
Package ‘feamiR’
January 19, 2021

Type Package

Title Classification and Feature Selection for microRNA/mRNA
Interactions

Version 0.1.0

Maintainer Eleanor Williams <ecw63@cam.ac.uk>

Description Comprises a pipeline for predicting microRNA/mRNA interactions, as de-
tailed in Williams, Calinescu, Mohorianu (2020) <doi:10.1101/2020.12.23.424130>. Its in-
put consists of [a] a messenger RNA (mRNA) dataset (either in fasta format, fo-
cused on 3' UTRs or in gtf format; for the latter, the sequences of the 3’ UTRs are generated us-
ing the genomic coordinates), [b] a microRNA dataset (in fasta format, retrieved from miR-
Base, <http://www.mirbase.org/>) and [c] an interaction dataset (in csv format, from miRTar-
Base <http://mirtarbase.cuhk.edu.cn/php/index.php>). To characterise and predict mi-
croRNA/mRNA interactions, we use [a] statistical analyses based on Chi-squared and Fisher ex-
act tests and [b] Machine Learning classifiers (decision trees, random forests and support vec-
tor machines). To enhance the accuracy of the classifiers we also employ feature selection ap-
proaches used in on conjunction with the classifiers. The feature selection approaches in-
clude a voting scheme for decision trees, a measure based on Gini index for random forests, for-
ward feature selection and Genetic Algorithms on SVMs. The pipeline also includes a novel ap-
proach based on embryonic Genetic Algorithms which combines and optimises the forward fea-
ture selection and Genetic Algorithms. All analyses, including the classification and feature se-
lection, are applicable on the microRNA seed features (default), on the full microRNA fea-
tures and/or flanking features on the mRNA. The sets of features can be combined.

Encoding UTF-8

Depends R (>= 3.1.2)

Imports stringr, randomForest, rpart, rpart.plot, GA, e1071, ggplot2,
magrittr, tibble, dplyr, reticulate

Config/reticulate list(packages = list(list(package = ``os''),
list(package = ``argparse''), list(package = ``gzip''),
list(package = ``pandas''), list(package = ``numpy''), list(package
= ``math''), list(package = ``scipy.stats''), list(package =
``matplotlib.pyplot''), list(package = ``seaborn''), list(package =
``statistics''), list(package = ``logging''), list(package = ``Bio'')
))

Suggests parallel, doParallel

1

2 R topics documented:

SystemRequirements Python (>=3.6) sreformat patman

URL https://github.com/Core-Bioinformatics/feamiR

BugReports https://github.com/Core-Bioinformatics/feamiR/issues

LazyData true

RoxygenNote 7.1.1.9000

License GPL-2

NeedsCompilation no

Author Eleanor Williams [aut, cre],
Irina Mohorianu [aut]

Repository CRAN

Date/Publication 2021-01-19 08:30:02 UTC

R topics documented:

decisiontree . 3
dtreevoting . 4
eGA . 4
feamiR . 6
forwardfeatureselection . 8
geneticalgorithm . 9
preparedataset . 11
randomforest . 13
rfgini . 14
runallmodels . 15
selectrfnumtrees . 16
selectsvmkernel . 17
svm . 18
svmlinear . 19
svmpolynomial2 . 20
svmpolynomial3 . 21
svmpolynomial4 . 22
svmradial . 23
svmsigmoid . 24

Index 25

https://github.com/Core-Bioinformatics/feamiR
https://github.com/Core-Bioinformatics/feamiR/issues

decisiontree 3

decisiontree Decision tree Trains a decision on the given training dataset and uses
it to predict classification for test dataset. The resulting accuracy,
sensitivity and specificity are returned, as well as a tree summary.

Description

Decision tree Trains a decision on the given training dataset and uses it to predict classification
for test dataset. The resulting accuracy, sensitivity and specificity are returned, as well as a tree
summary.

Usage

decisiontree(data_train, data_test, includeplot = FALSE, showtree = FALSE)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

includeplot Show performance scatter plot (default:FALSE)

showtree Show trained decision tree graphically (default:FALSE)

Value

List containing performance summary, accessed using training (training accuracy), test (test accu-
racy), trainsensitivity, testsensitivity, trainspecificity, testspecificity. Also accessed using fit is the
trained model produced. This can be used to find the features which appear at each level of the tree.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

decisiontree(data_train,data_test)

4 eGA

dtreevoting Decision tree voting scheme. Implements a feature selection approach
based on Decision Trees, using a voting scheme across the top levels
on trees trained on multiple subsamples.

