What factors are there? Fixed or random?
He samples in seven estuaries along the New South Wales coast (three of which are “Pristine”, four are “Modified”), and in each estuary, he takes 4-7 samples and counts the creepy crawlies therein.
Modification is a factor, taking levels “Pristine” and “Modified”
Estuary is a factor, taking seven levels. If these were sampled randomly, and we want to make inferences across all estuaries on the New South Wales coast, it oculd be treated as a random factor.
The 4-7 samples at each estuary are the replicates, so they shouldn’t be added to the model, variation in replicates will enter through the error term.
library(ecostats)
data(estuaries)
plot(Total~Estuary,data=estuaries,col=c(4,2,2,4,2,4,2))
legend("bottomleft",legend=c("Modified","Pristine"),col=c(4,2),pch=15,pt.cex=2)
library(ecostats)
data(estuaries)
library(lme4)
#> Loading required package: Matrix
= lmer(Total~Mod+(1|Estuary),data=estuaries)
ft_estu summary(ft_estu)
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Total ~ Mod + (1 | Estuary)
#> Data: estuaries
#>
#> REML criterion at convergence: 314.4
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -2.2393 -0.7569 0.1553 0.7372 1.8962
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> Estuary (Intercept) 10.68 3.268
#> Residual 123.72 11.123
#> Number of obs: 42, groups: Estuary, 7
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 39.053 3.237 12.065
#> ModPristine -11.243 4.287 -2.622
#>
#> Correlation of Fixed Effects:
#> (Intr)
#> ModPristine -0.755
There is some evidence of an effect of Mod
, since the
estimated coefficient is more than double its standard error (so a 95%
confidence interval would not cover zero). The effect appears to be a
decrease in total abundance in pristine estuaries.
par(mfrow=c(1,2),mar=c(3,3,1,1),mgp=c(1.75,0.75,0))
= lmer(Total~Mod+(1|Estuary),data=estuaries)
ft_estu scatter.smooth(residuals(ft_estu)~fitted(ft_estu),
xlab="Fitted values",ylab="Residuals")
abline(h=0,col="red")
scatter.smooth(residuals(ft_estu)~predict(ft_estu,re.form=NA),
xlab="Fitted values (no random effects)",ylab="Residuals")
abline(h=0,col="red")
anova
to compare mixed effects
models for the estuary data= lmer(Total~Mod+(1|Estuary),data=estuaries,REML=F)
ft_estu = lmer(Total~(1|Estuary),data=estuaries,REML=F)
ft_estuInt anova(ft_estuInt,ft_estu)
#> Data: estuaries
#> Models:
#> ft_estuInt: Total ~ (1 | Estuary)
#> ft_estu: Total ~ Mod + (1 | Estuary)
#> npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
#> ft_estuInt 3 334.18 339.39 -164.09 328.18
#> ft_estu 4 330.14 337.09 -161.07 322.14 6.0396 1 0.01399 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
There is some evidence of an effect of modification.
confint(ft_estu)
#> Computing profile confidence intervals ...
#> 2.5 % 97.5 %
#> .sig01 0.000000 7.613337
#> .sigma 8.944066 14.084450
#> (Intercept) 32.815440 45.246159
#> ModPristine -19.461059 -2.994392
=ranef(ft_estu,condVar=T)
rftlibrary(lattice)
dotplot(rft)
#> $Estuary
$isMod = as.numeric(estuaries$Mod=="Modified")
estuaries$isPri = as.numeric(estuaries$Mod!="Modified")
estuaries= lmer(Total~Mod+(0+isMod|Estuary)+(0+isPri|Estuary),data=estuaries,REML=F)
ft_estuDiff #> boundary (singular) fit: see help('isSingular')
summary(ft_estuDiff)
#> Linear mixed model fit by maximum likelihood ['lmerMod']
#> Formula: Total ~ Mod + (0 + isMod | Estuary) + (0 + isPri | Estuary)
#> Data: estuaries
#>
#> AIC BIC logLik deviance df.resid
#> 331.7 340.4 -160.8 321.7 37
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -2.2790 -0.7211 0.2024 0.6807 1.9407
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> Estuary isMod 0.00 0.000
#> Estuary.1 isPri 11.39 3.375
#> Residual 118.84 10.901
#> Number of obs: 42, groups: Estuary, 7
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 39.111 2.569 15.22
#> ModPristine -11.303 3.806 -2.97
#>
#> Correlation of Fixed Effects:
#> (Intr)
#> ModPristine -0.675
#> optimizer (nloptwrap) convergence code: 0 (OK)
#> boundary (singular) fit: see help('isSingular')
BIC(ft_estu,ft_estuDiff)
#> df BIC
#> ft_estu 4 337.0880
#> ft_estuDiff 5 340.3501
BIC suggests that we didn’t need a different variance term for each
level of Mod
. (It also estimated the cross-estuary variance
to be zero for modified estuaries, leading to a warning in the
output.)
