Usage

active_transport2_fun(PAC_7, PAC_7A, PAC_7B_cont, PAC_8, PAC_8A, PAC_8B_cont)

Arguments

PAC_7 have walked to work or school in the past 3 months?

PAC_7A number of times walked to work/school in the past 3 months.

PAC_7B_cont number of minutes walk to work/school.

PAC_8 have biked to work or school in the past 3 months?

PAC_8A number of times biked to work/school in the past 3 months.

PAC_8B_cont number of minutes bike to work/school.

Value

Continuous variable for active transportation (active_transport)

Examples

Using active_transport2_fun() to determine daily time spent
traveling in active ways values across CCHS 2007-2014.

active_transport2_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform active_transport across cycles, use rec_with_table() for each
CCHS cycle and specify active_transport, along with each activity variable.
Then by using merge_rec_data(), you can combine active_transport across
cycles

library(cchsflow)
active_transport2007_2008 <- rec_with_table(

6 active_transport3_fun

cchs2007_2008_p, c(
"PAC_7", "PAC_7A", "PAC_7B_cont", "PAC_8", "PAC_8A", "PAC_8B_cont",
"active_transport"

)
)

head(active_transport2007_2008)

active_transport2013_2014 <- rec_with_table(
cchs2013_2014_p, c(

"PAC_7", "PAC_7A", "PAC_7B_cont", "PAC_8", "PAC_8A", "PAC_8B_cont",
"active_transport"

)
)

tail(active_transport2013_2014)

combined_active_transport <- suppressWarnings(merge_rec_data(
active_transport2007_2008, active_transport2013_2014))

head(combined_active_transport)
tail(combined_active_transport)

active_transport3_fun Daily active transportation (2015-2018)

Description

This function creates a derived variable for daily time spent traveling in active ways. This includes
walking and biking. This function is used for CCHS 2015-2018.

Usage

active_transport3_fun(PAYDVTTR, PAADVTRV)

Arguments

PAYDVTTR number of minutes of active transportation in a week for 12-17 years old.

PAADVTRV number of minutes of active transportation in a week for 18+ years old.

Value

Continuous variable for active transportation (active_transport)

adjusted_bmi_fun 7

Examples

Using active_transport3_fun() to determine daily time spent
traveling in active ways values across CCHS 2015-2018.

active_transport3_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform active_transport across cycles, use rec_with_table() for each
CCHS cycle and specify active_transport, along with each activity variable.
Then by using merge_rec_data(), you can combine active_transport across
cycles

library(cchsflow)
active_transport2015_2016 <- rec_with_table(

cchs2015_2016_p, c(
"PAYDVTTR", "PAADVTRV","active_transport"

)
)

head(active_transport2015_2016)

active_transport2017_2018 <- rec_with_table(
cchs2017_2018_p, c(

"PAYDVTTR", "PAADVTRV","active_transport"
)

)

tail(active_transport2017_2018)

combined_active_transport <- suppressWarnings(merge_rec_data(
active_transport2015_2016, active_transport2017_2018))

head(combined_active_transport)
tail(combined_active_transport)

adjusted_bmi_fun Adjusted Body Mass Index (BMI) derived variable

Description

This function creates a harmonized adjusted BMI variable. A systematic review of the literature
concluded that the use of self-reported data among adults underestimates weight and overestimates
height, resulting in lower estimates of obesity than those obtained from measured data. Using data
from the 2005 Canadian Community Health Survey (CCHS) subsample, where both measured and
self-reported values were collected, correction equations have been developed (Connor Gorber et al.
2008). Differences between corrected estimates of obesity from the CCHS and measured estimates
from the Canadian Health Measures Survey is monitored over time to determine if the bias in self-
reported values is changing and if new correction equations need to be developed. Adjusted BMI
variable is first introduced in the CCHS 2015 cycle.

8 adjusted_bmi_fun

adjusted_bmi_fun() creates a derived variable (HWTGCOR_der) that is harmonized across all
CCHS cycles. This function takes the BMI by dividing weight by the square of height, and adds a
correction value based on sex.

Usage

adjusted_bmi_fun(DHH_SEX, HWTGHTM, HWTGWTK)

Arguments

DHH_SEX CCHS variable for sex; 1 = male, 2 = female

HWTGHTM CCHS variable for height (in meters)

HWTGWTK CCHS variable for weight (in kilograms)

Details

For HWTGCOR_der, there are no restrictions to age, height, weight, or pregnancy status. While
pregnancy was consistent across all CCHS cycles, its variable (MAM_037) was not available in the
PUMF CCHS datasets so it could not be harmonized and included into the function.

HWTGCOR_der uses the CCHS variables for sex, height and weight that have been transformed
by cchsflow. In order to generate a value for adjusted BMI across CCHS cycles, sex, height and
weight must be transformed and harmonized.

Value

numeric value for adjusted BMI in the HWTGCOR_der variable

Note

In earlier CCHS cycles (2001 and 2003), height was collected in inches; while in later CCHS cycles
(2005+) it was collected in meters. To harmonize values across cycles, height was converted to
meters (to 3 decimal points). Weight was collected in kilograms across all CCHS cycles, so no
transformations were required in the harmonization process.

Examples

Using adjusted_bmi_fun() to create adjusted BMI values between cycles
adjusted_bmi_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform the derived BMI variable, use rec_with_table() for each cycle
and specify HWTGCOR_der, along with sex (DHH_SEX), height (HWTGHTM) and
weight (HWTGWTK).Then by using merge_rec_data(), you can combined
HWTGBMI_der across cycles.

library(cchsflow)
adjustedbmi2001 <- rec_with_table(

cchs2001_p, c(
"HWTGHTM",
"HWTGWTK",

adl_fun 9

"DHH_SEX",
"HWTGCOR_der"

)
)

head(adjustedbmi2001)

adjustedbmi2011_2012 <- rec_with_table(
cchs2011_2012_p, c(

"HWTGHTM",
"HWTGWTK",
"DHH_SEX",
"HWTGCOR_der"

)
)

tail(adjustedbmi2011_2012)

combined_bmi <- merge_rec_data(adjustedbmi2001, adjustedbmi2011_2012)
head(combined_bmi)
tail(combined_bmi)

adjusted_bmi_fun() can also generate a value for BMI if you input your sex,
and a value for height and weight. Let's say your sex is male, height is
170cm (1.7m) and your weight is 50kg, your BMI can be calculated as follows:

library(cchsflow)
adjusted_BMI <- adjusted_bmi_fun(DHH_SEX = 1, HWTGHTM = 1.7, HWTGWTK = 50)
print(adjusted_BMI)

adl_fun Derived needs help with tasks

Description

This derived variable (ADL_der) is based on the CCHS derived variable ADLF6R which flags
respondents who need help with tasks based on their response to the various activities of daily
living (ADL) variables.

Usage

adl_fun(ADL_01, ADL_02, ADL_03, ADL_04, ADL_05)

Arguments

ADL_01 Needs help preparing meals
ADL_02 Needs help getting to appointments/errands
ADL_03 Needs help doing housework
ADL_04 Needs help doing personal care
ADL_05 Needs help moving inside house

10 adl_fun

Details

The CCHS derived variable ADLF6R uses different ADL variables across the various CCHS survey
cycles. This newly derived variable (ADL_der) uses ADL variables that are consistent across CCHS
cycles.

In the 2001 CCHS survey cycle, the ADLF6R variable examines the following ADL variables:

1. ADL_01 - Needs help preparing meals

2. ADL_02 - Needs help getting to appointments/errands

3. ADL_03 - Needs help doing housework

4. ADL_04 - Needs help doing personal care

5. ADL_05 - Needs help moving inside house

6. ADL_07 - Needs help doing heavy household chores

In the 2003-2005 CCHS survey cycles, the ADLF6R variable examines the following ADL vari-
ables:

1. ADL_01 - Needs help preparing meals

2. ADL_02 - Needs help getting to appointments/errands

3. ADL_03 - Needs help doing housework

4. ADL_04 - Needs help doing personal care

5. ADL_05 - Needs help moving inside house

6. ADL_06 - Needs help doing finances

7. ADL_07 - Needs help doing heavy household chores

In the 2007-2014 CCHS survey cycles, the ADLF6R variable examines the following ADL vari-
ables:

1. ADL_01 - Needs help preparing meals

2. ADL_02 - Needs help getting to appointments/errands

3. ADL_03 - Needs help doing housework

4. ADL_04 - Needs help doing personal care

5. ADL_05 - Needs help moving inside house

6. ADL_06 - Needs help doing finances

This newly derived variable (ADL_der) uses ADL_01 to ADL_05 which are consistent across all
survey cycles. For any single CCHS survey year, it is appropriate to use ADLF6R. ADL_der is
recommended when using multiple survey cycles.

Value

A derived variable (ADL_der) with 2 categories:

1. - Needs help with tasks

2. - Does not need help with tasks

adl_score_5_fun 11

Examples

Using adl_fun() to create ADL_der values across CCHS cycles
adl_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform ADL_der, use rec_with_table() for each CCHS cycle
and specify ADL_der, along with the various ADL variables.
Then by using merge_rec_data() you can combine ADL_der across cycles.

library(cchsflow)
adl2001 <- rec_with_table(

cchs2001_p, c(
"ADL_01", "ADL_02", "ADL_03", "ADL_04", "ADL_05", "ADL_der"

)
)

head(adl2001)

adl2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"ADL_01", "ADL_02", "ADL_03", "ADL_04", "ADL_05", "ADL_der"
)

)

tail(adl2009_2010)

combined_adl <- merge_rec_data(adl2001, adl2009_2010)

head(combined_adl)

tail(combined_adl)

Using adl_fun() to generate to ADL_der based on user inputted values.
#
Let's say you do not need help preparing meals, you need help getting to
appointments or errands, you need help doing housework, do not need help
doing personal care, and do not need help moving inside the house. Using
adl_fun() we can check if you need help doing tasks

ADL_der <- adl_fun(2, 1, 1, 2, 2)

print(ADL_der)

adl_score_5_fun The number of activities of daily living tasks that require help.

Description

A 6 category variable (ADL_score_5) representing the number of activities of daily living tasks that
require help. This variable tallies the number of daily living tasks that a respondent requires help

12 adl_score_5_fun

with based on various ADL variables that a respondent answered yes or no to. The ADL variables
used are common across all CCHS cycles from 2001 to 2014.

Usage

adl_score_5_fun(ADL_01, ADL_02, ADL_03, ADL_04, ADL_05)

Arguments

ADL_01 Needs help preparing meals.

ADL_02 Needs help getting to appointments/errands.

ADL_03 Needs help doing housework.

ADL_04 Needs help doing personal care.

ADL_05 Needs help moving inside house.

Value

A derived variable (ADL_score_5) with 6 categories:

1. 0 - Needs help with 0 tasks

2. 1 - Needs help with at least 1 task

3. 2 - Needs help with at least 2 tasks

4. 3 - Needs help with at least 3 tasks

5. 4 - Needs help with at least 4 tasks

6. 5 - Needs help with at least 5 tasks

Examples

Use adl_score_5_fun() to create the variable ADL_score_5 across CCHS
cycles adl_score_5_fun() is specified in variable_details.csv along with
the CCHS variables and cycles included.

To transform ADL_score_5, use rec_with_table() for each CCHS cycle
and specify ADL_score_5, along with the various ADL variables.
Then by using merge_rec_data() you can combine ADL_der across cycles.

library(cchsflow)
adl2001 <- rec_with_table(

cchs2001_p, c(
"ADL_01", "ADL_02", "ADL_03", "ADL_04", "ADL_05", "ADL_score_5"

)
)

head(adl2001)

adl2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"ADL_01", "ADL_02", "ADL_03", "ADL_04", "ADL_05", "ADL_score_5"
)

age_cat_fun 13

)

tail(adl2009_2010)

combined_adl <- merge_rec_data(adl2001, adl2009_2010)

head(combined_adl)

tail(combined_adl)

Using adl_score_5_fun() to generate to ADL_score_5 based on user inputted
values.
Let's say you do not need help preparing meals, you need help getting to
appointments or errands, you need help doing housework, do not need help
doing personal care, and do not need help moving inside the house. Using
adl_score_5_fun() we can check the number of tasks you need help with

ADL_score_5 <- adl_score_5_fun(2, 1, 1, 2, 2)

print(ADL_score_5)

age_cat_fun Derived categorical age

Description

This is a derived categorical age variable (DHHGAGE_C) that groups various age categories across
all CCHS cycles. This is based on the continuous age variable (DHHGAGE_cont) that is harmo-
nious across all CCHS cycles.

The categories of this new age variable are as follows:

1. 12 to 14 years

2. 15 to 17 years

3. 18 to 19 years

4. 20 to 24 years

5. 25 to 29 years

6. 30 to 34 years

7. 35 to 39 years

8. 40 to 44 years

9. 45 to 49 years

10. 50 to 54 years

11. 55 to 59 years

12. 60 to 64 years

13. 65 to 69 years

14 ALCDTTM

14. 70 to 74 years

15. 75 to 79 years

16. 80 years or more

Usage

age_cat_fun(DHHGAGE_cont)

Arguments

DHHGAGE_cont continuous age variable

Details

The categories in the grouped age variable (DHHGAGE) vary between CCHS cycles. As such,
a continuous age variable (DHHGAGE_cont) was created that harmonized age across all CCHS
cycles by taking the midpoint of each age category. This new age variable (DHHGAGE_C) catego-
rizes age based on the categories used in CCHS cycles from 2007 to 2014.

Value

a categorical age variable (DHHGAGE_C)

Examples

Using age_cat_fun() to create categorical age values from DHHGAGE_cont
age_cat_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To generate DHHGAGE_C in a cycle, use rec_with_table() and specify
DHHGAGE_C along with DHHGAGE_cont.

library(cchsflow)

cat_age2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"DHHGAGE_cont", "DHHGAGE_C"
)

)

ALCDTTM Type of drinker (12 months)

ALCDTYP 15

Description

NOTE: this is not a function.

This is a categorical variable derived by Statistics Canada that uses various intermediate alcohol
variables to categorize individuals into 3 distinct groups:

1. Regular Drinker

2. Occasional Drinker

3. No drink in the last 12 months.

Usage

ALCDTTM(ALCDTTM)

Arguments

ALCDTTM cchsflow variable name for type of drinker (12 months)

Details

This variable was introduced in the 2007-2008 cycle of the CCHS, and became the sole derived
variable that categorized people into various drinker types from 2009 onwards. Unlike ALCDTYP,
this variable does not distinguish between former and never drinkers.

Examples

library(cchsflow)
?ALCDTTM

ALCDTYP Type of drinker

Description

NOTE: this is not a function.

This is a categorical variable derived by Statistics Canada that uses various intermediate alcohol
variables to categorize individuals into 4 distinct groups:

1. Regular Drinker

2. Occasional Drinker

3. Former Drinker

4. Never Drinker

Usage

ALCDTYP(ALCDTYP)

16 ALWDDLY

Arguments

ALCDTYP cchsflow variable name for type of drinker

Details

This variable is used in CCHS cycles from 2001 to 2007. How it was derived remained consistent
during these years.

Starting in 2007, Statistics Canada created a derived variable that looked at drinking type in the
last 12 months. This new derived variable did not distinguish between former and never drinkers.
If your research requires you to differentiate between former and never drinkers, we recommend
using earlier cycles of the CCHS.

Examples

library(cchsflow)
?ALCDTYP

ALWDDLY Average daily alcohol consumption

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the mean daily consump-
tion of alcohol. This takes the value of ALWDWKY and divides it by 7.

Usage

ALWDDLY(ALWDDLY)

Arguments

ALWDDLY cchsflow variable name for average daily alcohol consumption

Details

This variable is present in every CCHS cycle used in cchsflow, and how it was derived remains
consistent.

Examples

library(cchsflow)
?ALWDDLY

ALWDWKY 17

ALWDWKY Number of drinks consumed in the past week

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the amount of alcohol that
is consumed in a week. This is calculated by adding the number of drinks consumed each day in
the past week. Respondents of each CCHS cycle are asked how much alcohol they have consumed
each day in the past week (ie. how much alcohol did you consume on Sunday, how much did you
consume on Monday etc.). Each day is considered an individual variable and ALWDWKY takes
the sum of all daily variables.

Usage

ALWDWKY(ALWDWKY)

Arguments

ALWDWKY cchsflow variable name for number of drinks consumed in the past week

Details

This variable is present in every CCHS cycle used in cchsflow, and how it was derived remains
consistent.

Examples

library(cchsflow)
?ALWDWKY

ALW_1 Any alcohol past week

Description

NOTE: this is not a function.