Description

Decision tree voting scheme. Implements a feature selection approach based on Decision Trees,
using a voting scheme across the top levels on trees trained on multiple subsamples.

Usage

dtreevoting(num_runs = 100, num_levels = 10, file_path = file_path)

Arguments

num_runs Number of subsamples to use for voting scheme (default: 100)

num_levels Number of levels in each tree to consider. Only the features which appear in the
top num_levels levels of the trees (from the root) will be counted

file_path Where the num_runs subsample files are found (e.g. if sample 10 is at ’subsam-
ples/sample10.csv’ then file_path should be ’subsamples/sample’). There must
be enough samples to fulfill num_runs runs.

Value

Outputs a dataframe containing (first column) total number of appearances of each feature (each
row is a feature). The rest of the columns represent 1 run each and contain the level at which the
feature appears.

Examples

dtreevoting(
num_runs=5,
num_levels=10,
file_path=paste(system.file('samples/subsamples', package = "feamiR"),'/sample',sep=''))

eGA Embryonic Genetic Algorithm. Feature selection based on Embryonic
Genetic Algorithms. It performs feature selection by maintaining an
ongoing set of ’good’ set of features which are improved run by run.
It outputs training and test accuracy, sensitivity and specificity and a
list of <=k features.

eGA 5

Description

Embryonic Genetic Algorithm. Feature selection based on Embryonic Genetic Algorithms. It per-
forms feature selection by maintaining an ongoing set of ’good’ set of features which are improved
run by run. It outputs training and test accuracy, sensitivity and specificity and a list of <=k features.

Usage

eGA(
k = 30,
data_train,
data_test,
mutprob = 0.05,
includePlot = FALSE,
maxnumruns = 50

)

Arguments

k Maximum number of features in the output feature set (default:30)

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

mutprob Probability that mutation will be performed for each produced feature set from
forward feature selection (default:0.05)

includePlot Show performance scatter plot (default:FALSE)

maxnumruns Maximum number of iterations after which the feature set will be output, if no
other termination conditions have been met (default:50)

Value

List containing (ordered list of) selected features, performance percentages, accessed using training
(training accuracy), test (test accuracy), trainsensitivity, testsensitivity, trainspecificity, testspeci-
ficity. Also accessed using listofongoing is a list containing the length of the ongoing set at each
stage.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0),
D=c(0,1,1,0,0,0,1,0,0,0),
E=c(1,0,1,0,0,1,0,1,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),

6 feamiR

B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1),
D=c(0,0,1,1,0,1,0,1),
E=c(0,0,1,0,1,0,1,1))

data = read.csv(paste(system.file('samples/subsamples', package = "feamiR"),'/sample0.csv',sep=''))
data = rbind(head(data,50),tail(data,50))
data$classification = as.factor(data$classification)
ind <- sample(2,nrow(data),replace=TRUE,prob=c(0.8,0.2))
data_train <- data[ind==1,]
data_test <- data[ind==2,]
eGA(k=7,data_train,data_test,maxnumruns=3)

feamiR feamiR: Classification and feature selection for microRNA/mRNA in-
teractions

Description

The feamiR package provides two categories of functions: Dataset preparation functions and anal-
ysis functions

Dataset preparation functions

feamiR uses 1 preparation function called preparedataset. There are 2 options for the input mRNA
dataset:

1. Reference genome (fasta) and corresponding annotation file (gtf). From these files, the three
prime UTR sequences will be extracted for alignment. These paths for these files could be for
example a toplevel file and annotation file from Ensembl (e.g. Homo_sapiens.GRCh38.dna.toplevel.fa
and Homo_sapiens.GRCh38.100.chr.gtf). Before using this form of input check consistent
naming of chromosomes between the two files and that the IDs are consistent with the interac-
tions file you intend to use (e.g. using gene names). These files should be specificed using the
fullchromosomes and annotations parameters. If this type of data is supplied you must also
specify the number of chromosomes for the species in question (e.g. 23 for Homo sapiens)
using the chr parameter.

2. Three prime UTR file (fasta). Again check consistent IDs with interactions file. This file
should be specified using the mRNA_3pUTR parameter.

The input miRNA file should be a fasta file containing mature miRNA sequences (e.g. from miR-
Base). Check the miRNA IDs are consistent with the interaction dataset. From the mature se-
quences, the seed sequences will be extracted and saved to a separate fasta file.

