dfoptim: Derivative-Free Optimization

Derivative-Free optimization algorithms. These algorithms do not require gradient information. More importantly, they can be used to solve non-smooth optimization problems.

Version: 2020.10-1
Depends: R (≥ 2.10.1)
Published: 2020-10-20
Author: Ravi Varadhan[aut, cre], Johns Hopkins University, Hans W. Borchers[aut], ABB Corporate Research, and Vincent Bechard[aut], HEC Montreal (Montreal University)
Maintainer: Ravi Varadhan <ravi.varadhan at jhu.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://coah.jhu.edu/people/Faculty_personal_Pages/Varadhan.html
NeedsCompilation: no
Materials: NEWS
In views: Optimization
CRAN checks: dfoptim results

Documentation:

Reference manual: dfoptim.pdf

Downloads:

Package source: dfoptim_2020.10-1.tar.gz
Windows binaries: r-devel: dfoptim_2020.10-1.zip, r-release: dfoptim_2020.10-1.zip, r-oldrel: dfoptim_2020.10-1.zip
macOS binaries: r-release (arm64): dfoptim_2020.10-1.tgz, r-oldrel (arm64): dfoptim_2020.10-1.tgz, r-release (x86_64): dfoptim_2020.10-1.tgz, r-oldrel (x86_64): dfoptim_2020.10-1.tgz
Old sources: dfoptim archive

Reverse dependencies:

Reverse depends: mvord
Reverse imports: ConsReg, cops, CSTE, diffusion, DynTxRegime, garma, GeoModels, hyperbrick, npcs, reReg, sklarsomega, stepPenal
Reverse suggests: afex, cxr, lme4, metadat, metafor, optimx, qra, ROI.plugin.optimx, SACOBRA
Reverse enhances: Rmpfr

Linking:

Please use the canonical form https://CRAN.R-project.org/package=dfoptim to link to this page.