This is a categorical variable derived by Statistics Canada that determines if alcohol was consumed
in the past week. The variable is optional in selected provinces and territories.

Usage

ALW_1(ALW_1)

18 ALW_2A1

Arguments

ALW_1 cchsflow variable name for any alcohol past week

Details

This variable is present in every CCHS cycle used in cchsflow. In 2007 and 2008, the vari-
able is optional for Newfoundland and Labrador, Nova Scotia, Ontario, British Columbia and
Nunavut.In 2009 and 2010, the variable is optional for Newfoundland and Labrador, Ontario, and
Saskatchewan. In 2011, the variable is optional for Newfoundland and Labrador, Quebec, Ontario,
Manitoba, and Saskatchewan. In 2012, the variable is optional for Newfoundland and Labrador,
Quebec, Ontario, Manitoba, Nunavut, and Saskatchewan.In 2013, the variable is optional for Que-
bec, Ontario, Prince Edward Island, Manitoba, Yukon, and Saskatchewan. In 2014, the variable
is optional for Nunavut, Quebec, Ontario, Prince Edward Island, Manitoba, Newfoundland and
Labrador, Saskatchewan, and British Columbia.

Examples

library(cchsflow)
?ALW_1

ALW_2A1 Number of drinks - Sunday

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the number of alcoholic
drinks consumed on Sunday. The variable is optional in selected provinces and territories.

Usage

ALW_2A1(ALW_2A1)

Arguments

ALW_2A1 cchsflow variable name for number of drinks on Sunday

Details

This variable is present in every CCHS cycle used in cchsflow. In 2007 and 2008, the vari-
able is optional for Newfoundland and Labrador, Nova Scotia, Ontario, British Columbia and
Nunavut.In 2009 and 2010, the variable is optional for Newfoundland and Labrador, Ontario, and
Saskatchewan. In 2011, the variable is optional for Newfoundland and Labrador, Quebec, Ontario,
Manitoba, and Saskatchewan. In 2012, the variable is optional for Newfoundland and Labrador,
Quebec, Ontario, Manitoba, Nunavut, and Saskatchewan.In 2013, the variable is optional for Que-
bec, Ontario, Prince Edward Island, Manitoba, Yukon, and Saskatchewan. In 2014, the variable
is optional for Nunavut, Quebec, Ontario, Prince Edward Island, Manitoba, Newfoundland and
Labrador, Saskatchewan, and British Columbia.

ALW_2A2 19

Examples

library(cchsflow)
?ALW_2A1

ALW_2A2 Number of drinks - Monday

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the number of alcoholic
drinks consumed on Monday. The variable is optional in selected provinces and territories.

Usage

ALW_2A2(ALW_2A2)

Arguments

ALW_2A2 cchsflow variable name for number of drinks on Monday

Details

This variable is present in every CCHS cycle used in cchsflow. In 2007 and 2008, the vari-
able is optional for Newfoundland and Labrador, Nova Scotia, Ontario, British Columbia and
Nunavut.In 2009 and 2010, the variable is optional for Newfoundland and Labrador, Ontario, and
Saskatchewan. In 2011, the variable is optional for Newfoundland and Labrador, Quebec, Ontario,
Manitoba, and Saskatchewan. In 2012, the variable is optional for Newfoundland and Labrador,
Quebec, Ontario, Manitoba, Nunavut, and Saskatchewan.In 2013, the variable is optional for Que-
bec, Ontario, Prince Edward Island, Manitoba, Yukon, and Saskatchewan. In 2014, the variable
is optional for Nunavut, Quebec, Ontario, Prince Edward Island, Manitoba, Newfoundland and
Labrador, Saskatchewan, and British Columbia.

Examples

library(cchsflow)
?ALW_2A2

20 ALW_2A4

ALW_2A3 Number of drinks - Tuesday

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the number of alcoholic
drinks consumed on Tuesday. The variable is optional in selected provinces and territories.

Usage

ALW_2A3(ALW_2A3)

Arguments

ALW_2A3 cchsflow variable name for number of drinks on Tuesday

Details

This variable is present in every CCHS cycle used in cchsflow. In 2007 and 2008, the vari-
able is optional for Newfoundland and Labrador, Nova Scotia, Ontario, British Columbia and
Nunavut.In 2009 and 2010, the variable is optional for Newfoundland and Labrador, Ontario, and
Saskatchewan. In 2011, the variable is optional for Newfoundland and Labrador, Quebec, Ontario,
Manitoba, and Saskatchewan. In 2012, the variable is optional for Newfoundland and Labrador,
Quebec, Ontario, Manitoba, Nunavut, and Saskatchewan.In 2013, the variable is optional for Que-
bec, Ontario, Prince Edward Island, Manitoba, Yukon, and Saskatchewan. In 2014, the variable
is optional for Nunavut, Quebec, Ontario, Prince Edward Island, Manitoba, Newfoundland and
Labrador, Saskatchewan, and British Columbia.

Examples

library(cchsflow)
?ALW_2A3

ALW_2A4 Number of drinks - Wednesday

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the number of alcoholic
drinks consumed on Wednesday. The variable is optional in selected provinces and territories.

ALW_2A5 21

Usage

ALW_2A4(ALW_2A4)

Arguments

ALW_2A4 cchsflow variable name for number of drinks on Wednesday

Details

This variable is present in every CCHS cycle used in cchsflow. In 2007 and 2008, the vari-
able is optional for Newfoundland and Labrador, Nova Scotia, Ontario, British Columbia and
Nunavut.In 2009 and 2010, the variable is optional for Newfoundland and Labrador, Ontario, and
Saskatchewan. In 2011, the variable is optional for Newfoundland and Labrador, Quebec, Ontario,
Manitoba, and Saskatchewan. In 2012, the variable is optional for Newfoundland and Labrador,
Quebec, Ontario, Manitoba, Nunavut, and Saskatchewan.In 2013, the variable is optional for Que-
bec, Ontario, Prince Edward Island, Manitoba, Yukon, and Saskatchewan. In 2014, the variable
is optional for Nunavut, Quebec, Ontario, Prince Edward Island, Manitoba, Newfoundland and
Labrador, Saskatchewan, and British Columbia.

Examples

library(cchsflow)
?ALW_2A4

ALW_2A5 Number of drinks - Thursday

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the number of alcoholic
drinks consumed on Thursday. The variable is optional in selected provinces and territories.

Usage

ALW_2A5(ALW_2A5)

Arguments

ALW_2A5 cchsflow variable name for number of drinks on Thursday

22 ALW_2A6

Details

This variable is present in every CCHS cycle used in cchsflow. In 2007 and 2008, the vari-
able is optional for Newfoundland and Labrador, Nova Scotia, Ontario, British Columbia and
Nunavut.In 2009 and 2010, the variable is optional for Newfoundland and Labrador, Ontario, and
Saskatchewan. In 2011, the variable is optional for Newfoundland and Labrador, Quebec, Ontario,
Manitoba, and Saskatchewan. In 2012, the variable is optional for Newfoundland and Labrador,
Quebec, Ontario, Manitoba, Nunavut, and Saskatchewan.In 2013, the variable is optional for Que-
bec, Ontario, Prince Edward Island, Manitoba, Yukon, and Saskatchewan. In 2014, the variable
is optional for Nunavut, Quebec, Ontario, Prince Edward Island, Manitoba, Newfoundland and
Labrador, Saskatchewan, and British Columbia.

Examples

library(cchsflow)
?ALW_2A5

ALW_2A6 Number of drinks - Friday

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the number of alcoholic
drinks consumed on Friday. The variable is optional in selected provinces and territories.

Usage

ALW_2A6(ALW_2A6)

Arguments

ALW_2A6 cchsflow variable name for number of drinks on Friday

Details

This variable is present in every CCHS cycle used in cchsflow. In 2007 and 2008, the vari-
able is optional for Newfoundland and Labrador, Nova Scotia, Ontario, British Columbia and
Nunavut.In 2009 and 2010, the variable is optional for Newfoundland and Labrador, Ontario, and
Saskatchewan. In 2011, the variable is optional for Newfoundland and Labrador, Quebec, Ontario,
Manitoba, and Saskatchewan. In 2012, the variable is optional for Newfoundland and Labrador,
Quebec, Ontario, Manitoba, Nunavut, and Saskatchewan.In 2013, the variable is optional for Que-
bec, Ontario, Prince Edward Island, Manitoba, Yukon, and Saskatchewan. In 2014, the variable
is optional for Nunavut, Quebec, Ontario, Prince Edward Island, Manitoba, Newfoundland and
Labrador, Saskatchewan, and British Columbia.

ALW_2A7 23

Examples

library(cchsflow)
?ALW_2A6

ALW_2A7 Number of drinks - Saturday

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the number of alcoholic
drinks consumed on Saturday. The variable is optional in selected provinces and territories.

Usage

ALW_2A7(ALW_2A7)

Arguments

ALW_2A7 cchsflow variable name for number of drinks on Saturday

Details

This variable is present in every CCHS cycle used in cchsflow. In 2007 and 2008, the vari-
able is optional for Newfoundland and Labrador, Nova Scotia, Ontario, British Columbia and
Nunavut.In 2009 and 2010, the variable is optional for Newfoundland and Labrador, Ontario, and
Saskatchewan. In 2011, the variable is optional for Newfoundland and Labrador, Quebec, Ontario,
Manitoba, and Saskatchewan. In 2012, the variable is optional for Newfoundland and Labrador,
Quebec, Ontario, Manitoba, Nunavut, and Saskatchewan.In 2013, the variable is optional for Que-
bec, Ontario, Prince Edward Island, Manitoba, Yukon, and Saskatchewan. In 2014, the variable
is optional for Nunavut, Quebec, Ontario, Prince Edward Island, Manitoba, Newfoundland and
Labrador, Saskatchewan, and British Columbia.

Examples

library(cchsflow)
?ALW_2A7

24 binge_drinker_fun

binge_drinker_fun Binge drinking

Description

This function creates a derived categorical variable that flags for binge drinking based on the number
drinks consumed on a single day.

Usage

binge_drinker_fun(
DHH_SEX,
ALW_1,
ALW_2A1,
ALW_2A2,
ALW_2A3,
ALW_2A4,
ALW_2A5,
ALW_2A6,
ALW_2A7

)

Arguments

DHH_SEX sex of respondent (1 - male, 2 - female)
ALW_1 Drinks in the last week (1 - yes, 2 - no)
ALW_2A1 Number of drinks on Sunday
ALW_2A2 Number of drinks on Monday
ALW_2A3 Number of drinks on Tuesday
ALW_2A4 Number of drinks on Wednesday
ALW_2A5 Number of drinks on Thursday
ALW_2A6 Number of drinks on Friday
ALW_2A7 Number of drinks on Saturday

Details

In health research, binge drinking is defined as having an excess amount of alcohol in a single day.
For males, this is defined as having five or more drinks; and for females it is four or more drinks.
In the CCHS, respondents are asked to count the number of drinks they had during each day of the
last week.

Value

Categorical variable (binge_drinker) with two categories:

1. 1 - binge drinker
2. 2 - non-binge drinker

binge_drinker_fun 25

Examples

Using binge_drinker_fun() to create binge_drinker values across CCHS cycles
binge_drinker_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform binge_drinker, use rec_with_table() for each CCHS cycle
and specify binge_drinker, along with the various alcohol and sex
variables. Then by using bind_rows() you can combine binge_drinker
across cycles.

library(cchsflow)
binge2001 <- rec_with_table(

cchs2001_p, c(
"ALW_1", "DHH_SEX", "ALW_2A1", "ALW_2A2", "ALW_2A3", "ALW_2A4",
"ALW_2A5", "ALW_2A6", "ALW_2A7", "binge_drinker"

)
)

head(binge2001)

binge2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"ALW_1", "DHH_SEX", "ALW_2A1", "ALW_2A2", "ALW_2A3", "ALW_2A4",
"ALW_2A5", "ALW_2A6", "ALW_2A7", "binge_drinker"

)
)

tail(binge2009_2010)

combined_binge <- bind_rows(binge2001, binge2009_2010)

head(combined_binge)

tail(combined_binge)

Using binge_drinker_fun() to generate binge_drinker with user-inputted
values.
#
Let's say you are a male, and you had drinks in the last week. Let's say
you had 3 drinks on Sunday, 1 drink on
Monday, 6 drinks on Tuesday, 0 drinks on Wednesday, 3 drinks on Thurday,
8 drinks on Friday, and 2 drinks on Saturday. Using binge_drinker_fun(),
we can check if you would be classified as a drinker.

binge <- binge_drinker_fun(DHH_SEX = 1, ALW_1 = 1, ALW_2A1 = 3, ALW_2A2 = 1,
ALW_2A3 = 6, ALW_2A4 = 0, ALW_2A5 = 3,
ALW_2A6 = 8, ALW_2A7 = 2)

print(binge)

26 bmi_fun

bmi_fun Body Mass Index (BMI) derived variable

Description

This function creates a harmonized BMI variable. The BMI variable provided by the CCHS calcu-
lates BMI using methods that vary across cycles, leading to measurement error when using multiple
CCHS cycles. In certain CCHS cycles (2001-2003, 2007+), there are age restrictions in which re-
spondents under the age of 20 and over the age of 64 were not included. Across all CCHS cycles,
female respondents who identified as being pregnant were excluded; and in certain CCHS cycles
(2003-2007, 2013-2014), females who did not answer the pregnancy question were coded as NS
(not stated) for HWTGBMI. As well, in certain CCHS cycles (2001-2003, 2009-2014), respon-
dents outside certain height and weight ranges (0.914-2.108m for height, 0-260kg for weight) were
excluded from HWTGBMI.

bmi_fun() creates a derived variable (HWTGBMI_der) that is harmonized across all CCHS cycles.
This function divides weight by the square of height.

Usage

bmi_fun(HWTGHTM, HWTGWTK)

Arguments

HWTGHTM CCHS variable for height (in meters)

HWTGWTK CCHS variable for weight (in kilograms)

Details

For HWTGBMI_der, there are no restrictions to age, height, weight, or pregnancy status. While
pregnancy was consistent across all CCHS cycles, its variable (MAM_037) was not available in the
PUMF CCHS datasets so it could not be harmonized and included into the function.

For any single CCHS survey year, it is appropriate to use the CCHS BMI variable (HWTGBMI)
that is also available on cchsflow. HWTGBMI_der is recommended when using multiple survey
cycles.

HWTGBMI_der uses the CCHS variables for height and weight that have been transformed by
cchsflow. In order to generate a value for BMI across CCHS cycles, height and weight must be
transformed and harmonized.

Value

numeric value for BMI in the HWTGBMI_der variable

bmi_fun 27

Note

In earlier CCHS cycles (2001 and 2003), height was collected in inches; while in later CCHS cycles
(2005+) it was collected in meters. To harmonize values across cycles, height was converted to
meters (to 3 decimal points). Weight was collected in kilograms across all CCHS cycles, so no
transformations were required in the harmonization process.

Examples

Using bmi_fun() to create BMI values between cycles
bmi_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform the derived BMI variable, use rec_with_table() for each cycle
and specify HWTGBMI_der, along with height (HWTGHTM) and weight (HWTGWTK).
Then by using merge_rec_data(), you can combined HWTGBMI_der across
cycles.

library(cchsflow)
bmi2001 <- rec_with_table(

cchs2001_p, c(
"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

head(bmi2001)

bmi2011_2012 <- rec_with_table(
cchs2011_2012_p, c(

"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

tail(bmi2011_2012)

combined_bmi <- merge_rec_data(bmi2001, bmi2011_2012)
head(combined_bmi)
tail(combined_bmi)

Using bmi_fun() to generate a BMI value with user inputted height and
weight values. bmi_fun() can also generate a value for BMI if you input a
value for height and weight. Let's say your height is 170cm (1.7m) and
your weight is 50kg, your BMI can be calculated as follows:

library(cchsflow)
BMI <- bmi_fun(HWTGHTM = 1.7, HWTGWTK = 50)
print(BMI)

28 bmi_fun_cat

bmi_fun_cat Categorical BMI (international standard)

Description

This function creates a categorical derived variable (HWTGBMI_der_cat4) that categorizes derived
BMI (HWTGBMI_der).

Usage

bmi_fun_cat(HWTGBMI_der)

Arguments

HWTGBMI_der derived variable that calculates numeric value for BMI. See bmi_fun for docu-
mentation on how variable was derived.

Details

The categories were based on international standards and are divided into four categories: under-
weight for BMI < 18.5 (1), normal weight for BMI between 18.5 to 25 (2), overweight for BMI
between 25 to 30 (3), and obese for BMI over 30 (4).