The mRNA and miRNA datasets will be used for PaTMaN alignment then split into a positive
dataset (validated interactions) and negative dataset (non-validated interactions with seed matches).
For reformating and PaTMaN alignment both sreformat and patman must be installed and the paths
to the executables specificied with sreformatpath and patmanpath. If the commands sreformat and
patman work on your system then there is no need to specify the path.

To perform this split an interaction dataset must be supplied. This interaction dataset must contain
a ’miRNA’ column, ’Target Gene’ column. It can also contain an Experiments column detailing

feamiR 7

which type of experiment was used to validate the interaction. If this column is supplied some
preprocessing should be performed so there are <=10 unique values. If the Experiments column is
supplied, statistical analysis is performed on the dataset split by experiment type. Finally a ’Sup-
port Type’ column may be included with values ’Functional MTI’,’Functional MTI (Weak)’,’Non-
Functional MTI’ and ’Non-Functional MTI (Weak)’. If this column is supplied and there are enough
positive entries remaining then they will be filtered for only ’Functional MTI’ entries (these entries
are more likely to yield good results).

After alignment, first statistical analysis is performed. By default this is only on seed features but if
specified using the nonseed_miRNA and flankingmRNA parameters then analysis can be performed
on full miRNA features and flanking features. The chi-squared and Fisher exact p-values are saved
in csvs and heatmaps created and saved as jpgs. If Experiments column is supplied in interactions
dataset then statistical analysis is performed for the dataset split by experiment type.

Finally, the negative set is subsampled to be comparable to the positive set for the ML and fea-
ture selection component. Here 100 representative subsamples (checked by chi-squared tests) and
created and labelled (1 if positive, 0 if negative) subsamples are saved in a subsamples folder.

By supplying the positive and negative sets using positiveset and negativeset parameters, the process
skips straight to the statistical analysis stage but this should only be done with positive and negative
sets created by feamiR (although they can be filtered if column names are unchanged)

A prefix for all output files can be supplied using the o parameter.

PLEASE NOTE: To use this function Python (>=3.6) must be installed on your system and the path
specified. The following libraries must also be installed on the Python version you specify: os, Bio,
gtfparse, pandas, numpy, math, scipy.stats, matplotlib.pyplot, seaborn as sns, statistics, logging.

ML and feature selection functions

Using subsamples created by the preparedataset function, feamiR contains several function for cre-
ating miRNA/mRNA classifiers and selecting features which contribute most strongly to the classi-
fiers.

The classifier functions are: decisiontree, randomforest and svm. To select hyperparameters for
randomforest and svm, you should use selectsvmkernel and selectrfnumtrees. This functions will
produce plots through cross validation from which an appropriate number of trees and kernel can
be identified. You should try this on multiple subsamples to check your selection.

Once these hyperparameters are identified, use runallmodels to create and analyse results from De-
cision Trees, Random Forests and SVMs on all 100 subsamples. The selected hyperparameters
using selectsvmkernel and selectrfnumtrees should be input as parameters. The function will output
a data.frame of the achieved test and training accuracy, sensitivity and specificity for each model on
each subsample. Summary boxplots showing accuracy, sensitivity and specificity for each model
will be produced. The function will also output dtreevote containing the features used in the deci-
sion trees for each subsample and the level of the tree at which they appear. Finally, the function
outputs ongoingginis which contains the Gini index for each feature in the Random Forest for each
subsample. The first column of dtreevote contains the number of runs for which each feature was
used which can be used for feature selection. The first column of ongoingginis contains the cumu-
lative Gini index for each feature across the 100 runs which can be used for feature selection.

As well as using the Decision Tree voting scheme and Random Forest cumulative Gini index mea-
sure, feamiR also has three further feature selection approaches. These are the traditional forward-
featureselection and geneticalgorithm approaches as well as a novel approach based on embryonic

8 forwardfeatureselection

Genetic Algorithms using the eGA function. It is recommended that a combination of these fea-
ture selection appraoches across multiple subsamples and the statistical analysis is used to select
discriminative features, for example using summary heatmaps.

forwardfeatureselection

Forward Feature Selection. Performs forward feature selection on the
given list of features, placing them in order of discriminative power
using a given model on the given dataset up to the accuracy plateau.

Description

Forward Feature Selection. Performs forward feature selection on the given list of features, placing
them in order of discriminative power using a given model on the given dataset up to the accuracy
plateau.

