
Package ‘forecast’
July 25, 2022

Version 8.17.0

Title Forecasting Functions for Time Series and Linear Models

Description Methods and tools for displaying and analysing
univariate time series forecasts including exponential smoothing
via state space models and automatic ARIMA modelling.

Depends R (>= 3.0.2),

Imports colorspace, fracdiff, generics (>= 0.1.2), ggplot2 (>= 2.2.1),
graphics, lmtest, magrittr, nnet, parallel, Rcpp (>= 0.11.0),
stats, timeDate, tseries, urca, zoo

Suggests forecTheta, knitr, methods, rmarkdown, rticles, seasonal,
testthat, uroot

LinkingTo Rcpp (>= 0.11.0), RcppArmadillo (>= 0.2.35)

LazyData yes

ByteCompile TRUE

BugReports https://github.com/robjhyndman/forecast/issues

License GPL-3

URL https://pkg.robjhyndman.com/forecast/,

https://github.com/robjhyndman/forecast

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation yes

Author Rob Hyndman [aut, cre, cph] (<https://orcid.org/0000-0002-2140-5352>),
George Athanasopoulos [aut] (<https://orcid.org/0000-0002-5389-2802>),
Christoph Bergmeir [aut] (<https://orcid.org/0000-0002-3665-9021>),
Gabriel Caceres [aut] (<https://orcid.org/0000-0002-2947-2023>),
Leanne Chhay [aut],
Kirill Kuroptev [aut],
Mitchell O'Hara-Wild [aut] (<https://orcid.org/0000-0001-6729-7695>),
Fotios Petropoulos [aut] (<https://orcid.org/0000-0003-3039-4955>),

1

https://github.com/robjhyndman/forecast/issues
https://pkg.robjhyndman.com/forecast/
https://github.com/robjhyndman/forecast
https://orcid.org/0000-0002-2140-5352
https://orcid.org/0000-0002-5389-2802
https://orcid.org/0000-0002-3665-9021
https://orcid.org/0000-0002-2947-2023
https://orcid.org/0000-0001-6729-7695
https://orcid.org/0000-0003-3039-4955

2 R topics documented:

Slava Razbash [aut],
Earo Wang [aut] (<https://orcid.org/0000-0001-6448-5260>),
Farah Yasmeen [aut] (<https://orcid.org/0000-0002-1479-5401>),
Daniel Reid [ctb],
David Shaub [ctb],
Federico Garza [ctb],
R Core Team [ctb, cph],
Ross Ihaka [ctb, cph],
Xiaoqian Wang [ctb],
Yuan Tang [ctb] (<https://orcid.org/0000-0001-5243-233X>),
Zhenyu Zhou [ctb]

Maintainer Rob Hyndman <Rob.Hyndman@monash.edu>

Repository CRAN

Date/Publication 2022-07-25 14:10:07 UTC

R topics documented:
forecast-package . 4
accuracy.default . 5
Acf . 7
arfima . 9
Arima . 11
arima.errors . 13
arimaorder . 14
auto.arima . 15
autolayer . 18
autolayer.mts . 19
autoplot.acf . 21
autoplot.decomposed.ts . 23
autoplot.mforecast . 24
baggedModel . 26
bats . 27
bizdays . 29
bld.mbb.bootstrap . 30
BoxCox . 31
BoxCox.lambda . 32
checkresiduals . 33
croston . 34
CV . 36
CVar . 37
dm.test . 38
dshw . 40
easter . 42
ets . 43
findfrequency . 46
fitted.ARFIMA . 47
forecast.baggedModel . 48

https://orcid.org/0000-0001-6448-5260
https://orcid.org/0000-0002-1479-5401
https://orcid.org/0000-0001-5243-233X

R topics documented: 3

forecast.bats . 50
forecast.ets . 51
forecast.fracdiff . 53
forecast.HoltWinters . 56
forecast.lm . 57
forecast.mlm . 59
forecast.modelAR . 61
forecast.mts . 63
forecast.nnetar . 65
forecast.stl . 68
forecast.StructTS . 71
forecast.ts . 73
fourier . 75
gas . 77
getResponse . 77
gghistogram . 78
gglagplot . 79
ggmonthplot . 81
ggseasonplot . 82
ggtsdisplay . 84
gold . 86
is.acf . 86
is.constant . 87
is.forecast . 87
ma . 88
meanf . 89
modelAR . 91
monthdays . 93
mstl . 94
msts . 95
na.interp . 96
ndiffs . 97
nnetar . 98
nsdiffs . 100
ocsb.test . 102
plot.Arima . 103
plot.bats . 105
plot.ets . 106
plot.forecast . 107
residuals.forecast . 110
rwf . 111
seasadj . 114
seasonal . 115
seasonaldummy . 116
ses . 117
simulate.ets . 120
sindexf . 123
splinef . 124

4 forecast-package

StatForecast . 126
subset.ts . 128
taylor . 130
tbats . 131
tbats.components . 133
thetaf . 134
tsclean . 135
tsCV . 136
tslm . 138
tsoutliers . 139
wineind . 140
woolyrnq . 140

Index 142

forecast-package forecast: Forecasting Functions for Time Series and Linear Models

Description

Methods and tools for displaying and analysing univariate time series forecasts including exponen-
tial smoothing via state space models and automatic ARIMA modelling.

Author(s)

Maintainer: Rob Hyndman <Rob.Hyndman@monash.edu> (ORCID) [copyright holder]

Authors:

• George Athanasopoulos (ORCID)

• Christoph Bergmeir (ORCID)

• Gabriel Caceres (ORCID)

• Leanne Chhay

• Kirill Kuroptev

• Mitchell O’Hara-Wild (ORCID)

• Fotios Petropoulos (ORCID)

• Slava Razbash

• Earo Wang (ORCID)

• Farah Yasmeen (ORCID)

Other contributors:

• Daniel Reid [contributor]

• David Shaub [contributor]

• Federico Garza [contributor]

• R Core Team [contributor, copyright holder]

https://orcid.org/0000-0002-2140-5352
https://orcid.org/0000-0002-5389-2802
https://orcid.org/0000-0002-3665-9021
https://orcid.org/0000-0002-2947-2023
https://orcid.org/0000-0001-6729-7695
https://orcid.org/0000-0003-3039-4955
https://orcid.org/0000-0001-6448-5260
https://orcid.org/0000-0002-1479-5401

accuracy.default 5

• Ross Ihaka [contributor, copyright holder]
• Xiaoqian Wang [contributor]
• Yuan Tang (ORCID) [contributor]
• Zhenyu Zhou [contributor]

See Also

Useful links:

• https://pkg.robjhyndman.com/forecast/

• https://github.com/robjhyndman/forecast

• Report bugs at https://github.com/robjhyndman/forecast/issues

accuracy.default Accuracy measures for a forecast model

Description

Returns range of summary measures of the forecast accuracy. If x is provided, the function measures
test set forecast accuracy based on x-f. If x is not provided, the function only produces training
set accuracy measures of the forecasts based on f["x"]-fitted(f). All measures are defined and
discussed in Hyndman and Koehler (2006).

Usage

Default S3 method:
accuracy(object, x, test = NULL, d = NULL, D = NULL, f = NULL, ...)

Arguments

object An object of class “forecast”, or a numerical vector containing forecasts. It
will also work with Arima, ets and lm objects if x is omitted – in which case
training set accuracy measures are returned.

x An optional numerical vector containing actual values of the same length as
object, or a time series overlapping with the times of f.

test Indicator of which elements of x and f to test. If test is NULL, all elements are
used. Otherwise test is a numeric vector containing the indices of the elements
to use in the test.

d An integer indicating the number of lag-1 differences to be used for the denom-
inator in MASE calculation. Default value is 1 for non-seasonal series and 0 for
seasonal series.

D An integer indicating the number of seasonal differences to be used for the de-
nominator in MASE calculation. Default value is 0 for non-seasonal series and
1 for seasonal series.

f Deprecated. Please use ‘object‘ instead.
... Additional arguments depending on the specific method.

https://orcid.org/0000-0001-5243-233X
https://pkg.robjhyndman.com/forecast/
https://github.com/robjhyndman/forecast
https://github.com/robjhyndman/forecast/issues

6 accuracy.default

Details

The measures calculated are:

• ME: Mean Error

• RMSE: Root Mean Squared Error

• MAE: Mean Absolute Error

• MPE: Mean Percentage Error

• MAPE: Mean Absolute Percentage Error

• MASE: Mean Absolute Scaled Error

• ACF1: Autocorrelation of errors at lag 1.

By default, the MASE calculation is scaled using MAE of training set naive forecasts for non-
seasonal time series, training set seasonal naive forecasts for seasonal time series and training set
mean forecasts for non-time series data. If f is a numerical vector rather than a forecast object,
the MASE will not be returned as the training data will not be available.

See Hyndman and Koehler (2006) and Hyndman and Athanasopoulos (2014, Section 2.5) for further
details.

Value

Matrix giving forecast accuracy measures.

Author(s)

Rob J Hyndman

References

Hyndman, R.J. and Koehler, A.B. (2006) "Another look at measures of forecast accuracy". Inter-
national Journal of Forecasting, 22(4), 679-688. Hyndman, R.J. and Athanasopoulos, G. (2018)
"Forecasting: principles and practice", 2nd ed., OTexts, Melbourne, Australia. Section 3.4 "Evalu-
ating forecast accuracy". https://otexts.com/fpp2/accuracy.html.

Examples

fit1 <- rwf(EuStockMarkets[1:200, 1], h = 100)
fit2 <- meanf(EuStockMarkets[1:200, 1], h = 100)
accuracy(fit1)
accuracy(fit2)
accuracy(fit1, EuStockMarkets[201:300, 1])
accuracy(fit2, EuStockMarkets[201:300, 1])
plot(fit1)
lines(EuStockMarkets[1:300, 1])

https://otexts.com/fpp2/accuracy.html

Acf 7

Acf (Partial) Autocorrelation and Cross-Correlation Function Estimation

Description

The function Acf computes (and by default plots) an estimate of the autocorrelation function of a
(possibly multivariate) time series. Function Pacf computes (and by default plots) an estimate of
the partial autocorrelation function of a (possibly multivariate) time series. Function Ccf computes
the cross-correlation or cross-covariance of two univariate series.

Usage

Acf(
x,
lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...

)

Pacf(
x,
lag.max = NULL,
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...

)

Ccf(
x,
y,
lag.max = NULL,
type = c("correlation", "covariance"),
plot = TRUE,
na.action = na.contiguous,
...

)

taperedacf(
x,
lag.max = NULL,
type = c("correlation", "partial"),
plot = TRUE,
calc.ci = TRUE,

8 Acf

level = 95,
nsim = 100,
...

)

taperedpacf(x, ...)

Arguments

x a univariate or multivariate (not Ccf) numeric time series object or a numeric
vector or matrix.

lag.max maximum lag at which to calculate the acf. Default is $10*log10(N/m)$ where
N is the number of observations and m the number of series. Will be auto-
matically limited to one less than the number of observations in the series.

type character string giving the type of acf to be computed. Allowed values are
“correlation” (the default), “covariance” or “partial”.

plot logical. If TRUE (the default) the resulting acf, pacf or ccf is plotted.

na.action function to handle missing values. Default is na.contiguous. Useful alterna-
tives are na.pass and na.interp.

demean Should covariances be about the sample means?

... Additional arguments passed to the plotting function.

y a univariate numeric time series object or a numeric vector.

calc.ci If TRUE, confidence intervals for the ACF/PACF estimates are calculated.

level Percentage level used for the confidence intervals.

nsim The number of bootstrap samples used in estimating the confidence intervals.

Details

The functions improve the acf, pacf and ccf functions. The main differences are that Acf does
not plot a spike at lag 0 when type=="correlation" (which is redundant) and the horizontal axes
show lags in time units rather than seasonal units.

The tapered versions implement the ACF and PACF estimates and plots described in Hyndman
(2015), based on the banded and tapered estimates of autocovariance proposed by McMurry and
Politis (2010).

Value

The Acf, Pacf and Ccf functions return objects of class "acf" as described in acf from the stats
package. The taperedacf and taperedpacf functions return objects of class "mpacf".

Author(s)

Rob J Hyndman

arfima 9

References

Hyndman, R.J. (2015). Discussion of “High-dimensional autocovariance matrices and optimal lin-
ear prediction”. Electronic Journal of Statistics, 9, 792-796.

McMurry, T. L., & Politis, D. N. (2010). Banded and tapered estimates for autocovariance matrices
and the linear process bootstrap. Journal of Time Series Analysis, 31(6), 471-482.

See Also

acf, pacf, ccf, tsdisplay

Examples

Acf(wineind)
Pacf(wineind)
Not run:
taperedacf(wineind, nsim=50)
taperedpacf(wineind, nsim=50)

End(Not run)

arfima Fit a fractionally differenced ARFIMA model

Description

An ARFIMA(p,d,q) model is selected and estimated automatically using the Hyndman-Khandakar
(2008) algorithm to select p and q and the Haslett and Raftery (1989) algorithm to estimate the
parameters including d.

Usage

arfima(
y,
drange = c(0, 0.5),
estim = c("mle", "ls"),
model = NULL,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

10 arfima

Arguments

y a univariate time series (numeric vector).

drange Allowable values of d to be considered. Default of c(0,0.5) ensures a station-
ary model is returned.

estim If estim=="ls", then the ARMA parameters are calculated using the Haslett-
Raftery algorithm. If estim=="mle", then the ARMA parameters are calculated
using full MLE via the arima function.

model Output from a previous call to arfima. If model is passed, this same model is
fitted to y without re-estimating any parameters.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to auto.arima when selecting p and q.

Details

This function combines fracdiff and auto.arima to automatically select and estimate an ARFIMA
model. The fractional differencing parameter is chosen first assuming an ARFIMA(2,d,0) model.
Then the data are fractionally differenced using the estimated d and an ARMA model is selected for
the resulting time series using auto.arima. Finally, the full ARFIMA(p,d,q) model is re-estimated
using fracdiff. If estim=="mle", the ARMA coefficients are refined using arima.

Value

A list object of S3 class "fracdiff", which is described in the fracdiff documentation. A few
additional objects are added to the list including x (the original time series), and the residuals and
fitted values.

Author(s)

Rob J Hyndman and Farah Yasmeen

References

J. Haslett and A. E. Raftery (1989) Space-time Modelling with Long-memory Dependence: As-
sessing Ireland’s Wind Power Resource (with discussion); Applied Statistics 38, 1-50.

Hyndman, R.J. and Khandakar, Y. (2008) "Automatic time series forecasting: The forecast package
for R", Journal of Statistical Software, 26(3).

See Also

fracdiff, auto.arima, forecast.fracdiff.

Arima 11

Examples

library(fracdiff)
x <- fracdiff.sim(100, ma=-.4, d=.3)$series
fit <- arfima(x)
tsdisplay(residuals(fit))

Arima Fit ARIMA model to univariate time series

Description

Largely a wrapper for the arima function in the stats package. The main difference is that this
function allows a drift term. It is also possible to take an ARIMA model from a previous call to
Arima and re-apply it to the data y.

Usage

Arima(
y,
order = c(0, 0, 0),
seasonal = c(0, 0, 0),
xreg = NULL,
include.mean = TRUE,
include.drift = FALSE,
include.constant,
lambda = model$lambda,
biasadj = FALSE,
method = c("CSS-ML", "ML", "CSS"),
model = NULL,
x = y,
...

)

Arguments

y a univariate time series of class ts.

order A specification of the non-seasonal part of the ARIMA model: the three com-
ponents (p, d, q) are the AR order, the degree of differencing, and the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period (which
defaults to frequency(y)). This should be a list with components order and pe-
riod, but a specification of just a numeric vector of length 3 will be turned into a
suitable list with the specification as the order.

xreg Optionally, a numerical vector or matrix of external regressors, which must have
the same number of rows as y. It should not be a data frame.

12 Arima

include.mean Should the ARIMA model include a mean term? The default is TRUE for undif-
ferenced series, FALSE for differenced ones (where a mean would not affect the
fit nor predictions).

include.drift Should the ARIMA model include a linear drift term? (i.e., a linear regression
with ARIMA errors is fitted.) The default is FALSE.

include.constant

If TRUE, then include.mean is set to be TRUE for undifferenced series and
include.drift is set to be TRUE for differenced series. Note that if there is
more than one difference taken, no constant is included regardless of the value
of this argument. This is deliberate as otherwise quadratic and higher order
polynomial trends would be induced.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

method Fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-squares
to find starting values, then maximum likelihood.

model Output from a previous call to Arima. If model is passed, this same model is
fitted to y without re-estimating any parameters.

x Deprecated. Included for backwards compatibility.

... Additional arguments to be passed to arima.

Details

See the arima function in the stats package.

Value

See the arima function in the stats package. The additional objects returned are

x The time series data

xreg The regressors used in fitting (when relevant).

sigma2 The bias adjusted MLE of the innovations variance.