HWTGBMI_der_cat4 uses the derived variable HWTGBMI_der. HWTGBMI_der uses height and
weight that have been transformed by cchsflow. In order to categorize BMI across CCHS cycles,
height and weight variables must be transformed and harmonized.

Value

value for BMI categories in the HWTGBMI_der_cat4 variable.

Examples

Using bmi_fun_cat() to categorize BMI across CCHS cycles
bmi_fun_cat() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform HWTGBMI_der_cat4 across all cycles, use rec_with_table() for
each CCHS cycle.
Since HWTGBMI_der is also a derived variable, you will have to specify
the variables that are derived from it.

library(cchsflow)

bmi_cat_2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"HWTGHTM",
"HWTGWTK",
"HWTGBMI_der",

cchs2001_p 29

"HWTGBMI_der_cat4"
)

)

head(bmi_cat_2009_2010)

bmi_cat_2011_2012 <- rec_with_table(
cchs2011_2012_p,c(

"HWTGHTM",
"HWTGWTK",
"HWTGBMI_der",
"HWTGBMI_der_cat4"

)
)

tail(bmi_cat_2011_2012)

combined_bmi_cat <- suppressWarnings(merge_rec_data
(bmi_cat_2009_2010,bmi_cat_2011_2012))

head(combined_bmi_cat)
tail(combined_bmi_cat)

cchs2001_p 2001 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2001 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2001-c1-1-general-file

DDI: https://osf.io/jtd9h/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2001_p a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=3359

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/jtd9h/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=3359

30 cchs2003_p

Examples

data(cchs2001_p)
str(cchs2001_p)

cchs2003_p 2003 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2003 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2003-c2-1-General File

DDI: https://osf.io/nzq37/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2003_p a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=4995

Examples

data(cchs2003_p)
str(cchs2003_p)

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/nzq37/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=4995

cchs2005_p 31

cchs2005_p 2005 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2005 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2005-c3-1-main-file

DDI: https://osf.io/35mhq/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2005_p a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=22642

Examples

data(cchs2005_p)
str(cchs2005_p)

cchs2007_2008_p 2007-2008 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2007-2008 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/35mhq/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=22642

32 cchs2009_2010_p

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-E-2007-2008-AnnualComponent

DDI: https://osf.io/emzsp/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2007_2008_p

a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=29539

Examples

data(cchs2007_2008_p)
str(cchs2007_2008_p)

cchs2009_2010_p 2009-2010 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2009-2010 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: CCHS-82M0013-E-2009-2010-Annualcomponent

DDI: https://osf.io/ynzpe/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2009_2010_p

a data frame

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/emzsp/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=29539
https://www.statcan.gc.ca/en/reference/licence
https://osf.io/ynzpe/
https://osf.io/hkuy3/

cchs2009_s 33

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=67251

Examples

data(cchs2009_2010_p)
str(cchs2009_2010_p)

cchs2009_s 2009 CCHS synthetic subset data (200 respondents)

Description

This is a subset of 200 observations from the 2009 cycle of the Canadian Community Health Survey
(CCHS) synthetic dataset. The CCHS survey is conducted by Statistics Canada.

Details

NOTE: this subset of respondents may also be in the 2009 synthetic subset. Please see the "CCHS
datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed May 2022. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: synthetic-CCHS-E-2009-FullSampleFile_F1

DDI: https://osf.io/q8g7y/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2009_s a data frame

Source

https://www.statcan.gc.ca/en/statistical-programs/document/3226_D56_T9_V1

Examples

data(cchs2009_s)
str(cchs2009_s)

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=67251
https://www.statcan.gc.ca/en/reference/licence
https://osf.io/q8g7y/
https://osf.io/hkuy3/
https://www.statcan.gc.ca/en/statistical-programs/document/3226_D56_T9_V1

34 cchs2010_s

cchs2010_p 2010 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2010 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

NOTE: this subset of respondents may also be in the 2009-2010 PUMF subset. Please see the
"CCHS datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: CCHS-82M0013-E-2010-AnnualComponent

DDI: https://osf.io/7stpz/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2010_p a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=81424

Examples

data(cchs2010_p)
str(cchs2010_p)

cchs2010_s 2010 CCHS synthetic subset data (200 respondents)

Description

This is a subset of 200 observations from the 2010 cycle of the Canadian Community Health Survey
(CCHS) synthetic dataset. The CCHS survey is conducted by Statistics Canada.

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/7stpz/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=81424

cchs2011_2012_p 35

Details

NOTE: this subset of respondents may also be in the 2010 synthetic subset. Please see the "CCHS
datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed May 2022. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: synthetic-CCHS-E-2010-AnnualComponent_F1

DDI: https://osf.io/q8g7y/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2010_s a data frame

Source

https://www.statcan.gc.ca/en/statistical-programs/document/3226_D56_T9_V1

Examples

data(cchs2010_s)
str(cchs2010_s)

cchs2011_2012_p 2011-2012 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2011-2012 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2011-2012-Annual-component

DDI: https://osf.io/zk2vw/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2011_2012_p

a data frame

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/q8g7y/
https://osf.io/hkuy3/
https://www.statcan.gc.ca/en/statistical-programs/document/3226_D56_T9_V1
https://www.statcan.gc.ca/en/reference/licence
https://osf.io/zk2vw/
https://osf.io/hkuy3/

36 cchs2012_p

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=114112

Examples

data(cchs2011_2012_p)
str(cchs2011_2012_p)

cchs2012_p 2012 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2012 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

NOTE: this subset of respondents may also be in the 2011-2012 PUMF subset. Please see the
"CCHS datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2012-Annual-component

DDI: https://osf.io/sbem8/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2012_p a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=135927

Examples

data(cchs2012_p)
str(cchs2012_p)

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=114112
https://www.statcan.gc.ca/en/reference/licence
https://osf.io/sbem8/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=135927

cchs2012_s 37

cchs2012_s 2012 CCHS synthetic subset data (200 respondents)

Description

This is a subset of 200 observations from the 2012 cycle of the Canadian Community Health Survey
(CCHS) synthetic dataset. The CCHS survey is conducted by Statistics Canada.

Details

NOTE: this subset of respondents may also be in the 2012 synthetic subset. Please see the "CCHS
datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed May 2022. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: synthetic-CCHS-E-2012-AnnualComponent_F1

DDI: https://osf.io/q8g7y/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2012_s a data frame

Source

https://www.statcan.gc.ca/en/statistical-programs/document/3226_D56_T9_V1

Examples

data(cchs2012_s)
str(cchs2012_s)

cchs2013_2014_p 2013-2014 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2013-2014 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/q8g7y/
https://osf.io/hkuy3/
https://www.statcan.gc.ca/en/statistical-programs/document/3226_D56_T9_V1

38 cchs2014_p

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2013-2014-Annual-component

DDI: https://osf.io/gy25d/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2013_2014_p

a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=144170

Examples

data(cchs2013_2014_p)
str(cchs2013_2014_p)

cchs2014_p 2014 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2014 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

NOTE: this subset of respondents may also be in the 2013-2014 PUMF subset. Please see the
"CCHS datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2014-Annual-component

DDI: https://osf.io/tbmdn/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2014_p a data frame

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/gy25d/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=144170
https://www.statcan.gc.ca/en/reference/licence
https://osf.io/tbmdn/
https://osf.io/hkuy3/

cchs2015_2016_p 39

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=164081

Examples

data(cchs2014_p)
str(cchs2014_p)

cchs2015_2016_p 2015-2016 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2015-2016 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

Details

NOTE: this subset of respondents may also be in the 2015-2016 PUMF subset. Please see the
"CCHS datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Oct 2021. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2015-2016-Annual-component

DDI: https://osf.io/m948q/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2015_2016_p

a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=238854

Examples

data(cchs2015_2016_p)
str(cchs2015_2016_p)

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=164081
https://www.statcan.gc.ca/en/reference/licence
https://osf.io/m948q/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=238854

40 compare_value_based_on_interval

cchs2017_2018_p 2017-2018 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2017-2018 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

Details

NOTE: this subset of respondents may also be in the 2017-2018 PUMF subset. Please see the
"CCHS datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Oct 2021. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2017-2018-Annual-component

DDI: https://osf.io/q8g7y/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2017_2018_p

a data frame

Source

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=329241

Examples

data(cchs2017_2018_p)
str(cchs2017_2018_p)

compare_value_based_on_interval

Compare Value Based On Interval

Description

Compare values on the scientific notation interval

https://www.statcan.gc.ca/en/reference/licence
https://osf.io/q8g7y/
https://osf.io/hkuy3/
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=329241

COPD_Emph_der_fun1 41

Usage

compare_value_based_on_interval(
left_boundary,
right_boundary,
data,
compare_columns,
interval

)

Arguments

left_boundary the min value

right_boundary the max value

data the data that contains values being compared

compare_columns

The columns inside data being checked

interval The scientific notation interval

Value

a boolean vector containing true for rows where the comparison is true

COPD_Emph_der_fun1 COPD_Emph_der_fun1

Description

This is one of 2 functions used to create a derived variable (COPD_Emph_der) that determines if
a respondents has either COPD or Emphysema. 2 different functions have been created to account
for the fact that different respiratory variables are used across CCHS cycles. This function is for
CCHS cycles (2005-2008) that use COPD and Emphysema as a combined variable.

Usage

COPD_Emph_der_fun1(DHHGAGE_cont, CCC_91E, CCC_91F)

Arguments

DHHGAGE_cont continuous age variable.

CCC_91E variable indicating if respondent has Emphysema

CCC_91F variable indicating if respondent has COPD

42 COPD_Emph_der_fun1

Value

a categorical variable (COPD_Emph_der) with 3 levels:

1. respondent is over the age of 35 and has a respiratory condition

2. respondent is under the age of 35 and has a respiratory condition

3. respondent does not have a respiratory condition

See Also

COPD_Emph_der_fun2

Examples

COPD_Emph_der_fun1() to create values across CCHS cycles
(2005-2008) COPD_Emph_der_fun1() is specified in
variable_details.csv along with the CCHS variables and cycles included.

To transform COPD_Emph_der, use rec_with_table() for each CCHS cycle
and specify COPD_Emph_der, along with the various respiratory
variables. Then by using merge_rec_data() you can combine COPD_Emph_der
across cycles.

library(cchsflow)

COPD2005 <- suppressWarnings(rec_with_table(
cchs2005_p, c(
"DHHGAGE_cont", "CCC_91E", "CCC_91F",
"COPD_Emph_der"

)
))

head(COPD2005)

COPD2007_2008 <- suppressWarnings(rec_with_table(
cchs2007_2008_p, c(

"DHHGAGE_cont", "CCC_91E", "CCC_91F",
"COPD_Emph_der"

)
))

tail(COPD2007_2008)

combined_COPD <- suppressWarnings(merge_rec_data(COPD2005, COPD2007_2008))

head(combined_COPD)
tail(combined_COPD)

COPD_Emph_der_fun2 43

COPD_Emph_der_fun2 COPD_Emph_der_fun2

Description

This is one of 2 functions used to create a derived variable (COPD_Emph_der) that determines if
a respondents has either COPD or Emphysema. 2 different functions have been created to account
for the fact that different respiratory variables are used across CCHS cycles. This function is for
CCHS cycles (2001-2003, 2009-2014) that use COPD and Emphysema as a combined variable.

Usage

COPD_Emph_der_fun2(DHHGAGE_cont, CCC_091)

Arguments

DHHGAGE_cont continuous age variable.

CCC_091 variable indicating if respondent has either COPD or Emphysema

Value

a categorical variable (COPD_Emph_der) with 3 levels:

1. respondent is over the age of 35 and has a respiratory condition

2. respondent is under the age of 35 and has a respiratory condition

3. respondent does not have a respiratory condition

See Also

COPD_Emph_der_fun2

Examples

COPD_Emph_der_fun2() to create values across CCHS cycles
(2001-2003, 2009-2014) COPD_Emph_der_fun2() is specified in
variable_details.csv along with the CCHS variables and cycles included.

To transform COPD_Emph_der, use rec_with_table() for each CCHS cycle
and specify COPD_Emph_der, along with the various respiratory
variables. Then by using merge_rec_data() you can combine COPD_Emph_der
across cycles.

library(cchsflow)

COPD2001 <- suppressWarnings(rec_with_table(
cchs2001_p, c(
"DHHGAGE_cont", "CCC_091",
"COPD_Emph_der"

44 diet_score_fun

)
))

head(COPD2001)

COPD2014 <- suppressWarnings(rec_with_table(
cchs2007_2008_p, c(

"DHHGAGE_cont", "CCC_091",
"COPD_Emph_der"

)
))

tail(COPD2014)

combined_COPD <- suppressWarnings(merge_rec_data(COPD2001, COPD2014))

head(combined_COPD)
tail(combined_COPD)

diet_score_fun Diet score

Description

This function creates a derived diet variable (diet_score) based on consumption of fruit, salad,
potatoes, carrots, other vegetables and juice. 2 baseline points plus summation of total points for
diet attributes. Negative overall scores are recoded to 0, resulting in a range from 0 to 10.

• 1 point per daily fruit and vegetable consumption, excluding fruit juice (maximum 8 points).

• -2 points for high potato intake (>=7 (males), >=5 (females) times/week)

• -2 points for no carrot intake

• -2 points per daily frequency of fruit juice consumption greater than once/day (maximum -10
points)

Usage

diet_score_fun(FVCDFRU, FVCDSAL, FVCDPOT, FVCDCAR, FVCDVEG, FVCDJUI, DHH_SEX)

Arguments

FVCDFRU daily consumption of fruit

FVCDSAL daily consumption of green salad

FVCDPOT daily consumption of potatoes

FVCDCAR daily consumption of carrots

FVCDVEG daily consumption of other vegetables

FVCDJUI daily consumption of fruit juice

DHH_SEX sex; 1 = male, 2 = female

diet_score_fun_cat 45

Details

While diet score can be calculated for all survey respondents, in the 2005 CCHS survey cycle,
fruit and vegetable consumption was an optional section in which certain provinces had opted in
to be asked to respondents. In this survey cycle, fruit and vegetable consumption was asked to
respondents in British Columbia, Ontario, Alberta, and Prince Edward Island. As such, diet score
has a large number of missing respondents for this cycle.

Examples

Using the diet_score_fun function to create the derived diet variable
across CCHS cycles.
diet_score_fun() is specified in the variable_details.csv.

To create a harmonized diet_score variable across CCHS cycles, use
rec_with_table() for each CCHS cycle and specify diet_score_fun and the
required base variables.
Using merge_rec_data(), you can combine diet_score across cycles.

library(cchsflow)

diet_score2009_2010 <- rec_with_table(
cchs2009_2010_p, c(
"FVCDFRU", "FVCDSAL", "FVCDPOT", "FVCDCAR", "FVCDVEG", "FVCDJUI",
"DHH_SEX", "diet_score"

)
)

head(diet_score2009_2010)

diet_score2011_2012 <- rec_with_table(
cchs2011_2012_p,c(

"FVCDFRU", "FVCDSAL", "FVCDPOT", "FVCDCAR", "FVCDVEG", "FVCDJUI",
"DHH_SEX", "diet_score"

)
)

tail(diet_score2011_2012)

combined_diet_score <- suppressWarnings(merge_rec_data(diet_score2009_2010,
diet_score2011_2012))

head(combined_diet_score)
tail(combined_diet_score)

diet_score_fun_cat Categorized diet score

46 diet_score_fun_cat

Description

This function creates a categorical derived diet variable (diet_score_cat3) that categorizes derived
diet score (diet_score).

Usage

diet_score_fun_cat(diet_score)

Arguments

diet_score derived variable that calculates diet score. See diet_score_fun for documen-
tation on how variable was derived.

Details

The diet score is based on consumption of fruit, salad, potatoes, carrots, other vegetables and juice. 2
baseline points plus summation of total points for diet attributes. Negative overall scores are recoded
to 0, resulting in a range from 0 to 10.The categories were based on the Mortality Population Risk
Tool (Douglas Manuel et al. 2016).

diet_score_cat3 uses the derived variable diet_score. diet_score uses sex, and fruit and vegetable
variables that have been transformed by cchsflow (see documentation on diet_score). In order to
categorize diet across CCHS cycles, sex, and fruit and vegetable variables must be transformed and
harmonized.

Value

value for diet score categories using diet_score_cat3 variable.

Examples

Using the diet_score_fun_cat function to categorize the derived diet
variable across CCHS cycles.
diet_score_fun_cat() is specified in the variable_details.csv.

