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covdepGE-package covdepGE: Covariate Dependent Graph Estimation

Description

A covariate-dependent approach to Gaussian graphical modeling as described in Dasgupta et al.
(2022). Employs a novel weighted pseudo-likelihood approach to model the conditional depen-
dence structure of data as a continuous function of an extraneous covariate. The main function,
covdepGE::covdepGE(), estimates a graphical representation of the conditional dependence struc-
ture via a block mean-field variational approximation, while several auxiliary functions (inclusion-
Curve(), matViz(), and plot.covdepGE()) are included for visualizing the resulting estimates.

Details

The conditional dependence structure (CDS) of a data matrix with p variables can be modeled as an
undirected graph with p vertices, where two variables are connected if, and only if, the two variables
are dependent given the remaining variables in the data. Gaussian graphical modeling (GGM) seeks
to capture the CDS of the data under the assumption that the data are normally distributed. This
distributional assumption is convenient for inference, as the CDS is given by the sparsity structure
of the precision matrix, where the precision matrix is defined as the inverse covariance matrix of
the data.

There is extensive GGM literature and many R packages for GGM, however, all make the restric-
tive assumption that the precision matrix is homogeneous throughout the data, or that there exists
a partition of homogeneous subgroups. covdepGE avoids this strong assumption by utilizing infor-
mation sharing to model the CDS as varying continuously with an extraneous covariate. Intuitively,
this implies that observations having similar extraneous covariate values will have similar precision
matrices.

To facilitate information sharing while managing complexity, covdepGE uses an efficient variational
approximation conducted under the novel weighted pseudo-likelihood framework proposed by (1).
covdepGE further accelerates inference by employing parallelism and executing expensive iterative
computations in C++. Additionally, covdepGE offers a principled, data-driven approach for hyper-
parameter specification that only requires the user to input data and extraneous covariates to perform
inference. Finally, covdepGE offers several wrappers around ggplot2 for seamless visualization of
resulting estimates, such as matViz, inclusionCurve, and the S3 method plot.covdepGE.
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covdepGE Covariate Dependent Graph Estimation

Description

Model the conditional dependence structure of X as a function of Z as described in (1)

Usage

covdepGE(
X,
Z = NULL,
hp_method = "hybrid",
ssq = NULL,
sbsq = NULL,
pip = NULL,
nssq = 5,
nsbsq = 5,
npip = 5,
ssq_mult = 1.5,
ssq_lower = 1e-05,
snr_upper = 25,
sbsq_lower = 1e-05,
pip_lower = 1e-05,
pip_upper = NULL,

https://github.com/JacobHelwig/covdepGE
https://github.com/JacobHelwig/covdepGE/issues
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tau = NULL,
norm = 2,
center_X = TRUE,
scale_Z = TRUE,
alpha_tol = 1e-05,
max_iter_grid = 10,
max_iter = 100,
edge_threshold = 0.5,
sym_method = "mean",
parallel = FALSE,
num_workers = NULL,
prog_bar = TRUE

)

Arguments

X n× p numeric matrix; data matrix. For best results, n should be greater than p

Z NULL OR n× q numeric matrix; extraneous covariates. If NULL, Z will be treated
as constant for all observations, i.e.:

Z <- rep(0, nrow(X))

If Z is constant, the estimated graph will be homogeneous throughout the data.
NULL by default

hp_method character in c("grid_search","model_average","hybrid"); method for
selecting hyperparameters from the the hyperparameter grid. The grid will be
generated as the Cartesian product of ssq, sbsq, and pip. Fix Xj , the j-th col-
umn of X, as the response; then, the hyperparameters will be selected as follows:

• If "grid_search", the point in the hyperparameter grid that maximizes the
total ELBO summed across all n regressions will be selected

• If "model_average", then all posterior quantities will be an average of
the variational estimates resulting from the model fit for each point in the
hyperparameter grid. The averaging weights for each of the n regressions
are the exponentiated ELBO

• If "hybrid", then models will be averaged over pip as in "model_average",
with σ2 and σ2

β chosen for each π in pip by maximizing the total ELBO
over the grid defined by the Cartesian product of ssq and sbsq as in "grid_search"

"hybrid" by default

ssq NULL OR numeric vector with positive entries; candidate values of the hyper-
parameter σ2 (prior residual variance). If NULL, ssq will be generated for each
variable Xj fixed as the response as:

ssq <- seq(ssq_lower, ssq_upper, length.out = nssq)