data(aphidsBACI)
str(aphidsBACI)
#> 'data.frame': 16 obs. of 5 variables:
#> $ Plot : Factor w/ 8 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 1 2 ...
#> $ Treatment: Factor w/ 2 levels "excluded","present": 2 2 2 2 1 1 1 1 2 2 ...
#> $ Time : Factor w/ 2 levels "X18.06.","X15.07.": 1 1 1 1 1 1 1 1 2 2 ...
#> $ counts : int 78 71 122 271 119 152 120 202 60 48 ...
#> $ logcount : num 4.37 4.28 4.81 5.61 4.79 ...
OK so we are looking for a Treatment:Time
interaction,
but to account for repeated measures of each plot, we want a random
effect for Plot
in the model.
=lmer(logcount~Treatment*Time+(1|Plot),data=aphidsBACI)
ft_aphids#> boundary (singular) fit: see help('isSingular')
=lmer(logcount~Time+(1|Plot),data=aphidsBACI)
ft_aphidNull#> boundary (singular) fit: see help('isSingular')
anova(ft_aphidNull,ft_aphids)
#> refitting model(s) with ML (instead of REML)
#> Data: aphidsBACI
#> Models:
#> ft_aphidNull: logcount ~ Time + (1 | Plot)
#> ft_aphids: logcount ~ Treatment * Time + (1 | Plot)
#> npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
#> ft_aphidNull 4 28.204 31.294 -10.1020 20.204
#> ft_aphids 6 26.974 31.609 -7.4868 14.973 5.2304 2 0.07315 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Which gives us marginal evidence of an effect of bird exclusion of aphid counts.
Compare this to what we got when adding Plot
as a fixed
effect:
=lm(logcount~Plot+Treatment*Time,data=aphidsBACI)
lm_aphidsanova(lm_aphids)
#> Analysis of Variance Table
#>
#> Response: logcount
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Plot 7 0.8986 0.1284 0.4603 0.833357
#> Time 1 5.4675 5.4675 19.6038 0.004434 **
#> Treatment:Time 1 0.7397 0.7397 2.6522 0.154527
#> Residuals 6 1.6734 0.2789
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Interestingly, this \(P\)-value is a lot smaller.