To create a harmonized diet_score_cat3 variable across CCHS cycles, use
rec_with_table() for each CCHS cycle.
Since diet_score is also a derived variable, you will have to specify
the variables that are derived from it.
Using merge_rec_data(), you can combine diet_score_cat3 across cycles.

library(cchsflow)

diet_score_cat2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"FVCDFRU", "FVCDSAL", "FVCDPOT", "FVCDCAR", "FVCDVEG", "FVCDJUI",
"DHH_SEX", "diet_score", "diet_score_cat3"

)
)

head(diet_score_cat2009_2010)

DPSDPP 47

diet_score_cat2011_2012 <- rec_with_table(
cchs2011_2012_p,c(
"FVCDFRU", "FVCDSAL", "FVCDPOT", "FVCDCAR", "FVCDVEG", "FVCDJUI",
"DHH_SEX", "diet_score", "diet_score_cat3"

)
)

tail(diet_score_cat2011_2012)

combined_diet_score_cat <- suppressWarnings(merge_rec_data(
diet_score_cat2009_2010, diet_score_cat2011_2012))

head(combined_diet_score_cat)
tail(combined_diet_score_cat)

DPSDPP Depression Scale - Predicted Probability

Description

NOTE: this is not a function.

This is categorical variable derived by Statistics Canada that predicts the probability that a respon-
dent would be diagnosed as having a major depressive episode if a diagnostic interview was com-
pleted. This variable is derived from DPSDSF in which probabilities are assigned to respondents
based on their depression scale score. For more details on how the variable was derived click here.

Usage

DPSDPP(DPSDPP)

Arguments

DPSDPP cchsflow variable name for derived depression scale predicted probability.

Details

While this variable was considered to be categorical in CCHS documentation, the values range from
0 to 0.90 with no distinct names or metadata for each category. As such, this variable was specified
as a continuous variable in cchsflow. This has no bearing on the final output of the variable as there
are no recode changes. This means that a respondent who was coded with a probability of 0.50 will
still have a probability value of 0.50 when the variable goes through harmonization.

This variable is present in every CCHS cycle used in cchsflow, and how it was derived remains
consistent.

See Also

DPSDSF

https://osf.io/auqwh/

48 DPSDSF

Examples

library(cchsflow)
?DPSDPP

DPSDSF Derived Depression Scale - Short Form Score

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that assesses the level of depression of
respondents who have identified that they have felt depressed or loss of interest within the last two
weeks. This variable is scaled from 0 to 8, with 0 indicating a respondent has not felt depressed or
loss of interest, and 8 representing the highest level of depression.

Usage

DPSDSF(DPSDSF)

Arguments

DPSDSF cchsflow variable name for derived depression scale.

Details

The derivation of this variable is based on the work of Kessler & Mroczek from the University of
Michigan. For more details on the items used and how the variable was derived click here.

This variable is present in every CCHS cycle used in cchsflow, and how it was derived remains
consistent.

See Also

DPSDPP

Examples

library(cchsflow)
?DPSDSF

https://osf.io/auqwh/

energy_exp_fun 49

energy_exp_fun Daily energy expenditure in leisure activity

Description

This function creates a derived variable for daily leisure energy expenditure.A MET is a conceptual
value that represents energy expended during physical activity. The volume of activity is calculated
by multiplying the amount of minutes of activity (by level of intensity) by the MET value associ-
ated with that intensity. A MET (metabolic equivalent) is the energy cost of activity expressed as
kilocalories expended per kilogram of body weight per hour of activity.

In CCHS 2001-2014, PACDEE is the variable used to determine the daily expenditure of leisure
activity for all ages. In CCHS 2015-2018, ages 12-17 and 18+ years old have separate activity
variables, where 12-17 year olds use PAY_XXX and 18+ year olds use PAA_XXX. Leisure activity
is not directly measured. We used the derived variable, PAADVVOL, and removed active trans-
portation in the new function. With this function, we combined leisure activity for ages 12+. We
calculate the daily energy expenditure which uses the frequency and duration per session of the
physical activity as well as the MET value (3 METS for leisure and 6 METS for vigorous activity).

EE (Daily Energy Expenditure) = ((N X D X METvalue) / 60)/7 Where: N = the number of times
a respondent engaged in an activity over a 7 day period D = the average duration in minutes of the
activity MET value = the energy cost of the activity expressed as kilocalories expended per kilogram
of body weight per hour of activity (kcal/kg per hour)

Usage

energy_exp_fun(
DHHGAGE_cont,
PAA_045,
PAA_050,
PAA_075,
PAA_080,
PAADVDYS,
PAADVVIG,
PAYDVTOA,
PAYDVADL,
PAYDVVIG,
PAYDVDYS

)

Arguments

DHHGAGE_cont continuous age variable.

PAA_045 number of hours of sports, fitness, or recreational activity that make you sweat
or breathe harder for CCHS 2015-2018 for 18+ years old.

PAA_050 number of minutes of sports, fitness, or recreational activity that make you sweat
or breathe harder for CCHS 2015-2018 for 18+ years old.

50 energy_exp_fun

PAA_075 number of hours of other physical activity while at work, home or volunteering
for CCHS 2015-2018 for 18+ years old.

PAA_080 number of minutes of other physical activity while at work, home or volunteer-
ing for CCHS 2015-2018 for 18+ years old.

PAADVDYS number of active days - 7 day for CCHS 2015-2018 for 18+ years old.

PAADVVIG number of minutes of vigorous activity over 7 days or CCHS 2015-2018 for 18+
years old.

PAYDVTOA total minutes of other activities - 7 day for CCHS 2015-2018 for 12-17 years
old.

PAYDVADL total minutes of physical activity - leisure - 7 day for CCHS 2015-2018 for 12-17
years old.

PAYDVVIG total minutes - vigorous physical activity - 7 d for CCHS 2015-2018 for 12-17
years old.

PAYDVDYS total days physically active - 7 day for CCHS 2015-2018 for 12-17 years old.

Value

Continuous variable for energy expenditure (energy_exp)

Examples

Using energy_exp_fun() to create energy expenditure values across CCHS
cycles
energy_exp_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform energy_exp across cycles, use rec_with_table() for each
CCHS cycle and specify energy_exp, along with each activity variable.
Then by using merge_rec_data(), you can combine energy_exp across
cycles

library(cchsflow)
energy_exp2015_2016 <- rec_with_table(

cchs2015_2016_p, c(
"DHHGAGE_cont", "PAA_045", "PAA_050", "PAA_075", "PAA_080", "PAADVDYS",
"PAADVVIG", "PAYDVTOA", "PAYDVADL", "PAYDVVIG", "PAYDVDYS", "energy_exp"

)
)

head(energy_exp2015_2016)

energy_exp2017_2018 <- rec_with_table(
cchs2017_2018_p, c(

"DHHGAGE_cont", "PAA_045", "PAA_050", "PAA_075", "PAA_080", "PAADVDYS",
"PAADVVIG", "PAYDVTOA", "PAYDVADL", "PAYDVVIG", "PAYDVDYS", "energy_exp"

)
)

tail(energy_exp2015_2016)

food_insecurity_der 51

combined_energy_exp <- suppressWarnings(merge_rec_data(energy_exp2015_2016,
energy_exp2017_2018))

head(combined_energy_exp)
tail(combined_energy_exp)

food_insecurity_der Food insecurity

Description

NOTE: this is not a function.

This is a derived variable that uses the different food insecurity variables from all CCHS cycles to
generate food_insecurity_der that is harmonized across all cycles. food_insecurity_der is a categor-
ical variable with two categories:

1. no food insecurity in the last 12 months

2. food insecurity in the last 12 months

Usage

food_insecurity_der(FINF1, FSCDHFS, FSCDHFS2)

Arguments

FINF1 variable used in 2001 and 2003 survey cycles indicating food insecurity in the
past 12 months

FSCDHFS variable used in the 2005 survey cycle measuring food insecurity & hunger in
the last 12 months

FSCDHFS2 variable used in 2007-2014 survey cycles measuring household food insecurity
in the last 12 months

Details

Food insecurity is measured differently across CCHS cycles. In 2001 and 2003, FINF1 is used; in
2005, FSCDHFS is used; and in 2007 to 2014, FSCDHFS2 is used. Each variable examines food
insecurity in the household over the past 12 months, but use different base variables to derive food
insecurity.

If you are using cchsflow for CCHS survey years that use consistent food insecurity variables, it
is appropriate to use FINF1, FSCDHFS, or FSCDHFS2 that are available on cchsflow. If you are
using cchsflow for only the 2001 and 2003 cycles, it is appropriate to use FINF1. If you are using
cchsflow for only the 2005 cycle, FSCDHFS is appropriate. If you are using cchsflow for cycles
between 2007 and 2014, FSCDHFS2 is appropriate. For multiple CCHS survey years that do not use
the same food insecurity variables (i.e. using cchsflow for years 2001 to 2007), food_insecurity_der
is recommended.

52 GEN_02A2

Examples

library(cchsflow)
?food_insecurity_der

GEN_02A2 Satisfaction with life (GEN_02A/GEN_02A2)

Description

NOTE: this is not a function.

These are two variables asked in the CCHS that asks respondents to rate their satisfaction with their
lives. The variable GEN_02A is a categorical variable with 5 categories:

1. Very satisfied

2. Satisfied

3. Neither satisfied nor unsatisfied

4. Dissatisfied

5. Very dissatisfied

The GEN_02A2 is a continuous variable from 0 to 10, where 0 represents very dissatisfied and 10
represents very satisfied.

Usage

GEN_02A2(GEN_02A, GEN_02A2)

Arguments

GEN_02A - categorical life satisfaction variable asked from 2003-2007

GEN_02A2 - continuous life satisfaction variable asked from 2009-2014, and derived for
2003-2007

Details

GEN_02A was asked to respondents in the 2003, 2005, and 2007-2008 CCHS survey cycles; while
GEN_02A2 was asked to respondents in CCHS survey cycles from 2009 to 2014. To harmonize
GEN_02A2 across more cycles, GEN_02A2 was derived for earlier cycles by converting GEN_02A
values to match the scale used in GEN_02A2. The very satisfied category was converted to a score
of 10; the satisfied category was converted to a score of 7; the neither satisfied nor unsatisfied
category was converted to a score of 5; the dissatisfied category was converted to a score of 2; and
the very dissatisfied category was converted to a score of 0.

When using earlier CCHS cycles (2003-2007), it is appropriate to use GEN_02A. When using
multiple CCHS cycles that include cycles from 2009-2014, GEN_02A2 is recommended.

get_data_variable_name 53

Examples

library(cchsflow)
?GEN_02A2

get_data_variable_name

Get Data Variable Name

Description

Retrieves the name of the column inside data to use for calculations

Usage

get_data_variable_name(
data_name,
data,
row_being_checked,
variable_being_checked

)

Arguments

data_name name of the database being checked

data database being checked

row_being_checked

the row from variable details that contains information on this variable

variable_being_checked

the name of the recoded variable

Value

the data equivalent of variable_being_checked

54 if_else2

if_else2 if_else2

Description

Custom ifelse function that evaluates missing (NA) values. If the logical argument (x) compares to
a value that is ‘NA‘, it is set to ‘FALSE‘

Usage

if_else2(x, a, b)

Arguments

x A logical argument

a value if ‘x‘ is ‘TRUE‘

b value if ‘x‘ is ‘FALSE‘

Details

unlike the base ifelse() function, if_else2() is able to evaluate NA as either a or b. In base ifelse(),
anything compared to NA will produce NA, which can break a function. When dealing with large
datasets like the CCHS, there are many missing (NA) values. That means a special ifelse function
like if_else2() is needed in order for other functions to not break

Value

a or b based on the evaluation of x

Examples

age <- 12
status <- if_else2((age < 18), "child", "invalid age")
print(status)

age <- NA
status <- if_else2((age < 18), "child", "invalid age")
print(status)

immigration_fun 55

immigration_fun Immigration by ethnicity and settlement

Description

This function creates a categorical variable based on immigrant status (SDCFIMM), country of
birth (SDCGCBG), ethnicity (SDCGCGT), and time in Canada (SDCGRES).

Usage

immigration_fun(SDCFIMM, SDCGCBG, SDCGCGT, SDCGRES)

Arguments

SDCFIMM Immigrant status (1-immigrant, 2-non-immigrant)

SDCGCBG Country of birth (1-Canada, 2-Outside of Canada)

SDCGCGT Cultural or racial origin (1-white, 2-visible minority)

SDCGRES Length/time in Canada since immigration (1- 0-9 years, 2- 10+ years)

Details

immigration_der uses the CCHS variables that have been transformed by cchsflow. In order to
generate a value for BMI across CCHS cycles, the following SDC variables must be transformed
and harmonized.

Value

Categorical variable (immigration_der) with six categories:

• 1 - White Canada-born

• 2 - Non-white Canadian born

• 3 - White immigrant born outside of Canada (0-9 years in Canada)

• 4 - Non-white immigrant born outside of Canada (0-9 years in Canada)

• 5 - White immigrant born outside of Canada (10+ years in Canada)

• 6 - Non-white immigrant born outside of Canada (10+ years in Canada)

Examples

Using immigration_fun() to create immigration_der values across CCHS cycles
immigration_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform immigration_der, use rec_with_table() for each CCHS cycle
and specify immigration_der, along with the various SDC variables.
Then by using merge_rec_data() you can combine immigration_der across cycles.

56 is_equal

library(cchsflow)
immigration2001 <- rec_with_table(

cchs2001_p, c(
"SDCFIMM", "SDCGCBG", "SDCGCGT", "SDCGRES", "immigration_der"

)
)

head(immigration2001)

immigration2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"SDCFIMM", "SDCGCBG", "SDCGCGT", "SDCGRES", "immigration_der"
)

)

tail(immigration2009_2010)

combined_immigration <- merge_rec_data(immigration2001, immigration2009_2010)

head(combined_immigration)

tail(combined_immigration)

is_equal is equal

Description

Function to compare even with NA present This function returns TRUE wherever elements are the
same, including NA’s, and false everywhere else.

Usage

is_equal(v1, v2)

Arguments

v1 variable 1

v2 variable 2

Value

boolean value of whether or not v1 and v2 are equal

label_data 57

Examples

library(cchsflow)
is_equal(1,2)
FALSE

is_equal(1,1)
TRUE

1==NA
NA

is_equal(1,NA)
FALSE

NA==NA
NA

is_equal(NA,NA)
TRUE

label_data label_data

Description

Attaches labels to the DataToLabel to preserve metadata

Usage

label_data(label_list, data_to_label)

Arguments

label_list the label list object that contains extracted labels from variable details

data_to_label The data that is to be labeled

Value

Returns labeled data

58 LBFA_31A

LBFA_31A Occupation Group (9 categories)

Description

NOTE: this is not a function.

This is a 9 category variable (LBFA_31A) that is in the CCHS that asks which occupation group
best describes a respondent. Occupation group is asked in the 2001 CCHS cycle and in CCHS
cycles from 2007-2014.

Usage

LBFA_31A(LBFA_31A)

Arguments

LBFA_31A cchsflow variable name for Occupation Group (9 categories)

Details

While occupation group is asked in many survey cycles, the 2001 CCHS survey cycle is the only
survey that has 9 categories. The categories are as follows:

1. Management

2. Professional (including accountants)

3. Technologist, Technician or Tech Occupation

4. Administrative, Financial or Clerical

5. Sales or Service

6. Trades, Transport or Equipment Operator

7. Farming, Forestry, Fishing, Mining

8. Processing, Manufacturing, Utilities

9. Other

To harmonize the 2001 CCHS cycle with other survey cycles, LBFA_31A_a and LBFA_31A_b were
created in which categories in the 2001 survey cycle were collapsed.

See Also

LBFA_31A_a, LBFA_31A_b

Examples

library(cchsflow)
?LBFA_31A

LBFA_31A_a 59

LBFA_31A_a Occupation Group (5 categories)

Description

NOTE: this is not a function.

This is a 5 category variable (LBFA_31A_a) that is in the CCHS that asks which occupation group
best describes a respondent. Occupation group is asked in the 2001 CCHS cycle and in CCHS
cycles from 2007-2014.

Usage

LBFA_31A_a(LBFA_31A_a)

Arguments

LBFA_31A_a cchsflow variable name for Occupation Group (5 categories)

Details

In the 2007-2014 CCHS survey cycles, occupation group has 5 categories. The categories are as
follows:

1. Management, Health, Education, Art, Culture

2. Business, Finance, Admin

3. Sales or Service

4. Trades, Transport or Equipment Operator

5. Unique to Primary Industry/Processing/Manufacturing

In this variable, categories from the 2001 CCHS survey cycle were collapsed to harmonize with
the other survey cycles. "Management, Professional (including accountants), Technologist, Tech-
nician or Tech Occupation" were combined into one category "Management, Health, Education,
Art, Culture". "Farming, Forestry, Fishing, Mining" and "Processing, Manufacturing, Utilities",
were combined into one category "Farming, Forestry, Fishing, Mining, Processing, Manufacturing,
Utilities".