NULL by default

sbsq NULL OR numeric vector with positive entries; candidate values of the hyper-
parameter σ2

β (prior slab variance). If NULL, sbsq will be generated for each
variable Xj fixed as the response as:
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sbsq <- seq(sbsq_lower, sbsq_upper, length.out = nsbsq)

NULL by default

pip NULL OR numeric vector with entries in (0, 1); candidate values of the hyperpa-
rameter π (prior inclusion probability). If NULL, pip will be generated for each
variable Xj fixed as the response as:

pip <- seq(pip_lower, pi_upper, length.out = npip)

NULL by default

nssq positive integer; number of points to generate for ssq if ssq is NULL. 5 by default

nsbsq positive integer; number of points to generate for sbsq if sbsq is NULL. 5 by
default

npip positive integer; number of points to generate for pip if pip is NULL. 5 by default

ssq_mult positive numeric; if ssq is NULL, then for each variableXj fixed as the response:

ssq_upper <- ssq_mult * stats::var(X_j)

Then, ssq_upper will be the greatest value in ssq for variable Xj . 1.5 by
default

ssq_lower positive numeric; if ssq is NULL, then ssq_lower will be the least value in ssq.
1e-5 by default

snr_upper positive numeric; upper bound on the signal-to-noise ratio. If sbsq is NULL, then
for each variable Xj fixed as the response:

s2_sum <- sum(apply(X, 2, stats::var))
sbsq_upper <- snr_upper / (pip_upper * s2_sum)

Then, sbsq_upper will be the greatest value in sbsq. 25 by default

sbsq_lower positive numeric; if sbsq is NULL, then sbsq_lower will be the least value in
sbsq. 1e-5 by default

pip_lower numeric in (0, 1); if pip is NULL, then pip_lower will be the least value in pip.
1e-5 by default

pip_upper NULL OR numeric in (0, 1); if pip is NULL, then pip_upper will be the greatest
value in pip. If sbsq is NULL, pip_upper will be used to calculate sbsq_upper.
If NULL, pip_upper will be calculated for each variableXj fixed as the response
as:

lasso <- glmnet::cv.glmnet(X, X_j)
non0 <- sum(glmnet::coef.glmnet(lasso, s = "lambda.1se")[-1] != 0)
non0 <- min(max(non0, 1), p - 1)
pip_upper <- non0 / p

NULL by default

tau NULL OR positive numeric OR numeric vector of length n with positive entries;
bandwidth parameter. Greater values allow for more information to be shared
between observations. Allows for global or observation-specific specification. If
NULL, use 2-step KDE methodology as described in (2) to calculate observation-
specific bandwidths. NULL by default
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norm numeric in [1,∞]; norm to use when calculating weights. Inf results in infinity
norm. 2 by default

center_X logical; if TRUE, center X column-wise to mean 0. TRUE by default

scale_Z logical; if TRUE, center and scale Z column-wise to mean 0, standard deviation 1
prior to calculating the weights. TRUE by default

alpha_tol positive numeric; end CAVI when the Frobenius norm of the change in the alpha
matrix is within alpha_tol. 1e-5 by default

max_iter_grid positive integer; if tolerance criteria has not been met by max_iter_grid iter-
ations during grid search, end CAVI. After grid search has completed, CAVI is
performed with the final hyperparameters selected by grid search for at most
max_iter iterations. Does not apply to hp_method = "model_average". 10 by
default

max_iter positive integer; if tolerance criteria has not been met by max_iter iterations,
end CAVI. 100 by default

edge_threshold numeric in (0, 1); a graph for each observation will be constructed by includ-
ing an edge between variable i and variable j if, and only if, the (i, j) entry
of the symmetrized posterior inclusion probability matrix corresponding to the
observation is greater than edge_threshold. 0.5 by default

sym_method character in c("mean","max","min"); to symmetrize the posterior inclusion
probability matrix for each observation, the (i, j) and (j, i) entries will be post-
processed as sym_method applied to the (i, j) and (j, i) entries. "mean" by
default

parallel logical; if TRUE, hyperparameter selection and CAVI for each of the p variables
will be performed in parallel using foreach. Parallel backend may be registered
prior to making a call to covdepGE. If no active parallel backend can be detected,
then parallel backend will be automatically registered using:

doParallel::registerDoParallel(num_workers)