Author(s)

Rob J Hyndman

See Also

auto.arima, forecast.Arima.

arima.errors 13

Examples

library(ggplot2)
WWWusage %>%

Arima(order=c(3,1,0)) %>%
forecast(h=20) %>%
autoplot

Fit model to first few years of AirPassengers data
air.model <- Arima(window(AirPassengers,end=1956+11/12),order=c(0,1,1),

seasonal=list(order=c(0,1,1),period=12),lambda=0)
plot(forecast(air.model,h=48))
lines(AirPassengers)

Apply fitted model to later data
air.model2 <- Arima(window(AirPassengers,start=1957),model=air.model)

Forecast accuracy measures on the log scale.
in-sample one-step forecasts.
accuracy(air.model)
out-of-sample one-step forecasts.
accuracy(air.model2)
out-of-sample multi-step forecasts
accuracy(forecast(air.model,h=48,lambda=NULL),

log(window(AirPassengers,start=1957)))

arima.errors Errors from a regression model with ARIMA errors

Description

Returns time series of the regression residuals from a fitted ARIMA model.

Usage

arima.errors(object)

Arguments

object An object containing a time series model of class Arima.

Details

This is a deprecated function which is identical to residuals.Arima(object, type="regression")
Regression residuals are equal to the original data minus the effect of any regression variables. If
there are no regression variables, the errors will be identical to the original series (possibly adjusted
to have zero mean).

14 arimaorder

Value

A ts object

Author(s)

Rob J Hyndman

See Also

residuals.Arima.

arimaorder Return the order of an ARIMA or ARFIMA model

Description

Returns the order of a univariate ARIMA or ARFIMA model.

Usage

arimaorder(object)

Arguments

object An object of class “Arima”, dQuotear or “fracdiff”. Usually the result of a
call to arima, Arima, auto.arima, ar, arfima or fracdiff.

Value

A numerical vector giving the values p, d and q of the ARIMA or ARFIMA model. For a seasonal
ARIMA model, the returned vector contains the values p, d, q, P , D, Q and m, where m is the
period of seasonality.

Author(s)

Rob J Hyndman

See Also

ar, auto.arima, Arima, arima, arfima.

Examples

WWWusage %>% auto.arima %>% arimaorder

auto.arima 15

auto.arima Fit best ARIMA model to univariate time series

Description

Returns best ARIMA model according to either AIC, AICc or BIC value. The function conducts a
search over possible model within the order constraints provided.

Usage

auto.arima(
y,
d = NA,
D = NA,
max.p = 5,
max.q = 5,
max.P = 2,
max.Q = 2,
max.order = 5,
max.d = 2,
max.D = 1,
start.p = 2,
start.q = 2,
start.P = 1,
start.Q = 1,
stationary = FALSE,
seasonal = TRUE,
ic = c("aicc", "aic", "bic"),
stepwise = TRUE,
nmodels = 94,
trace = FALSE,
approximation = (length(x) > 150 | frequency(x) > 12),
method = NULL,
truncate = NULL,
xreg = NULL,
test = c("kpss", "adf", "pp"),
test.args = list(),
seasonal.test = c("seas", "ocsb", "hegy", "ch"),
seasonal.test.args = list(),
allowdrift = TRUE,
allowmean = TRUE,
lambda = NULL,
biasadj = FALSE,
parallel = FALSE,
num.cores = 2,
x = y,
...

16 auto.arima

)

Arguments

y a univariate time series

d Order of first-differencing. If missing, will choose a value based on test.

D Order of seasonal-differencing. If missing, will choose a value based on season.test.

max.p Maximum value of p

max.q Maximum value of q

max.P Maximum value of P

max.Q Maximum value of Q

max.order Maximum value of p+q+P+Q if model selection is not stepwise.

max.d Maximum number of non-seasonal differences

max.D Maximum number of seasonal differences

start.p Starting value of p in stepwise procedure.

start.q Starting value of q in stepwise procedure.

start.P Starting value of P in stepwise procedure.

start.Q Starting value of Q in stepwise procedure.

stationary If TRUE, restricts search to stationary models.

seasonal If FALSE, restricts search to non-seasonal models.

ic Information criterion to be used in model selection.

stepwise If TRUE, will do stepwise selection (faster). Otherwise, it searches over all mod-
els. Non-stepwise selection can be very slow, especially for seasonal models.

nmodels Maximum number of models considered in the stepwise search.

trace If TRUE, the list of ARIMA models considered will be reported.

approximation If TRUE, estimation is via conditional sums of squares and the information crite-
ria used for model selection are approximated. The final model is still computed
using maximum likelihood estimation. Approximation should be used for long
time series or a high seasonal period to avoid excessive computation times.

method fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-squares
to find starting values, then maximum likelihood. Can be abbreviated.

truncate An integer value indicating how many observations to use in model selection.
The last truncate values of the series are used to select a model when truncate
is not NULL and approximation=TRUE. All observations are used if either truncate=NULL
or approximation=FALSE.

xreg Optionally, a numerical vector or matrix of external regressors, which must have
the same number of rows as y. (It should not be a data frame.)

test Type of unit root test to use. See ndiffs for details.

test.args Additional arguments to be passed to the unit root test.

auto.arima 17

seasonal.test This determines which method is used to select the number of seasonal differ-
ences. The default method is to use a measure of seasonal strength computed
from an STL decomposition. Other possibilities involve seasonal unit root tests.

seasonal.test.args

Additional arguments to be passed to the seasonal unit root test. See nsdiffs
for details.

allowdrift If TRUE, models with drift terms are considered.
allowmean If TRUE, models with a non-zero mean are considered.
lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is

automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

parallel If TRUE and stepwise = FALSE, then the specification search is done in parallel.
This can give a significant speedup on multicore machines.

num.cores Allows the user to specify the amount of parallel processes to be used if parallel
= TRUE and stepwise = FALSE. If NULL, then the number of logical cores is au-
tomatically detected and all available cores are used.

x Deprecated. Included for backwards compatibility.
... Additional arguments to be passed to arima.

Details

The default arguments are designed for rapid estimation of models for many time series. If you are
analysing just one time series, and can afford to take some more time, it is recommended that you
set stepwise=FALSE and approximation=FALSE.

Non-stepwise selection can be slow, especially for seasonal data. The stepwise algorithm outlined
in Hyndman & Khandakar (2008) is used except that the default method for selecting seasonal
differences is now based on an estimate of seasonal strength (Wang, Smith & Hyndman, 2006)
rather than the Canova-Hansen test. There are also some other minor variations to the algorithm
described in Hyndman and Khandakar (2008).

Value

Same as for Arima

Author(s)

Rob J Hyndman

References

Hyndman, RJ and Khandakar, Y (2008) "Automatic time series forecasting: The forecast package
for R", Journal of Statistical Software, 26(3).

Wang, X, Smith, KA, Hyndman, RJ (2006) "Characteristic-based clustering for time series data",
Data Mining and Knowledge Discovery, 13(3), 335-364.

18 autolayer

See Also

Arima

Examples

fit <- auto.arima(WWWusage)
plot(forecast(fit,h=20))

autolayer Create a ggplot layer appropriate to a particular data type

Description

autolayer() uses ggplot2 to draw a particular layer for an object of a particular class in a single
command. This defines the S3 generic that other classes and packages can extend.

Usage

autolayer(object, ...)

Arguments

object an object, whose class will determine the behaviour of autolayer

... other arguments passed to specific methods

Value

a ggplot layer

See Also

autoplot(), ggplot() and fortify()

autolayer.mts 19

autolayer.mts Automatically create a ggplot for time series objects

Description

autoplot takes an object of type ts or mts and creates a ggplot object suitable for usage with
stat_forecast.

Usage

S3 method for class 'mts'
autolayer(object, colour = TRUE, series = NULL, ...)

S3 method for class 'msts'
autolayer(object, series = NULL, ...)

S3 method for class 'ts'
autolayer(object, colour = TRUE, series = NULL, ...)

S3 method for class 'ts'
autoplot(
object,
series = NULL,
xlab = "Time",
ylab = deparse(substitute(object)),
main = NULL,
...

)

S3 method for class 'mts'
autoplot(
object,
colour = TRUE,
facets = FALSE,
xlab = "Time",
ylab = deparse(substitute(object)),
main = NULL,
...

)

S3 method for class 'msts'
autoplot(object, ...)

S3 method for class 'ts'
fortify(model, data, ...)

20 autolayer.mts

Arguments

object Object of class “ts” or “mts”.

colour If TRUE, the time series will be assigned a colour aesthetic

series Identifies the time series with a colour, which integrates well with the function-
ality of geom_forecast.

... Other plotting parameters to affect the plot.

xlab X-axis label.

ylab Y-axis label.

main Main title.

facets If TRUE, multiple time series will be faceted (and unless specified, colour is set
to FALSE). If FALSE, each series will be assigned a colour.

model Object of class “ts” to be converted to “data.frame”.

data Not used (required for fortify method)

Details

fortify.ts takes a ts object and converts it into a data frame (for usage with ggplot2).

Value

None. Function produces a ggplot graph.

Author(s)

Mitchell O’Hara-Wild

See Also

plot.ts, fortify

Examples

library(ggplot2)
autoplot(USAccDeaths)

lungDeaths <- cbind(mdeaths, fdeaths)
autoplot(lungDeaths)
autoplot(lungDeaths, facets=TRUE)

autoplot.acf 21

autoplot.acf ggplot (Partial) Autocorrelation and Cross-Correlation Function Es-
timation and Plotting

Description

Produces a ggplot object of their equivalent Acf, Pacf, Ccf, taperedacf and taperedpacf functions.

Usage

S3 method for class 'acf'
autoplot(object, ci = 0.95, ...)

ggAcf(
x,
lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...

)

ggPacf(
x,
lag.max = NULL,
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...

)

ggCcf(
x,
y,
lag.max = NULL,
type = c("correlation", "covariance"),
plot = TRUE,
na.action = na.contiguous,
...

)

S3 method for class 'mpacf'
autoplot(object, ...)

ggtaperedacf(
x,

22 autoplot.acf

lag.max = NULL,
type = c("correlation", "partial"),
plot = TRUE,
calc.ci = TRUE,
level = 95,
nsim = 100,
...

)

ggtaperedpacf(x, ...)

Arguments

object Object of class “acf”.

ci coverage probability for confidence interval. Plotting of the confidence interval
is suppressed if ci is zero or negative.

... Other plotting parameters to affect the plot.

x a univariate or multivariate (not Ccf) numeric time series object or a numeric
vector or matrix.

lag.max maximum lag at which to calculate the acf.

type character string giving the type of acf to be computed. Allowed values are
"correlation" (the default), “covariance” or “partial”.

plot logical. If TRUE (the default) the resulting ACF, PACF or CCF is plotted.

na.action function to handle missing values. Default is na.contiguous. Useful alterna-
tives are na.pass and na.interp.

demean Should covariances be about the sample means?

y a univariate numeric time series object or a numeric vector.

calc.ci If TRUE, confidence intervals for the ACF/PACF estimates are calculated.

level Percentage level used for the confidence intervals.

nsim The number of bootstrap samples used in estimating the confidence intervals.

Details

If autoplot is given an acf or mpacf object, then an appropriate ggplot object will be created.

ggtaperedpacf

Value

A ggplot object.

Author(s)

Mitchell O’Hara-Wild

autoplot.decomposed.ts 23

See Also

plot.acf, Acf, acf, taperedacf

Examples

library(ggplot2)
ggAcf(wineind)
wineind %>% Acf(plot=FALSE) %>% autoplot
Not run:
wineind %>% taperedacf(plot=FALSE) %>% autoplot
ggtaperedacf(wineind)
ggtaperedpacf(wineind)
End(Not run)
ggCcf(mdeaths, fdeaths)

autoplot.decomposed.ts

Plot time series decomposition components using ggplot

Description

Produces a ggplot object of seasonally decomposed time series for objects of class “stl” (created
with stl), class “seas” (created with seas), or class “decomposed.ts” (created with decompose).

Usage

S3 method for class 'decomposed.ts'
autoplot(object, labels = NULL, range.bars = NULL, ...)

S3 method for class 'stl'
autoplot(object, labels = NULL, range.bars = TRUE, ...)

S3 method for class 'StructTS'
autoplot(object, labels = NULL, range.bars = TRUE, ...)

S3 method for class 'seas'
autoplot(object, labels = NULL, range.bars = NULL, ...)

S3 method for class 'mstl'
autoplot(object, ...)

Arguments

object Object of class “seas”, “stl”, or “decomposed.ts”.

labels Labels to replace “seasonal”, “trend”, and “remainder”.

24 autoplot.mforecast

range.bars Logical indicating if each plot should have a bar at its right side representing
relative size. If NULL, automatic selection takes place.

... Other plotting parameters to affect the plot.

Value

Returns an object of class ggplot.

Author(s)

Mitchell O’Hara-Wild

See Also

seas, stl, decompose, StructTS, plot.stl.

Examples

library(ggplot2)
co2 %>%

decompose() %>%
autoplot()

nottem %>%
stl(s.window = "periodic") %>%
autoplot()

Not run:
library(seasonal)
seas(USAccDeaths) %>% autoplot()

End(Not run)

autoplot.mforecast Multivariate forecast plot

Description

Plots historical data with multivariate forecasts and prediction intervals.

Usage

S3 method for class 'mforecast'
autoplot(object, PI = TRUE, facets = TRUE, colour = FALSE, ...)

S3 method for class 'mforecast'
autolayer(object, series = NULL, PI = TRUE, ...)

S3 method for class 'mforecast'
plot(x, main = paste("Forecasts from", unique(x$method)), xlab = "time", ...)

autoplot.mforecast 25

Arguments

object Multivariate forecast object of class mforecast. Used for ggplot graphics (S3
method consistency).

PI If FALSE, confidence intervals will not be plotted, giving only the forecast line.

facets If TRUE, multiple time series will be faceted. If FALSE, each series will be
assigned a colour.

colour If TRUE, the time series will be assigned a colour aesthetic

... additional arguments to each individual plot.

series Matches an unidentified forecast layer with a coloured object on the plot.

x Multivariate forecast object of class mforecast.

main Main title. Default is the forecast method. For autoplot, specify a vector of titles
for each plot.

xlab X-axis label. For autoplot, specify a vector of labels for each plot.

Details

autoplot will produce an equivalent plot as a ggplot object.

Author(s)

Mitchell O’Hara-Wild

References

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

See Also

plot.forecast, plot.ts

Examples

library(ggplot2)

lungDeaths <- cbind(mdeaths, fdeaths)
fit <- tslm(lungDeaths ~ trend + season)
fcast <- forecast(fit, h=10)
plot(fcast)
autoplot(fcast)

carPower <- as.matrix(mtcars[,c("qsec","hp")])
carmpg <- mtcars[,"mpg"]
fit <- lm(carPower ~ carmpg)
fcast <- forecast(fit, newdata=data.frame(carmpg=30))
plot(fcast, xlab="Year")
autoplot(fcast, xlab=rep("Year",2))

https://otexts.com/fpp2/

26 baggedModel

baggedModel Forecasting using a bagged model

Description

The bagged model forecasting method.

Usage

baggedModel(y, bootstrapped_series = bld.mbb.bootstrap(y, 100), fn = ets, ...)

baggedETS(y, bootstrapped_series = bld.mbb.bootstrap(y, 100), ...)

Arguments

y A numeric vector or time series of class ts.
bootstrapped_series

bootstrapped versions of y.

fn the forecast function to use. Default is ets.

... Other arguments passed to the forecast function.

Details

This function implements the bagged model forecasting method described in Bergmeir et al. By
default, the ets function is applied to all bootstrapped series. Base models other than ets can
be given by the parameter fn. Using the default parameters, the function bld.mbb.bootstrap is
used to calculate the bootstrapped series with the Box-Cox and Loess-based decomposition (BLD)
bootstrap. The function forecast.baggedModel can then be used to calculate forecasts.

baggedETS is a wrapper for baggedModel, setting fn to "ets". This function is included for back-
wards compatibility only, and may be deprecated in the future.

Value

Returns an object of class "baggedModel".

The function print is used to obtain and print a summary of the results.

models A list containing the fitted ensemble models.

method The function for producing a forecastable model.

y The original time series.
bootstrapped_series

The bootstrapped series.

modelargs The arguments passed through to fn.

fitted Fitted values (one-step forecasts). The mean of the fitted values is calculated
over the ensemble.

residuals Original values minus fitted values.

bats 27

Author(s)

Christoph Bergmeir, Fotios Petropoulos

References

Bergmeir, C., R. J. Hyndman, and J. M. Benitez (2016). Bagging Exponential Smoothing Methods
using STL Decomposition and Box-Cox Transformation. International Journal of Forecasting 32,
303-312.

Examples

fit <- baggedModel(WWWusage)
fcast <- forecast(fit)
plot(fcast)

bats BATS model (Exponential smoothing state space model with Box-Cox
transformation, ARMA errors, Trend and Seasonal components)

Description

Fits a BATS model applied to y, as described in De Livera, Hyndman & Snyder (2011). Parallel
processing is used by default to speed up the computations.