The "other" category in the 2001 CCHS survey cycle was assigned to missing (NA(b)). This is
consistent with other studies (doi: 10.4103/IJCIIS.IJCIIS_43_18) that group the "other" category as
"missing". LBFA_31A_b is a 6 category variable that keeps the "other" category in the 2001 survey
cycle as "other".

See Also

LBFA_31A, LBFA_31A_b

https://doi.org/10.4103/IJCIIS.IJCIIS_43_18

60 LBFA_31A_b

Examples

library(cchsflow)
?LBFA_31A_a

LBFA_31A_b Occupation Group (6 categories)

Description

NOTE: this is not a function.

This is a 6 category variable (LBFA_31A_b) that is in the CCHS that asks which occupation group
best describes a respondent. Occupation group is asked in the 2001 CCHS cycle and in CCHS
cycles from 2007-2014.

Usage

LBFA_31A_b(LBFA_31A_b)

Arguments

LBFA_31A_b cchsflow variable name for Occupation Group (6 categories)

Details

In the 2007-2014 CCHS survey cycles, occupation group has 5 categories. This variable, however,
includes a sixth category to account for the "other" category asked in the 2001 CCHS survey cycle.
The categories are as follows:

1. Management, Health, Education, Art, Culture

2. Business, Finance, Admin

3. Sales or Service

4. Trades, Transport or Equipment Operator

5. Unique to Primary Industry/Processing/Manufacturing

6. Other

In this variable, categories from the 2001 CCHS survey cycle were collapsed to harmonize with
the other survey cycles. "Management, Professional (including accountants), Technologist, Tech-
nician or Tech Occupation" were combined into one category "Management, Health, Education,
Art, Culture". "Farming, Forestry, Fishing, Mining" and "Processing, Manufacturing, Utilities",
were combined into one category "Farming, Forestry, Fishing, Mining, Processing, Manufacturing,
Utilities".

See Also

LBFA_31A, LBFA_31A_a

low_drink_long_fun 61

Examples

library(cchsflow)
?LBFA_31A_b

low_drink_long_fun Long term risks due to drinking

Description

This function creates a categorical variable that flags for increased long term health risks due to
their drinking habits, according to Canada’s Low-Risk Alcohol Drinking Guideline.

Usage

low_drink_long_fun(
DHH_SEX,
ALWDWKY,
ALC_1,
ALW_1,
ALW_2A1,
ALW_2A2,
ALW_2A3,
ALW_2A4,
ALW_2A5,
ALW_2A6,
ALW_2A7

)

Arguments

DHH_SEX Sex of respondent (1 - male, 2 - female)

ALWDWKY Number of drinks consumed in the past week

ALC_1 Drinks in the past year (1 - yes, 2 - no)

ALW_1 Drinks in the last week (1 - yes, 2 - no)

ALW_2A1 Number of drinks on Sunday

ALW_2A2 Number of drinks on Monday

ALW_2A3 Number of drinks on Tuesday

ALW_2A4 Number of drinks on Wednesday

ALW_2A5 Number of drinks on Thursday

ALW_2A6 Number of drinks on Friday

ALW_2A7 Number of drinks on Saturday

62 low_drink_long_fun

Details

The classification of drinkers according to their long term health risks comes from guidelines in
Alcohol and Health in Canada: A Summary of Evidence and Guidelines for Low-risk Drinking,
and is based on the alcohol consumption reported over the past week. Short-term or acute risks
include injury and overdose.

Categories are based on CCHS 2015-2016’s variable (ALWDVLTR) where long term health risk
are increased when drinking more than 10 drinks a week for women, with no more than 2 drinks
a day most days, and more than 15 drinks a week for men, with no more than 3 drinks a day most
days.

See https://osf.io/ykau5/ for more details on the guideline. See https://osf.io/ycxaq/ for
more details on the derivation of the function on page 8.

Value

Categorical variable (ALWDVLTR_der) with two categories:

• 1 - Increased long term health risk

• 2 - No increased long term health risk

Examples

Using low_drink_long_fun() to create ALWDVLTR_der values across CCHS cycles
low_drink_long_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform ALWDVLTR_der, use rec_with_table() for each CCHS cycle
and specify ALWDVLTR_der, along with the various alcohol and sex
variables.
Using merge_rec_data(), you can combine ALWDVLTR_der across cycles.

library(cchsflow)
long_low_drink2001 <- rec_with_table(

cchs2001_p, c(
"ALW_1", "DHH_SEX", "ALW_2A1", "ALW_2A2", "ALW_2A3", "ALW_2A4",
"ALW_2A5", "ALW_2A6", "ALW_2A7", "ALWDWKY", "ALC_1","ALWDVLTR_der"

)
)

head(long_low_drink2001)

long_low_drink2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"ALW_1", "DHH_SEX", "ALW_2A1", "ALW_2A2", "ALW_2A3", "ALW_2A4",
"ALW_2A5", "ALW_2A6", "ALW_2A7", "ALWDWKY", "ALC_1","ALWDVLTR_der"

)
)

tail(long_low_drink2009_2010)

https://osf.io/ykau5/
https://osf.io/ycxaq/

low_drink_score_fun 63

combined_long_low_drink <- bind_rows(long_low_drink2001,
long_low_drink2009_2010)

head(combined_long_low_drink)

tail(combined_long_low_drink)

Using low_drink_long_fun() to generate ALWDVLTR_der with user-inputted
values.
#
Let's say you are a male, you had drinks in the last week and in the last
year. Let's say you had 5 drinks on Sunday, 1 drink on Monday, 6 drinks on
Tuesday, 4 drinks on Wednesday, 4 drinks on Thursday, 8 drinks on Friday,
and 2 drinks on Saturday with a total of 30 drinks in a week.
Using low_drink_long_fun(), we can check if you would be classified as
having an increased long term health risk due to drinking.

long_term_drink <- low_drink_long_fun(DHH_SEX = 1, ALWDWKY = 30, ALC_1 = 1,
ALW_1 = 1, ALW_2A1 = 5, ALW_2A2 = 1, ALW_2A3 = 6, ALW_2A4 = 4, ALW_2A5 = 4,
ALW_2A6 = 8, ALW_2A7 = 2)

print(long_term_drink)

low_drink_score_fun Low drinking score (all cycles)

Description

This function creates a derived variable based on their drinking habits and flags for health and
social problems from their pattern of alcohol use according to Canada’s Low-Risk Alcohol Drinking
Guideline.

Usage

low_drink_score_fun(DHH_SEX, ALWDWKY)

Arguments

DHH_SEX Sex of respondent (1 - male, 2 - female)

ALWDWKY Number of drinks consumed in the past week

Details

The low risk drinking score is based on the scoring system in Canada’s Low-Risk Alcohol Drinking
Guideline. The score is divided into two steps. Step 1 allocates points based on sex and the number
of drinks that you usually have each week. In step 2, one point will be awarded for each item that is
true related to drinking habits. The total score is obtained from adding the points in step 1 and step
2.

64 low_drink_score_fun

Value

Low risk drinking score (low_drink_score) with four categories:

• 1 - Low risk (0 points)

• 2 - Marginal risk (1-2 points)

• 3 - Medium risk (3-4 points)

• 4 - High risk (5-9 points)

Note

Step 2 is not included in this function because the questions in step 2 are not asked in any of the
CCHS cycles. The score is only based on step 1.

See https://osf.io/eprg7/ for more details on the guideline and score.

Examples

Using low_drink_score_fun() to create low_drink_score values across
CCHS cycles low_drink_score_fun() is specified in variable_details.csv
along with the CCHS variables and cycles included.

To transform low_drink_score, use rec_with_table() for each CCHS cycle
and specify low_drink_score, along with the various alcohol and sex
variables.
Using merge_rec_data(), you can combine low_drink_score across cycles.

library(cchsflow)
low_drink2001 <- rec_with_table(

cchs2001_p, c(
"DHH_SEX", "ALWDWKY", "low_risk_score"

)
)

head(low_drink2001)

low_drink2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"DHH_SEX", "ALWDWKY", "low_risk_score"
)

)

tail(low_drink2009_2010)

combined_low_drink <- bind_rows(low_drink2001,
low_drink2009_2010)

head(combined_low_drink)

tail(combined_low_drink)

https://osf.io/eprg7/

low_drink_score_fun1 65

low_drink_score_fun1 Low drinking score (select cycles)

Description

This function creates a derived variable based on their drinking habits and flags for health and
social problems from their pattern of alcohol use according to Canada’s Low-Risk Alcohol Drinking
Guideline.

Usage

low_drink_score_fun1(DHH_SEX, ALWDWKY, ALC_005, ALC_1)

Arguments

DHH_SEX Sex of respondent (1 - male, 2 - female)

ALWDWKY Number of drinks consumed in the past week

ALC_005 In lifetime, ever had a drink? (1 - yes, 2 - no)

ALC_1 Past year, have you drank alcohol? (1 - yes, 2 - no)

Details

The low risk drinking score is based on the scoring system in Canada’s Low-Risk Alcohol Drinking
Guideline. The score is divided into two steps. Step 1 allocates points based on sex and the number
of drinks that you usually have each week. In step 2, one point will be awarded for each item that is
true related to drinking habits. The total score is obtained from adding the points in step 1 and step
2.

This score has two 0 point categories: low risk (never drank) and low risk (former drinker). The
two drinking groups are derived from ’ever had a drink in lifetime’. ’Ever had a drink in lifetime’
is only available in CCHS 2001-2008 and 2015-2018.

Value

Low risk drinking score (low_drink_score1) with four categories:

• 1 - Low risk - never drank (0 points)

• 2 - Low risk - former drinker (0 points)

• 3 - Marginal risk (1-2 points)

• 4 - Medium risk (3-4 points)

• 5 - High risk (5-9 points)

Note

Step 2 is not included in this function because the questions in step 2 are not asked in any of the
CCHS cycles. The score is only based on step 1.

See https://osf.io/eprg7/ for more details on the guideline and score.

https://osf.io/eprg7/

66 low_drink_short_fun

Examples

Using low_drink_score_fun1() to create low_drink_score values across
CCHS cycles low_drink_score_fun1() is specified in variable_details.csv
along with the CCHS variables and cycles included.

To transform low_drink_score1, use rec_with_table() for each CCHS cycle
and specify low_drink_score1, along with the various alcohol and sex
variables.
Using merge_rec_data(), you can combine low_drink_score1 across cycles.

library(cchsflow)
low_drink2001 <- rec_with_table(

cchs2001_p, c(
"DHH_SEX", "ALWDWKY", "ALC_005", "ALC_1", "low_risk_score"

)
)

head(low_drink2001)

low_drink2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"DHH_SEX", "ALWDWKY", "ALC_005", "ALC_1", "low_risk_score"
)

)

tail(low_drink2009_2010)

combined_low_drink1 <- bind_rows(low_drink2001,
low_drink2009_2010)

head(combined_low_drink1)

tail(combined_low_drink1)

low_drink_short_fun Short term risks due to drinking

Description

This function creates a categorical variable that flags for increased short term health risks due to
their drinking habits, according to Canada’s Low-Risk Alcohol Drinking Guideline.

Usage

low_drink_short_fun(
DHH_SEX,
ALWDWKY,

low_drink_short_fun 67

ALC_1,
ALW_1,
ALW_2A1,
ALW_2A2,
ALW_2A3,
ALW_2A4,
ALW_2A5,
ALW_2A6,
ALW_2A7

)

Arguments

DHH_SEX Sex of respondent (1 - male, 2 - female)

ALWDWKY Number of drinks consumed in the past week

ALC_1 Drinks in the past year (1 - yes, 2 - no)

ALW_1 Drinks in the last week (1 - yes, 2 - no)

ALW_2A1 Number of drinks on Sunday

ALW_2A2 Number of drinks on Monday

ALW_2A3 Number of drinks on Tuesday

ALW_2A4 Number of drinks on Wednesday

ALW_2A5 Number of drinks on Thursday

ALW_2A6 Number of drinks on Friday

ALW_2A7 Number of drinks on Saturday

Details

The classification of drinkers according to their short term health risks comes from guidelines in
Alcohol and Health in Canada: A Summary of Evidence and Guidelines for Low-risk Drinking, and
is based on the alcohol consumption reported over the past week. Short-term or acute risks include
injury and overdose.

Categories are based on CCHS 2015-2016’s variable (ALWDVSTR) where short term health risk
are increased when drinking more than 3 drinks (for women) or 4 drinks (for men) on any single
occasion.

See https://osf.io/ykau5/ for more details on the guideline. See https://osf.io/ycxaq/ for
more details on derivation of the function on page 9.

Value

Categorical variable (ALWDVSTR_der) with two categories:

• 1 - Increased short term health risk

• 2 - No increased short term health risk

https://osf.io/ykau5/
https://osf.io/ycxaq/

68 low_drink_short_fun

Examples

Using low_drink_short_fun() to create ALWDVSTR_der values across CCHS cycles
low_drink_short_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform ALWDVSTR_der, use rec_with_table() for each CCHS cycle
and specify ALWDVSTR_der, along with the various alcohol and sex
variables.
Using merge_rec_data(), you can combine ALWDVSTR_der across cycles.

library(cchsflow)
short_low_drink2001 <- rec_with_table(

cchs2001_p, c(
"ALW_1", "DHH_SEX", "ALW_2A1", "ALW_2A2", "ALW_2A3", "ALW_2A4",
"ALW_2A5", "ALW_2A6", "ALW_2A7", "ALWDWKY", "ALC_1","ALWDVSTR_der"

)
)

head(short_low_drink2001)

short_low_drink2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"ALW_1", "DHH_SEX", "ALW_2A1", "ALW_2A2", "ALW_2A3", "ALW_2A4",
"ALW_2A5", "ALW_2A6", "ALW_2A7", "ALWDWKY", "ALC_1","ALWDVSTR_der"

)
)

tail(short_low_drink2009_2010)

combined_short_low_drink <- bind_rows(short_low_drink2001,
short_low_drink2009_2010)

head(combined_short_low_drink)

tail(combined_short_low_drink)

Using low_drink_short_fun() to generate ALWDVSTR_der with user-inputted
values.
#
Let's say you are a male, you had drinks in the last week and in the last
year. Let's say you had 5 drinks on Sunday, 1 drink on Monday, 6 drinks on
Tuesday, 4 drinks on Wednesday, 4 drinks on Thursday, 8 drinks on Friday,
and 2 drinks on Saturday with a total of 30 drinks in a week.
Using low_drink_short_fun(), we can check if you would be classified as
having an increased short term health risk due to drinking.

short_term_drink <- low_drink_short_fun(DHH_SEX = 1, ALWDWKY = 30, ALC_1 = 1,
ALW_1 = 1, ALW_2A1 = 5, ALW_2A2 = 1, ALW_2A3 = 6, ALW_2A4 = 4, ALW_2A5 = 4,
ALW_2A6 = 8, ALW_2A7 = 2)

print(short_term_drink)

merge_rec_data 69

merge_rec_data Merge recoded data

Description

This function allows users to merge CCHS data transformed by the rec_with_table function. This
function generates a labelled merged data frame with multiple transformed CCHS cycles.

Usage

merge_rec_data(...)

Arguments

... recoded data frames to be merged.

Details

When merging recoded CCHS data, there are variables that are missing in certain CCHS cycles.
This function tags missing variable observations as NA(c), indicating that the variable was not
asked or included in the CCHS cycle of the respondent.

Click here for more details on how NA’s are treated in cchsflow.

Value

a merged data frame consisting of multiple recoded CCHS cycles with labels for variable names
and tags for variables not included in particular CCHS cycles.

Examples

Merging two CCHS cycles with variables missing in each cycle.

INCGHH_A is a cchsflow variable available for the 2001 CCHS cycle, while
INCGHH_B is a cchsflow variable available for the 2003 CCHS cycle.
Using merge_rec_data(), datasets containing INCGHH_A & INCGHH_B can be
merged and tagged.

library(cchsflow)
income2001 <- rec_with_table(cchs2001_p, "INCGHH_A")
income2003 <- rec_with_table(cchs2001_p, "INCGHH_B")

income_merged <- merge_rec_data(income2001, income2003)
head(income_merged)
tail(income_merged)

https://big-life-lab.github.io/cchsflow/articles/tagged_na_usage.html

70 multiple_conditions_fun1

multiple_conditions_fun1

Number of chronic conditions (5 chronic conditions)

Description

This function generates a derived variable (number_conditions) that counts the number of chronic
conditions a respondent has. This function takes 5 CCHS-defined conditions (heart disease, cancer,
stroke, bowel disorder, and arthritis), and well one derived variable (respiratory condition) to count
the number of conditions a respondent has.