FALSE by default

num_workers NULL OR positive integer less than or equal to parallel::detectCores(); ar-
gument to doParallel::registerDoParallel if parallel = TRUE and no par-
allel backend is detected. If NULL, then:

num_workers <- floor(parallel::detectCores() / 2)

NULL by default

prog_bar logical; if TRUE, then a progress bar will be displayed denoting the number of
remaining variables to fix as the response and perform CAVI. If parallel, no
progress bar will be displayed. TRUE by default

Value

Returns object of class covdepGE with the following values:

graphs list with the following values:
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• graphs: list of n numeric matrices of dimension p × p; the l-th matrix is
the adjacency matrix for the l-th observation

• unique_graphs: list; the l-th element is a list containing the l-th unique
graph and the indices of the observation(s) corresponding to this graph

• inclusion_probs_sym: list of n numeric matrices of dimension p× p; the
l-th matrix is the symmetrized posterior inclusion probability matrix for the
l-th observation

• inclusion_probs_asym: list of n numeric matrices of dimension p × p;
the l-th matrix is the posterior inclusion probability matrix for the l-th ob-
servation prior to symmetrization

variational_params

list with the following values:

• alpha: list of p numeric matrices of dimension n× (p− 1); the (i, j) entry
of the k-th matrix is the variational approximation to the posterior inclu-
sion probability of the j-th variable in a weighted regression with variable
k fixed as the response, where the weights are taken with respect to obser-
vation i

• mu: list of p numeric matrices of dimension n× (p− 1); the (i, j) entry of
the k-th matrix is the variational approximation to the posterior slab mean
for the j-th variable in a weighted regression with variable k fixed as the
response, where the weights are taken with respect to observation i

• ssq_var: list of p numeric matrices of dimension n × (p − 1); the (i, j)
entry of the k-th matrix is the variational approximation to the posterior slab
variance for the j-th variable in a weighted regression with variable k fixed
as the response, where the weights are taken with respect to observation i

hyperparameters

list of p lists; the j-th list has the following values for variable j fixed as the
response:

• grid: matrix of candidate hyperparameter values, corresponding ELBO,
and iterations to converge

• final: the final hyperparameters chosen by grid search and the ELBO and
iterations to converge for these hyperparameters

model_details list with the following values:

• elapsed: amount of time to fit the model
• n: number of observations
• p: number of variables
• ELBO: ELBO summed across all observations and variables. If hp_method

is "model_average" or "hybrid", this ELBO is averaged across the hy-
perparameter grid using the model averaging weights for each variable

• num_unique: number of unique graphs
• grid_size: number of points in the hyperparameter grid
• args: list containing all passed arguments of length 1

weights list with the following values:
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• weights: n × n numeric matrix. The (i, j) entry is the similarity weight
of the i-th observation with respect to the j-th observation using the j-th
observation’s bandwidth

• bandwidths: numeric vector of length n. The i-th entry is the bandwidth
for the i-th observation

Overview

Suppose that X is a p-dimensional data matrix with n observations and that Z is a q-dimensional
extraneous covariate, also with n observations, where the l-th observation in Z is associated with
the l-th observation in X. Further suppose that the l-th row of X follows a p-dimensional Gaussian
distribution with mean 0 and precision matrix Ω(zl), where zl is the l-th entry of Z and Ω is a
continuous function mapping from the space of extraneous covariates to the space of p × p non-
singular matrices. Then, for the l-th observation, the (j, k) entry of Ω(zl) is non-zero if, and only
if, variable j and variable k are dependent given the remaining variables in X.

Given data satisfying these assumptions, the covdepGE function employs the algorithm described
in (1) to estimate a graphical representation of the structure of Ω for each of the observations in X
as a continuous function of Z. This graph contains an undirected edge between two variables Xj

and Xk if, and only if, Xj and Xk are conditionally dependent given the remaining variables. Core
components of this methodology are the weighted pseudo-likelihood framework in which inference
is conducted via a block mean-field variational approximation.

Graph Estimation

Graphs are constructed using a pseudo-likelihood approach by fixing each of the columns Xj of
X as the response and performing a spike-and-slab regression using the remaining variables Xk

in X as predictors. To determine if an edge should be added between Xj and Xk, the posterior
inclusion probability ofXk in a regression withXj fixed as the response (PIPj(Xk)) and vice versa
(PIPk(Xj)) are symmetrized according to sym_method (e.g., by taking the mean of PIPk(Xj) and
PIPj(Xk)). If the symmetrized PIP is greater than edge_threshold, an edge will be included
between Xj and Xk.