summary(lm_aphids)
#>
#> Call:
#> lm(formula = logcount ~ Plot + Treatment * Time, data = aphidsBACI)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.5527 -0.1929 0.0000 0.1929 0.5527
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.6097 0.4175 11.041 3.28e-05 ***
#> Plot2 -0.1559 0.5281 -0.295 0.77776
#> Plot3 0.3378 0.5281 0.640 0.54600
#> Plot4 0.4433 0.5281 0.839 0.43336
#> Plot5 0.2127 0.5904 0.360 0.73105
#> Plot6 0.3530 0.5904 0.598 0.57179
#> Plot7 0.6593 0.5904 1.117 0.30685
#> Plot8 0.2631 0.5904 0.446 0.67154
#> Treatmentpresent NA NA NA NA
#> TimeX15.07. -1.5992 0.3734 -4.282 0.00519 **
#> Treatmentpresent:TimeX15.07. 0.8601 0.5281 1.629 0.15453
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.5281 on 6 degrees of freedom
#> Multiple R-squared: 0.8094, Adjusted R-squared: 0.5235
#> F-statistic: 2.831 on 9 and 6 DF, p-value: 0.1091
summary(ft_aphids)
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: logcount ~ Treatment * Time + (1 | Plot)
#> Data: aphidsBACI
#>
#> REML criterion at convergence: 20.2
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -1.2314 -0.4755 -0.2367 0.3187 1.8824
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> Plot (Intercept) 0.000 0.0000
#> Residual 0.199 0.4461
#> Number of obs: 16, groups: Plot, 8
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 4.9817 0.2231 22.334
#> Treatmentpresent -0.2157 0.3155 -0.684
#> TimeX15.07. -1.5992 0.3155 -5.069
#> Treatmentpresent:TimeX15.07. 0.8601 0.4461 1.928
#>
#> Correlation of Fixed Effects:
#> (Intr) Trtmnt TX15.0
#> Trtmntprsnt -0.707
#> TimeX15.07. -0.707 0.500
#> Tr:TX15.07. 0.500 -0.707 -0.707
#> optimizer (nloptwrap) convergence code: 0 (OK)
#> boundary (singular) fit: see help('isSingular')
We get the same point estimate for the Treatment:Time
effect, but the standard error is slightly smaller in the random effects
model.
data(estuaryZone)
=c("blue","red","lightblue","pink")
colsplot(Total~interaction(Estuary,Zone),data=estuaryZone,col=cols[c(1,2,2,1,2,1,2,3,4,4,3,4,3,4)])
legend("bottomright",legend=c("Mod-Inner","Prist-Inner","Mod-Outer","Pris-Outer"),col=cols,pch=15,pt.cex=2)
It looks like there is an effect of Modification, not sure if there is an interaction (the effect seems more striking in Outer than Inner zones)
par(mfrow=c(1,2),mar=c(3,3,1,1),mgp=c(1.75,0.75,0))
library(lme4)
= lmer(Total~Zone*Mod + (Zone|Estuary), data=estuaryZone )
lme_MZ #> boundary (singular) fit: see help('isSingular')
scatter.smooth(residuals(lme_MZ)~fitted(lme_MZ),
xlab="Fitted values",ylab="Residuals")
abline(h=0,col="red")
scatter.smooth(residuals(lme_MZ)~predict(lme_MZ,re.form=NA),
xlab="Fitted values (no random effects)",ylab="Residuals")
abline(h=0,col="red")
There is a suggestion of less total abundance as fitted values increase, which is super-weird. But it’s not too alarming…
= lmer(Total~Zone+Mod + (Zone|Estuary), data=estuaryZone )
lme_MplusZ #> boundary (singular) fit: see help('isSingular')
anova(lme_MplusZ,lme_MZ)
#> refitting model(s) with ML (instead of REML)
#> Data: estuaryZone
#> Models:
#> lme_MplusZ: Total ~ Zone + Mod + (Zone | Estuary)
#> lme_MZ: Total ~ Zone * Mod + (Zone | Estuary)
#> npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
#> lme_MplusZ 7 595.91 612.31 -290.95 581.91
#> lme_MZ 8 597.14 615.89 -290.57 581.14 0.7618 1 0.3828
No evidence of an interaction between Zone and Modification. Testing
for a Mod
main effect:
= lmer(Total~Zone + (Zone|Estuary), data=estuaryZone )
lme_Z anova(lme_Z,lme_MplusZ)
#> refitting model(s) with ML (instead of REML)
#> Data: estuaryZone
#> Models:
#> lme_Z: Total ~ Zone + (Zone | Estuary)
#> lme_MplusZ: Total ~ Zone + Mod + (Zone | Estuary)
#> npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
#> lme_Z 6 608.43 622.50 -298.22 596.43
#> lme_MplusZ 7 595.91 612.31 -290.95 581.91 14.529 1 0.000138 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
There is strong evidence that total abundance is different between
Modified and Pristine estuaries. The boxplot suggests abundance is
higher in Modified estuaries, and looking at the data, this appears to
be mostly due to high counts of Balanus.variegatus
,
especially in outer modified zones.