Usage

multiple_conditions_fun1(
CCC_121,
CCC_131,
CCC_151,
CCC_171,
resp_condition_der,
CCC_051

)

Arguments

CCC_121 variable indicating if respondent has heart disease (1 = respondent has heart
disease, 2 = respondent does not have heart disease)

CCC_131 variable indicating if respondent has active cancer (1 = respondent has active
cancer, 2 = respondent does not have active cancer)

CCC_151 variable indicating if respondent suffers from the effects of a stroke (1 = re-
spondent suffers from stroke effects, 2 = respondent does not suffer from stroke
effects)

CCC_171 variable indicating if respondent has a bowel disorder (1 = respondent has bowel
disorder, 2 = respondent does not have a bowel disorder)

resp_condition_der

derived variable indicating if respondent has a respiratory condition (1 = respon-
dent is over the age of 35 and has a respiratory condition, 2 = respondent is under
the age of 35 and has a respiratory conditions, 3 = respondent does not have a
respiratory condition). See resp_condition_fun1 for documentation on how
variable was derived.

CCC_051 variable indicating if respondent has arthritis or rheumatism (1 = respondent has
arthritis or rheumatism, 2 = respondent does not have arthritis or rheumatism)

multiple_conditions_fun1 71

Details

mood disorder (CCC_280) was not asked to respondents in the 2001 CCHS survey cycle. This mean
respondents in this cycle will only be able to have a maximum of 6 chronic conditions as opposed
to 7 for respondents in other cycles. multiple_conditions_fun2 is used for CCHS cycles from
2003 to 2014.

Value

A categorical variable indicating the number of chronic conditions a respondent has. Respondents
with 5 or more conditions are grouped in the "5+" category.

See Also

multiple_conditions_fun2

Examples

Using rec_with_table() to generate multiple_conditions in a CCHS
cycle.

multiple_conditions_fun1() is specified in variable_details.csv along with
the CCHS variables and cycles included.

To generate multiple_conditions, use rec_with_table() and specify the
multiple_conditions, along with the variables that are derived from it.
Since resp_condition_der is also a derived variable, you will have to
specify the variables that are derived from it. In this example, data
from the 2001 CCHS will be used, so DHHGAGE_cont, CCC_091, and CCC_91A,
and CCC_031 will be specified along with resp_condition_der.

library(cchsflow)
conditions_2001 <- suppressWarnings(rec_with_table(cchs2001_p,
c("DHHGAGE_cont", "CCC_091",
"CCC_91A", "CCC_031", "CCC_121","CCC_131","CCC_151", "CCC_171","CCC_280",
"resp_condition_der","CCC_051", "number_conditions")))

head(conditions_2001)

Generating multiple_conditions with user inputted values
Let's say you are an individual that has heart disease, bowel disorder,
and arthritis. multiple_conditions_fun1() can be used to count the number
of chronic conditions you have

library(cchsflow)
num_conditions <- multiple_conditions_fun1(CCC_121 = 1, CCC_131 = 2,
CCC_151 = 2, CCC_171 = 1, resp_condition_der = 3, CCC_051 = 1)

print(num_conditions)

72 multiple_conditions_fun2

multiple_conditions_fun2

Number of chronic conditions (6 chronic conditions)

Description

This function generates a derived variable (number_conditions) that counts the number of chronic
conditions a respondent has. This function takes 6 CCHS-defined conditions (heart disease, cancer,
stroke, bowel disorder, mood disorder and arthritis), and well one derived variable (respiratory
condition) to count the number of conditions a respondent has.

Usage

multiple_conditions_fun2(
CCC_121,
CCC_131,
CCC_151,
CCC_171,
CCC_280,
resp_condition_der,
CCC_051

)

Arguments

CCC_121 variable indicating if respondent has heart disease (1 = respondent has heart
disease, 2 = respondent does not have heart disease)

CCC_131 variable indicating if respondent has active cancer (1 = respondent has active
cancer, 2 = respondent does not have active cancer)

CCC_151 variable indicating if respondent suffers from the effects of a stroke (1 = re-
spondent suffers from stroke effects, 2 = respondent does not suffer from stroke
effects)

CCC_171 variable indicating if respondent has a bowel disorder (1 = respondent has bowel
disorder, 2 = respondent does not have a bowel disorder)

CCC_280 variable indicating if respondent has a mood disorder (1 = respondent has a
mood disorder, 2 = respondent does not have a mood disorder. Note, variable
was not asked to respondents in the 2001 CCHS survey cycle.

resp_condition_der

derived variable indicating if respondent has a respiratory condition. (1 = re-
spondent is over the age of 35 and has a respiratory condition, 2 = respondent
is under the age of 35 and has a respiratory conditions, 3 = respondent does not
have a respiratory condition). See resp_condition_fun1 for documentation on
how variable was derived.

CCC_051 variable indicating if respondent has arthritis or rheumatism (1 = respondent has
arthritis or rheumatism, 2 = respondent does not have arthritis or rheumatism)

multiple_conditions_fun2 73

Details

mood disorder (CCC_280) was not asked to respondents in the 2001 CCHS survey cycle. This mean
respondents in this cycle will only be able to have a maximum of 6 chronic conditions as opposed
to 7 for respondents in other cycles. multiple_conditions_fun1 is used for CCHS cycles from
2003 to 2014.

Value

A categorical variable indicating the number of chronic conditions a respondent has. Respondents
with 5 or more conditions are grouped in the "5+" category.

See Also

multiple_conditions_fun1

Examples

Using rec_with_table() to generate multiple_conditions in a CCHS
cycle.

multiple_conditions_fun2() is specified in variable_details.csv along with
the CCHS variables and cycles included.

To generate multiple_conditions, use rec_with_table() and specify the
multiple_conditions, along with the variables that are derived from it.
Since resp_condition_der is also a derived variable, you will have to
specify the variables that are derived from it. In this example, data
from the 2010 CCHS will be used, so DHHGAGE_cont, CCC_091, and CCC_031
will be specified along with resp_condition_der.

library(cchsflow)
conditions_2009_2010 <- suppressWarnings(rec_with_table(cchs2009_2010_p,
c("DHHGAGE_cont", "CCC_091",
"CCC_031", "CCC_121","CCC_131","CCC_151", "CCC_171","CCC_280",
"resp_condition_der","CCC_051", "number_conditions")))

head(conditions_2009_2010)

Generating multiple_conditions with user inputted values
Let's say you are an individual that has heart disease, bowel disorder,
and arthritis. multiple_conditions_fun2() can be used to count the number
of chronic conditions you have

library(cchsflow)
num_conditions <- multiple_conditions_fun2(CCC_121 = 1, CCC_131 = 2,
CCC_151 = 2, CCC_171 = 1, CCC_280 = 2, resp_condition_der = 3, CCC_051 = 1)

print(num_conditions)

74 pack_years_fun

pack_years_fun Smoking pack-years

Description

This function creates a derived variable (pack_years_der) that measures an individual’s smoking
pack-years based on various CCHS smoking variables. This is a popular variable used by re-
searchers to quantify lifetime exposure to cigarette use.

Usage

pack_years_fun(
SMKDSTY_A,
DHHGAGE_cont,
time_quit_smoking,
SMKG203_cont,
SMKG207_cont,
SMK_204,
SMK_05B,
SMK_208,
SMK_05C,
SMKG01C_cont,
SMK_01A

)

Arguments

SMKDSTY_A variable used in CCHS cycles 2001-2014 that classifies an individual’s smoking
status.

DHHGAGE_cont continuous age variable.
time_quit_smoking

derived variable that calculates the approximate time a former smoker has quit
smoking. See time_quit_smoking_fun for documentation on how variable
was derived

SMKG203_cont age started smoking daily. Variable asked to daily smokers.

SMKG207_cont age started smoking daily. Variable asked to former daily smokers.

SMK_204 number of cigarettes smoked per day. Variable asked to daily smokers.

SMK_05B number of cigarettes smoked per day. Variable asked to occasional smokers

SMK_208 number of cigarettes smoked per day. Variable asked to former daily smokers

SMK_05C number of days smoked at least one cigarette

SMKG01C_cont age smoked first cigarette

SMK_01A smoked 100 cigarettes in lifetime (y/n)

pack_years_fun 75

Details

pack-years is calculated by multiplying the number of cigarette packs per day (20 cigarettes per
pack) by the number of years. Example 1: a respondent who is a current smoker who smokes 1
package of cigarettes for the last 10 years has smoked 10 pack-years. Pack-years is also calculated
for former smokers. Example 2: a respondent who started smoking at age 20 years and smoked half
a pack of cigarettes until age 40 years smoked for 10 pack-years.

Value

value for smoking pack-years in the pack_years_der variable

Examples

Using pack_years_fun() to create pack-years values across CCHS cycles
pack_years_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform pack_years_der across cycles, use rec_with_table() for each
CCHS cycle and specify pack_years_der, along with each smoking variable.
Since time_quit_smoking_der is also a derived
variable, you will have to specify the variables that are derived from it.
Then by using merge_rec_data(), you can combine pack_years_der across
cycles

library(cchsflow)

pack_years2009_2010 <- rec_with_table(
cchs2009_2010_p, c(
"SMKDSTY_A", "DHHGAGE_cont", "SMK_09A_B", "SMKG09C", "time_quit_smoking",
"SMKG203_cont", "SMKG207_cont", "SMK_204", "SMK_05B", "SMK_208",
"SMK_05C", "SMK_01A", "SMKG01C_cont", "pack_years_der"

)
)

head(pack_years2009_2010)

pack_years2011_2012 <- rec_with_table(
cchs2011_2012_p,c(

"SMKDSTY_A", "DHHGAGE_cont", "SMK_09A_B", "SMKG09C", "time_quit_smoking",
"SMKG203_cont", "SMKG207_cont", "SMK_204", "SMK_05B", "SMK_208",
"SMK_05C", "SMK_01A", "SMKG01C_cont", "pack_years_der"

)
)

tail(pack_years2011_2012)

combined_pack_years <- suppressWarnings(merge_rec_data(pack_years2009_2010,
pack_years2011_2012))

head(combined_pack_years)
tail(combined_pack_years)

76 pack_years_fun_cat

pack_years_fun_cat Categorical smoking pack-years

Description

This function creates a categorical derived variable (pack_years_cat) that categorizes smoking pack-
years (pack_years_der).

Usage

pack_years_fun_cat(pack_years_der)

Arguments

pack_years_der derived variable that calculates smoking pack-years See pack_years_fun for
documentation on how variable was derived.

Details

pack-years is calculated by multiplying the number of cigarette packs per day (20 cigarettes per
pack) by the number of years.The categories were based on the Cardiovascular Disease Population
Risk Tool (Douglas Manuel et al. 2018).

pack_years_cat uses the derived variable pack_years_der. Pack_years_der uses age and various
smoking variables that have been transformed by cchsflow (see documentation on pack_year_der).
In order to categorize pack years across CCHS cycles, age and smoking variables must be trans-
formed and harmonized.

Value

value for pack year categories in the pack_years_cat variable.

Examples

Using pack_years_fun_cat() to categorize pack year values across CCHS cycles
pack_years_fun_cat() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform pack_years_cat across cycles, use rec_with_table() for each
CCHS cycle and specify pack_years_cat.
Since pack_year_der is also also derived variable, you will have to specify
the variables that are derived from it.
Since time_quit_smoking_der is also a derived variable in pack_year_der,
you will have to specify the variables that are derived from it.
Then by using merge_rec_data(), you can combine pack_years_cat across
cycles.

library(cchsflow)

pct_time_fun 77

pack_years_cat_2009_2010 <- rec_with_table(
cchs2009_2010_p, c(
"SMKDSTY_A", "DHHGAGE_cont", "SMK_09A_B", "SMKG09C", "time_quit_smoking",
"SMKG203_cont", "SMKG207_cont", "SMK_204", "SMK_05B", "SMK_208",
"SMK_05C", "SMK_01A", "SMKG01C_cont", "pack_years_der", "pack_years_cat"

)
)

head(pack_years_cat_2009_2010)

pack_years_cat_2011_2012 <- rec_with_table(
cchs2011_2012_p,c(

"SMKDSTY_A", "DHHGAGE_cont", "SMK_09A_B", "SMKG09C", "time_quit_smoking",
"SMKG203_cont", "SMKG207_cont", "SMK_204", "SMK_05B", "SMK_208",
"SMK_05C", "SMK_01A", "SMKG01C_cont", "pack_years_der", "pack_years_cat"

)
)

tail(pack_years_cat_2011_2012)

combined_pack_years_cat <- suppressWarnings(merge_rec_data
(pack_years_cat_2009_2010,pack_years_cat_2011_2012))

head(combined_pack_years_cat)
tail(combined_pack_years_cat)

pct_time_fun Percent time in Canada

Description

This function creates a derived variable (pct_time_der) that provides an estimated percentage of the
time a person’s life was spent in Canada.

Usage

pct_time_fun(DHHGAGE_cont, SDCGCBG, SDCGRES)

Arguments

DHHGAGE_cont continuous age variable.
SDCGCBG whether or not someone was born in Canada (1 - born in Canada, 2 - born outside

Canada)
SDCGRES how long someone has lived in Canada. Note: in the PUMF CCHS datasets, this

is a categorical variable with two categories (1 - 0-9 years; 2 - 10+ years).

Value

Numeric value between 0 and 100 that represents percentage of a respondent’s time in Canada

78 pct_time_fun_cat

Note

Since SDCGRES is a categorical variable measuring length of time, we’ve set midpoints in the
function. A respondent identified as being in Canada for 0-9 years is assigned a value of 4.5 years,
and someone who has been in Canada for over 10 years is assigned a value of 15 years.

Examples

Using pct_time_fun() to create percent time values between CCHS cycles
pct_time_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform pct_time_der across cycles, use rec_with_table() for each CCHS
cycle and specify pct_time_der, along with age (DHHGAGE_cont), whether or
not someone was born in Canada (SDCGCBG), how long someone has lived in
Canada (SDCGRES). Then by using merge_rec_data(), you can combine
pct_time_der across cycles

library(cchsflow)
pct_time2009_2010 <- rec_with_table(

cchs2009_2010_p, c(
"DHHGAGE_cont", "SDCGCBG",
"SDCGRES", "pct_time_der"

)
)
head(pct_time2009_2010)

pct_time2011_2012 <- rec_with_table(
cchs2011_2012_p, c(

"DHHGAGE_cont", "SDCGCBG",
"SDCGRES", "pct_time_der"

)
)
tail(pct_time2011_2012)

combined_pct_time <- merge_rec_data(pct_time2009_2010, pct_time2011_2012)
head(combined_pct_time)
tail(combined_pct_time)

Using pct_time_fun() to generate a value for percent time spent in Canada
with user inputted values Let's say you are 27 years old who was born
outside of Canada and have been living in Canada for less than 10 years.
Your estimated percent time spent in Canada can be calculated as follows:

pct_time <- pct_time_fun(DHHGAGE_cont = 27, SDCGCBG = 2, SDCGRES = 1)

print(pct_time)

pct_time_fun_cat Categorical percent time in Canada

pct_time_fun_cat 79

Description

This function creates a categorical derived variable (pct_time_der_cat10) that categorizes the de-
rived percent time in Canada variable (pct_time_der).

Usage

pct_time_fun_cat(pct_time_der)

Arguments

pct_time_der derived continuous percent time in Canada. See pct_time_fun for documenta-
tion on how variable was derived.

Details

The percent time in Canada provides an estimated percentage of the time a person’s life was spent
in Canada.The categorical percent time in Canada divides the continuous value into 10 percent
intervals.

pct_time_der_cat10 uses the derived variable pct_time_der. pct_time_der uses various variables
that have been transformed by cchsflow (see documentation on pct_time_der). In order to categorize
percent time in Canada across CCHS cycles, the variables must be transformed and harmonized.

Value

value for categorical percent time in Canada using pct_time_der variable.