To model Ω as a function of Z, n weighted spike-and-slab regressions are performed for each vari-
ableXj fixed as the response. The similarity weights for the l-th regression are taken with respect to
observation l such that observations having similar values of Z to zl will have larger weights. These
similarity weights in conjunction with the pseudo-likelihood framework comprise the weighted
pseudo-likelihood approach introduced by (1). Note that model performance is best when n > p.

Variational Inference

Spike-and-slab posterior quantities are estimated using a block mean-field variational approxima-
tion. Coordinate Ascent Variational Inference (CAVI) is performed for each of the weighted re-
gressions to select the variational parameters that maximize the ELBO. The parameters for each of
the regression coefficients are the mean and variance of the slab (µ and σ2

var, respectively) and the
probability that the coefficient is non-zero (α). µ and α for all coefficients are initialized as 0 and
0.2, respectively.

CAVI for the n regressions is performed simultaneously for variable Xj fixed as the response. With
each of the n sets of α as the rows of an n× (p− 1) matrix, the CAVI for variable Xj is ended for
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all n regressions when the Frobenius norm of the change in the α matrix is less than alpha_tol or
after max_iter iterations of CAVI have been performed.

Note that since the regressions performed for variable Xj and Xk fixed as the response are inde-
pendent of each other, they may be performed in parallel by setting parallel = TRUE. Registering
parallel backend with greater than p workers offers no benefit, since each worker takes on one
variable to fix as the response and perform the n regressions.

Hyperparameter specification

Each regression requires the specification of 3 hyperparameters: π (the prior probability of inclu-
sion), σ2 (the prior residual variance), and σ2

β (the prior variance of the slab). covdepGE offers 3
methods for hyperparameter specification via the hp_method argument: grid_search, model_average,
and hybrid. Empirically, grid search offers the best sensitivity and model_average offers the
best specificity, while hybrid sits between the other two methods in both metrics.

The hyperparameter candidate grid is generated by taking the Cartesian product between ssq, sbsq,
and pip (candidate values for σ2, σ2

β , and π, respectively). Each of the methods gives an approach
for selecting points from this grid.

In grid_search, the point from the grid that produces the model that has the greatest total ELBO
is selected, where the total ELBO is calculated by summing the ELBO for each of the n regressions
for a variable Xj fixed as the response. Thus, all observations use the same set of hyperparameters
for the regression on Xj .

Instead of selecting only one model as in grid_search, models are averaged over in model_average.
WithXj fixed as the response, the unnormalized weights for each grid point used to perform this av-
eraging is calculated by exponentiating the ELBO for each of the n regressions. Note that since the
ELBO for a given grid point will vary across the n regressions due to differing similarity weights,
each of the n sets of averaging weights will be unique.

Finally, hybrid combines grid_search and model_average. Fixing Xj as the response, for each
π candidate in pip, the point in the grid defined by the Cartesian product of ssq and sbsq is selected
by maximizing the total ELBO summed across the n regressions. The resulting models for each of
the π candidates are then averaged using the exponentiated ELBO for each of the n regressions as
the unnormalized averaging weights.

Note that in the search step of grid_search and hybrid, CAVI for each of the grid points is per-
formed for at most max_iter_grid iterations. A second CAVI is then performed for max_iter
iterations using the hyperparameters that maximized the total ELBO in the first step. Setting
max_iter_grid to be less than max_iter (as is the default) will result in a more efficient search.

Candidate grid generation

The candidate grids (ssq, sbsq, and pip) may be passed as arguments, however, by default, these
grids are generated automatically. Each of the grids are spaced uniformly between an upper end
point and a lower end point. The number of points in each grid is 5 by default. Grids include end
points, and the number of points in each grid is controlled by the arguments nssq, nsbsq, and npip.
The lower endpoints (ssq_lower, sbsq_lower, and pip_lower) are all 1e-5 by default. The upper
endpoints are calculated dependent on the variable Xj fixed as the response.

ssq_upper is simply the variance of Xj times ssq_mult. By default, ssq_mult is 1.5.

pip_upper is calculated by regressing the remaining variables on Xj using LASSO. The shrinkage
hyperparameter for LASSO is chosen to be lambda.1se. The number of non-zero coefficients
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estimated by LASSO is then divided by p - 1 to calculate pip_upper. Note that if the LASSO
estimate to the number of non-zero coefficients is 0 or p− 1, this estimate is changed to 1 or p− 2
(respectively) to ensure that pip_upper is greater than 0 and less than 1.