Usage

bats(
y,
use.box.cox = NULL,
use.trend = NULL,
use.damped.trend = NULL,
seasonal.periods = NULL,
use.arma.errors = TRUE,
use.parallel = length(y) > 1000,
num.cores = 2,
bc.lower = 0,
bc.upper = 1,
biasadj = FALSE,
model = NULL,
...

)

28 bats

Arguments

y The time series to be forecast. Can be numeric, msts or ts. Only univariate
time series are supported.

use.box.cox TRUE/FALSE indicates whether to use the Box-Cox transformation or not. If
NULL then both are tried and the best fit is selected by AIC.

use.trend TRUE/FALSE indicates whether to include a trend or not. If NULL then both are
tried and the best fit is selected by AIC.

use.damped.trend

TRUE/FALSE indicates whether to include a damping parameter in the trend or
not. If NULL then both are tried and the best fit is selected by AIC.

seasonal.periods

If y is a numeric then seasonal periods can be specified with this parameter.
use.arma.errors

TRUE/FALSE indicates whether to include ARMA errors or not. If TRUE the best
fit is selected by AIC. If FALSE then the selection algorithm does not consider
ARMA errors.

use.parallel TRUE/FALSE indicates whether or not to use parallel processing.

num.cores The number of parallel processes to be used if using parallel processing. If NULL
then the number of logical cores is detected and all available cores are used.

bc.lower The lower limit (inclusive) for the Box-Cox transformation.

bc.upper The upper limit (inclusive) for the Box-Cox transformation.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If TRUE,
point forecasts and fitted values are mean forecast. Otherwise, these points can
be considered the median of the forecast densities.

model Output from a previous call to bats. If model is passed, this same model is fitted
to y without re-estimating any parameters.

... Additional arguments to be passed to auto.arima when choose an ARMA(p,
q) model for the errors. (Note that xreg will be ignored, as will any arguments
concerning seasonality and differencing, but arguments controlling the values of
p and q will be used.)

Value

An object of class "bats". The generic accessor functions fitted.values and residuals extract
useful features of the value returned by bats and associated functions. The fitted model is des-
ignated BATS(omega, p,q, phi, m1,...mJ) where omega is the Box-Cox parameter and phi is the
damping parameter; the error is modelled as an ARMA(p,q) process and m1,...,mJ list the seasonal
periods used in the model.

Author(s)

Slava Razbash and Rob J Hyndman

bizdays 29

References

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex
seasonal patterns using exponential smoothing, Journal of the American Statistical Association,
106(496), 1513-1527.

Examples

Not run:
fit <- bats(USAccDeaths)
plot(forecast(fit))

taylor.fit <- bats(taylor)
plot(forecast(taylor.fit))

End(Not run)

bizdays Number of trading days in each season

Description

Returns number of trading days in each month or quarter of the observed time period in a major
financial center.

Usage

bizdays(x, FinCenter = c("New York", "London", "NERC", "Toronto", "Zurich"))

Arguments

x Monthly or quarterly time series

FinCenter Major financial center.

Details

Useful for trading days length adjustments. More on how to define "business days", please refer to
isBizday.

Value

Time series

Author(s)

Earo Wang

30 bld.mbb.bootstrap

See Also

monthdays

Examples

x <- ts(rnorm(30), start = c(2013, 2), frequency = 12)
bizdays(x, FinCenter = "New York")

bld.mbb.bootstrap Box-Cox and Loess-based decomposition bootstrap.

Description

Generates bootstrapped versions of a time series using the Box-Cox and Loess-based decomposition
bootstrap.

Usage

bld.mbb.bootstrap(x, num, block_size = NULL)

Arguments

x Original time series.

num Number of bootstrapped versions to generate.

block_size Block size for the moving block bootstrap.

Details

The procedure is described in Bergmeir et al. Box-Cox decomposition is applied, together with STL
or Loess (for non-seasonal time series), and the remainder is bootstrapped using a moving block
bootstrap.

Value

A list with bootstrapped versions of the series. The first series in the list is the original series.

Author(s)

Christoph Bergmeir, Fotios Petropoulos

References

Bergmeir, C., R. J. Hyndman, and J. M. Benitez (2016). Bagging Exponential Smoothing Methods
using STL Decomposition and Box-Cox Transformation. International Journal of Forecasting 32,
303-312.

BoxCox 31

See Also

baggedETS.

Examples

bootstrapped_series <- bld.mbb.bootstrap(WWWusage, 100)

BoxCox Box Cox Transformation

Description

BoxCox() returns a transformation of the input variable using a Box-Cox transformation. InvBox-
Cox() reverses the transformation.

Usage

BoxCox(x, lambda)

InvBoxCox(x, lambda, biasadj = FALSE, fvar = NULL)

Arguments

x a numeric vector or time series of class ts.

lambda transformation parameter. If lambda = "auto", then the transformation param-
eter lambda is chosen using BoxCox.lambda (with a lower bound of -0.9)

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

fvar Optional parameter required if biasadj=TRUE. Can either be the forecast vari-
ance, or a list containing the interval level, and the corresponding upper and
lower intervals.

Details

The Box-Cox transformation (as given by Bickel & Doksum 1981) is given by

fλ(x) = sign(x)(|x|λ − 1)/λ

if λ 6= 0. For λ = 0,
f0(x) = log(x)

.

32 BoxCox.lambda

Value

a numeric vector of the same length as x.

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211–246. Bickel, P.
J. and Doksum K. A. (1981) An Analysis of Transformations Revisited. JASA 76 296-311.

See Also

BoxCox.lambda

Examples

lambda <- BoxCox.lambda(lynx)
lynx.fit <- ar(BoxCox(lynx,lambda))
plot(forecast(lynx.fit,h=20,lambda=lambda))

BoxCox.lambda Automatic selection of Box Cox transformation parameter

Description

If method=="guerrero", Guerrero’s (1993) method is used, where lambda minimizes the coeffi-
cient of variation for subseries of x.

Usage

BoxCox.lambda(x, method = c("guerrero", "loglik"), lower = -1, upper = 2)

Arguments

x a numeric vector or time series of class ts

method Choose method to be used in calculating lambda.

lower Lower limit for possible lambda values.

upper Upper limit for possible lambda values.

Details

If method=="loglik", the value of lambda is chosen to maximize the profile log likelihood of a
linear model fitted to x. For non-seasonal data, a linear time trend is fitted while for seasonal data,
a linear time trend with seasonal dummy variables is used.

checkresiduals 33

Value

a number indicating the Box-Cox transformation parameter.

Author(s)

Leanne Chhay and Rob J Hyndman

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211–246.

Guerrero, V.M. (1993) Time-series analysis supported by power transformations. Journal of Fore-
casting, 12, 37–48.

See Also

BoxCox

Examples

lambda <- BoxCox.lambda(AirPassengers,lower=0)
air.fit <- Arima(AirPassengers, order=c(0,1,1),

seasonal=list(order=c(0,1,1),period=12), lambda=lambda)
plot(forecast(air.fit))

checkresiduals Check that residuals from a time series model look like white noise

Description

If plot=TRUE, produces a time plot of the residuals, the corresponding ACF, and a histogram. If the
degrees of freedom for the model can be determined and test is not FALSE, the output from either
a Ljung-Box test or Breusch-Godfrey test is printed.

Usage

checkresiduals(object, lag, df = NULL, test, plot = TRUE, ...)

Arguments

object Either a time series model, a forecast object, or a time series (assumed to be
residuals).

lag Number of lags to use in the Ljung-Box or Breusch-Godfrey test. If missing,
it is set to min(10,n/5) for non-seasonal data, and min(2m, n/5) for seasonal
data, where n is the length of the series, and m is the seasonal period of the data.
It is further constrained to be at least df+3 where df is the degrees of freedom
of the model. This ensures there are at least 3 degrees of freedom used in the
chi-squared test.

34 croston

df Number of degrees of freedom for fitted model, required for the Ljung-Box or
Breusch-Godfrey test. Ignored if the degrees of freedom can be extracted from
object.

test Test to use for serial correlation. By default, if object is of class lm, then
test="BG". Otherwise, test="LB". Setting test=FALSE will prevent the test
results being printed.

plot Logical. If TRUE, will produce the plot.

... Other arguments are passed to ggtsdisplay.

Value

None

Author(s)

Rob J Hyndman

See Also

ggtsdisplay, Box.test, bgtest

Examples

fit <- ets(WWWusage)
checkresiduals(fit)

croston Forecasts for intermittent demand using Croston’s method

Description

Returns forecasts and other information for Croston’s forecasts applied to y.

Usage

croston(y, h = 10, alpha = 0.1, x = y)

Arguments

y a numeric vector or time series of class ts

h Number of periods for forecasting.

alpha Value of alpha. Default value is 0.1.

x Deprecated. Included for backwards compatibility.

croston 35

Details

Based on Croston’s (1972) method for intermittent demand forecasting, also described in Shenstone
and Hyndman (2005). Croston’s method involves using simple exponential smoothing (SES) on the
non-zero elements of the time series and a separate application of SES to the times between non-
zero elements of the time series. The smoothing parameters of the two applications of SES are
assumed to be equal and are denoted by alpha.
Note that prediction intervals are not computed as Croston’s method has no underlying stochastic
model.

Value

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model. The first element gives the
model used for non-zero demands. The second element gives the model used
for times between non-zero demands. Both elements are of class forecast.

method The name of the forecasting method as a character string
mean Point forecasts as a time series
x The original time series (either object itself or the time series used to create the

model stored as object).
residuals Residuals from the fitted model. That is y minus fitted values.
fitted Fitted values (one-step forecasts)

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts.
The generic accessor functions fitted.values and residuals extract useful features of the value
returned by croston and associated functions.

Author(s)

Rob J Hyndman

References

Croston, J. (1972) "Forecasting and stock control for intermittent demands", Operational Research
Quarterly, 23(3), 289-303.
Shenstone, L., and Hyndman, R.J. (2005) "Stochastic models underlying Croston’s method for
intermittent demand forecasting". Journal of Forecasting, 24, 389-402.

See Also

ses.

Examples

y <- rpois(20,lambda=.3)
fcast <- croston(y)
plot(fcast)

36 CV

CV Cross-validation statistic

Description

Computes the leave-one-out cross-validation statistic (the mean of PRESS – prediction residual sum
of squares), AIC, corrected AIC, BIC and adjusted R^2 values for a linear model.

Usage

CV(obj)

Arguments

obj output from lm or tslm

Value

Numerical vector containing CV, AIC, AICc, BIC and AdjR2 values.

Author(s)

Rob J Hyndman

See Also

AIC

Examples

y <- ts(rnorm(120,0,3) + 20*sin(2*pi*(1:120)/12), frequency=12)
fit1 <- tslm(y ~ trend + season)
fit2 <- tslm(y ~ season)
CV(fit1)
CV(fit2)

CVar 37

CVar k-fold Cross-Validation applied to an autoregressive model

Description

CVar computes the errors obtained by applying an autoregressive modelling function to subsets of
the time series y using k-fold cross-validation as described in Bergmeir, Hyndman and Koo (2015).
It also applies a Ljung-Box test to the residuals. If this test is significant (see returned pvalue), there
is serial correlation in the residuals and the model can be considered to be underfitting the data. In
this case, the cross-validated errors can underestimate the generalization error and should not be
used.

Usage

CVar(
y,
k = 10,
FUN = nnetar,
cvtrace = FALSE,
blocked = FALSE,
LBlags = 24,
...

)

Arguments

y Univariate time series

k Number of folds to use for cross-validation.

FUN Function to fit an autoregressive model. Currently, it only works with the nnetar
function.

cvtrace Provide progress information.

blocked choose folds randomly or as blocks?

LBlags lags for the Ljung-Box test, defaults to 24, for yearly series can be set to 20

... Other arguments are passed to FUN.

Value

A list containing information about the model and accuracy for each fold, plus other summary
information computed across folds.

Author(s)

Gabriel Caceres and Rob J Hyndman

38 dm.test

References

Bergmeir, C., Hyndman, R.J., Koo, B. (2018) A note on the validity of cross-validation for eval-
uating time series prediction. Computational Statistics & Data Analysis, 120, 70-83. https:
//robjhyndman.com/publications/cv-time-series/.

See Also

CV, tsCV.

Examples

modelcv <- CVar(lynx, k=5, lambda=0.15)
print(modelcv)
print(modelcv$fold1)

library(ggplot2)
autoplot(lynx, series="Data") +

autolayer(modelcv$testfit, series="Fits") +
autolayer(modelcv$residuals, series="Residuals")

ggAcf(modelcv$residuals)

dm.test Diebold-Mariano test for predictive accuracy

Description

The Diebold-Mariano test compares the forecast accuracy of two forecast methods.

Usage

dm.test(
e1,
e2,
alternative = c("two.sided", "less", "greater"),
h = 1,
power = 2,
varestimator = c("acf", "bartlett")

)

Arguments

e1 Forecast errors from method 1.

e2 Forecast errors from method 2.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

https://robjhyndman.com/publications/cv-time-series/
https://robjhyndman.com/publications/cv-time-series/

dm.test 39

h The forecast horizon used in calculating e1 and e2.

power The power used in the loss function. Usually 1 or 2.

varestimator a character string specifying the long-run variance estimator. Options are "acf"
(default) or "bartlett".

Details

This function implements the modified test proposed by Harvey, Leybourne and Newbold (1997).
The null hypothesis is that the two methods have the same forecast accuracy. For alternative="less",
the alternative hypothesis is that method 2 is less accurate than method 1. For alternative="greater",
the alternative hypothesis is that method 2 is more accurate than method 1. For alternative="two.sided",
the alternative hypothesis is that method 1 and method 2 have different levels of accuracy. The long-
run variance estimator can either the auto-correlation estimator varestimator = "acf", or the es-
timator based on Bartlett weights varestimator = "bartlett" which ensures a positive estimate.
Both long-run variance estimators are proposed in Diebold and Mariano (1995).

Value

A list with class "htest" containing the following components:

statistic the value of the DM-statistic.

parameter the forecast horizon and loss function power used in the test.

alternative a character string describing the alternative hypothesis.

varestimator a character string describing the long-run variance estimator.

p.value the p-value for the test.

method a character string with the value "Diebold-Mariano Test".

data.name a character vector giving the names of the two error series.

Author(s)

George Athanasopoulos and Kirill Kuroptev

References

Diebold, F.X. and Mariano, R.S. (1995) Comparing predictive accuracy. Journal of Business and
Economic Statistics, 13, 253-263.

Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of prediction mean squared
errors. International Journal of forecasting, 13(2), 281-291.

Examples

Test on in-sample one-step forecasts
f1 <- ets(WWWusage)
f2 <- auto.arima(WWWusage)
accuracy(f1)
accuracy(f2)
dm.test(residuals(f1), residuals(f2), h=1)

40 dshw

Test on out-of-sample one-step forecasts
f1 <- ets(WWWusage[1:80])
f2 <- auto.arima(WWWusage[1:80])
f1.out <- ets(WWWusage[81:100],model=f1)
f2.out <- Arima(WWWusage[81:100],model=f2)
accuracy(f1.out)
accuracy(f2.out)
dm.test(residuals(f1.out), residuals(f2.out), h=1)

dshw Double-Seasonal Holt-Winters Forecasting

Description

Returns forecasts using Taylor’s (2003) Double-Seasonal Holt-Winters method.

Usage

dshw(
y,
period1 = NULL,
period2 = NULL,
h = 2 * max(period1, period2),
alpha = NULL,
beta = NULL,
gamma = NULL,
omega = NULL,
phi = NULL,
lambda = NULL,
biasadj = FALSE,
armethod = TRUE,
model = NULL

)

Arguments

y Either an msts object with two seasonal periods or a numeric vector.

period1 Period of the shorter seasonal period. Only used if y is not an msts object.

period2 Period of the longer seasonal period. Only used if y is not an msts object.

h Number of periods for forecasting.

alpha Smoothing parameter for the level. If NULL, the parameter is estimated using
least squares.

beta Smoothing parameter for the slope. If NULL, the parameter is estimated using
least squares.

dshw 41

gamma Smoothing parameter for the first seasonal period. If NULL, the parameter is
estimated using least squares.

omega Smoothing parameter for the second seasonal period. If NULL, the parameter is
estimated using least squares.

phi Autoregressive parameter. If NULL, the parameter is estimated using least squares.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

armethod If TRUE, the forecasts are adjusted using an AR(1) model for the errors.

model If it’s specified, an existing model is applied to a new data set.

Details

Taylor’s (2003) double-seasonal Holt-Winters method uses additive trend and multiplicative sea-
sonality, where there are two seasonal components which are multiplied together. For example,
with a series of half-hourly data, one would set period1=48 for the daily period and period2=336
for the weekly period. The smoothing parameter notation used here is different from that in Taylor
(2003); instead it matches that used in Hyndman et al (2008) and that used for the ets function.

Value

An object of class "forecast" which is a list that includes the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

x The original time series.

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by dshw.

Author(s)

Rob J Hyndman

42 easter

References

Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential
smoothing. Journal of the Operational Research Society, 54, 799-805.

Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponential
smoothing: the state space approach, Springer-Verlag. http://www.exponentialsmoothing.
net.