Usage

forwardfeatureselection(
model = feamiR::svmlinear,
training,
test,
featurelist,
includePlot = FALSE

)

Arguments

model The ML models used to classify the data, typically SVM with a given kernel

training Training dataset as a data.frame with classification column and column for each
feature.

test Test dataset with matching columns to training.

featurelist List of features to order

includePlot Show number of features vs accuracy line plot (default:FALSE)

Value

Ordered list of most discriminative features when classifying the dataset along with training and
test accuracy, sensitivity and specificity

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0),

geneticalgorithm 9

D=c(0,1,1,0,0,0,1,0,0,0),
E=c(1,0,1,0,0,1,0,1,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1),
D=c(0,0,1,1,0,1,0,1),
E=c(0,0,1,0,1,0,1,1))

listoffeatures = colnames(data_train)[colnames(data_train)!='classification']
forwardfeatureselection(feamiR::svmlinear,data_train,data_test,listoffeatures)

geneticalgorithm Standard Genetic Algorithm. Implements a standard genetic algo-
rithm using GA package (ga) with a fitness function specialised for
feature selection.

Description

Standard Genetic Algorithm. Implements a standard genetic algorithm using GA package (ga) with
a fitness function specialised for feature selection.

Usage

geneticalgorithm(
model = feamiR::svmlinear,
k = 30,
training,
test,
parallel = TRUE,
mutprob = 0.1,
crossprob = 0.8,
popsize = 20,
maxiter = 1000,
maxiter_withoutimprovement = 300,
numberpassedon = 3,
plot = FALSE

)

Arguments

model The ML models used to classify the data, typically SVM with a given kernel

k Maximum number of features to be output.

training Training dataset as a data.frame with classification column and column for each
feature.

test Test dataset with matching columns to training.

parallel Specifies whether GA should be run sequentially or in parallel (default: TRUE)

10 geneticalgorithm

mutprob The probability that an individual undergoes mutation in a particular iteration
(default: 0.1)

crossprob The probability of crossover between pairs of individuals (default: 0.8)

popsize The size of the solution population (default:20)

maxiter The maximum number of iterations to run before termination (default: 1000)

maxiter_withoutimprovement

The maximum number of consecutive iterations without improvement to fitness
before termination (default: 300)

numberpassedon The number of best fitness individuals to be passed on to the next generation in
each iteration (default: 3)

plot Specifies whether GA plot should be shown (default: FALSE)

Value

Set (unordered) of <=k features and training and test accuracy, sensitivity and specificity using these
features.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0),
D=c(0,1,1,0,0,0,1,0,0,0),
E=c(1,0,1,0,0,1,0,1,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1),
D=c(0,0,1,1,0,1,0,1),
E=c(0,0,1,0,1,0,1,1))

geneticalgorithm(
feamiR::svmlinear,
k=2,
data_train,
data_test,
parallel=FALSE,
maxiter=5,
maxiter_withoutimprovement=5,
popsize=10)

preparedataset 11

preparedataset Dataset preparation This step performs all preparation necessary to
perform feamiR analysis, taking a set of mRNAs, a set of miRNAs and
an interaction dataset and creating corresponding positive and nega-
tive datasets for ML modelling.

Description

PLEASE NOTE: This analysis is run in Python so python must be installed and location specified
if not on PATH. Both sreformat and PaTMaN must also be installed and path specified if not on
PATH. Python >= 3.6 is required to use the neccesary packages. The Python component required the
following libraries: os, Bio, gtfparse, pandas, numpy, math, scipy.stats, matplotlib.pyplot, seaborn
as sns, statistics, logging. Please ensure these are installed for the verison of Python you supply.

Usage

preparedataset(
pythonversion = "python",
mRNA_3pUTR = "",
miRNA_full = "",
interactions = "",
annotations = "",
fullchromosomes = "",
seed = 1,
nonseed_miRNA = 0,
flankingmRNA = 0,
UTR_output = "",
chr = "",
o = "feamiR_",
positiveset = "",
negativeset = "",
sreformatpath = "sreformat",
patmanpath = "patman",
patmanoutput = "",
minvalidationentries = 40,
num_runs = 100,
check_python = TRUE

)

Arguments

pythonversion File path for installed Python version (default: python)

mRNA_3pUTR Fasta file of only 3’UTRs, with gene name as name attribute (e.g. Serpinb8)

miRNA_full Fasta file of full mature miRNA hairpins, with miRNA ID as name attribute (e.g.
hsa-miR-576-3p)