Finally, an upper bound is induced on σ2
β by deriving a rough upper bound for the signal-to-noise

ratio that depends on σ2
β . Let Σs2j be the sum of the sample variances of the columns of the predic-

tors X ′. Under the simplifying assumptions that the expected values of X ′ and the spike-and-slab
regression coefficients β are 0 and that X ′ and β are independent, the variance of the dot product
of X ′ with β is π ·σ2 ·σ2

β ·Σs2j . Thus, the signal-to-noise ratio under these assumptions is given by
π · σ2

β · Σs2j . Replacing π with pip_upper and σ2
β with sbsq_upper gives an upper bound on the

signal-to-noise ratio. Setting this bound equal to snr_upper gives an expression for sbsq_upper.

Similarity Weights

The similarity weight for observation k with respect to observation l is φτl(||zl − zk||). Here, || · ||
denotes the norm specified by the norm argument, zl and zk are the values of Z for the l-th and
k-th observations, φτl is the univariate Gaussian density with standard deviation τl, and τl is the
bandwidth for the l-th observation.

tau may be passed as an argument, however, by default, it is estimated using the methodology given
in (2). (2) describes a two-step approach for density estimation, where in the first step, an initial
estimate is calculated using Silverman’s rule of thumb for initializing bandwidth values, and in the
second step, the density is refined by updating the bandwidth values. This methodology is used here
to estimate the density of Z, and the updated bandwidths from the second step are used for tau.

References

(1) Sutanoy Dasgupta, Peng Zhao, Prasenjit Ghosh, Debdeep Pati, and Bani Mallick. An approxi-
mate Bayesian approach to covariate-dependent graphical modeling. pages 1–59, 2022.

(2) Sutanoy Dasgupta, Debdeep Pati, and Anuj Srivastava. A Two-Step Geometric Framework For
Density Modeling. Statistica Sinica, 30(4):2155–2177, 2020.

Examples

library(ggplot2)

# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision

# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

# visualize the distribution of the extraneous covariate
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ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

# visualize the true precision matrices in each of the intervals

# interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)

# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

generateData Generate Covariate-Dependent Data

Description

Generate a 1-dimensional extraneous covariate and p-dimensional Gaussian data with a precision
matrix that varies as a continuous function of the extraneous covariate. This data is distributed
similar to that used in the simulation study from (1)

Usage

generateData(p = 5, n1 = 60, n2 = 60, n3 = 60, Z = NULL, true_precision = NULL)

Arguments

p positive integer; number of variables in the data matrix. 5 by default

n1 positive integer; number of observations in the first interval. 60 by default

n2 positive integer; number of observations in the second interval. 60 by default

n3 positive integer; number of observations in the third interval. 60 by default
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Z NULL or numeric vector; extraneous covariate values for each observation. If
NULL, Z will be generated from a uniform distribution on each of the intervals

true_precision NULL OR list of matrices of dimension p × p; true precision matrix for each
observation. If NULL, the true precision matrices will be generated dependent on
Z. NULL by default

Value

Returns list with the following values:

X a (n1 + n2 + n3) ×p numeric matrix, where the i-th row is drawn from a p-
dimensional Gaussian with mean 0 and precision matrix true_precision[[i]]

Z a (n1 + n2 + n3) ×1 numeric matrix, where the i-th entry is the extraneous co-
variate zi for observation i

true_precision list of n1 + n2 + n3 matrices of dimension p× p; the i-th matrix is the precision
matrix for the i-th observation

interval vector of length n1 + n2 + n3; interval assignments for each of the observations,
where the i-th entry is the interval assignment for the i-th observation

Extraneous Covariate

If Z = NULL, then the generation of Z is as follows:

The first n1 observations have zi from from a uniform distribution on the interval (−3,−1) (the
first interval).

Observations n1 + 1 to n1 + n2 have zi from from a uniform distribution on the interval (−1, 1) (the
second interval).