See Also

HoltWinters, ets.

Examples

Not run:
fcast <- dshw(taylor)
plot(fcast)

t <- seq(0,5,by=1/20)
x <- exp(sin(2*pi*t) + cos(2*pi*t*4) + rnorm(length(t),0,.1))
fit <- dshw(x,20,5)
plot(fit)

End(Not run)

easter Easter holidays in each season

Description

Returns a vector of 0’s and 1’s or fractional results if Easter spans March and April in the observed
time period. Easter is defined as the days from Good Friday to Easter Sunday inclusively, plus
optionally Easter Monday if easter.mon=TRUE.

Usage

easter(x, easter.mon = FALSE)

Arguments

x Monthly or quarterly time series

easter.mon If TRUE, the length of Easter holidays includes Easter Monday.

Details

Useful for adjusting calendar effects.

http://www.exponentialsmoothing.net
http://www.exponentialsmoothing.net

ets 43

Value

Time series

Author(s)

Earo Wang

Examples

easter(wineind, easter.mon = TRUE)

ets Exponential smoothing state space model

Description

Returns ets model applied to y.

Usage

ets(
y,
model = "ZZZ",
damped = NULL,
alpha = NULL,
beta = NULL,
gamma = NULL,
phi = NULL,
additive.only = FALSE,
lambda = NULL,
biasadj = FALSE,
lower = c(rep(1e-04, 3), 0.8),
upper = c(rep(0.9999, 3), 0.98),
opt.crit = c("lik", "amse", "mse", "sigma", "mae"),
nmse = 3,
bounds = c("both", "usual", "admissible"),
ic = c("aicc", "aic", "bic"),
restrict = TRUE,
allow.multiplicative.trend = FALSE,
use.initial.values = FALSE,
na.action = c("na.contiguous", "na.interp", "na.fail"),
...

)

44 ets

Arguments

y a numeric vector or time series of class ts

model Usually a three-character string identifying method using the framework termi-
nology of Hyndman et al. (2002) and Hyndman et al. (2008). The first letter
denotes the error type ("A", "M" or "Z"); the second letter denotes the trend type
("N","A","M" or "Z"); and the third letter denotes the season type ("N","A","M"
or "Z"). In all cases, "N"=none, "A"=additive, "M"=multiplicative and "Z"=automatically
selected. So, for example, "ANN" is simple exponential smoothing with addi-
tive errors, "MAM" is multiplicative Holt-Winters’ method with multiplicative
errors, and so on.
It is also possible for the model to be of class "ets", and equal to the output
from a previous call to ets. In this case, the same model is fitted to y without
re-estimating any smoothing parameters. See also the use.initial.values
argument.

damped If TRUE, use a damped trend (either additive or multiplicative). If NULL, both
damped and non-damped trends will be tried and the best model (according to
the information criterion ic) returned.

alpha Value of alpha. If NULL, it is estimated.

beta Value of beta. If NULL, it is estimated.

gamma Value of gamma. If NULL, it is estimated.

phi Value of phi. If NULL, it is estimated.

additive.only If TRUE, will only consider additive models. Default is FALSE.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated. When lambda
is specified, additive.only is set to TRUE.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

lower Lower bounds for the parameters (alpha, beta, gamma, phi). Ignored if bounds=="admissible".

upper Upper bounds for the parameters (alpha, beta, gamma, phi). Ignored if bounds=="admissible".

opt.crit Optimization criterion. One of "mse" (Mean Square Error), "amse" (Average
MSE over first nmse forecast horizons), "sigma" (Standard deviation of residu-
als), "mae" (Mean of absolute residuals), or "lik" (Log-likelihood, the default).

nmse Number of steps for average multistep MSE (1<=nmse<=30).

bounds Type of parameter space to impose: "usual" indicates all parameters must lie
between specified lower and upper bounds; "admissible" indicates parameters
must lie in the admissible space; "both" (default) takes the intersection of these
regions.

ic Information criterion to be used in model selection.

restrict If TRUE (default), the models with infinite variance will not be allowed.

ets 45

allow.multiplicative.trend

If TRUE, models with multiplicative trend are allowed when searching for a
model. Otherwise, the model space excludes them. This argument is ignored if
a multiplicative trend model is explicitly requested (e.g., using model="MMN").

use.initial.values

If TRUE and model is of class "ets", then the initial values in the model are also
not re-estimated.

na.action A function which indicates what should happen when the data contains NA val-
ues. By default, the largest contiguous portion of the time-series will be used.

... Other undocumented arguments.

Details

Based on the classification of methods as described in Hyndman et al (2008).

The methodology is fully automatic. The only required argument for ets is the time series. The
model is chosen automatically if not specified. This methodology performed extremely well on the
M3-competition data. (See Hyndman, et al, 2002, below.)

Value

An object of class "ets".

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by ets and associated functions.

Author(s)

Rob J Hyndman

References

Hyndman, R.J., Koehler, A.B., Snyder, R.D., and Grose, S. (2002) "A state space framework for
automatic forecasting using exponential smoothing methods", International J. Forecasting, 18(3),
439–454.

Hyndman, R.J., Akram, Md., and Archibald, B. (2008) "The admissible parameter space for expo-
nential smoothing models". Annals of Statistical Mathematics, 60(2), 407–426.

Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponential
smoothing: the state space approach, Springer-Verlag. http://www.exponentialsmoothing.
net.

See Also

HoltWinters, rwf, Arima.

Examples

fit <- ets(USAccDeaths)
plot(forecast(fit))

http://www.exponentialsmoothing.net
http://www.exponentialsmoothing.net

46 findfrequency

findfrequency Find dominant frequency of a time series

Description

findfrequency returns the period of the dominant frequency of a time series. For seasonal data, it
will return the seasonal period. For cyclic data, it will return the average cycle length.

Usage

findfrequency(x)

Arguments

x a numeric vector or time series of class ts

Details

The dominant frequency is determined from a spectral analysis of the time series. First, a linear
trend is removed, then the spectral density function is estimated from the best fitting autoregressive
model (based on the AIC). If there is a large (possibly local) maximum in the spectral density
function at frequency f , then the function will return the period 1/f (rounded to the nearest integer).
If no such dominant frequency can be found, the function will return 1.

Value

an integer value

Author(s)

Rob J Hyndman

Examples

findfrequency(USAccDeaths) # Monthly data
findfrequency(taylor) # Half-hourly data
findfrequency(lynx) # Annual data

fitted.ARFIMA 47

fitted.ARFIMA h-step in-sample forecasts for time series models.

Description

Returns h-step forecasts for the data used in fitting the model.

Usage

S3 method for class 'ARFIMA'
fitted(object, h = 1, ...)

S3 method for class 'Arima'
fitted(object, h = 1, ...)

S3 method for class 'ar'
fitted(object, ...)

S3 method for class 'bats'
fitted(object, h = 1, ...)

S3 method for class 'ets'
fitted(object, h = 1, ...)

S3 method for class 'modelAR'
fitted(object, h = 1, ...)

S3 method for class 'nnetar'
fitted(object, h = 1, ...)

S3 method for class 'tbats'
fitted(object, h = 1, ...)

Arguments

object An object of class "Arima", "bats", "tbats", "ets" or "nnetar".

h The number of steps to forecast ahead.

... Other arguments.

Value

A time series of the h-step forecasts.

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

48 forecast.baggedModel

See Also

forecast.Arima, forecast.bats, forecast.tbats, forecast.ets, forecast.nnetar, residuals.Arima,
residuals.bats, residuals.tbats, residuals.ets, residuals.nnetar.

Examples

fit <- ets(WWWusage)
plot(WWWusage)
lines(fitted(fit), col='red')
lines(fitted(fit, h=2), col='green')
lines(fitted(fit, h=3), col='blue')
legend("topleft", legend=paste("h =",1:3), col=2:4, lty=1)

forecast.baggedModel Forecasting using a bagged model

Description

Returns forecasts and other information for bagged models.

Usage

S3 method for class 'baggedModel'
forecast(
object,
h = ifelse(frequency(object$y) > 1, 2 * frequency(object$y), 10),
...

)

Arguments

object An object of class "baggedModel" resulting from a call to baggedModel.

h Number of periods for forecasting.

... Other arguments, passed on to the forecast function of the original method

Details

Intervals are calculated as min and max values over the point forecasts from the models in the
ensemble. I.e., the intervals are not prediction intervals, but give an indication of how different the
forecasts within the ensemble are.

forecast.baggedModel 49

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

xreg The external regressors used in fitting (if given).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

Author(s)

Christoph Bergmeir, Fotios Petropoulos

References

Bergmeir, C., R. J. Hyndman, and J. M. Benitez (2016). Bagging Exponential Smoothing Methods
using STL Decomposition and Box-Cox Transformation. International Journal of Forecasting 32,
303-312.

See Also

baggedModel.

Examples

fit <- baggedModel(WWWusage)
fcast <- forecast(fit)
plot(fcast)

Not run:
fit2 <- baggedModel(WWWusage, fn="auto.arima")
fcast2 <- forecast(fit2)
plot(fcast2)
accuracy(fcast2)
End(Not run)

50 forecast.bats

forecast.bats Forecasting using BATS and TBATS models

Description

Forecasts h steps ahead with a BATS model. Prediction intervals are also produced.

Usage

S3 method for class 'bats'
forecast(object, h, level = c(80, 95), fan = FALSE, biasadj = NULL, ...)

S3 method for class 'tbats'
forecast(object, h, level = c(80, 95), fan = FALSE, biasadj = NULL, ...)

Arguments

object An object of class "bats". Usually the result of a call to bats.

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If TRUE,
point forecasts and fitted values are mean forecast. Otherwise, these points can
be considered the median of the forecast densities.

... Other arguments, currently ignored.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.bats.

An object of class "forecast" is a list containing at least the following elements:

model A copy of the bats object

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

forecast.ets 51

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model.

fitted Fitted values (one-step forecasts)

Author(s)

Slava Razbash and Rob J Hyndman

References

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex
seasonal patterns using exponential smoothing, Journal of the American Statistical Association,
106(496), 1513-1527.

See Also

bats, tbats,forecast.ets.

Examples

Not run:
fit <- bats(USAccDeaths)
plot(forecast(fit))

taylor.fit <- bats(taylor)
plot(forecast(taylor.fit))

End(Not run)

forecast.ets Forecasting using ETS models

Description

Returns forecasts and other information for univariate ETS models.

Usage

S3 method for class 'ets'
forecast(
object,
h = ifelse(object$m > 1, 2 * object$m, 10),
level = c(80, 95),
fan = FALSE,
simulate = FALSE,

52 forecast.ets

bootstrap = FALSE,
npaths = 5000,
PI = TRUE,
lambda = object$lambda,
biasadj = NULL,
...

)

Arguments

object An object of class "ets". Usually the result of a call to ets.

h Number of periods for forecasting

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

simulate If TRUE, prediction intervals are produced by simulation rather than using ana-
lytic formulae. Errors are assumed to be normally distributed.

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors).

npaths Number of sample paths used in computing simulated prediction intervals.

PI If TRUE, prediction intervals are produced, otherwise only point forecasts are
calculated. If PI is FALSE, then level, fan, simulate, bootstrap and npaths
are all ignored.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.ets.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

forecast.fracdiff 53

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model. For models with additive errors, the residuals
are x - fitted values. For models with multiplicative errors, the residuals are
equal to x /(fitted values) - 1.

fitted Fitted values (one-step forecasts)

Author(s)

Rob J Hyndman

See Also

ets, ses, holt, hw.

Examples

fit <- ets(USAccDeaths)
plot(forecast(fit,h=48))

forecast.fracdiff Forecasting using ARIMA or ARFIMA models

Description

Returns forecasts and other information for univariate ARIMA models.

Usage

S3 method for class 'fracdiff'
forecast(
object,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = NULL,
...

)

S3 method for class 'Arima'
forecast(
object,
h = ifelse(object$arma[5] > 1, 2 * object$arma[5], 10),

54 forecast.fracdiff

level = c(80, 95),
fan = FALSE,
xreg = NULL,
lambda = object$lambda,
bootstrap = FALSE,
npaths = 5000,
biasadj = NULL,
...

)

S3 method for class 'ar'
forecast(
object,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
bootstrap = FALSE,
npaths = 5000,
biasadj = FALSE,
...

)

Arguments

object An object of class "Arima", "ar" or "fracdiff". Usually the result of a call to
arima, auto.arima, ar, arfima or fracdiff.

h Number of periods for forecasting. If xreg is used, h is ignored and the number
of forecast periods is set to the number of rows of xreg.

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments.

xreg Future values of an regression variables (for class Arima objects only). A nu-
merical vector or matrix of external regressors; it should not be a data frame.

bootstrap If TRUE, then prediction intervals computed using simulation with resampled
errors.

npaths Number of sample paths used in computing simulated prediction intervals when
bootstrap=TRUE.

forecast.fracdiff 55

Details

For Arima or ar objects, the function calls predict.Arima or predict.ar and constructs an object
of class "forecast" from the results. For fracdiff objects, the calculations are all done within
forecast.fracdiff using the equations given by Peiris and Perera (1988).

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.Arima.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model
method The name of the forecasting method as a character string
mean Point forecasts as a time series
lower Lower limits for prediction intervals
upper Upper limits for prediction intervals
level The confidence values associated with the prediction intervals
x The original time series (either object itself or the time series used to create the

model stored as object).
residuals Residuals from the fitted model. That is x minus fitted values.
fitted Fitted values (one-step forecasts)

Author(s)

Rob J Hyndman

References

Peiris, M. & Perera, B. (1988), On prediction with fractionally differenced ARIMA models, Journal
of Time Series Analysis, 9(3), 215-220.

See Also

predict.Arima, predict.ar, auto.arima, Arima, arima, ar, arfima.

Examples

fit <- Arima(WWWusage,c(3,1,0))
plot(forecast(fit))

library(fracdiff)
x <- fracdiff.sim(100, ma=-.4, d=.3)$series
fit <- arfima(x)
plot(forecast(fit,h=30))

56 forecast.HoltWinters

forecast.HoltWinters Forecasting using Holt-Winters objects

Description

Returns forecasts and other information for univariate Holt-Winters time series models.

Usage

S3 method for class 'HoltWinters'
forecast(
object,
h = ifelse(frequency(object$x) > 1, 2 * frequency(object$x), 10),
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = NULL,
...

)

Arguments

object An object of class "HoltWinters". Usually the result of a call to HoltWinters.

h Number of periods for forecasting

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments.

Details

This function calls predict.HoltWinters and constructs an object of class "forecast" from the
results.

It is included for completeness, but the ets is recommended for use instead of HoltWinters.

forecast.lm 57

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.HoltWinters.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model.

fitted Fitted values (one-step forecasts)

Author(s)

Rob J Hyndman

See Also

predict.HoltWinters, HoltWinters.

Examples

fit <- HoltWinters(WWWusage,gamma=FALSE)
plot(forecast(fit))

forecast.lm Forecast a linear model with possible time series components

Description

forecast.lm is used to predict linear models, especially those involving trend and seasonality
components.

58 forecast.lm

Usage

S3 method for class 'lm'
forecast(
object,
newdata,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = NULL,
ts = TRUE,
...

)

Arguments

object Object of class "lm", usually the result of a call to lm or tslm.

newdata An optional data frame in which to look for variables with which to predict.
If omitted, it is assumed that the only variables are trend and season, and h
forecasts are produced.

h Number of periods for forecasting. Ignored if newdata present.

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

ts If TRUE, the forecasts will be treated as time series provided the original data is
a time series; the newdata will be interpreted as related to the subsequent time
periods. If FALSE, any time series attributes of the original data will be ignored.

... Other arguments passed to predict.lm().

Details

forecast.lm is largely a wrapper for predict.lm() except that it allows variables "trend" and
"season" which are created on the fly from the time series characteristics of the data. Also, the
output is reformatted into a forecast object.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

forecast.mlm 59

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.lm.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The historical data for the response variable.

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values

Author(s)

Rob J Hyndman

See Also

tslm, lm.

Examples

y <- ts(rnorm(120,0,3) + 1:120 + 20*sin(2*pi*(1:120)/12), frequency=12)
fit <- tslm(y ~ trend + season)
plot(forecast(fit, h=20))

forecast.mlm Forecast a multiple linear model with possible time series components

Description

forecast.mlm is used to predict multiple linear models, especially those involving trend and sea-
sonality components.

60 forecast.mlm

Usage

S3 method for class 'mlm'
forecast(
object,
newdata,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = NULL,
ts = TRUE,
...

)

Arguments

object Object of class "mlm", usually the result of a call to lm or tslm.

newdata An optional data frame in which to look for variables with which to predict.
If omitted, it is assumed that the only variables are trend and season, and h
forecasts are produced.

h Number of periods for forecasting. Ignored if newdata present.

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

ts If TRUE, the forecasts will be treated as time series provided the original data is
a time series; the newdata will be interpreted as related to the subsequent time
periods. If FALSE, any time series attributes of the original data will be ignored.

... Other arguments passed to forecast.lm().