12 preparedataset

interactions CSV file containing only validated interactions between miRNA and mRNA
(e.g. from miRTarBase). Must have columns miRNA (e.g. hsa-miR-576-
3p), Target Gene (e.g. Serpinb8) and optionally Experiments (e.g. qRT-PCR)
and/or Support Type (with values Functional MTI, Functional MTI (Weak),
Non-Functional MTI, Non-Functional MTI (Weak))

annotations GTF file (e.g. from Ensembl) with attributes seqname (chromosome), feature
(with 3’UTRs labelled exactly ’three_prime_utr’), transcript_id, gene_id and
gene_name matching fullchromosomes and interactions

fullchromosomes

Fasta file (e.g. top level file from Ensembl) containing full sequence for each
chromosome with name as chromosome (e.g. 1, matching seqname from anno-
tations)

seed Binary, 1 if full miRNA seed features should be included in statistical analysis.
Default: 1.

nonseed_miRNA Binary, 1 if full miRNA features should be included in statistical analysis. Seed
features are always included. Default: 0.

flankingmRNA Binary, 1 if flanking region mRNA features should be included in statistical
analysis. Seed features are always included. Default: 0.

UTR_output String. File name 3’UTR fasta file should be saved as (when annotations and
full chromosomes files are supplied)

chr Number of chromosomes for species in question.

o Output prefix for any files created and saved.

positiveset CSV file containing validated pairs of miRNAs and mRNAs as output by initial
stage of analysis. If positiveset and negative set are input, analysis begins at final
statistical analysis stage.

negativeset CSV file containing non-validated pairs of miRNAs and mRNAs as output by
initial stage of analysis. If positiveset and negative set are input, analysis begins
at final statistical analysis stage.

sreformatpath File path for installed sreformat (default: sreformat)

patmanpath File path for installed patman (default: patman)

patmanoutput TXT file containing patman output (saved as output_prefix + patman_seed.txt).
If supplied, analysis begins at patman output processing stage.

minvalidationentries

Minimum number of entries for a validation category to be considered separately
in statistical analysis (default: 40)

num_runs Number of subsamples to create (default: 100)

check_python Whether the Python version should be checked (default: TRUE)

Details

The function saves various files (using specified output_prefix) and if you wish to start preparation
using one of these pre-output files then these can be specified and preparation will skip to that point
(this should only be done with files output by the function).

randomforest 13

Value

CSV containing full positive and negative sets. Folder statistical_analysis of heatmaps showing
significance of various features under Fisher exact and Chi-squared tests. Seed analysis will always
be run, full miRNA and flanking analysis if the respective parameters are set to 1. Folder subsamples
containing CSVs for 100 subsamples with positive and negative samples equal for use in classifiers
and feature selection.

Examples

preparedataset(
pythonversion=Sys.which('python'),
positiveset = system.file('samples','test_seed_positive.csv',package='feamiR'),
negativeset=system.file('samples','test_seed_negative.csv',package='feamiR'),
o='examples_',
num_runs=0,
check_python=FALSE)

randomforest Random Forest. Trains a random forest on the training dataset and
uses it to predict the classification of the test dataset. The resulting
accuracy, sensitivity and specificity are returned, as well as a summary
of the importance of features in the dataset.

Description

Random Forest. Trains a random forest on the training dataset and uses it to predict the classification
of the test dataset. The resulting accuracy, sensitivity and specificity are returned, as well as a
summary of the importance of features in the dataset.

Usage

randomforest(data_train, data_test, numoftrees = 10, includeplot = FALSE)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

numoftrees Number of trees used in the random forest (default:10)
includeplot Show performance scatter plot (default:FALSE)

Value

List containing performance percentages, accessed using training (training accuracy), test (test ac-
curacy), trainsensitivity, testsensitivity, trainspecificity, testspecificity. Also accessed using impor-
tance is the vector of Mean Decrease in Gini Index. This can be used to find the features which
contribute most to classification.

14 rfgini

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

randomforest(data_train,data_test,numoftrees=5)

rfgini Random Forest cumulative MeanDecreaseGini feature selection. Im-
plements a feature selection approach based on cumulative MeanDe-
creaseGini using Random Forests trained on multiple subsamples.

Description

Random Forest cumulative MeanDecreaseGini feature selection. Implements a feature selection
approach based on cumulative MeanDecreaseGini using Random Forests trained on multiple sub-
samples.

Usage

rfgini(num_runs = 100, num_trees = 30, file_path = file_path)

Arguments

num_runs Number of subsamples to use for voting scheme (default: 100)
num_trees Number of trees for random forest (selected using select_rf_numtrees)
file_path Where the num_runs subsample files are found (e.g. if sample 10 is at ’subsam-

ples/sample10.csv’ then file_path should be ’subsamples/sample’). There must
be enough samples to fulfill num_runs runs.