Observations n1 + n2 + 1 to n1 + n2 + n3 have zi from a uniform distribution on the interval (1, 3)
(the third interval).

Precision Matrices

If true_precision = NULL, then the generation of the true precision matrices is as follows:

All precision matrices have 2 on the diagonal and 1 in the (2, 3)/(3, 2) positions.

Observations in the first interval have a 1 in the (1, 2)/(1, 2) positions, while observations in the
third interval have a 1 in the (1, 3)/(3, 1) positions.

Observations in the second interval have 2 entries that vary as a linear function of their extraneous
covariate. Let β = 1/2. Then, the (1, 2)/(2, 1) positions for the i-th observation in the second
interval are β · (1− zi), while the (1, 3)/(3, 1) entries are β · (1 + zi).

Thus, as zi approaches −1 from the right, the associated precision matrix becomes more similar
to the matrix for observations in the first interval. Similarly, as zi approaches 1 from the left, the
matrix becomes more similar to the matrix for observations in the third interval.
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Examples

library(ggplot2)

# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision

# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

# visualize the true precision matrices in each of the intervals

# interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)

# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

inclusionCurve Plot PIP as a Function of Index
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Description

Plot the posterior inclusion probability of an edge between two variables as a function of observation
index

Usage

inclusionCurve(
out,
col_idx1,
col_idx2,
line_type = "solid",
line_size = 0.5,
line_color = "black",
point_shape = 21,
point_size = 1.5,
point_color = "#500000",
point_fill = "white"

)

Arguments

out object of class covdepGE; return of covdepGE function

col_idx1 integer in [1, p]; column index of the first variable

col_idx2 integer in [1, p]; column index of the second variable

line_type linetype; ggplot2 line type to interpolate the probabilities. "solid" by default

line_size positive numeric; thickness of the interpolating line. 0.5 by default

line_color color; color of interpolating line. "black" by default

point_shape shape; shape of the points denoting observation-specific inclusion probabilities;
21 by default

point_size positive numeric; size of probability points. 1.5 by default

point_color color; color of probability points. "#500000" by default

point_fill color; fill of probability points. Only applies to select shapes. "white" by
default

Value

Returns ggplot2 visualization of inclusion probability curve

Examples

library(ggplot2)

# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
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interval <- data$interval
prec <- data$true_precision

# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

# visualize the true precision matrices in each of the intervals

# interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)

# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

matViz Visualize a matrix

Description

Create a visualization of a matrix

Usage

matViz(
x,
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color1 = "white",
color2 = "#500000",
grid_color = "black",
incl_val = FALSE,
prec = 2,
font_size = 3,
font_color1 = "black",
font_color2 = "white",
font_thres = mean(x)

)

Arguments

x matrix; matrix to be visualized

color1 color; color for low entries. "white" by default

color2 color; color for high entries. "#500000" by default

grid_color color; color of grid lines. "black" by default

incl_val logical; if TRUE, the value for each entry will be displayed. FALSE by default

prec positive integer; number of decimal places to round entries to if incl_val is
TRUE. 2 by default

font_size positive numeric; size of font if incl_val is TRUE. 3 by default

font_color1 color; color of font for low entries if incl_val is TRUE. "black" by default

font_color2 color; color of font for high entries if incl_val is TRUE. "white" by default

font_thres numeric; values less than font_thres will be displayed in font_color1 if
incl_val is TRUE. mean(x) by default

Value

Returns ggplot2 visualization of matrix

Examples

library(ggplot2)

# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision

# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
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# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

# visualize the true precision matrices in each of the intervals

# interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)

# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

plot.covdepGE Plot the Graphs Estimated by covdepGE

Description

Create a list of the unique graphs estimated by covdepGE

Usage

## S3 method for class 'covdepGE'
plot(x, graph_colors = NULL, title_sum = TRUE, ...)

Arguments

x object of class covdepGE; return of covdepGE function
graph_colors NULL OR vector; the j-th element is the color for the j-th graph. If NULL, all

graphs will be colored with "#500000". NULL by default
title_sum logical; if TRUE the indices of the observations corresponding to the graph will

be included in the title. TRUE by default
... additional arguments will be ignored
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Value

Returns list of ggplot2 visualizations of unique graphs estimated by covdepGE

Examples

library(ggplot2)

# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision

# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

# visualize the true precision matrices in each of the intervals

# interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)

# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
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