Details

forecast.mlm is largely a wrapper for forecast.lm() except that it allows forecasts to be gener-
ated on multiple series. Also, the output is reformatted into a mforecast object.

Value

An object of class "mforecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

forecast.modelAR 61

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.lm.

An object of class "mforecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a multivariate time series

lower Lower limits for prediction intervals of each series

upper Upper limits for prediction intervals of each series

level The confidence values associated with the prediction intervals

x The historical data for the response variable.

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values

Author(s)

Mitchell O’Hara-Wild

See Also

tslm, forecast.lm, lm.

Examples

lungDeaths <- cbind(mdeaths, fdeaths)
fit <- tslm(lungDeaths ~ trend + season)
fcast <- forecast(fit, h=10)

carPower <- as.matrix(mtcars[,c("qsec","hp")])
carmpg <- mtcars[,"mpg"]
fit <- lm(carPower ~ carmpg)
fcast <- forecast(fit, newdata=data.frame(carmpg=30))

forecast.modelAR Forecasting using user-defined model

Description

Returns forecasts and other information for user-defined models.

62 forecast.modelAR

Usage

S3 method for class 'modelAR'
forecast(
object,
h = ifelse(object$m > 1, 2 * object$m, 10),
PI = FALSE,
level = c(80, 95),
fan = FALSE,
xreg = NULL,
lambda = object$lambda,
bootstrap = FALSE,
npaths = 1000,
innov = NULL,
...

)

Arguments

object An object of class "modelAR" resulting from a call to modelAR.

h Number of periods for forecasting. If xreg is used, h is ignored and the number
of forecast periods is set to the number of rows of xreg.

PI If TRUE, prediction intervals are produced, otherwise only point forecasts are
calculated. If PI is FALSE, then level, fan, bootstrap and npaths are all
ignored.

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

xreg Future values of external regressor variables.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

bootstrap If TRUE, then prediction intervals computed using simulations with resampled
residuals rather than normally distributed errors. Ignored if innov is not NULL.

npaths Number of sample paths used in computing simulated prediction intervals.

innov Values to use as innovations for prediction intervals. Must be a matrix with
h rows and npaths columns (vectors are coerced into a matrix). If present,
bootstrap is ignored.

... Additional arguments passed to simulate.nnetar

Details

Prediction intervals are calculated through simulations and can be slow. Note that if the model is too
complex and overfits the data, the residuals can be arbitrarily small; if used for prediction interval
calculations, they could lead to misleadingly small values.

forecast.mts 63

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.nnetar.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

xreg The external regressors used in fitting (if given).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

... Other arguments

Author(s)

Rob J Hyndman and Gabriel Caceres

See Also

nnetar.

forecast.mts Forecasting time series

Description

mforecast is a class of objects for forecasting from multivariate time series or multivariate time
series models. The function invokes particular methods which depend on the class of the first
argument.

64 forecast.mts

Usage

S3 method for class 'mts'
forecast(
object,
h = ifelse(frequency(object) > 1, 2 * frequency(object), 10),
level = c(80, 95),
fan = FALSE,
robust = FALSE,
lambda = NULL,
biasadj = FALSE,
find.frequency = FALSE,
allow.multiplicative.trend = FALSE,
...

)

Arguments

object a multivariate time series or multivariate time series model for which forecasts
are required

h Number of periods for forecasting

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

robust If TRUE, the function is robust to missing values and outliers in object. This
argument is only valid when object is of class mts.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

find.frequency If TRUE, the function determines the appropriate period, if the data is of un-
known period.

allow.multiplicative.trend

If TRUE, then ETS models with multiplicative trends are allowed. Otherwise,
only additive or no trend ETS models are permitted.

... Additional arguments affecting the forecasts produced.

Details

For example, the function forecast.mlm makes multivariate forecasts based on the results pro-
duced by tslm.

forecast.nnetar 65

Value

An object of class "mforecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the multivariate forecasts and prediction intervals.

The generic accessors functions fitted.values and residuals extract various useful features of
the value returned by forecast$model.

An object of class "mforecast" is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model. For models with additive errors, the residuals
will be x minus the fitted values.

fitted Fitted values (one-step forecasts)

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

See Also

Other functions which return objects of class "mforecast" are forecast.mlm, forecast.varest.

forecast.nnetar Forecasting using neural network models

Description

Returns forecasts and other information for univariate neural network models.

Usage

S3 method for class 'nnetar'
forecast(
object,
h = ifelse(object$m > 1, 2 * object$m, 10),
PI = FALSE,
level = c(80, 95),
fan = FALSE,

66 forecast.nnetar

xreg = NULL,
lambda = object$lambda,
bootstrap = FALSE,
npaths = 1000,
innov = NULL,
...

)

Arguments

object An object of class "nnetar" resulting from a call to nnetar.

h Number of periods for forecasting. If xreg is used, h is ignored and the number
of forecast periods is set to the number of rows of xreg.

PI If TRUE, prediction intervals are produced, otherwise only point forecasts are
calculated. If PI is FALSE, then level, fan, bootstrap and npaths are all
ignored.

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

xreg Future values of external regressor variables.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

bootstrap If TRUE, then prediction intervals computed using simulations with resampled
residuals rather than normally distributed errors. Ignored if innov is not NULL.

npaths Number of sample paths used in computing simulated prediction intervals.

innov Values to use as innovations for prediction intervals. Must be a matrix with
h rows and npaths columns (vectors are coerced into a matrix). If present,
bootstrap is ignored.

... Additional arguments passed to simulate.nnetar

Details

Prediction intervals are calculated through simulations and can be slow. Note that if the network
is too complex and overfits the data, the residuals can be arbitrarily small; if used for prediction
interval calculations, they could lead to misleadingly small values. It is possible to use out-of-
sample residuals to ameliorate this, see examples.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.nnetar.

An object of class "forecast" is a list containing at least the following elements:

forecast.nnetar 67

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

xreg The external regressors used in fitting (if given).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

... Other arguments

Author(s)

Rob J Hyndman and Gabriel Caceres

See Also

nnetar.

Examples

Fit & forecast model
fit <- nnetar(USAccDeaths, size=2)
fcast <- forecast(fit, h=20)
plot(fcast)

Not run:
Include prediction intervals in forecast
fcast2 <- forecast(fit, h=20, PI=TRUE, npaths=100)
plot(fcast2)

Set up out-of-sample innovations using cross-validation
fit_cv <- CVar(USAccDeaths, size=2)
res_sd <- sd(fit_cv$residuals, na.rm=TRUE)
myinnovs <- rnorm(20*100, mean=0, sd=res_sd)
Forecast using new innovations
fcast3 <- forecast(fit, h=20, PI=TRUE, npaths=100, innov=myinnovs)
plot(fcast3)

End(Not run)

68 forecast.stl

forecast.stl Forecasting using stl objects

Description

Forecasts of STL objects are obtained by applying a non-seasonal forecasting method to the sea-
sonally adjusted data and re-seasonalizing using the last year of the seasonal component.

Usage

S3 method for class 'stl'
forecast(
object,
method = c("ets", "arima", "naive", "rwdrift"),
etsmodel = "ZZN",
forecastfunction = NULL,
h = frequency(object$time.series) * 2,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = NULL,
xreg = NULL,
newxreg = NULL,
allow.multiplicative.trend = FALSE,
...

)

stlm(
y,
s.window = 7 + 4 * seq(6),
robust = FALSE,
method = c("ets", "arima"),
modelfunction = NULL,
model = NULL,
etsmodel = "ZZN",
lambda = NULL,
biasadj = FALSE,
xreg = NULL,
allow.multiplicative.trend = FALSE,
x = y,
...

)

S3 method for class 'stlm'
forecast(
object,
h = 2 * object$m,

forecast.stl 69

level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = NULL,
newxreg = NULL,
allow.multiplicative.trend = FALSE,
...

)

stlf(
y,
h = frequency(x) * 2,
s.window = 7 + 4 * seq(6),
t.window = NULL,
robust = FALSE,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

Arguments

object An object of class stl or stlm. Usually the result of a call to stl or stlm.

method Method to use for forecasting the seasonally adjusted series.

etsmodel The ets model specification passed to ets. By default it allows any non-seasonal
model. If method!="ets", this argument is ignored.

forecastfunction

An alternative way of specifying the function for forecasting the seasonally ad-
justed series. If forecastfunction is not NULL, then method is ignored. Other-
wise method is used to specify the forecasting method to be used.

h Number of periods for forecasting.

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

xreg Historical regressors to be used in auto.arima() when method=="arima".

newxreg Future regressors to be used in forecast.Arima().
allow.multiplicative.trend

If TRUE, then ETS models with multiplicative trends are allowed. Otherwise,
only additive or no trend ETS models are permitted.

70 forecast.stl

... Other arguments passed to forecast.stl, modelfunction or forecastfunction.

y A univariate numeric time series of class ts

s.window Either the character string “periodic” or the span (in lags) of the loess window
for seasonal extraction.

robust If TRUE, robust fitting will used in the loess procedure within stl.

modelfunction An alternative way of specifying the function for modelling the seasonally ad-
justed series. If modelfunction is not NULL, then method is ignored. Otherwise
method is used to specify the time series model to be used.

model Output from a previous call to stlm. If a stlm model is passed, this same model
is fitted to y without re-estimating any parameters.

x Deprecated. Included for backwards compatibility.

t.window A number to control the smoothness of the trend. See stl for details.

Details

stlm takes a time series y, applies an STL decomposition, and models the seasonally adjusted data
using the model passed as modelfunction or specified using method. It returns an object that
includes the original STL decomposition and a time series model fitted to the seasonally adjusted
data. This object can be passed to the forecast.stlm for forecasting.

forecast.stlm forecasts the seasonally adjusted data, then re-seasonalizes the results by adding
back the last year of the estimated seasonal component.

stlf combines stlm and forecast.stlm. It takes a ts argument, applies an STL decomposition,
models the seasonally adjusted data, reseasonalizes, and returns the forecasts. However, it allows
more general forecasting methods to be specified via forecastfunction.

forecast.stl is similar to stlf except that it takes the STL decomposition as the first argument,
instead of the time series.

Note that the prediction intervals ignore the uncertainty associated with the seasonal component.
They are computed using the prediction intervals from the seasonally adjusted series, which are
then reseasonalized using the last year of the seasonal component. The uncertainty in the seasonal
component is ignored.

The time series model for the seasonally adjusted data can be specified in stlm using either method
or modelfunction. The method argument provides a shorthand way of specifying modelfunction
for a few special cases. More generally, modelfunction can be any function with first argument a
ts object, that returns an object that can be passed to forecast. For example, forecastfunction=ar
uses the ar function for modelling the seasonally adjusted series.

The forecasting method for the seasonally adjusted data can be specified in stlf and forecast.stl
using either method or forecastfunction. The method argument provides a shorthand way of
specifying forecastfunction for a few special cases. More generally, forecastfunction can be
any function with first argument a ts object, and other h and level, which returns an object of class
forecast. For example, forecastfunction=thetaf uses the thetaf function for forecasting the
seasonally adjusted series.

forecast.StructTS 71

Value

stlm returns an object of class stlm. The other functions return objects of class forecast.

There are many methods for working with forecast objects including summary to obtain and print
a summary of the results, while plot produces a plot of the forecasts and prediction intervals. The
generic accessor functions fitted.values and residuals extract useful features.

Author(s)

Rob J Hyndman

See Also

stl, forecast.ets, forecast.Arima.

Examples

tsmod <- stlm(USAccDeaths, modelfunction = ar)
plot(forecast(tsmod, h = 36))

decomp <- stl(USAccDeaths, s.window = "periodic")
plot(forecast(decomp))

plot(stlf(AirPassengers, lambda = 0))

forecast.StructTS Forecasting using Structural Time Series models

Description

Returns forecasts and other information for univariate structural time series models.

Usage

S3 method for class 'StructTS'
forecast(
object,
h = ifelse(object$coef["epsilon"] > 1e-10, 2 * object$xtsp[3], 10),
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = NULL,
...

)

72 forecast.StructTS

Arguments

object An object of class "StructTS". Usually the result of a call to StructTS.

h Number of periods for forecasting

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments.

Details

This function calls predict.StructTS and constructs an object of class "forecast" from the re-
sults.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.StructTS.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

Author(s)

Rob J Hyndman

forecast.ts 73

See Also

StructTS.

Examples

fit <- StructTS(WWWusage,"level")
plot(forecast(fit))

forecast.ts Forecasting time series

Description

forecast is a generic function for forecasting from time series or time series models. The function
invokes particular methods which depend on the class of the first argument.

Usage

S3 method for class 'ts'
forecast(
object,
h = ifelse(frequency(object) > 1, 2 * frequency(object), 10),
level = c(80, 95),
fan = FALSE,
robust = FALSE,
lambda = NULL,
biasadj = FALSE,
find.frequency = FALSE,
allow.multiplicative.trend = FALSE,
model = NULL,
...

)

Default S3 method:
forecast(object, ...)

S3 method for class 'forecast'
print(x, ...)

Arguments

object a time series or time series model for which forecasts are required

h Number of periods for forecasting

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

74 forecast.ts

robust If TRUE, the function is robust to missing values and outliers in object. This
argument is only valid when object is of class ts.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

find.frequency If TRUE, the function determines the appropriate period, if the data is of un-
known period.

allow.multiplicative.trend

If TRUE, then ETS models with multiplicative trends are allowed. Otherwise,
only additive or no trend ETS models are permitted.

model An object describing a time series model; e.g., one of of class ets, Arima, bats,
tbats, or nnetar.

... Additional arguments affecting the forecasts produced. If model=NULL, forecast.ts
passes these to ets or stlf depending on the frequency of the time series. If
model is not NULL, the arguments are passed to the relevant modelling function.

x a numeric vector or time series of class ts.

Details

For example, the function forecast.Arima makes forecasts based on the results produced by
arima.

If model=NULL,the function forecast.ts makes forecasts using ets models (if the data are non-
seasonal or the seasonal period is 12 or less) or stlf (if the seasonal period is 13 or more).

If model is not NULL, forecast.ts will apply the model to the object time series, and then generate
forecasts accordingly.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessors functions fitted.values and residuals extract various useful features of
the value returned by forecast$model.

An object of class "forecast" is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

fourier 75

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model. For models with additive errors, the residuals
will be x minus the fitted values.

fitted Fitted values (one-step forecasts)

Author(s)

Rob J Hyndman

See Also

Other functions which return objects of class "forecast" are forecast.ets, forecast.Arima,
forecast.HoltWinters, forecast.StructTS, meanf, rwf, splinef, thetaf, croston, ses, holt,
hw.

Examples

WWWusage %>% forecast %>% plot
fit <- ets(window(WWWusage, end=60))
fc <- forecast(WWWusage, model=fit)

fourier Fourier terms for modelling seasonality

Description

fourier returns a matrix containing terms from a Fourier series, up to order K, suitable for use in
Arima, auto.arima, or tslm.

Usage

fourier(x, K, h = NULL)

fourierf(x, K, h)

Arguments

x Seasonal time series: a ts or a msts object

K Maximum order(s) of Fourier terms

h Number of periods ahead to forecast (optional)

76 fourier

Details

fourierf is deprecated, instead use the h argument in fourier.

The period of the Fourier terms is determined from the time series characteristics of x. When h is
missing, the length of x also determines the number of rows for the matrix returned by fourier.
Otherwise, the value of h determines the number of rows for the matrix returned by fourier,
typically used for forecasting. The values within x are not used.

Typical use would omit h when generating Fourier terms for training a model and include h when
generating Fourier terms for forecasting.

When x is a ts object, the value of K should be an integer and specifies the number of sine and
cosine terms to return. Thus, the matrix returned has 2*K columns.

When x is a msts object, then K should be a vector of integers specifying the number of sine
and cosine terms for each of the seasonal periods. Then the matrix returned will have 2*sum(K)
columns.

Value

Numerical matrix.

Author(s)

Rob J Hyndman

See Also

seasonaldummy

Examples

library(ggplot2)

Using Fourier series for a "ts" object
K is chosen to minimize the AICc
deaths.model <- auto.arima(USAccDeaths, xreg=fourier(USAccDeaths,K=5), seasonal=FALSE)
deaths.fcast <- forecast(deaths.model, xreg=fourier(USAccDeaths, K=5, h=36))
autoplot(deaths.fcast) + xlab("Year")

Using Fourier series for a "msts" object
taylor.lm <- tslm(taylor ~ fourier(taylor, K = c(3, 3)))
taylor.fcast <- forecast(taylor.lm,

data.frame(fourier(taylor, K = c(3, 3), h = 270)))
autoplot(taylor.fcast)

gas 77

gas Australian monthly gas production

Description

Australian monthly gas production: 1956–1995.

Usage

gas

Format

Time series data

Source

Australian Bureau of Statistics.

Examples

plot(gas)
seasonplot(gas)
tsdisplay(gas)

getResponse Get response variable from time series model.

Description

getResponse is a generic function for extracting the historical data from a time series model (in-
cluding Arima, ets, ar, fracdiff), a linear model of class lm, or a forecast object. The function
invokes particular methods which depend on the class of the first argument.