Value

The function will output a data.frame with cumulative mean decrease in Gini for each feature in the
first columns (each row is a feature) and the rest of the column containing mean decrease in Gini
for each of the num_runs runs.

Examples

rfgini(
num_runs=5,
num_trees=30,
file_path=paste(system.file('samples/subsamples',package = "feamiR"),'/sample',sep=''))

runallmodels 15

runallmodels Run all models. Trains and tests Decision Tree, Random Forest and
SVM models on 100 subsamples and provides a summary of the re-
sults, to select the best model. The number of trees and kernel chosen
by selectsvmkernel and selectrfnumtrees should be used for SVM and
Random Forest respectively. We can use this function to inform feature
selection, using a Decision Tree voting scheme and a Random Forest
measure based on the Gini index.

Description

Run all models. Trains and tests Decision Tree, Random Forest and SVM models on 100 sub-
samples and provides a summary of the results, to select the best model. The number of trees and
kernel chosen by selectsvmkernel and selectrfnumtrees should be used for SVM and Random For-
est respectively. We can use this function to inform feature selection, using a Decision Tree voting
scheme and a Random Forest measure based on the Gini index.

Usage

runallmodels(
num_trees = 20,
kernel = "linear",
degree = 3,
poly = 0,
file_path = file_path,
num_runs = 100

)

Arguments

num_trees Number of trees for random forest (selected using select_rf_numtrees)

kernel Kernel for SVM (select using select_svm_kernel)

degree Degree for SVM kernel (not necessary for linear or sigmoid functions)

poly 1 if polynomial kernel is used, 0 if linear, radial or sigmoid.

file_path Where the <=num_runs subsample files are found (e.g. if sample 10 is at ’sub-
samples/sample10.csv’ then file_path should be ’subsamples/sample’)

num_runs Number of subsamples to loop over (default: 100)

Value

The function will output a data.frame of the achieved test and training accuracy, sensitivity and
specificity for each model on each subsample. Summary boxplots showing accuracy, sensitivity
and specificity for each model will be produced. The function will also output dtreevote containing
the features used in the decision trees for each subsample and the level of the tree at which they
appear. Finally, the function outputs ongoingginis which contains the Gini index for each feature
in the Random Forest for each subsample. The first column of dtreevote contains the number of

16 selectrfnumtrees

runs for which each feature was used which can be used for feature selection. The first column of
ongoingginis contains the cumulative Gini index for each feature across the 100 runs which can be
used for feature selection.

Examples

runallmodels(
num_runs=5,
num_trees=5,
kernel='linear',
poly=0,
file_path=paste(system.file('samples/subsamples', package = "feamiR"),'/sample',sep=''))

selectrfnumtrees Tuning number of trees hyperparameter. Trains random forests with
a range of number of trees so the optimal number can be identified
(using the resulting plot) with cross validation

Description

Tuning number of trees hyperparameter. Trains random forests with a range of number of trees so
the optimal number can be identified (using the resulting plot) with cross validation

Usage

selectrfnumtrees(
data,
maxnum = 100,
title = "",
showplots = TRUE,
output_prefix = ""

)

Arguments

data Dataset: dataframe containing classification column and all other column fea-
tures. Both the training and test datasets will be taken from this dataset.

maxnum Maximum number of trees to be considered. All numbers between 1 and maxnum
will be considered. Default: 100.

title Title to be used for the resulting boxplot

showplots TRUE if plots should be shown in standard output, FALSE is plots should be
saved as jpg files. Default: TRUE.

output_prefix Prefix used for saving plots. If showplots==FALSE then plots are saved here.
Otherwise, standard output.

Value

Dataframe containing test and training accuracy, sensitivity and specificity

selectsvmkernel 17

Examples

data = read.csv(paste(system.file('samples/subsamples', package = "feamiR"),'/sample0.csv',sep=''))
data = rbind(head(data,50),tail(data,50))
data$classification = as.factor(data$classification)
data = data[,2:ncol(data)]
selectrfnumtrees(data,5,'RF boxplots')

selectsvmkernel Tuning SVM kernel. Trains SVMs with a range of kernels (linear, poly-
nomial degree 2, 3 and 4, radial and sigmoid) using cross validation
so the optimal kernel can be chosen (using the resulting plots). If spec-
ified (by showplots=FALSE) the plots are saved as jpegs.