Examples

Using pct_time_fun_cat() to create categorical percent time values
between CCHS cycles.
pct_time_fun_cat() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform pct_time_der_cat10 across cycles, use rec_with_table() for
each CCHS cycle.
Since pct_time_der is a derived variable, you will have to specify the
variables that are derived from it.
Then by using merge_rec_data(), you can combine pct_time_der_cat10 across
cycles.

library(cchsflow)
pct_time_cat2009_2010 <- rec_with_table(

cchs2009_2010_p, c(
"DHHGAGE_cont", "SDCGCBG",
"SDCGRES", "pct_time_der", "pct_time_der_cat10"

)
)
head(pct_time_cat2009_2010)

pct_time_cat2011_2012 <- rec_with_table(
cchs2011_2012_p, c(

80 RACDPAL_fun

"DHHGAGE_cont", "SDCGCBG",
"SDCGRES", "pct_time_der", "pct_time_der_cat10"

)
)
tail(pct_time_cat2011_2012)

combined_pct_time_cat <- merge_rec_data(pct_time_cat2009_2010,
pct_time_cat2011_2012)
head(combined_pct_time_cat)
tail(combined_pct_time_cat)

RACDPAL_fun Participation and Activity Limitation

Description

This is a derived variable used in the CCHS (RACDPAL) to classify respondents according to the
frequency with which they experience activity limitations due to disability.

Usage

RACDPAL_fun(RAC_1, RAC_2A, RAC_2B, RAC_2C)

Arguments

RAC_1 Has difficulty with activities due to disability

RAC_2A Reduction in activities at home due to disability

RAC_2B Reduction in activities at school or work due to disability

RAC_2C Reduction in other activities

Details

This derived variable is generated in CCHS cycles 2003-2014. The 2001 CCHS cycle, however,
contains the same base variables used to derive this variable. To include respondents in the 2001
CCHS cycle, this custom function was created using the same derivation conditions used in later
cycles.

Value

the CCHS derived variable RACDPAL with 3 categories:

1. Sometimes

2. Often

3. Never

recode_columns 81

Examples

Using RACDPAL_fun() to transform RACDPAL in 2001.
RACDPAL_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform RACDPAL, use rec_with_table() for each the 2001 cycle
and specify RACDPAL, along with the various ADL variables.

library(cchsflow)

RACDPAL_2001 <- rec_with_table(
cchs2001_p, c(
"RAC_1", "RAC_2A", "RAC_2B", "RAC_2C", "RACDPAL"

)
)

head(RACDPAL_2001)

Note: In other CCHS cycles you only need to specify RACDPAL as the variable
was included in those survey cycles.

Using RACDPAL_fun() with user inputted data.

Let's say you're an individual that sometimes has difficulties with
activities due to disability, sometimes has a reduction in activities at
home, often has a reduction at school or work, and never has a reduction
in other activities. Your participation and activity limitation can be
determined as follows:

library(cchsflow)
RACDPAL <- RACDPAL_fun(1, 1, 2, 3)
print(RACDPAL)

recode_columns recode_columns

Description

Recodes columns from passed row and returns just table with those columns and same rows as the
data

Usage

recode_columns(
data,
variables_to_process,
data_name,
log,

82 recode_variable_NA_formating

print_note,
else_default

)

Arguments

data The source database
variables_to_process

rows from variable details that are applicable to this DB

data_name Name of the database being passed

log The option of printing log

print_note the option of printing the note columns

else_default default else value to use if no else is present

Value

Returns recoded and labeled data

recode_variable_NA_formating

Recode NA formatting

Description

Recodes the NA depending on the var type

Usage

recode_variable_NA_formating(cell_value, var_type)

Arguments

cell_value The value inside the recTo column

var_type the toType of a variable

Value

an appropriately coded tagged NA

rec_with_table 83

rec_with_table Recode with Table

Description

Recode with Table is responsible for recoding values of a dataset based on the specifications in
variable_details.

Usage

rec_with_table(
data,
variables = NULL,
database_name = NULL,
variable_details = NULL,
else_value = NA,
append_to_data = FALSE,
log = FALSE,
notes = TRUE,
var_labels = NULL,
custom_function_path = NULL,
attach_data_name = FALSE

)

Arguments

data A dataframe containing the variables to be recoded. Can also be a list of dataframes

variables character vector containing variable names to recode or a variables csv contain-
ing additional variable info

database_name String, the name of the dataset containing the variables to be recoded. Can also
be a vector of strings if data is a list

variable_details

A dataframe containing the specifications (rules) for recoding.

else_value Value (string, number, integer, logical or NA) that is used to replace any values
that are outside the specified ranges (no rules for recoding).

append_to_data Logical, if TRUE (default), recoded variables will be appended to the data.

log Logical, if FALSE (default), a log of recoding will not be printed.

notes Logical, if FALSE (default), will not print the content inside the ‘Note“ column
of the variable being recoded.

var_labels labels vector to attach to variables in variables
custom_function_path

path to location of the function to load
attach_data_name

to attach name of database to end table

84 rec_with_table

Details

The variable_details dataframe needs the following variables to function:

variable name of new (mutated) variable that is recoded

toType type the variable is being recoded to cat = categorical, cont = continuous

databaseStart name of dataframe with original variables to be recoded

variableStart name of variable to be recoded

fromType variable type of start variable. cat = categorical or factor variable cont = continuous
variable (real number or integer)

recTo Value to recode to

recFrom Value/range being recoded from

Each row in variable_details comprises one category in a newly transformed variable. The rules
for each category the new variable are a string in recFrom and value in recTo. These recode pairs
are the same syntax as sjmisc::rec(), except in sjmisc::rec() the pairs are a string for the function
attribute rec =, separated by ’=’. For example in rec_w_table variable_details$recFrom = 2; vari-
able_details$recTo = 4 is the same as sjmisc::rec(rec = "2=4"). the pairs are obtained from the
RecFrom and RecTo columns

recode pairs each recode pair is row. see above example or PBC-variableDetails.csv

multiple values multiple old values that should be recoded into a new single value may be sepa-
rated with comma, e.g. recFrom = "1,2"; recTo = 1

value range a value range is indicated by a colon, e.g. recFrom= "1:4"; recTo = 1 (recodes all
values from 1 to 4 into 1)

value range for doubles for double vectors (with fractional part), all values within the specified
range are recoded; e.g. recFrom = "1:2.5’; recTo = 1 recodes 1 to 2.5 into 1, but 2.55 would
not be recoded (since it’s not included in the specified range)

"min" and "max" minimum and maximum values are indicates by min (or lo) and max (or hi),
e.g. recFrom = "min:4"; recTo = 1 (recodes all values from minimum values of x to 4 into 1)

"else" all other values, which have not been specified yet, are indicated by else, e.g. recFrom =
"else"; recTo = NA (recode all other values (not specified in other rows) to "NA")

"copy" the "else"-token can be combined with copy, indicating that all remaining, not yet recoded
values should stay the same (are copied from the original value), e.g. recFrom = "else"; recTo
= "copy"

NA’s NA values are allowed both as old and new value, e.g. recFrom "NA"; recTo = 1. or "recFrom
= "3:5"; recTo = "NA" (recodes all NA into 1, and all values from 3 to 5 into NA in the new
variable)

Value

a dataframe that is recoded according to rules in variable_details.

https://github.com/Big-Life-Lab/cchsflow/blob/master/inst/extdata/variable_details.csv

resp_condition_fun1 85

Examples

library(cchsflow)
bmi2001 <- rec_with_table(

data = cchs2001_p, c(
"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

head(bmi2001)

bmi2011_2012 <- rec_with_table(
data = cchs2011_2012_p, c(

"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

tail(bmi2011_2012)

combined_bmi <- bind_rows(bmi2001, bmi2011_2012)
head(combined_bmi)
tail(combined_bmi)

resp_condition_fun1 resp_condition_fun1

Description

This is one of 3 functions used to create a derived variable (resp_condition_der) that determines if
a respondents has a respiratory condition. 3 different functions have been created to account for the
fact that different respiratory variables are used across CCHS cycles. This function is for CCHS
cycles (2009-2014) that only use COPD and Emphysema as a combined variable. Asthma is used
across CCHS cycles as a separate variable.

Usage

resp_condition_fun1(DHHGAGE_cont, CCC_091, CCC_031)

Arguments

DHHGAGE_cont continuous age variable.

CCC_091 variable indicating if respondent has either COPD or Emphysema

CCC_031 variable indicating if respondent has asthma

86 resp_condition_fun1

Value

a categorical variable (resp_condition_der) with 3 levels:

1. respondent is over the age of 35 and has a respiratory condition

2. respondent is under the age of 35 and has a respiratory condition

3. respondent does not have a respiratory condition

See Also

resp_condition_fun2, resp_condition_fun3

Examples

Using resp_condition_fun1() to create values across CCHS cycles
(2009-2014) resp_condition_fun1() is specified in
variable_details.csv along with the CCHS variables and cycles included.

To transform resp_condition_der, use rec_with_table() for each CCHS cycle
and specify resp_condition_der, along with the various respiratory
variables. Then by using merge_rec_data() you can combine
resp_condition_der across cycles.

library(cchsflow)

resp2009_2010 <- suppressWarnings(rec_with_table(
cchs2009_2010_p, c(
"DHHGAGE_cont", "CCC_091", "CCC_031",
"resp_condition_der"

)
))

head(resp2009_2010)

resp2011_2012 <- suppressWarnings(rec_with_table(
cchs2011_2012_p, c(

"DHHGAGE_cont", "CCC_091", "CCC_031",
"resp_condition_der"

)
))

tail(resp2011_2012)

combined_resp <-
suppressWarnings(merge_rec_data(resp2009_2010, resp2011_2012))

head(combined_resp)
tail(combined_resp)

resp_condition_fun2 87

resp_condition_fun2 resp_condition_fun2

Description

This is one of 3 functions used to create a derived variable (resp_condition_der) that determines if
a respondents has a respiratory condition. This function is for CCHS cycles (2005-2007) that use
COPD & Emphysema as separate variables, as well as Bronchitis. Asthma is used across CCHS
cycles as a separate variable.

Usage

resp_condition_fun2(DHHGAGE_cont, CCC_91E, CCC_91F, CCC_91A, CCC_031)

Arguments

DHHGAGE_cont continuous age variable.

CCC_91E variable indicating if respondent has emphysema

CCC_91F variable indicating if respondent has COPD

CCC_91A variable indicating if respondent has chronic bronchitis

CCC_031 variable indicating if respondent has asthma

Value

a categorical variable (resp_condition_der) with 3 levels:

1. respondent is over the age of 35 and has a respiratory condition

2. respondent is under the age of 35 and has a respiratory condition

3. respondent does not have a respiratory condition

See Also

resp_condition_fun1, resp_condition_fun3

Examples

Using resp_condition_fun2() to create values across CCHS cycles
(2005-2007) resp_condition_fun2() is specified in
variable_details.csv along with the CCHS variables and cycles included.

To transform resp_condition_der, use rec_with_table() for each CCHS cycle
and specify resp_condition_der, along with the various respiratory
variables. Then by using merge_rec_data() you can combine
resp_condition_der across cycles.

library(cchsflow)

88 resp_condition_fun3

resp2005 <- suppressWarnings(rec_with_table(
cchs2005_p, c(
"DHHGAGE_cont", "CCC_91E", "CCC_91F", "CCC_91A", "CCC_031",
"resp_condition_der"

)
))

head(resp2005)

resp2007_2008 <- suppressWarnings(rec_with_table(
cchs2007_2008_p, c(

"DHHGAGE_cont", "CCC_91E", "CCC_91F", "CCC_91A", "CCC_031",
"resp_condition_der"

)
))

tail(resp2007_2008)

combined_resp <- suppressWarnings(merge_rec_data(resp2005, resp2007_2008))

head(combined_resp)
tail(combined_resp)

resp_condition_fun3 resp_condition_fun3

Description

This is one of 3 functions used to create a derived variable (resp_condition_der) that determines
if a respondents has a respiratory condition. This function for CCHS cycles (2001-2003) that use
COPD and Emphysema as a combined variable, as well as Bronchitis. Asthma is used across CCHS
cycles as a separate variable.

Usage

resp_condition_fun3(DHHGAGE_cont, CCC_091, CCC_91A, CCC_031)

Arguments

DHHGAGE_cont continuous age variable.

CCC_091 variable indicating if respondent has either COPD or Emphysema

CCC_91A variable indicating if respondent has chronic bronchitis

CCC_031 variable indicating if respondent has asthma

resp_condition_fun3 89

Value

a categorical variable (resp_condition_der) with 3 levels:

1. respondent is over the age of 35 and has a respiratory condition

2. respondent is under the age of 35 and has a respiratory condition

3. respondent does not have a respiratory condition

See Also

resp_condition_fun1, resp_condition_fun2

Examples

Using resp_condition_fun3() to create values across CCHS cycles
(2001-2003) resp_condition_fun3() is specified in
variable_details.csv along with the CCHS variables and cycles included.

To transform resp_condition_der, use rec_with_table() for each CCHS cycle
and specify resp_condition_der, along with the various respiratory
variables. Then by using merge_rec_data() you can combine
resp_condition_der across cycles.

library(cchsflow)

resp2001 <- suppressWarnings(rec_with_table(
cchs2001_p, c(
"DHHGAGE_cont", "CCC_091", "CCC_91A", "CCC_031",
"resp_condition_der"

)
))

head(resp2001)

resp2003 <- suppressWarnings(rec_with_table(
cchs2003_p,c(

"DHHGAGE_cont", "CCC_091", "CCC_91A", "CCC_031",
"resp_condition_der"

)
))

tail(resp2003)

combined_resp <- suppressWarnings(merge_rec_data(resp2001, resp2003))

head(combined_resp)
tail(combined_resp)

90 set_data_labels

set_data_labels Set Data Labels

Description

sets labels for passed database, Uses the names of final variables in variable_details/variables_sheet
as well as the labels contained in the passed dataframes

Usage

set_data_labels(data_to_label, variable_details, variables_sheet = NULL)

Arguments

data_to_label newly transformed dataset
variable_details

variable_details.csv
variables_sheet

variables.csv

Value

labeled data_to_label

Examples

library(cchsflow)
library(sjlabelled)
bmi2001 <- rec_with_table(
cchs2001_p, c(

"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

bmi2003 <- rec_with_table(
cchs2003_p, c(

"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

combined_bmi <- bind_rows(bmi2001, bmi2003)

get_label(combined_bmi)

labeled_combined_data <- set_data_labels(combined_bmi,
variable_details,
variables)

SMKDSTY_fun 91

get_label(labeled_combined_data)

SMKDSTY_fun Type of smokers

Description

This function creates a derived variable (SMKDSTY_A) for smoker type with 5 categories:

• daily smoker

• current occasional smoker (former daily)

• current occasional smoker (never daily)

• current nonsmoker (former daily)

• current nonsmoker (never daily)

• nonsmoker

Usage

SMKDSTY_fun(SMK_005, SMK_030, SMK_01A)

Arguments

SMK_005 type of smoker presently

SMK_030 smoked daily - lifetime (occasional/former smoker)

SMK_01A smoked 100 or more cigarettes in lifetime

Details

For CCHS 2001-2014, smoker type is derived from smoking more than 100 cigarettes in lifetime,
type of smoker at present time, and ever smoked daily. For CCHS 2015-2018, smoker type was
derived differently with different variables and categories. A function was created for a consistent
smoker status across all cycles.

Value

value for smoker type in the SMKDSTY_A variable

92 SMKG040_fun

Examples

Using SMKDSTY_fun() to derive smoke type values across CCHS cycles
SMKDSTY_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform SMKDSTY_A across cycles, use rec_with_table() for each
CCHS cycle and specify SMKDSTY_A.
For CCHS 2001-2014, only specify SMKDSTY_A for smoker type.
For CCHS 2015-2018, specify the parameters and SMKDSTY_A for smoker type.

library(cchsflow)

smoker_type_2009_2010 <- rec_with_table(
cchs2009_2010_p, "SMKDSTY_A")

head(smoker_type_2009_2010)

smoker_type_2017_2018 <- rec_with_table(
cchs2017_2018_p,c(
"SMK_01A", "SMK_005","SMK_030","SMKDSTY_A"

)
)

tail(smoker_type_2017_2018)

combined_smoker_type <- suppressWarnings(merge_rec_data
(smoker_type_2009_2010,smoker_type_2017_2018))

head(combined_smoker_type)
tail(combined_smoker_type)

SMKG040_fun Age started smoking daily - daily/former daily smokers

Description

This function creates a continuous derived variable (SMKG040_fun) that calculates the approximate
age that a daily or former daily smoker began smoking daily.

Usage

SMKG040_fun(SMKG203_cont, SMKG207_cont)

Arguments

SMKG203_cont age started smoking daily. Variable asked to daily smokers.

SMKG207_cont age started smoking daily. Variable asked to former daily smokers.