Usage

getResponse(object, ...)

Default S3 method:
getResponse(object, ...)

S3 method for class 'lm'
getResponse(object, ...)

S3 method for class 'Arima'

78 gghistogram

getResponse(object, ...)

S3 method for class 'fracdiff'
getResponse(object, ...)

S3 method for class 'ar'
getResponse(object, ...)

S3 method for class 'tbats'
getResponse(object, ...)

S3 method for class 'bats'
getResponse(object, ...)

S3 method for class 'mforecast'
getResponse(object, ...)

S3 method for class 'baggedModel'
getResponse(object, ...)

Arguments

object a time series model or forecast object.

... Additional arguments that are ignored.

Value

A numerical vector or a time series object of class ts.

Author(s)

Rob J Hyndman

gghistogram Histogram with optional normal and kernel density functions

Description

Plots a histogram and density estimates using ggplot.

Usage

gghistogram(
x,
add.normal = FALSE,
add.kde = FALSE,
add.rug = TRUE,

gglagplot 79

bins,
boundary = 0

)

Arguments

x a numerical vector.

add.normal Add a normal density function for comparison

add.kde Add a kernel density estimate for comparison

add.rug Add a rug plot on the horizontal axis

bins The number of bins to use for the histogram. Selected by default using the
Friedman-Diaconis rule given by nclass.FD

boundary A boundary between two bins.

Value

None.

Author(s)

Rob J Hyndman

See Also

hist, geom_histogram

Examples

gghistogram(lynx, add.kde=TRUE)

gglagplot Time series lag ggplots

Description

Plots a lag plot using ggplot.

80 gglagplot

Usage

gglagplot(
x,
lags = ifelse(frequency(x) > 9, 16, 9),
set.lags = 1:lags,
diag = TRUE,
diag.col = "gray",
do.lines = TRUE,
colour = TRUE,
continuous = frequency(x) > 12,
labels = FALSE,
seasonal = TRUE,
...

)

gglagchull(
x,
lags = ifelse(frequency(x) > 1, min(12, frequency(x)), 4),
set.lags = 1:lags,
diag = TRUE,
diag.col = "gray",
...

)

Arguments

x a time series object (type ts).

lags number of lag plots desired, see arg set.lags.

set.lags vector of positive integers specifying which lags to use.

diag logical indicating if the x=y diagonal should be drawn.

diag.col color to be used for the diagonal if(diag).

do.lines if TRUE, lines will be drawn, otherwise points will be drawn.

colour logical indicating if lines should be coloured.

continuous Should the colour scheme for years be continuous or discrete?

labels logical indicating if labels should be used.

seasonal Should the line colour be based on seasonal characteristics (TRUE), or sequen-
tial (FALSE).

... Not used (for consistency with lag.plot)

Details

“gglagplot” will plot time series against lagged versions of themselves. Helps visualising ’auto-
dependence’ even when auto-correlations vanish.

“gglagchull” will layer convex hulls of the lags, layered on a single plot. This helps visualise the
change in ’auto-dependence’ as lags increase.

ggmonthplot 81

Value

None.

Author(s)

Mitchell O’Hara-Wild

See Also

lag.plot

Examples

gglagplot(woolyrnq)
gglagplot(woolyrnq,seasonal=FALSE)

lungDeaths <- cbind(mdeaths, fdeaths)
gglagplot(lungDeaths, lags=2)
gglagchull(lungDeaths, lags=6)

gglagchull(woolyrnq)

ggmonthplot Create a seasonal subseries ggplot

Description

Plots a subseries plot using ggplot. Each season is plotted as a separate mini time series. The blue
lines represent the mean of the observations within each season.

Usage

ggmonthplot(x, labels = NULL, times = time(x), phase = cycle(x), ...)

ggsubseriesplot(x, labels = NULL, times = time(x), phase = cycle(x), ...)

Arguments

x a time series object (type ts).

labels A vector of labels to use for each ’season’

times A vector of times for each observation

phase A vector of seasonal components

... Not used (for consistency with monthplot)

82 ggseasonplot

Details

The ggmonthplot function is simply a wrapper for ggsubseriesplot as a convenience for users
familiar with monthplot.

Value

Returns an object of class ggplot.

Author(s)

Mitchell O’Hara-Wild

See Also

monthplot

Examples

ggsubseriesplot(AirPassengers)
ggsubseriesplot(woolyrnq)

ggseasonplot Seasonal plot

Description

Plots a seasonal plot as described in Hyndman and Athanasopoulos (2014, chapter 2). This is like a
time plot except that the data are plotted against the seasons in separate years.

Usage

ggseasonplot(
x,
season.labels = NULL,
year.labels = FALSE,
year.labels.left = FALSE,
type = NULL,
col = NULL,
continuous = FALSE,
polar = FALSE,
labelgap = 0.04,
...

)

seasonplot(
x,

ggseasonplot 83

s,
season.labels = NULL,
year.labels = FALSE,
year.labels.left = FALSE,
type = "o",
main,
xlab = NULL,
ylab = "",
col = 1,
labelgap = 0.1,
...

)

Arguments

x a numeric vector or time series of class ts.

season.labels Labels for each season in the "year"

year.labels Logical flag indicating whether labels for each year of data should be plotted on
the right.

year.labels.left

Logical flag indicating whether labels for each year of data should be plotted on
the left.

type plot type (as for plot). Not yet supported for ggseasonplot.

col Colour

continuous Should the colour scheme for years be continuous or discrete?

polar Plot the graph on seasonal coordinates

labelgap Distance between year labels and plotted lines

... additional arguments to plot.

s seasonal frequency of x

main Main title.

xlab X-axis label.

ylab Y-axis label.

Value

None.

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

References

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

https://otexts.com/fpp2/

84 ggtsdisplay

See Also

monthplot

Examples

ggseasonplot(AirPassengers, col=rainbow(12), year.labels=TRUE)
ggseasonplot(AirPassengers, year.labels=TRUE, continuous=TRUE)

seasonplot(AirPassengers, col=rainbow(12), year.labels=TRUE)

ggtsdisplay Time series display

Description

Plots a time series along with its acf and either its pacf, lagged scatterplot or spectrum.

Usage

ggtsdisplay(
x,
plot.type = c("partial", "histogram", "scatter", "spectrum"),
points = TRUE,
smooth = FALSE,
lag.max,
na.action = na.contiguous,
theme = NULL,
...

)

tsdisplay(
x,
plot.type = c("partial", "histogram", "scatter", "spectrum"),
points = TRUE,
ci.type = c("white", "ma"),
lag.max,
na.action = na.contiguous,
main = NULL,
xlab = "",
ylab = "",
pch = 1,
cex = 0.5,
...

)

ggtsdisplay 85

Arguments

x a numeric vector or time series of class ts.

plot.type type of plot to include in lower right corner.

points logical flag indicating whether to show the individual points or not in the time
plot.

smooth logical flag indicating whether to show a smooth loess curve superimposed on
the time plot.

lag.max the maximum lag to plot for the acf and pacf. A suitable value is selected by
default if the argument is missing.

na.action function to handle missing values in acf, pacf and spectrum calculations. The
default is na.contiguous. Useful alternatives are na.pass and na.interp.

theme Adds a ggplot element to each plot, typically a theme.

... additional arguments to acf.

ci.type type of confidence limits for ACF that is passed to acf. Should the confidence
limits assume a white noise input or for lag k an MA(k − 1) input?

main Main title.

xlab X-axis label.

ylab Y-axis label.

pch Plotting character.

cex Character size.

Details

ggtsdisplay will produce the equivalent plot using ggplot graphics.

Value

None.

Author(s)

Rob J Hyndman

References

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

See Also

plot.ts, Acf, spec.ar

https://otexts.com/fpp2/

86 is.acf

Examples

library(ggplot2)
ggtsdisplay(USAccDeaths, plot.type="scatter", theme=theme_bw())

tsdisplay(diff(WWWusage))
ggtsdisplay(USAccDeaths, plot.type="scatter")

gold Daily morning gold prices

Description

Daily morning gold prices in US dollars. 1 January 1985 – 31 March 1989.

Usage

gold

Format

Time series data

Examples

tsdisplay(gold)

is.acf Is an object a particular model type?

Description

Returns true if the model object is of a particular type

Usage

is.acf(x)

is.Arima(x)

is.baggedModel(x)

is.bats(x)

is.ets(x)

is.constant 87

is.modelAR(x)

is.stlm(x)

is.nnetar(x)

is.nnetarmodels(x)

Arguments

x object to be tested

is.constant Is an object constant?

Description

Returns true if the object’s numerical values do not vary.

Usage

is.constant(x)

Arguments

x object to be tested

is.forecast Is an object a particular forecast type?

Description

Returns true if the forecast object is of a particular type

Usage

is.forecast(x)

is.mforecast(x)

is.splineforecast(x)

Arguments

x object to be tested

88 ma

ma Moving-average smoothing

Description

ma computes a simple moving average smoother of a given time series.

Usage

ma(x, order, centre = TRUE)

Arguments

x Univariate time series

order Order of moving average smoother

centre If TRUE, then the moving average is centred for even orders.

Details

The moving average smoother averages the nearest order periods of each observation. As neigh-
bouring observations of a time series are likely to be similar in value, averaging eliminates some of
the randomness in the data, leaving a smooth trend-cycle component.

T̂t =
1

m

k∑
j=−k

yt+j

where k = m−1
2

When an even order is specified, the observations averaged will include one more observation from
the future than the past (k is rounded up). If centre is TRUE, the value from two moving averages
(where k is rounded up and down respectively) are averaged, centering the moving average.

Value

Numerical time series object containing the simple moving average smoothed values.

Author(s)

Rob J Hyndman

See Also

decompose

meanf 89

Examples

plot(wineind)
sm <- ma(wineind,order=12)
lines(sm,col="red")

meanf Mean Forecast

Description

Returns forecasts and prediction intervals for an iid model applied to y.

Usage

meanf(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
bootstrap = FALSE,
npaths = 5000,
x = y

)

Arguments

y a numeric vector or time series of class ts

h Number of periods for forecasting

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

bootstrap If TRUE, use a bootstrap method to compute prediction intervals. Otherwise,
assume a normal distribution.

npaths Number of bootstrapped sample paths to use if bootstrap==TRUE.

x Deprecated. Included for backwards compatibility.

90 meanf

Details

The iid model is
Yt = µ+ Zt

where Zt is a normal iid error. Forecasts are given by

Yn(h) = µ

where µ is estimated by the sample mean.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by meanf.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

Author(s)

Rob J Hyndman

See Also

rwf

Examples

nile.fcast <- meanf(Nile, h=10)
plot(nile.fcast)

modelAR 91

modelAR Time Series Forecasts with a user-defined model

Description

Experimental function to forecast univariate time series with a user-defined model

Usage

modelAR(
y,
p,
P = 1,
FUN,
predict.FUN,
xreg = NULL,
lambda = NULL,
model = NULL,
subset = NULL,
scale.inputs = FALSE,
x = y,
...

)

Arguments

y A numeric vector or time series of class ts.

p Embedding dimension for non-seasonal time series. Number of non-seasonal
lags used as inputs. For non-seasonal time series, the default is the optimal
number of lags (according to the AIC) for a linear AR(p) model. For seasonal
time series, the same method is used but applied to seasonally adjusted data
(from an stl decomposition).

P Number of seasonal lags used as inputs.

FUN Function used for model fitting. Must accept argument x and y for the predictors
and response, respectively (formula object not currently supported).

predict.FUN Prediction function used to apply FUN to new data. Must accept an object of
class FUN as its first argument, and a data frame or matrix of new data for its
second argument. Additionally, it should return fitted values when new data is
omitted.

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows as y. Must be numeric.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

92 modelAR

model Output from a previous call to nnetar. If model is passed, this same model is
fitted to y without re-estimating any parameters.

subset Optional vector specifying a subset of observations to be used in the fit. Can be
an integer index vector or a logical vector the same length as y. All observations
are used by default.

scale.inputs If TRUE, inputs are scaled by subtracting the column means and dividing by
their respective standard deviations. If lambda is not NULL, scaling is applied
after Box-Cox transformation.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to FUN for modelAR.

Details

This is an experimental function and only recommended for advanced users. The selected model
is fitted with lagged values of y as inputs. The inputs are for lags 1 to p, and lags m to mP where
m=frequency(y). If xreg is provided, its columns are also used as inputs. If there are missing
values in y or xreg, the corresponding rows (and any others which depend on them as lags) are
omitted from the fit. The model is trained for one-step forecasting. Multi-step forecasts are com-
puted recursively.

Value

Returns an object of class "modelAR".

The function summary is used to obtain and print a summary of the results.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by nnetar.

model A list containing information about the fitted model

method The name of the forecasting method as a character string

x The original time series.

xreg The external regressors used in fitting (if given).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

... Other arguments

Author(s)

Rob J Hyndman and Gabriel Caceres

monthdays 93

monthdays Number of days in each season

Description

Returns number of days in each month or quarter of the observed time period.

Usage

monthdays(x)

Arguments

x time series

Details

Useful for month length adjustments

Value

Time series

Author(s)

Rob J Hyndman

See Also

bizdays

Examples

par(mfrow=c(2,1))
plot(ldeaths,xlab="Year",ylab="pounds",

main="Monthly deaths from lung disease (UK)")
ldeaths.adj <- ldeaths/monthdays(ldeaths)*365.25/12
plot(ldeaths.adj,xlab="Year",ylab="pounds",

main="Adjusted monthly deaths from lung disease (UK)")

94 mstl

mstl Multiple seasonal decomposition

Description

Decompose a time series into seasonal, trend and remainder components. Seasonal components
are estimated iteratively using STL. Multiple seasonal periods are allowed. The trend component
is computed for the last iteration of STL. Non-seasonal time series are decomposed into trend and
remainder only. In this case, supsmu is used to estimate the trend. Optionally, the time series may
be Box-Cox transformed before decomposition. Unlike stl, mstl is completely automated.

Usage

mstl(x, lambda = NULL, iterate = 2, s.window = 7 + 4 * seq(6), ...)

Arguments

x Univariate time series of class msts or ts.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

iterate Number of iterations to use to refine the seasonal component.

s.window Seasonal windows to be used in the decompositions. If scalar, the same value is
used for all seasonal components. Otherwise, it should be a vector of the same
length as the number of seasonal components (or longer).

... Other arguments are passed to stl.

See Also

stl, supsmu

Examples

library(ggplot2)
mstl(taylor) %>% autoplot()
mstl(AirPassengers, lambda = "auto") %>% autoplot()

msts 95

msts Multi-Seasonal Time Series

Description

msts is an S3 class for multi seasonal time series objects, intended to be used for models that
support multiple seasonal periods. The msts class inherits from the ts class and has an additional
"msts" attribute which contains the vector of seasonal periods. All methods that work on a ts class,
should also work on a msts class.

Usage

msts(data, seasonal.periods, ts.frequency = floor(max(seasonal.periods)), ...)

Arguments

data A numeric vector, ts object, matrix or data frame. It is intended that the time
series data is univariate, otherwise treated the same as ts().

seasonal.periods

A vector of the seasonal periods of the msts.

ts.frequency The seasonal period that should be used as frequency of the underlying ts object.
The default value is max(seasonal.periods).

... Arguments to be passed to the underlying call to ts(). For example start=c(1987,5).

Value

An object of class c("msts", "ts"). If there is only one seasonal period (i.e., length(seasonal.periods)==1),
then the object is of class "ts".

Author(s)

Slava Razbash and Rob J Hyndman

Examples

x <- msts(taylor, seasonal.periods=c(2*24,2*24*7,2*24*365), start=2000+22/52)
y <- msts(USAccDeaths, seasonal.periods=12, start=1949)

96 na.interp

na.interp Interpolate missing values in a time series

Description

By default, uses linear interpolation for non-seasonal series. For seasonal series, a robust STL
decomposition is first computed. Then a linear interpolation is applied to the seasonally adjusted
data, and the seasonal component is added back.

Usage

na.interp(
x,
lambda = NULL,
linear = (frequency(x) <= 1 | sum(!is.na(x)) <= 2 * frequency(x))

)

Arguments

x time series

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

linear Should a linear interpolation be used.

Details

A more general and flexible approach is available using na.approx in the zoo package.

Value

Time series

Author(s)

Rob J Hyndman

See Also

tsoutliers

Examples

data(gold)
plot(na.interp(gold))

ndiffs 97

ndiffs Number of differences required for a stationary series

Description

Functions to estimate the number of differences required to make a given time series stationary.
ndiffs estimates the number of first differences necessary.

Usage

ndiffs(
x,
alpha = 0.05,
test = c("kpss", "adf", "pp"),
type = c("level", "trend"),
max.d = 2,
...