Description

Tuning SVM kernel. Trains SVMs with a range of kernels (linear, polynomial degree 2, 3 and 4,
radial and sigmoid) using cross validation so the optimal kernel can be chosen (using the resulting
plots). If specified (by showplots=FALSE) the plots are saved as jpegs.

Usage

selectsvmkernel(data, title, showplots = TRUE, output_prefix = "")

Arguments

data Dataset: dataframe containing classification column and all other column fea-
tures. Both the training and test datasets will be taken from this dataset.

title Title to be used for the resulting boxplot

showplots TRUE if plots should be shown in standard output, FALSE is plots should be
saved as jpg files.

output_prefix Prefix used for saving plots. If showplots==FALSE then plots are saved here.
Otherwise, standard output.

Value

Dataframe containing test and training accuracy, sensitivity and specificity

Examples

data = read.csv(paste(system.file('samples/subsamples', package = "feamiR"),'/sample0.csv',sep=''))
data = rbind(head(data,50),tail(data,50))
data$classification = as.factor(data$classification)
data = data[,2:ncol(data)]
selectsvmkernel(data,'SVM boxplots')

18 svm

svm SVM

Description

SVM

Usage

svm(
data_train,
data_test,
kernel = "linear",
degree = 3,
poly = 0,
includeplot = FALSE

)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

kernel Type of kernel to use for SVM model (default:linear)

degree Degree for kernel used (in polynomial or radial case)

poly Binary parameter stating whether the chosen kernel is polynomial of degree
greater than 1 (default:0)

includeplot Show performance scatter plot (default:FALSE)

Value

List containing performance percentages, accessed using training (training accuracy), test (test ac-
curacy), trainsensitivity, testsensitivity, trainspecificity, testspecificity.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

svmlinear 19

svm(data_train,data_test,kernel='radial',degree=3)
svm(data_train,data_test,kernel='sigmoid')
svm(data_train,data_test,kernel='poly',degree=4,poly=1)

svmlinear Linear SVM Implements a linear SVM using the general svm function
(for ease of use in feature selection)

Description

Linear SVM Implements a linear SVM using the general svm function (for ease of use in feature
selection)

Usage

svmlinear(data_train, data_test, includeplot = FALSE)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

includeplot Show performance scatter plot (default:FALSE)

Value

List containing performance percentages, accessed using training (training accuracy), test (test ac-
curacy), trainsensitivity, testsensitivity, trainspecificity, testspecificity.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

svmlinear(data_train,data_test)

20 svmpolynomial2

svmpolynomial2 Polynomial degree 2 SVM Implements a polynomial degree 2 SVM us-
ing the general svm function (for ease of use in feature selection)

Description

Polynomial degree 2 SVM Implements a polynomial degree 2 SVM using the general svm function
(for ease of use in feature selection)

Usage

svmpolynomial2(data_train, data_test, includeplot = FALSE)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

includeplot Show performance scatter plot (default:FALSE)

Value

List containing performance percentages, accessed using training (training accuracy), test (test ac-
curacy), trainsensitivity, testsensitivity, trainspecificity, testspecificity.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

svmpolynomial2(data_train,data_test)

svmpolynomial3 21

svmpolynomial3 Polynomial degree 3 SVM Implements a polynomial degree 3 SVM us-
ing the general svm function (for ease of use in feature selection)

Description

Polynomial degree 3 SVM Implements a polynomial degree 3 SVM using the general svm function
(for ease of use in feature selection)

Usage

svmpolynomial3(data_train, data_test, includeplot = FALSE)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

includeplot Show performance scatter plot (default:FALSE)

Value

List containing performance percentages, accessed using training (training accuracy), test (test ac-
curacy), trainsensitivity, testsensitivity, trainspecificity, testspecificity.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

svmpolynomial3(data_train,data_test)

22 svmpolynomial4

svmpolynomial4 Polynomial degree 4 SVM Implements a polynomial degree 4 SVM us-
ing the general svm function (for ease of use in feature selection)

Description

Polynomial degree 4 SVM Implements a polynomial degree 4 SVM using the general svm function
(for ease of use in feature selection)

Usage

svmpolynomial4(data_train, data_test, includeplot = FALSE)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

includeplot Show performance scatter plot (default:FALSE)

Value

List containing performance percentages, accessed using training (training accuracy), test (test ac-
curacy), trainsensitivity, testsensitivity, trainspecificity, testspecificity.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

svmpolynomial4(data_train,data_test)

svmradial 23

svmradial Radial SVM Implements a radial SVM using the general svm function
(for ease of use in feature selection)

