The goal of crandep is to provide functions for analysing the dependencies of CRAN packages using social network analysis.
You can install crandep from github with:
# install.packages("devtools")
::install_github("clement-lee/crandep") devtools
library(crandep)
library(dplyr)
library(ggplot2)
library(igraph)
The functions and example dataset can be divided into the following categories:
get_dep()
, get_dep_df()
,
get_dep_all_packages()
.get_graph_all_packages()
and
df_to_graph()
.*upp()
and *mix()
.cran_dependencies
.To obtain the information about various kinds of dependencies of a
package, we can use the function get_dep()
which takes the
package name and the type of dependencies as the first and second
arguments, respectively. Currently, the second argument accepts
Depends
, Imports
, LinkingTo
,
Suggests
, Reverse_depends
,
Reverse_imports
, Reverse_linking_to
, and
Reverse_suggests
, or any variations in their letter cases,
or if the underscore “_” is replaced by a space.
get_dep("dplyr", "Imports")
#> [1] "ellipsis" "generics" "glue"
#> [4] "lifecycle" "magrittr" "methods"
#> [7] "R6" "rlang" "tibble"
#> [10] "tidyselect" "utils" "vctrs"
get_dep("MASS", "depends")
#> [1] "grDevices" "graphics" "stats"
#> [4] "utils"
We only consider the 4 most common types of dependencies in R
packages, namely Imports
, Depends
,
Suggests
and LinkingTo
, and their reverse
counterparts. For more information on different types of dependencies,
see the
official guidelines and https://r-pkgs.org/description.html.
As the information all dependencies of one package are on the same
page on CRAN, to avoid scraping the same multiple times, we can use
get_dep_df()
instead of get_dep()
. The output
will be a data frame instead of a character vector.
get_dep_df("dplyr", c("imports", "LinkingTo"))
#> from to type reverse
#> 1 dplyr ellipsis imports FALSE
#> 2 dplyr generics imports FALSE
#> 3 dplyr glue imports FALSE
#> 4 dplyr lifecycle imports FALSE
#> 5 dplyr magrittr imports FALSE
#> 6 dplyr methods imports FALSE
#> 7 dplyr R6 imports FALSE
#> 8 dplyr rlang imports FALSE
#> 9 dplyr tibble imports FALSE
#> 10 dplyr tidyselect imports FALSE
#> 11 dplyr utils imports FALSE
#> 12 dplyr vctrs imports FALSE
The column type
is the type of the dependency converted
to lower case. Also, LinkingTo
is now converted to
linking to
for consistency. For the four reverse
dependencies, the substring "reverse_"
will not be shown in
type
; instead the reverse
column will be
TRUE
. This can be illustrated by the following:
get_dep("abc", "depends")
#> [1] "abc.data" "nnet" "quantreg" "MASS"
#> [5] "locfit"
get_dep("abc", "reverse_depends")
#> [1] "abctools" "EasyABC"
get_dep_df("abc", c("depends", "reverse_depends"))
#> from to type reverse
#> 1 abc abc.data depends FALSE
#> 2 abc nnet depends FALSE
#> 3 abc quantreg depends FALSE
#> 4 abc MASS depends FALSE
#> 5 abc locfit depends FALSE
#> 6 abc abctools depends TRUE
#> 7 abc EasyABC depends TRUE
Theoretically, for each forward dependency
#> from to type reverse
#> 1 A B c FALSE
there should be an equivalent reverse dependency
#> from to type reverse
#> 1 B A c TRUE
Aligning the type
in the forward dependency and the
reverse dependency enables this to be checked easily.