)

Arguments

x A univariate time series

alpha Level of the test, possible values range from 0.01 to 0.1.

test Type of unit root test to use

type Specification of the deterministic component in the regression

max.d Maximum number of non-seasonal differences allowed

... Additional arguments to be passed on to the unit root test

Details

ndiffs uses a unit root test to determine the number of differences required for time series x to
be made stationary. If test="kpss", the KPSS test is used with the null hypothesis that x has a
stationary root against a unit-root alternative. Then the test returns the least number of differences
required to pass the test at the level alpha. If test="adf", the Augmented Dickey-Fuller test is
used and if test="pp" the Phillips-Perron test is used. In both of these cases, the null hypothesis is
that x has a unit root against a stationary root alternative. Then the test returns the least number of
differences required to fail the test at the level alpha.

Value

An integer indicating the number of differences required for stationarity.

Author(s)

Rob J Hyndman, Slava Razbash & Mitchell O’Hara-Wild

98 nnetar

References

Dickey DA and Fuller WA (1979), "Distribution of the Estimators for Autoregressive Time Series
with a Unit Root", Journal of the American Statistical Association 74:427-431.

Kwiatkowski D, Phillips PCB, Schmidt P and Shin Y (1992) "Testing the Null Hypothesis of Sta-
tionarity against the Alternative of a Unit Root", Journal of Econometrics 54:159-178.

Osborn, D.R. (1990) "A survey of seasonality in UK macroeconomic variables", International Jour-
nal of Forecasting, 6:327-336.

Phillips, P.C.B. and Perron, P. (1988) "Testing for a unit root in time series regression", Biometrika,
72(2), 335-346.

Said E and Dickey DA (1984), "Testing for Unit Roots in Autoregressive Moving Average Models
of Unknown Order", Biometrika 71:599-607.

See Also

auto.arima and ndiffs

Examples

ndiffs(WWWusage)
ndiffs(diff(log(AirPassengers), 12))

nnetar Neural Network Time Series Forecasts

Description

Feed-forward neural networks with a single hidden layer and lagged inputs for forecasting univariate
time series.

Usage

nnetar(
y,
p,
P = 1,
size,
repeats = 20,
xreg = NULL,
lambda = NULL,
model = NULL,
subset = NULL,
scale.inputs = TRUE,
x = y,
...

)

nnetar 99

Arguments

y A numeric vector or time series of class ts.

p Embedding dimension for non-seasonal time series. Number of non-seasonal
lags used as inputs. For non-seasonal time series, the default is the optimal
number of lags (according to the AIC) for a linear AR(p) model. For seasonal
time series, the same method is used but applied to seasonally adjusted data
(from an stl decomposition).

P Number of seasonal lags used as inputs.

size Number of nodes in the hidden layer. Default is half of the number of input
nodes (including external regressors, if given) plus 1.

repeats Number of networks to fit with different random starting weights. These are
then averaged when producing forecasts.

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows as y. Must be numeric.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

model Output from a previous call to nnetar. If model is passed, this same model is
fitted to y without re-estimating any parameters.

subset Optional vector specifying a subset of observations to be used in the fit. Can be
an integer index vector or a logical vector the same length as y. All observations
are used by default.

scale.inputs If TRUE, inputs are scaled by subtracting the column means and dividing by
their respective standard deviations. If lambda is not NULL, scaling is applied
after Box-Cox transformation.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to nnet for nnetar.

Details

A feed-forward neural network is fitted with lagged values of y as inputs and a single hidden layer
with size nodes. The inputs are for lags 1 to p, and lags m to mP where m=frequency(y). If
xreg is provided, its columns are also used as inputs. If there are missing values in y or xreg, the
corresponding rows (and any others which depend on them as lags) are omitted from the fit. A
total of repeats networks are fitted, each with random starting weights. These are then averaged
when computing forecasts. The network is trained for one-step forecasting. Multi-step forecasts are
computed recursively.

For non-seasonal data, the fitted model is denoted as an NNAR(p,k) model, where k is the num-
ber of hidden nodes. This is analogous to an AR(p) model but with nonlinear functions. For
seasonal data, the fitted model is called an NNAR(p,P,k)[m] model, which is analogous to an
ARIMA(p,0,0)(P,0,0)[m] model but with nonlinear functions.

100 nsdiffs

Value

Returns an object of class "nnetar".

The function summary is used to obtain and print a summary of the results.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by nnetar.

model A list containing information about the fitted model

method The name of the forecasting method as a character string

x The original time series.

xreg The external regressors used in fitting (if given).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

... Other arguments

Author(s)

Rob J Hyndman and Gabriel Caceres

Examples

fit <- nnetar(lynx)
fcast <- forecast(fit)
plot(fcast)

Arguments can be passed to nnet()
fit <- nnetar(lynx, decay=0.5, maxit=150)
plot(forecast(fit))
lines(lynx)

Fit model to first 100 years of lynx data
fit <- nnetar(window(lynx,end=1920), decay=0.5, maxit=150)
plot(forecast(fit,h=14))
lines(lynx)

Apply fitted model to later data, including all optional arguments
fit2 <- nnetar(window(lynx,start=1921), model=fit)

nsdiffs Number of differences required for a seasonally stationary series

Description

Functions to estimate the number of differences required to make a given time series stationary.
nsdiffs estimates the number of seasonal differences necessary.

nsdiffs 101

Usage

nsdiffs(
x,
alpha = 0.05,
m = frequency(x),
test = c("seas", "ocsb", "hegy", "ch"),
max.D = 1,
...

)

Arguments

x A univariate time series

alpha Level of the test, possible values range from 0.01 to 0.1.

m Deprecated. Length of seasonal period

test Type of unit root test to use

max.D Maximum number of seasonal differences allowed

... Additional arguments to be passed on to the unit root test

Details

nsdiffs uses seasonal unit root tests to determine the number of seasonal differences required for
time series x to be made stationary (possibly with some lag-one differencing as well).

Several different tests are available:

• If test="seas" (default), a measure of seasonal strength is used, where differencing is se-
lected if the seasonal strength (Wang, Smith & Hyndman, 2006) exceeds 0.64 (based on min-
imizing MASE when forecasting using auto.arima on M3 and M4 data).

• If test="ch", the Canova-Hansen (1995) test is used (with null hypothesis of deterministic
seasonality)

• If test="hegy", the Hylleberg, Engle, Granger & Yoo (1990) test is used.

• If test="ocsb", the Osborn-Chui-Smith-Birchenhall (1988) test is used (with null hypothesis
that a seasonal unit root exists).

Value

An integer indicating the number of differences required for stationarity.

Author(s)

Rob J Hyndman, Slava Razbash and Mitchell O’Hara-Wild

102 ocsb.test

References

Wang, X, Smith, KA, Hyndman, RJ (2006) "Characteristic-based clustering for time series data",
Data Mining and Knowledge Discovery, 13(3), 335-364.

Osborn DR, Chui APL, Smith J, and Birchenhall CR (1988) "Seasonality and the order of integra-
tion for consumption", Oxford Bulletin of Economics and Statistics 50(4):361-377.

Canova F and Hansen BE (1995) "Are Seasonal Patterns Constant over Time? A Test for Seasonal
Stability", Journal of Business and Economic Statistics 13(3):237-252.

Hylleberg S, Engle R, Granger C and Yoo B (1990) "Seasonal integration and cointegration.", Jour-
nal of Econometrics 44(1), pp. 215-238.

See Also

auto.arima, ndiffs, ocsb.test, hegy.test, and ch.test

Examples

nsdiffs(AirPassengers)

ocsb.test Osborn, Chui, Smith, and Birchenhall Test for Seasonal Unit Roots

Description

An implementation of the Osborn, Chui, Smith, and Birchenhall (OCSB) test.

Usage

ocsb.test(x, lag.method = c("fixed", "AIC", "BIC", "AICc"), maxlag = 0)

Arguments

x a univariate seasonal time series.

lag.method a character specifying the lag order selection method.

maxlag the maximum lag order to be considered by lag.method.

Details

The regression equation may include lags of the dependent variable. When lag.method = "fixed",
the lag order is fixed to maxlag; otherwise, maxlag is the maximum number of lags considered
in a lag selection procedure that minimises the lag.method criterion, which can be AIC or BIC or
corrected AIC, AICc, obtained as AIC + (2k(k+1))/(n-k-1), where k is the number of parameters
and n is the number of available observations in the model.

Critical values for the test are based on simulations, which has been smoothed over to produce
critical values for all seasonal periods.

plot.Arima 103

Value

ocsb.test returns a list of class "OCSBtest" with the following components: * statistics the value
of the test statistics. * pvalues the p-values for each test statistics. * method a character string
describing the type of test. * data.name a character string giving the name of the data. * fitted.model
the fitted regression model.

References

Osborn DR, Chui APL, Smith J, and Birchenhall CR (1988) "Seasonality and the order of integra-
tion for consumption", Oxford Bulletin of Economics and Statistics 50(4):361-377.

See Also

nsdiffs

Examples

ocsb.test(AirPassengers)

plot.Arima Plot characteristic roots from ARIMA model

Description

Produces a plot of the inverse AR and MA roots of an ARIMA model. Inverse roots outside the unit
circle are shown in red.

Usage

S3 method for class 'Arima'
plot(
x,
type = c("both", "ar", "ma"),
main,
xlab = "Real",
ylab = "Imaginary",
...

)

S3 method for class 'ar'
plot(x, main, xlab = "Real", ylab = "Imaginary", ...)

S3 method for class 'Arima'
autoplot(object, type = c("both", "ar", "ma"), ...)

S3 method for class 'ar'
autoplot(object, ...)

104 plot.Arima

Arguments

x Object of class “Arima” or “ar”.

type Determines if both AR and MA roots are plotted, of if just one set is plotted.

main Main title. Default is "Inverse AR roots" or "Inverse MA roots".

xlab X-axis label.

ylab Y-axis label.

... Other plotting parameters passed to par.

object Object of class “Arima” or “ar”. Used for ggplot graphics (S3 method consis-
tency).

Details

autoplot will produce an equivalent plot as a ggplot object.

Value

None. Function produces a plot

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

See Also

Arima, ar

Examples

library(ggplot2)

fit <- Arima(WWWusage, order = c(3, 1, 0))
plot(fit)
autoplot(fit)

fit <- Arima(woolyrnq, order = c(2, 0, 0), seasonal = c(2, 1, 1))
plot(fit)
autoplot(fit)

plot(ar.ols(gold[1:61]))
autoplot(ar.ols(gold[1:61]))

plot.bats 105

plot.bats Plot components from BATS model

Description

Produces a plot of the level, slope and seasonal components from a BATS or TBATS model. The
plotted components are Box-Cox transformed using the estimated transformation parameter.

Usage

S3 method for class 'bats'
plot(x, main = "Decomposition by BATS model", ...)

S3 method for class 'tbats'
autoplot(object, range.bars = FALSE, ...)

S3 method for class 'bats'
autoplot(object, range.bars = FALSE, ...)

S3 method for class 'tbats'
plot(x, main = "Decomposition by TBATS model", ...)

Arguments

x Object of class “bats/tbats”.

main Main title for plot.

... Other plotting parameters passed to par.

object Object of class “bats/tbats”.

range.bars Logical indicating if each plot should have a bar at its right side representing
relative size. If NULL, automatic selection takes place.

Value

None. Function produces a plot

Author(s)

Rob J Hyndman

See Also

bats,tbats

106 plot.ets

Examples

Not run:
fit <- tbats(USAccDeaths)
plot(fit)
autoplot(fit, range.bars = TRUE)
End(Not run)

plot.ets Plot components from ETS model

Description

Produces a plot of the level, slope and seasonal components from an ETS model.

Usage

S3 method for class 'ets'
plot(x, ...)

S3 method for class 'ets'
autoplot(object, range.bars = NULL, ...)

Arguments

x Object of class “ets”.

... Other plotting parameters to affect the plot.

object Object of class “ets”. Used for ggplot graphics (S3 method consistency).

range.bars Logical indicating if each plot should have a bar at its right side representing
relative size. If NULL, automatic selection takes place.

Details

autoplot will produce an equivalent plot as a ggplot object.

Value

None. Function produces a plot

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

See Also

ets

plot.forecast 107

Examples

fit <- ets(USAccDeaths)
plot(fit)
plot(fit,plot.type="single",ylab="",col=1:3)

library(ggplot2)
autoplot(fit)

plot.forecast Forecast plot

Description

Plots historical data with forecasts and prediction intervals.

Usage

S3 method for class 'forecast'
plot(
x,
include,
PI = TRUE,
showgap = TRUE,
shaded = TRUE,
shadebars = (length(x$mean) < 5),
shadecols = NULL,
col = 1,
fcol = 4,
pi.col = 1,
pi.lty = 2,
ylim = NULL,
main = NULL,
xlab = "",
ylab = "",
type = "l",
flty = 1,
flwd = 2,
...

)

S3 method for class 'forecast'
autoplot(
object,
include,
PI = TRUE,

108 plot.forecast

shadecols = c("#596DD5", "#D5DBFF"),
fcol = "#0000AA",
flwd = 0.5,
...

)

S3 method for class 'splineforecast'
autoplot(object, PI = TRUE, ...)

S3 method for class 'forecast'
autolayer(object, series = NULL, PI = TRUE, showgap = TRUE, ...)

S3 method for class 'splineforecast'
plot(x, fitcol = 2, type = "o", pch = 19, ...)

Arguments

x Forecast object produced by forecast.

include number of values from time series to include in plot. Default is all values.

PI Logical flag indicating whether to plot prediction intervals.

showgap If showgap=FALSE, the gap between the historical observations and the forecasts
is removed.

shaded Logical flag indicating whether prediction intervals should be shaded (TRUE) or
lines (FALSE)

shadebars Logical flag indicating if prediction intervals should be plotted as shaded bars
(if TRUE) or a shaded polygon (if FALSE). Ignored if shaded=FALSE. Bars are
plotted by default if there are fewer than five forecast horizons.

shadecols Colors for shaded prediction intervals. To get default colors used prior to v3.26,
set shadecols="oldstyle".

col Colour for the data line.

fcol Colour for the forecast line.

pi.col If shaded=FALSE and PI=TRUE, the prediction intervals are plotted in this colour.

pi.lty If shaded=FALSE and PI=TRUE, the prediction intervals are plotted using this
line type.

ylim Limits on y-axis.

main Main title.

xlab X-axis label.

ylab Y-axis label.

type 1-character string giving the type of plot desired. As for plot.default.

flty Line type for the forecast line.

flwd Line width for the forecast line.

... Other plotting parameters to affect the plot.

plot.forecast 109

object Forecast object produced by forecast. Used for ggplot graphics (S3 method
consistency).

series Matches an unidentified forecast layer with a coloured object on the plot.

fitcol Line colour for fitted values.

pch Plotting character (if type=="p" or type=="o").

Details

autoplot will produce a ggplot object.

plot.splineforecast autoplot.splineforecast

Value

None.

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

References

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

See Also

plot.ts

Examples

library(ggplot2)

wine.fit <- hw(wineind,h=48)
plot(wine.fit)
autoplot(wine.fit)

fit <- tslm(wineind ~ fourier(wineind,4))
fcast <- forecast(fit, newdata=data.frame(fourier(wineind,4,20)))
autoplot(fcast)

fcast <- splinef(airmiles,h=5)
plot(fcast)
autoplot(fcast)

https://otexts.com/fpp2/

110 residuals.forecast

residuals.forecast Residuals for various time series models

Description

Returns time series of residuals from a fitted model.

Usage

S3 method for class 'forecast'
residuals(object, type = c("innovation", "response"), ...)

S3 method for class 'ar'
residuals(object, type = c("innovation", "response"), ...)

S3 method for class 'Arima'
residuals(object, type = c("innovation", "response", "regression"), h = 1, ...)

S3 method for class 'bats'
residuals(object, type = c("innovation", "response"), h = 1, ...)

S3 method for class 'tbats'
residuals(object, type = c("innovation", "response"), h = 1, ...)

S3 method for class 'ets'
residuals(object, type = c("innovation", "response"), h = 1, ...)

S3 method for class 'ARFIMA'
residuals(object, type = c("innovation", "response"), ...)

S3 method for class 'nnetar'
residuals(object, type = c("innovation", "response"), h = 1, ...)

S3 method for class 'stlm'
residuals(object, type = c("innovation", "response"), ...)

S3 method for class 'tslm'
residuals(object, type = c("innovation", "response", "deviance"), ...)

Arguments

object An object containing a time series model of class ar, Arima, bats, ets, arfima,
nnetar or stlm. If object is of class forecast, then the function will return
object$residuals if it exists, otherwise it returns the differences between the
observations and their fitted values.

type Type of residual.

rwf 111

... Other arguments not used.

h If type='response', then the fitted values are computed for h-step forecasts.

Details

Innovation residuals correspond to the white noise process that drives the evolution of the time se-
ries model. Response residuals are the difference between the observations and the fitted values
(equivalent to h-step forecasts). For functions with no h argument, h=1. For homoscedastic models,
the innovation residuals and the response residuals for h=1 are identical. Regression residuals are
available for regression models with ARIMA errors, and are equal to the original data minus the
effect of the regression variables. If there are no regression variables, the errors will be identical
to the original series (possibly adjusted to have zero mean). arima.errors is a deprecated func-
tion which is identical to residuals.Arima(object, type="regression"). For nnetar objects,
when type="innovations" and lambda is used, a matrix of time-series consisting of the residuals
from each of the fitted neural networks is returned.