Description

Radial SVM Implements a radial SVM using the general svm function (for ease of use in feature
selection)

Usage

svmradial(data_train, data_test, includeplot = FALSE)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

includeplot Show performance scatter plot (default:FALSE)

Value

List containing performance percentages, accessed using training (training accuracy), test (test ac-
curacy), trainsensitivity, testsensitivity, trainspecificity, testspecificity.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

svmradial(data_train,data_test)

24 svmsigmoid

svmsigmoid Sigmoid SVM Implements a sigmoid SVM using general svm function
(for ease of use in feature selection)

Description

Sigmoid SVM Implements a sigmoid SVM using general svm function (for ease of use in feature
selection)

Usage

svmsigmoid(data_train, data_test, includeplot = FALSE)

Arguments

data_train Training set: dataframe containing classification column and all other columns
features. This is the dataset on which the decision tree model is trained.

data_test Test set: dataframe containing classification column and all other columns fea-
tures. This is the dataset on which the decision tree model in tested.

includeplot Show performance scatter plot (default:FALSE)

Value

List containing performance percentages, accessed using training (training accuracy), test (test ac-
curacy), trainsensitivity, testsensitivity, trainspecificity, testspecificity.

Examples

data_train = data.frame(
classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)),
A=c(1,1,1,0,0,0,1,1,1,0),
B=c(0,1,1,0,1,1,0,1,1,0),
C=c(0,0,1,0,0,1,0,0,1,0))

data_test = data.frame(
classification=as.factor(c(1,1,0,0,1,1,1,0)),
A=c(0,0,0,1,0,0,0,1),
B=c(1,1,1,0,0,1,1,1),
C=c(0,0,1,1,0,0,1,1))

svmsigmoid(data_train,data_test)

Index

∗ Gini
rfgini, 14

∗ SVM
selectsvmkernel, 17

∗ classification
decisiontree, 3
randomforest, 13
runallmodels, 15
svm, 18
svmlinear, 19
svmpolynomial2, 20
svmpolynomial3, 21
svmpolynomial4, 22
svmradial, 23
svmsigmoid, 24

∗ decision
decisiontree, 3
dtreevoting, 4
runallmodels, 15

∗ dtree
decisiontree, 3
dtreevoting, 4
runallmodels, 15

∗ eGA
eGA, 4

∗ embryonic
eGA, 4

∗ feature
eGA, 4
forwardfeatureselection, 8
geneticalgorithm, 9
rfgini, 14

∗ forest
rfgini, 14
selectrfnumtrees, 16

∗ forward
forwardfeatureselection, 8

∗ genetic
eGA, 4

geneticalgorithm, 9
∗ hyperparameter

selectrfnumtrees, 16
selectsvmkernel, 17

∗ kernel
selectsvmkernel, 17

∗ random
rfgini, 14
selectrfnumtrees, 16

∗ rf
randomforest, 13
rfgini, 14

∗ scheme
dtreevoting, 4

∗ selection
eGA, 4
forwardfeatureselection, 8
geneticalgorithm, 9
rfgini, 14

∗ svm
svm, 18
svmlinear, 19
svmpolynomial2, 20
svmpolynomial3, 21
svmpolynomial4, 22
svmradial, 23
svmsigmoid, 24

∗ tree
decisiontree, 3
dtreevoting, 4
runallmodels, 15

∗ tuning
selectrfnumtrees, 16
selectsvmkernel, 17

∗ voting
dtreevoting, 4

decisiontree, 3
dtreevoting, 4

25

26 INDEX

eGA, 4

feamiR, 6
forwardfeatureselection, 8

ga, 9
geneticalgorithm, 9

preparedataset, 11

randomforest, 13
rfgini, 14
runallmodels, 15

selectrfnumtrees, 16
selectsvmkernel, 17
svm, 18
svmlinear, 19
svmpolynomial2, 20
svmpolynomial3, 21
svmpolynomial4, 22
svmradial, 23
svmsigmoid, 24

	decisiontree
	dtreevoting
	eGA
	feamiR
	forwardfeatureselection
	geneticalgorithm
	preparedataset
	randomforest
	rfgini
	runallmodels
	selectrfnumtrees
	selectsvmkernel
	svm
	svmlinear
	svmpolynomial2
	svmpolynomial3
	svmpolynomial4
	svmradial
	svmsigmoid
	Index