Mod
fixed effect in Exercise 6.1.=500
nBoot=rep(NA,nBoot)
bStat= lmer(Total~Mod+(1|Estuary),data=estuaries)
ft_estu for(iBoot in 1:nBoot)
{$TotalSim=unlist(simulate(ft_estu))
estuaries= lmer(TotalSim~Mod+(1|Estuary),data=estuaries)
ft_i = fixef(ft_i)[2]
bStat[iBoot]
}sd(bStat) #standard error of Mod effect
#> [1] 4.237895
And if we compare this to the standard error from
summary
:
summary(ft_estu)
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Total ~ Mod + (1 | Estuary)
#> Data: estuaries
#>
#> REML criterion at convergence: 314.4
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -2.2393 -0.7569 0.1553 0.7372 1.8962
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> Estuary (Intercept) 10.68 3.268
#> Residual 123.72 11.123
#> Number of obs: 42, groups: Estuary, 7
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 39.053 3.237 12.065
#> ModPristine -11.243 4.287 -2.622
#>
#> Correlation of Fixed Effects:
#> (Intr)
#> ModPristine -0.755
we see the estimated standard error is 4.287348, which is pretty close to the value we got by simulation.
= lm(Total~Mod,data=estuaries)
ft_noestu library(ecostats)
anovaPB(ft_noestu,ft_estu,n.sim=99)
#> Error : $ operator not defined for this S4 class
#> Warning in Ops.factor(1, Estuary): '|' not meaningful for factors
#> df deviance LRT Pr(>LRT)
#> ft_noestu 3 322.1963 NA NA
#> ft_estu 4 314.3646 7.831769 0.26
So we have no evidence of an Estuary
effect.
Use the parametric bootstrap to get a formal test for a
zone:mod
interaction.
We can just run the old analysis and change from anova
to anovaPB
:
= lmer(Total~Zone*Mod + (Zone|Estuary), data=estuaryZone, REML=FALSE )
lme_MZ = lmer(Total~Zone+Mod + (Zone|Estuary), data=estuaryZone, REML=FALSE )
lme_MplusZ anovaPB(lme_MplusZ,lme_MZ,n.sim=99)
#> Warning in Ops.factor(Zone, Estuary): '|' not meaningful for factors
#> Data: estuaryZone
#> Models:
#> objectNull: Total ~ Zone + Mod + (Zone | Estuary)
#> object: Total ~ Zone * Mod + (Zone | Estuary)
#> npar AIC BIC logLik deviance Chisq Pr(>Chisq)
#> objectNull 7 595.91 612.31 -290.95 581.91
#> object 8 597.14 615.89 -290.57 581.14 0.7618 0.42
There is no evidence of an interaction.
(Ignore the warnings in the output – this is random stuff that was thrown up in bootstrap resamples that didn’t get a good fit.)
How do results compare to those from when you were using the
anova
function?
Results are similar to what we saw before. The only thing that is different is the \(P\)-value, but it is very similar (suggesting there was no need for a parametric bootstrap here!).
This would all have been so much easier if there wasn’t a random
effect in the model… do we really need Estuary
in
there?
= lmer(Total~Zone*Mod + (Zone|Estuary), data=estuaryZone, REML=FALSE )
lme_MZ = lm(Total~Zone+Mod, data=estuaryZone)
lme_MZnoest anovaPB(lme_MZnoest,lme_MZ,n.sim=99)
#> Error : $ operator not defined for this S4 class
#> Warning in Ops.factor(Zone, Estuary): '|' not meaningful for factors
#> Warning in optwrap(optimizer, devfun, opt$par, lower = rho$lower, control =
#> control, : convergence code -4 from nloptwrap: NLOPT_ROUNDOFF_LIMITED: Roundoff
#> errors led to a breakdown of the optimization algorithm. In this case, the
#> returned minimum may still be useful. (e.g. this error occurs in NEWUOA if one
#> tries to achieve a tolerance too close to machine precision.)
#> Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
#> Model failed to converge with max|grad| = 0.00281884 (tol = 0.002, component 1)
#> df deviance LRT Pr(>LRT)
#> lme_MZnoest 4 582.8273 NA NA
#> lme_MZ 8 581.1436 1.683641 0.36
We have no evidence of an Estuary
effect either!