cohortBuilder
package is adapted to work with various data sources and custom backends. Currently there exists one official extension cohortBuilder.db
package that allows you to use cohortBuilder
with database connections.
The goal of this document is to explain how to create custom extensions to cohortBuilder
.
In general to create the custom layer you need to:
vignette("custom-filters")
).It’s recommended to include all of the methods in your custom R package.
Before you start creating a new layer, you need to choose what data (connection) should your layer operate on.
For example, cohortBuilder uses tblist
class object to operate on list of data frames , or db
class for operating on database connections.
To start with create a function that will take required parameters to define data connection, such as tblist
or dbtables
in case of cohortBuilder.db
. The function should return an object of selected class which is used to define required extension methods.
Below we describe all the required and optional methods you need to define within the created package.
set_source
- method used for defining a new sourceRequired parameters:
dtconn
Details:
Source$new
inside.Source$new
). The arguments are then available at source$attributes object.primary_keys
and binding_keys
parameters (see vignette("binding-keys")
).source_code
parameter that allows users to define code for creating source (visible in reproducible code) and description
storing list of useful source objects descriptions.Example:
cohortBuilder
- tblist
object (same for cohortBuilder.db
- db
object)<- function(dtconn, primary_keys = NULL, binding_keys = NULL,
set_source.tblist source_code = NULL, description = NULL, ...) {
$new(
Sourceprimary_keys = primary_keys,
dtconn, binding_keys = binding_keys, source_code = source_code,
...
) }
.init_source
- structure data passed between filtering stepsRequired parameters:
source
- Source objectDetails:
data_object
argument).Examples:
cohortBuilder
- ‘tblist’ class. Operating on list of tables in each step.<- function(source, ...) {
.init_step.tblist $dtconn
source }
cohortBuilder.db
- ‘db’ class.cohortBuilder.db
operates on db
class object which is list of connection
, tables
and schema
fields.
<- function(source) {
.init_step.db ::map(
purrr::setNames(source$dtconn$tables, source$dtconn$tables),
statsfunction(table) {
<- dplyr::tbl(
tbl_conn $dtconn$connection,
source::in_schema(source$dtconn$schema, table)
dbplyr
)attr(tbl_conn, "tbl_name") <- table
tbl_conn
}
) }
.pre_filtering
(optional) - modify data object before filteringRequired parameters:
source
,data_object
- an object following the structure of .init_step
,step_id
- id of the filtering stepDetails:
Examples:
cohortBuilder
- tblist class. Cleaning up filtered
attribute for new step data.<- function(source, data_object, step_id) {
.pre_filtering.tblist for (dataset in names(data_object)) {
attr(data_object[[dataset]], "filtered") <- FALSE
}return(data_object)
}
cohortBuilder.db
- creating temp tables for the current step in database and cleaning up filtered
attributes.<- function(source, data_object, step_id) {
.pre_filtering.db ::map(
purrr::setNames(source$dtconn$tables, source$dtconn$tables),
statsfunction(table) {
<- tmp_table_name(attr(data_object[[table]], "tbl_name"), step_id)
table_name ::dbRemoveTable(source$dtconn$connection, table_name, temporary = TRUE, fail_if_missing = FALSE)
DBI<- dplyr::compute(
data_object[[table]]
data_object[[table]],name = table_name
)attr(data_object[[table]], "filtered") <- FALSE
return(data_object[[table]])
}
) }
.post_filtering
(optional) - data object modification after filtering (before running binding).Required parameters:
.init_step
,.collect_data
- define how to collect data object into R.Required parameters:
.init_step
Details:
cohortBuilder
’s equivalent of collect
method known for sourcing the object into R memory when working with remote environment (e.g. database).data_object
.Examples:
cohortBuilder
- operating in R memory, so return data_object
.<- function(source, data_object) {
.collect_data.tblist
data_object }
cohortBuilder.db
- collect tables from database and return as a named list.<- function(source, data_object) {
.collect_data.db ::map(
purrr::setNames(source$dtconn$tables, source$dtconn$tables),
stats~dplyr::collect(data_object[[.x]])
) }
.get_stats
- collect data object statsRequired parameters:
source
,data_object
Details:
.get_attrition_count
and shinyCohortBuilder
integration.Examples:
cohortBuilder
- operating in R memory, so return data_object