SMKG040_fun 93

Details

SMKG203 (daily smoker) and SMKG207 (former daily) are present in CCHS 2001-2014, and
are separate variables. For CCHS 2015 and onward, SMKG040 (daily/former daily) combines
the two previous variables. SMKG040_fun takes the continuous functions (SMKG203_cont and
SMKG207_cont) to create SMKG040 for 2001-2014.

Value

value for age started smoking daily for daily/former daily smokers in the SMKG040_cont variable

Note

In previous cycles, both SMKG203 and SMKG207 included respondents who did not state their
smoking status. From CCHS 2015 and onward, SMKG040 only included respondents who spec-
ified daily smoker or former daily smoker. As a result, SMKG040 has a large number of missing
respondents for CCHS 2015 survey cycles and onward.

Examples

Using SMKG040_fun() to create age values across CCHS cycles
SMKG040_fun() is specified in variable_details.csv under SMKG040_cont.

To create a continuous harmonized variable for SMKG040, use rec_with_table()
for each CCHS cycle and specify SMKG040_cont.

library(cchsflow)

age_smoke_dfd_2009_2010 <- rec_with_table(
cchs2009_2010_p, c(
"SMKG203_cont", "SMKG207_cont","SMKG040_cont"

)
)

head(age_smoke_dfd_2009_2010)

age_smoke_dfd_2011_2012 <- rec_with_table(
cchs2011_2012_p,c(

"SMKG203_cont", "SMKG207_cont","SMKG040_cont"
)

)

tail(age_smoke_dfd_2011_2012)

combined_age_smoke_dfd <- suppressWarnings(merge_rec_data
(age_smoke_dfd_2009_2010,age_smoke_dfd_2011_2012))

head(combined_age_smoke_dfd)
tail(combined_age_smoke_dfd)

94 SMKG203_fun

SMKG203_fun Age started to smoke daily - daily smoker

Description

This function creates a continuous derived variable (SMKG203_cont) for age started to smoke daily
for daily smokers.

Usage

SMKG203_fun(SMK_005, SMKG040)

Arguments

SMK_005 type of smoker presently

SMKG040 age started to smoke daily - daily/former daily smoker

Details

For CCHS 2015-2018, age started to smoke daily was combined for daily and former daily smok-
ers.Previous cycles had separate variables for age started to smoke daily. Type of smoker presently
is used to define daily smoker.

Value

value for continuous age started to smoke daily for daily smokers in the SMKG203_cont variable

Examples

Using SMKG203_fun() to derive age started to smoke daily values across
CCHS cycles.
SMKG203_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform SMKG203_A across cycles, use rec_with_table() for each
CCHS cycle and specify SMKG203_A.
For CCHS 2001-2014, only specify SMKG203_A.
For CCHS 2015-2018, specify the parameters and SMKG203_A for daily smoker
age.

library(cchsflow)

agecigd_2009_2010 <- rec_with_table(
cchs2009_2010_p, "SMKG203_A")

head(agecigd_2009_2010)

agecigd_2017_2018 <- rec_with_table(

SMKG207_fun 95

cchs2017_2018_p,c(
"SMK_005","SMKG040","SMKG203_A"

)
)

tail(agecigd_2017_2018)

combined_agecigd <- suppressWarnings(merge_rec_data
(agecigd_2009_2010,agecigd_2017_2018))

head(combined_agecigd)
tail(combined_agecigd)

SMKG207_fun Age started to smoke daily - former daily smoker

Description

This function creates a continuous derived variable (SMKG207_cont) for age started to smoke daily
for former daily smokers.

Usage

SMKG207_fun(SMK_030, SMKG040)

Arguments

SMK_030 smoked daily - lifetime (occasional/former smoker)

SMKG040 age started to smoke daily - daily/former daily smoker

Details

For CCHS 2015-2018, age started to smoke daily was combined for daily and former daily smok-
ers.Previous cycles had separate variables for age started to smoke daily. Smoked daily in lifetime
is used to define former daily smoker.

Value

value for continuous age started to smoke daily for former daily smokers in the SMKG207_cont
variable

Examples

Using SMKG207_fun() to derive age started to smoke daily values across
CCHS cycles.
SMKG207_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

96 smoke_simple_fun

To transform SMKG207_A across cycles, use rec_with_table() for each
CCHS cycle and specify SMKG207_A.
For CCHS 2001-2014, only specify SMKG207_A.
For CCHS 2015-2018, specify the parameters and SMKG207_A for former daily
smoker age.

library(cchsflow)

agecigfd_2009_2010 <- rec_with_table(
cchs2009_2010_p, "SMKG207_A")

head(agecigfd_2009_2010)

agecigfd_2017_2018 <- rec_with_table(
cchs2017_2018_p,c(
"SMK_030","SMKG040","SMKG207_A"

)
)

tail(agecigfd_2017_2018)

combined_agecigfd <- suppressWarnings(merge_rec_data
(agecigfd_2009_2010,agecigfd_2017_2018))

head(combined_agecigfd)
tail(combined_agecigfd)

smoke_simple_fun Simple smoking status

Description

This function creates a derived smoking variable (smoke_simple) with four categories:

• non-smoker (never smoked)

• current smoker (daily and occasional?)

• former daily smoker quit =<5 years or former occasional smoker

• former daily smoker quit >5 years

Usage

smoke_simple_fun(SMKDSTY_cat5, time_quit_smoking)

SPS_5_fun 97

Arguments

SMKDSTY_cat5 derived variable that classifies an individual’s smoking status. This variable
captures cycles 2001-2018.

time_quit_smoking

derived variable that calculates the approximate time a former smoker has quit
smoking. See time_quit_smoking_fun for documentation on how variable
was derived.

Examples

Using the 'smoke_simple_fun' function to create the derived smoking
variable across CCHS cycles.
smoke_simple_fun() is specified in the variable_details.csv

To create a harmonized smoke_simple variable across CCHS cycles, use
rec_with_table() for each CCHS cycle and specify smoke_simple_fun and
the required base variables. Since time_quit_smoking_der is also a derived
variable, you will have to specify the variables that are derived from it.
Using merge_rec_data(), you can combine smoke_simple across cycles.

library(cchsflow)

smoke_simple2009_2010 <- rec_with_table(
cchs2009_2010_p, c(
"SMKDSTY", "SMK_09A_B", "SMKG09C", "time_quit_smoking",
"smoke_simple"

)
)

head(smoke_simple2009_2010)

smoke_simple2011_2012 <- rec_with_table(
cchs2011_2012_p,c(
"SMKDSTY", "SMK_09A_B", "SMKG09C", "time_quit_smoking",
"smoke_simple"
)

)

tail(smoke_simple2011_2012)

combined_smoke_simple <-
suppressWarnings(merge_rec_data(smoke_simple2009_2010,smoke_simple2011_2012))

head(combined_smoke_simple)
tail(combined_smoke_simple)

SPS_5_fun Five-item social provision scale (SPS-5)

98 SPS_5_fun

Description

This function creates a derived variable for the five-item social provision scale (SPS_5_fun). The
range is 0-20, where a higher score reflects a higher level of perceived social support.

Usage

SPS_5_fun(SPS_03, SPS_04, SPS_05, SPS_07, SPS_10)

Arguments

SPS_03 close relationships that provide sense of emotional security and well-being

SPS_04 talk to about important decisions with someone

SPS_05 relationships where competence and skill are recognized

SPS_07 part of a group who share attitudes and beliefs

SPS_10 strong emotional bond with a least one person

Details

The Social Provisions Scale (SPS) is commonly used to measure social support. The ten-item social
provisions scale (SPS-10) has been reduced to a five-item scale (SPS-5).Reducing the SPS-10 items
by half decreases the respondent burden on surveys. SPS-5 is a valid measure of social support
while maintaining adequate measurement properties (Orpana et al., 2019). Validation of SDS-5
using Canadian national survey data can be found here.

SPS-10 and their items were available in CCHS from 2011-2018.

Examples

Using the SPS_5_fun function to create the derived SPS5_der variable
across CCHS cycles.
SPS_5_fun() is specified in the variable_details.csv.

To create a harmonized SPS5_der variable across CCHS cycles, use
rec_with_table() for each CCHS cycle and specify SPS_5_fun and the
required base variables.
Using merge_rec_data(), you can combine SPS5_der across cycles.

library(cchsflow)

SPS5_2011_2012 <- rec_with_table(
cchs2011_2012_p, c(

"SPS_03", "SPS_04", "SPS_05", "SPS_07", "SPS_10", "SPS5_der"
)

)

head(SPS5_2011_2012)

SPS5_2017_2018 <- rec_with_table(
cchs2017_2018_p,c(

"SPS_03", "SPS_04", "SPS_05", "SPS_07", "SPS_10", "SPS5_der"

https://www.canada.ca/en/public-health/services/reports-publications/health-promotion-chronic-disease-prevention-canada-research-policy-practice/vol-39-no-12-2019/original-quantitative-research-social-provisions-scale.html

time_quit_smoking_fun 99

)
)

tail(SPS5_2017_2018)

combined_SPS5 <- suppressWarnings(merge_rec_data(SPS5_2011_2012,
SPS5_2017_2018))

head(combined_SPS5)
tail(combined_SPS5)

time_quit_smoking_fun Time since quit smoking

Description

This function creates a derived variable (time_quit_smoking_der) that calculates the approximate
time a former smoker has quit smoking based on various CCHS smoking variables. This variable is
for CCHS respondents in CCHS surveys 2003-2014.

Usage

time_quit_smoking_fun(SMK_09A_B, SMKG09C)

Arguments

SMK_09A_B number of years since quitting smoking. Variable asked to former daily smokers
who quit <3 years ago.

SMKG09C number of years since quitting smoking. Variable asked to former daily smokers
who quit >=3 years ago.

Value

value for time since quit smoking in time_quit_smoking_der.

Examples

Using time_quit_smoking_fun() to create pack-years values across CCHS
cycles.
time_quit_smoking_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform time_quit_smoking across cycles, use rec_with_table() for each
CCHS cycle and specify time_quit_smoking, along with each smoking variable.
Then by using merge_rec_data(), you can combine time_quit_smoking across
cycles.

library(cchsflow)

100 variables

time_quit2009_2010 <- rec_with_table(
cchs2009_2010_p, c(
"SMK_09A_B", "SMKG09C", "time_quit_smoking"

)
)

head(time_quit2009_2010)

time_quit2011_2012 <- rec_with_table(
cchs2011_2012_p, c(

"SMK_09A_B", "SMKG09C", "time_quit_smoking"
)

)

tail(time_quit2011_2012)

combined_time_quit <- suppressWarnings(merge_rec_data(time_quit2009_2010,
time_quit2011_2012))

head(combined_time_quit)
tail(combined_time_quit)

variables variables.csv

Description

This dataset lists all the variables that are present in cchsflow.

Details

See the below link for more details about how the worksheet is structured https://big-life-lab.
github.io/cchsflow/articles/variables_sheet.html

Value

variables a data frame

Examples

data(variables)
str(variables)

https://big-life-lab.github.io/cchsflow/articles/variables_sheet.html
https://big-life-lab.github.io/cchsflow/articles/variables_sheet.html

variable_details 101

variable_details variable_details.csv

Description

This dataset provides details on how variables are recoded in cchsflow.

Details

See the below link for more details about how the worksheet is structured https://big-life-lab.
github.io/cchsflow/articles/variable_details.html

Value
variable_details

a data frame

Examples

data(variable_details)
str(variable_details)

https://big-life-lab.github.io/cchsflow/articles/variable_details.html
https://big-life-lab.github.io/cchsflow/articles/variable_details.html

Index

∗ datasets
cchs2001_p, 29
cchs2003_p, 30
cchs2005_p, 31
cchs2007_2008_p, 31
cchs2009_2010_p, 32
cchs2009_s, 33
cchs2010_p, 34
cchs2010_s, 34
cchs2011_2012_p, 35
cchs2012_p, 36
cchs2012_s, 37
cchs2013_2014_p, 37
cchs2014_p, 38
cchs2015_2016_p, 39
cchs2017_2018_p, 40
variable_details, 101
variables, 100

active_transport1_fun, 4
active_transport2_fun, 5
active_transport3_fun, 6
adjusted_bmi_fun, 7
adl_fun, 9
adl_score_5_fun, 11
age_cat_fun, 13
ALCDTTM, 14
ALCDTYP, 15
ALW_1, 17
ALW_2A1, 18
ALW_2A2, 19
ALW_2A3, 20
ALW_2A4, 20
ALW_2A5, 21
ALW_2A6, 22
ALW_2A7, 23
ALWDDLY, 16
ALWDWKY, 17

binge_drinker_fun, 24

bmi_fun, 26, 28
bmi_fun_cat, 28

cchs2001_p, 29
cchs2003_p, 30
cchs2005_p, 31
cchs2007_2008_p, 31
cchs2009_2010_p, 32
cchs2009_s, 33
cchs2010_p, 34
cchs2010_s, 34
cchs2011_2012_p, 35
cchs2012_p, 36
cchs2012_s, 37
cchs2013_2014_p, 37
cchs2014_p, 38
cchs2015_2016_p, 39
cchs2017_2018_p, 40
compare_value_based_on_interval, 40
COPD_Emph_der_fun1, 41
COPD_Emph_der_fun2, 42, 43, 43

diet_score_fun, 44, 46
diet_score_fun_cat, 45
DPSDPP, 47, 48
DPSDSF, 47, 48

energy_exp_fun, 49

food_insecurity_der, 51

GEN_02A2, 52
get_data_variable_name, 53

if_else2, 54
immigration_fun, 55
is_equal, 56

label_data, 57
LBFA_31A, 58, 59, 60
LBFA_31A_a, 58, 59, 60

102

INDEX 103

LBFA_31A_b, 58, 59, 60
low_drink_long_fun, 61
low_drink_score_fun, 63
low_drink_score_fun1, 65
low_drink_short_fun, 66

merge_rec_data, 69
multiple_conditions_fun1, 70, 73
multiple_conditions_fun2, 71, 72

pack_years_fun, 74, 76
pack_years_fun_cat, 76
pct_time_fun, 77, 79
pct_time_fun_cat, 78

RACDPAL_fun, 80
rec_with_table, 69, 83
recode_columns, 81
recode_variable_NA_formating, 82
resp_condition_fun1, 70, 72, 85, 87, 89
resp_condition_fun2, 86, 87, 89
resp_condition_fun3, 86, 87, 88

set_data_labels, 90
SMKDSTY_fun, 91
SMKG040_fun, 92
SMKG203_fun, 94
SMKG207_fun, 95
smoke_simple_fun, 96
SPS_5_fun, 97

time_quit_smoking_fun, 74, 97, 99

variable_details, 101
variables, 100

	active_transport1_fun
	active_transport2_fun
	active_transport3_fun
	adjusted_bmi_fun
	adl_fun
	adl_score_5_fun
	age_cat_fun
	ALCDTTM
	ALCDTYP
	ALWDDLY
	ALWDWKY
	ALW_1
	ALW_2A1
	ALW_2A2
	ALW_2A3
	ALW_2A4
	ALW_2A5
	ALW_2A6
	ALW_2A7
	binge_drinker_fun
	bmi_fun
	bmi_fun_cat
	cchs2001_p
	cchs2003_p
	cchs2005_p
	cchs2007_2008_p
	cchs2009_2010_p
	cchs2009_s
	cchs2010_p
	cchs2010_s
	cchs2011_2012_p
	cchs2012_p
	cchs2012_s
	cchs2013_2014_p
	cchs2014_p
	cchs2015_2016_p
	cchs2017_2018_p
	compare_value_based_on_interval
	COPD_Emph_der_fun1
	COPD_Emph_der_fun2
	diet_score_fun
	diet_score_fun_cat
	DPSDPP
	DPSDSF
	energy_exp_fun
	food_insecurity_der
	GEN_02A2
	get_data_variable_name
	if_else2
	immigration_fun
	is_equal
	label_data
	LBFA_31A
	LBFA_31A_a
	LBFA_31A_b
	low_drink_long_fun
	low_drink_score_fun
	low_drink_score_fun1
	low_drink_short_fun
	merge_rec_data
	multiple_conditions_fun1
	multiple_conditions_fun2
	pack_years_fun
	pack_years_fun_cat
	pct_time_fun
	pct_time_fun_cat
	RACDPAL_fun
	recode_columns
	recode_variable_NA_formating
	rec_with_table
	resp_condition_fun1
	resp_condition_fun2
	resp_condition_fun3
	set_data_labels
	SMKDSTY_fun
	SMKG040_fun
	SMKG203_fun
	SMKG207_fun
	smoke_simple_fun
	SPS_5_fun
	time_quit_smoking_fun
	variables
	variable_details
	Index