To obtain all 8 types of dependencies, we can use "all"
in the second argument, instead of typing a character vector of all 8
words:
<- get_dep_df("abc", "all")
df0.abc
df0.abc#> from to type reverse
#> 1 abc abc.data depends FALSE
#> 2 abc nnet depends FALSE
#> 3 abc quantreg depends FALSE
#> 4 abc MASS depends FALSE
#> 5 abc locfit depends FALSE
#> 9 abc abctools depends TRUE
#> 10 abc EasyABC depends TRUE
#> 11 abc ecolottery imports TRUE
#> 12 abc ouxy imports TRUE
#> 13 abc poems imports TRUE
#> 15 abc coala suggests TRUE
<- get_dep_df("rstan", "all")
df0.rstan ::count(df0.rstan, type, reverse) # all 8 types
dplyr#> type reverse n
#> 1 depends FALSE 2
#> 2 depends TRUE 24
#> 3 imports FALSE 10
#> 4 imports TRUE 79
#> 5 linking to FALSE 5
#> 6 linking to TRUE 66
#> 7 suggests FALSE 12
#> 8 suggests TRUE 17
As of 2021-04-16, the packages that have all 8 types of dependencies are gRbase, quanteda, rstan, sf, xts.
To build a dependency network, we have to obtain the dependencies for
multiple packages. For illustration, we choose the core packages of the
tidyverse, and find out what each package Imports
. We
put all the dependencies into one data frame, in which the package in
the from
column imports the package in the to
column. This is essentially the edge list of the dependency network.
<- rbind(
df0.imports get_dep_df("ggplot2", "Imports"),
get_dep_df("dplyr", "Imports"),
get_dep_df("tidyr", "Imports"),
get_dep_df("readr", "Imports"),
get_dep_df("purrr", "Imports"),
get_dep_df("tibble", "Imports"),
get_dep_df("stringr", "Imports"),
get_dep_df("forcats", "Imports")
)head(df0.imports)
#> from to type reverse
#> 1 ggplot2 digest imports FALSE
#> 2 ggplot2 glue imports FALSE
#> 3 ggplot2 grDevices imports FALSE
#> 4 ggplot2 grid imports FALSE
#> 5 ggplot2 gtable imports FALSE
#> 6 ggplot2 isoband imports FALSE
tail(df0.imports)
#> from to type reverse
#> 60 stringr magrittr imports FALSE
#> 61 stringr stringi imports FALSE
#> 62 forcats ellipsis imports FALSE
#> 63 forcats magrittr imports FALSE
#> 64 forcats rlang imports FALSE
#> 65 forcats tibble imports FALSE
The example dataset cran_dependencies
contains all
dependencies as of 2020-05-09.
data(cran_dependencies)
cran_dependencies#> # A tibble: 211,381 x 4
#> from to type reverse
#> <chr> <chr> <chr> <lgl>
#> 1 A3 xtable depends FALSE
#> 2 A3 pbapply depends FALSE
#> 3 A3 randomForest suggests FALSE
#> 4 A3 e1071 suggests FALSE
#> 5 aaSEA DT imports FALSE
#> 6 aaSEA networkD3 imports FALSE
#> 7 aaSEA shiny imports FALSE
#> 8 aaSEA shinydashboard imports FALSE
#> 9 aaSEA magrittr imports FALSE
#> 10 aaSEA Bios2cor imports FALSE
#> # … with 211,371 more rows
::count(cran_dependencies, type, reverse)
dplyr#> # A tibble: 8 x 3
#> type reverse n
#> <chr> <lgl> <int>
#> 1 depends FALSE 11123
#> 2 depends TRUE 9672
#> 3 imports FALSE 57617
#> 4 imports TRUE 51913
#> 5 linking to FALSE 3433
#> 6 linking to TRUE 3721
#> 7 suggests FALSE 35018
#> 8 suggests TRUE 38884
This is essentially a snapshot of CRAN. We can obtain all the current
dependencies using get_dep_all_packages()
, which requires
no arguments:
<- get_dep_all_packages()
df0.cran head(df0.cran)
#> from to type reverse
#> 2 aaSEA DT imports FALSE
#> 3 aaSEA networkD3 imports FALSE
#> 4 aaSEA shiny imports FALSE
#> 5 aaSEA shinydashboard imports FALSE
#> 6 aaSEA magrittr imports FALSE
#> 7 aaSEA Bios2cor imports FALSE
::count(df0.cran, type, reverse) # numbers in general larger than above
dplyr#> type reverse n
#> 1 depends FALSE 11363
#> 2 depends TRUE 9928
#> 3 imports FALSE 70069
#> 4 imports TRUE 63225
#> 5 linking to FALSE 4187
#> 6 linking to TRUE 4478
#> 7 suggests FALSE 43785
#> 8 suggests TRUE 48015
We can build dependency network using
get_graph_all_packages()
. Furthermore, we can verify that
the forward and reverse dependency networks are (almost) the same, by
looking at their size (number of edges) and order (number of nodes).