.<- function(source, data_object) {
.get_stats.tblist <- names(source$dtconn)
dataset_names %>%
dataset_names ::map(
purrr~ list(n_rows = nrow(data_object[[.x]]))
%>%
) ::setNames(dataset_names)
stats }
cohortBuilder.db
- collect tables from database and return as a named list.<- function(source, data_object) {
.get_stats.db <- source$dtconn$tables
dataset_names %>%
dataset_names ::map(
purrr~ list(
n_rows = data_object[[.x]] %>%
::summarise(n = n()) %>%
dplyr::collect() %>%
dplyr::pull(n) %>%
dplyras.integer()
)%>%
) ::setNames(dataset_names)
stats }
.run_binding
- method defining how binding should be handledRequired parameters:
source
,binding_key
- binding key definition,data_object_pre
- data object state before filtering in the current step,data_object_post
- data object state after filtering in the current step (including effect of previous bindings)Details:
.post_filtering
if defined)..run_binding
takes care of handling a single iteration..init_step
method output.post = TRUE/FALSE
, activate = TRUE/FALSE
and filtered
attribute) but this is not obligatory.Examples:
cohortBuilder
<- function(source, binding_key, data_object_pre, data_object_post, ...) {
.run_binding.tblist <- binding_key$update$dataset
binding_dataset <- names(binding_key$data_keys)
dependent_datasets <- data_object_post %>%
active_datasets ::keep(~ attr(., "filtered")) %>%
purrrnames()
if (!any(dependent_datasets %in% active_datasets)) {
return(data_object_post)
}
<- NULL
key_values <- paste0("key_", seq_along(binding_key$data_keys[[1]]$key))
common_key_names for (dependent_dataset in dependent_datasets) {
<- binding_key$data_keys[[dependent_dataset]]$key
key_names <- dplyr::distinct(data_object_post[[dependent_dataset]][, key_names, drop = FALSE]) %>%
tmp_key_values ::setNames(common_key_names)
statsif (is.null(key_values)) {
<- tmp_key_values
key_values else {
} <- dplyr::inner_join(key_values, tmp_key_values, by = common_key_names)
key_values
}
}
<- dplyr::inner_join(
data_object_post[[binding_dataset]] switch(
as.character(binding_key$post),
"FALSE" = data_object_pre[[binding_dataset]],
"TRUE" = data_object_post[[binding_dataset]]
),
key_values,by = stats::setNames(common_key_names, binding_key$update$key)
)if (binding_key$activate) {
attr(data_object_post[[binding_dataset]], "filtered") <- TRUE
}
return(data_object_post)
}
cohortBuilder.db
- not implemented yet.get_attrition_count
- define how to get metric used for attrition data plotRequired parameters:
source
,data_stats
- statistics related to each step data - list of .get_stats
results for each step (and original data, assigned to step_id = 0
),Details:
n+1
where n
is number of steps. The first element of the vector should describe statistic for the base, unfiltered data.attrition
method of Cohort object (e.g. dataset
in the below example).Examples:
cohortBuilder
<- function(source, data_stats, dataset, ...) {
.get_attrition_count.tblist %>%
data_stats ::map_int(~.[[dataset]][["n_rows"]])
purrr }
cohortBuilder.db
- not implemented yet.get_attrition_label
- define label displayed in attrition plot for the specified stepRequired parameters:
source
,step_id
- id of the step ("0"
for original data case),step_filters
- list storing filters configuration for the selected step (NULL
for original data case),Details:
step_id = "0"
case).attrition
method of Cohort object (e.g. dataset
in the below example).Examples:
cohortBuilder
<- function(source, step_id, step_filters, dataset, ...) {
get_attrition_label.tblist <- source$primary_keys
pkey <- source$binding_keys
binding_keys if (step_id == "0") {
if (is.null(pkey)) {
return(dataset)
else {
} <- .get_item(pkey, "dataset", dataset)[1][[1]]$key
dataset_pkey if (is.null(dataset_pkey)) return(dataset)
return(glue::glue("{dataset}\n primary key: {paste(dataset_pkey, collapse = ', ')}"))
}
}<- step_filters %>%
filters_section ::keep(~.$dataset == dataset) %>%
purrr::map(~get_attrition_filter_label(.$name, .$value_name, .$value)) %>%
purrrpaste(collapse = "\n")
<- ""
bind_keys_section if (!is.null(binding_keys)) {
<- .get_item(
dependent_datasets attribute = "update", value = dataset,
binding_keys, operator = function(value, target) {
== target$dataset
value
}%>%
) ::map(~names(.[["data_keys"]])) %>%
purrrunlist() %>%
unique()
if (length(dependent_datasets) > 0) {
<- glue::glue(
bind_keys_section "\nData linked with external datasets: {paste(dependent_datasets, collapse = ', ')}",
.trim = FALSE
)
}
}gsub(
"\n$",
"",
::glue("Step: {step_id}\n{filters_section}{bind_keys_section}")
glue
) }
cohortBuilder.db
- not implemented yet