<- get_graph_all_packages(type = "depends")
g0.depends <- get_graph_all_packages(type = "reverse depends")
g0.rev_depends
g0.depends#> IGRAPH 9c9e289 DN-- 4932 8262 --
#> + attr: name (v/c)
#> + edges from 9c9e289 (vertex names):
#> [1] A3 ->xtable A3 ->pbapply
#> [3] abc ->abc.data abc ->nnet
#> [5] abc ->quantreg abc ->MASS
#> [7] abc ->locfit abcdeFBA->Rglpk
#> [9] abcdeFBA->rgl abcdeFBA->corrplot
#> [11] abcdeFBA->lattice ABCp2 ->MASS
#> [13] abctools->abc abctools->abind
#> [15] abctools->plyr abctools->Hmisc
#> + ... omitted several edges
g0.rev_depends#> IGRAPH 98b169d DN-- 4932 8262 --
#> + attr: name (v/c)
#> + edges from 98b169d (vertex names):
#> [1] abc ->abctools abc ->EasyABC
#> [3] abc.data->abc abd ->tigerstats
#> [5] abind ->abctools abind ->BCBCSF
#> [7] abind ->CPMCGLM abind ->depth
#> [9] abind ->FactorCopula abind ->fractaldim
#> [11] abind ->funLBM abind ->informR
#> [13] abind ->interplot abind ->magic
#> [15] abind ->mlma abind ->mlogitBMA
#> + ... omitted several edges
The dependency words accepted by the argument type
is
the same as in get_dep()
and get_dep_df()
. The
two networks’ size and order should be very close if not identical to
each other. Because of the dependency direction, their edge lists should
be the same but with the column names from
and
to
swapped.
For verification, the exact same graphs can be obtained by filtering
the data frame for the required dependency and applying
df_to_graph()
:
<- df0.cran %>%
g1.depends ::filter(type == "depends" & !reverse) %>%
dplyrdf_to_graph(nodelist = dplyr::rename(df0.cran, name = from))
<- df0.cran %>%
g1.rev_depends ::filter(type == "depends" & reverse) %>%
dplyrdf_to_graph(nodelist = dplyr::rename(df0.cran, name = from))
# same as g0.depends
g1.depends #> IGRAPH 19ec2b7 DN-- 4932 8262 --
#> + attr: name (v/c), type (e/c), reverse
#> | (e/l)
#> + edges from 19ec2b7 (vertex names):
#> [1] A3 ->xtable A3 ->pbapply
#> [3] abc ->abc.data abc ->nnet
#> [5] abc ->quantreg abc ->MASS
#> [7] abc ->locfit abcdeFBA->Rglpk
#> [9] abcdeFBA->rgl abcdeFBA->corrplot
#> [11] abcdeFBA->lattice ABCp2 ->MASS
#> [13] abctools->abc abctools->abind
#> + ... omitted several edges
# same as g0.rev_depends
g1.rev_depends #> IGRAPH 16c2c3f DN-- 4932 8262 --
#> + attr: name (v/c), type (e/c), reverse
#> | (e/l)
#> + edges from 16c2c3f (vertex names):
#> [1] abc ->abctools abc ->EasyABC
#> [3] abc.data->abc abd ->tigerstats
#> [5] abind ->abctools abind ->BCBCSF
#> [7] abind ->CPMCGLM abind ->depth
#> [9] abind ->FactorCopula abind ->fractaldim
#> [11] abind ->funLBM abind ->informR
#> [13] abind ->interplot abind ->magic
#> + ... omitted several edges