Value

A ts object.

Author(s)

Rob J Hyndman

See Also

fitted.Arima, checkresiduals.

Examples

fit <- Arima(lynx,order=c(4,0,0), lambda=0.5)

plot(residuals(fit))
plot(residuals(fit, type='response'))

rwf Naive and Random Walk Forecasts

Description

rwf() returns forecasts and prediction intervals for a random walk with drift model applied to y.
This is equivalent to an ARIMA(0,1,0) model with an optional drift coefficient. naive() is simply
a wrapper to rwf() for simplicity. snaive() returns forecasts and prediction intervals from an
ARIMA(0,0,0)(0,1,0)m model where m is the seasonal period.

112 rwf

Usage

rwf(
y,
h = 10,
drift = FALSE,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...,
x = y

)

naive(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...,
x = y

)

snaive(
y,
h = 2 * frequency(x),
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...,
x = y

)

Arguments

y a numeric vector or time series of class ts

h Number of periods for forecasting

drift Logical flag. If TRUE, fits a random walk with drift model.

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

rwf 113

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Additional arguments affecting the forecasts produced. If model=NULL, forecast.ts
passes these to ets or stlf depending on the frequency of the time series. If
model is not NULL, the arguments are passed to the relevant modelling function.

x Deprecated. Included for backwards compatibility.

Details

The random walk with drift model is

Yt = c+ Yt−1 + Zt

where Zt is a normal iid error. Forecasts are given by

Yn(h) = ch+ Yn

. If there is no drift (as in naive), the drift parameter c=0. Forecast standard errors allow for
uncertainty in estimating the drift parameter (unlike the corresponding forecasts obtained by fitting
an ARIMA model directly).

The seasonal naive model is
Yt = Yt−m + Zt

where Zt is a normal iid error.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by naive or snaive.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

114 seasadj

Author(s)

Rob J Hyndman

See Also

Arima

Examples

gold.fcast <- rwf(gold[1:60], h=50)
plot(gold.fcast)

plot(naive(gold,h=50),include=200)

plot(snaive(wineind))

seasadj Seasonal adjustment

Description

Returns seasonally adjusted data constructed by removing the seasonal component.

Usage

seasadj(object, ...)

S3 method for class 'stl'
seasadj(object, ...)

S3 method for class 'mstl'
seasadj(object, ...)

S3 method for class 'decomposed.ts'
seasadj(object, ...)

S3 method for class 'tbats'
seasadj(object, ...)

S3 method for class 'seas'
seasadj(object, ...)

seasonal 115

Arguments

object Object created by decompose, stl or tbats.

... Other arguments not currently used.

Value

Univariate time series.

Author(s)

Rob J Hyndman

See Also

stl, decompose, tbats.

Examples

plot(AirPassengers)
lines(seasadj(decompose(AirPassengers,"multiplicative")),col=4)

seasonal Extract components from a time series decomposition

Description

Returns a univariate time series equal to either a seasonal component, trend-cycle component or
remainder component from a time series decomposition.

Usage

seasonal(object)

trendcycle(object)

remainder(object)

Arguments

object Object created by decompose, stl or tbats.

Value

Univariate time series.

116 seasonaldummy

Author(s)

Rob J Hyndman

See Also

stl, decompose, tbats, seasadj.

Examples

plot(USAccDeaths)
fit <- stl(USAccDeaths, s.window="periodic")
lines(trendcycle(fit),col="red")

library(ggplot2)
autoplot(cbind(

Data=USAccDeaths,
Seasonal=seasonal(fit),
Trend=trendcycle(fit),
Remainder=remainder(fit)),
facets=TRUE) +

ylab("") + xlab("Year")

seasonaldummy Seasonal dummy variables

Description

seasonaldummy returns a matrix of dummy variables suitable for use in Arima, auto.arima or
tslm. The last season is omitted and used as the control.

Usage

seasonaldummy(x, h = NULL)

seasonaldummyf(x, h)

Arguments

x Seasonal time series: a ts or a msts object
h Number of periods ahead to forecast (optional)

Details

seasonaldummyf is deprecated, instead use the h argument in seasonaldummy.

The number of dummy variables is determined from the time series characteristics of x. When h is
missing, the length of x also determines the number of rows for the matrix returned by seasonaldummy.
the value of h determines the number of rows for the matrix returned by seasonaldummy, typically
used for forecasting. The values within x are not used.

ses 117

Value

Numerical matrix.

Author(s)

Rob J Hyndman

See Also

fourier

Examples

plot(ldeaths)

Using seasonal dummy variables
month <- seasonaldummy(ldeaths)
deaths.lm <- tslm(ldeaths ~ month)
tsdisplay(residuals(deaths.lm))
ldeaths.fcast <- forecast(deaths.lm,

data.frame(month=I(seasonaldummy(ldeaths,36))))
plot(ldeaths.fcast)

A simpler approach to seasonal dummy variables
deaths.lm <- tslm(ldeaths ~ season)
ldeaths.fcast <- forecast(deaths.lm, h=36)
plot(ldeaths.fcast)

ses Exponential smoothing forecasts

Description

Returns forecasts and other information for exponential smoothing forecasts applied to y.

Usage

ses(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
initial = c("optimal", "simple"),
alpha = NULL,
lambda = NULL,
biasadj = FALSE,

118 ses

x = y,
...

)

holt(
y,
h = 10,
damped = FALSE,
level = c(80, 95),
fan = FALSE,
initial = c("optimal", "simple"),
exponential = FALSE,
alpha = NULL,
beta = NULL,
phi = NULL,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

hw(
y,
h = 2 * frequency(x),
seasonal = c("additive", "multiplicative"),
damped = FALSE,
level = c(80, 95),
fan = FALSE,
initial = c("optimal", "simple"),
exponential = FALSE,
alpha = NULL,
beta = NULL,
gamma = NULL,
phi = NULL,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

Arguments

y a numeric vector or time series of class ts

h Number of periods for forecasting.

level Confidence level for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

initial Method used for selecting initial state values. If optimal, the initial values
are optimized along with the smoothing parameters using ets. If simple, the

ses 119

initial values are set to values obtained using simple calculations on the first few
observations. See Hyndman & Athanasopoulos (2014) for details.

alpha Value of smoothing parameter for the level. If NULL, it will be estimated.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to forecast.ets.

damped If TRUE, use a damped trend.

exponential If TRUE, an exponential trend is fitted. Otherwise, the trend is (locally) linear.

beta Value of smoothing parameter for the trend. If NULL, it will be estimated.

phi Value of damping parameter if damped=TRUE. If NULL, it will be estimated.

seasonal Type of seasonality in hw model. "additive" or "multiplicative"

gamma Value of smoothing parameter for the seasonal component. If NULL, it will be
estimated.

Details

ses, holt and hw are simply convenient wrapper functions for forecast(ets(...)).

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by ets and associated functions.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model.

fitted Fitted values (one-step forecasts)

120 simulate.ets

Author(s)

Rob J Hyndman

References

Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. (2008) Forecasting with exponential smooth-
ing: the state space approach, Springer-Verlag: New York. http://www.exponentialsmoothing.
net.

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

See Also

ets, HoltWinters, rwf, arima.

Examples

fcast <- holt(airmiles)
plot(fcast)
deaths.fcast <- hw(USAccDeaths,h=48)
plot(deaths.fcast)

simulate.ets Simulation from a time series model

Description

Returns a time series based on the model object object.

Usage

S3 method for class 'ets'
simulate(
object,
nsim = length(object$x),
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
...

)

S3 method for class 'Arima'
simulate(
object,

http://www.exponentialsmoothing.net
http://www.exponentialsmoothing.net
https://otexts.com/fpp2/

simulate.ets 121

nsim = length(object$x),
seed = NULL,
xreg = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
lambda = object$lambda,
...

)

S3 method for class 'ar'
simulate(
object,
nsim = object$n.used,
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
...

)

S3 method for class 'lagwalk'
simulate(
object,
nsim = length(object$x),
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
lambda = object$lambda,
...

)

S3 method for class 'fracdiff'
simulate(
object,
nsim = object$n,
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
...

)

S3 method for class 'nnetar'
simulate(
object,
nsim = length(object$x),

122 simulate.ets

seed = NULL,
xreg = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
lambda = object$lambda,
...

)

S3 method for class 'modelAR'
simulate(
object,
nsim = length(object$x),
seed = NULL,
xreg = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
lambda = object$lambda,
...

)

S3 method for class 'tbats'
simulate(
object,
nsim = length(object$y),
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
...

)

Arguments

object An object of class "ets", "Arima", "ar" or "nnetar".
nsim Number of periods for the simulated series. Ignored if either xreg or innov are

not NULL. Otherwise the default is the length of series used to train model (or
100 if no data found).

seed Either NULL or an integer that will be used in a call to set.seed before simu-
lating the time series. The default, NULL, will not change the random generator
state.

future Produce sample paths that are future to and conditional on the data in object.
Otherwise simulate unconditionally.

bootstrap Do simulation using resampled errors rather than normally distributed errors or
errors provided as innov.

innov A vector of innovations to use as the error series. Ignored if bootstrap==TRUE.
If not NULL, the value of nsim is set to length of innov.

sindexf 123

... Other arguments, not currently used.

xreg New values of xreg to be used for forecasting. The value of nsim is set to the
number of rows of xreg if it is not NULL.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

Details

With simulate.Arima(), the object should be produced by Arima or auto.arima, rather than
arima. By default, the error series is assumed normally distributed and generated using rnorm. If
innov is present, it is used instead. If bootstrap=TRUE and innov=NULL, the residuals are resam-
pled instead.

When future=TRUE, the sample paths are conditional on the data. When future=FALSE and the
model is stationary, the sample paths do not depend on the data at all. When future=FALSE and the
model is non-stationary, the location of the sample paths is arbitrary, so they all start at the value of
the first observation.

Value

An object of class "ts".

Author(s)

Rob J Hyndman

See Also

ets, Arima, auto.arima, ar, arfima, nnetar.

Examples

fit <- ets(USAccDeaths)
plot(USAccDeaths, xlim = c(1973, 1982))
lines(simulate(fit, 36), col = "red")

sindexf Forecast seasonal index

Description

Returns vector containing the seasonal index for h future periods. If the seasonal index is non-
periodic, it uses the last values of the index.

Usage

sindexf(object, h)

124 splinef

Arguments

object Output from decompose or stl.

h Number of periods ahead to forecast

Value

Time series

Author(s)

Rob J Hyndman

Examples

uk.stl <- stl(UKDriverDeaths,"periodic")
uk.sa <- seasadj(uk.stl)
uk.fcast <- holt(uk.sa,36)
seasf <- sindexf(uk.stl,36)
uk.fcast$mean <- uk.fcast$mean + seasf
uk.fcast$lower <- uk.fcast$lower + cbind(seasf,seasf)
uk.fcast$upper <- uk.fcast$upper + cbind(seasf,seasf)
uk.fcast$x <- UKDriverDeaths
plot(uk.fcast,main="Forecasts from Holt's method with seasonal adjustment")

splinef Cubic Spline Forecast

Description

Returns local linear forecasts and prediction intervals using cubic smoothing splines.

Usage

splinef(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
method = c("gcv", "mle"),
x = y

)

splinef 125

Arguments

y a numeric vector or time series of class ts
h Number of periods for forecasting
level Confidence level for prediction intervals.
fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.
lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is

automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

method Method for selecting the smoothing parameter. If method="gcv", the general-
ized cross-validation method from smooth.spline is used. If method="mle",
the maximum likelihood method from Hyndman et al (2002) is used.

x Deprecated. Included for backwards compatibility.

Details

The cubic smoothing spline model is equivalent to an ARIMA(0,2,2) model but with a restricted
parameter space. The advantage of the spline model over the full ARIMA model is that it provides
a smooth historical trend as well as a linear forecast function. Hyndman, King, Pitrun, and Bil-
lah (2002) show that the forecast performance of the method is hardly affected by the restricted
parameter space.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by splinef.

An object of class "forecast" containing the following elements:

model A list containing information about the fitted model
method The name of the forecasting method as a character string
mean Point forecasts as a time series
lower Lower limits for prediction intervals
upper Upper limits for prediction intervals
level The confidence values associated with the prediction intervals
x The original time series (either object itself or the time series used to create the

model stored as object).
onestepf One-step forecasts from the fitted model.
fitted Smooth estimates of the fitted trend using all data.
residuals Residuals from the fitted model. That is x minus one-step forecasts.

126 StatForecast

Author(s)

Rob J Hyndman

References

Hyndman, King, Pitrun and Billah (2005) Local linear forecasts using cubic smoothing splines.
Australian and New Zealand Journal of Statistics, 47(1), 87-99. https://robjhyndman.com/
publications/splinefcast/.

See Also

smooth.spline, arima, holt.

Examples

fcast <- splinef(uspop,h=5)
plot(fcast)
summary(fcast)

StatForecast Forecast plot

Description

Generates forecasts from forecast.ts and adds them to the plot. Forecasts can be modified via
sending forecast specific arguments above.

Usage

StatForecast

GeomForecast

geom_forecast(
mapping = NULL,
data = NULL,
stat = "forecast",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
PI = TRUE,
showgap = TRUE,
series = NULL,
...

)

https://robjhyndman.com/publications/splinefcast/
https://robjhyndman.com/publications/splinefcast/

StatForecast 127

Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data.

stat The stat object to use calculate the data.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

PI If FALSE, confidence intervals will not be plotted, giving only the forecast line.

showgap If showgap=FALSE, the gap between the historical observations and the forecasts
is removed.

series Matches an unidentified forecast layer with a coloured object on the plot.

... Additional arguments for forecast.ts, other arguments are passed on to layer.
These are often aesthetics, used to set an aesthetic to a fixed value, like color =
"red" or alpha = .5. They may also be parameters to the paired geom/stat.

Format

An object of class StatForecast (inherits from Stat, ggproto, gg) of length 3.

An object of class GeomForecast (inherits from Geom, ggproto, gg) of length 7.

Details

Multivariate forecasting is supported by having each time series on a different group.

You can also pass geom_forecast a forecast object to add it to the plot.

The aesthetics required for the forecasting to work includes forecast observations on the y axis, and
the time of the observations on the x axis. Refer to the examples below. To automatically set up
aesthetics, use autoplot.

128 subset.ts

Value

A layer for a ggplot graph.

Author(s)

Mitchell O’Hara-Wild

See Also

forecast, ggproto

Examples

Not run:
library(ggplot2)
autoplot(USAccDeaths) + geom_forecast()

lungDeaths <- cbind(mdeaths, fdeaths)
autoplot(lungDeaths) + geom_forecast()

Using fortify.ts
p <- ggplot(aes(x=x, y=y), data=USAccDeaths)
p <- p + geom_line()
p + geom_forecast()

Without fortify.ts
data <- data.frame(USAccDeaths=as.numeric(USAccDeaths), time=as.numeric(time(USAccDeaths)))
p <- ggplot(aes(x=time, y=USAccDeaths), data=data)
p <- p + geom_line()
p + geom_forecast()

p + geom_forecast(h=60)
p <- ggplot(aes(x=time, y=USAccDeaths), data=data)
p + geom_forecast(level=c(70,98))
p + geom_forecast(level=c(70,98),colour="lightblue")

#Add forecasts to multivariate series with colour groups
lungDeaths <- cbind(mdeaths, fdeaths)
autoplot(lungDeaths) + geom_forecast(forecast(mdeaths), series="mdeaths")

End(Not run)

subset.ts Subsetting a time series

subset.ts 129

Description

Various types of subsetting of a time series. Allows subsetting by index values (unlike window).
Also allows extraction of the values of a specific season or subset of seasons in each year. For
example, to extract all values for the month of May from a time series.

Usage

S3 method for class 'ts'
subset(
x,
subset = NULL,
month = NULL,
quarter = NULL,
season = NULL,
start = NULL,
end = NULL,
...

)

S3 method for class 'msts'
subset(x, subset = NULL, start = NULL, end = NULL, ...)

Arguments

x a univariate time series to be subsetted

subset optional logical expression indicating elements to keep; missing values are taken
as false. subset must be the same length as x.

month Numeric or character vector of months to retain. Partial matching on month
names used.

quarter Numeric or character vector of quarters to retain.

season Numeric vector of seasons to retain.

start Index of start of contiguous subset.

end Index of end of contiguous subset.

... Other arguments, unused.

Details

If character values for months are used, either upper or lower case may be used, and partial un-
ambiguous names are acceptable. Possible character values for quarters are "Q1", "Q2", "Q3", and
"Q4".

Value

If subset is used, a numeric vector is returned with no ts attributes. If start and/or end are used,
a ts object is returned consisting of x[start:end], with the appropriate time series attributes retained.
Otherwise, a ts object is returned with frequency equal to the length of month, quarter or season.

130 taylor

Author(s)

Rob J Hyndman

See Also

subset, window

Examples

plot(subset(gas,month="November"))
subset(woolyrnq,quarter=3)
subset(USAccDeaths, start=49)

taylor Half-hourly electricity demand

Description

Half-hourly electricity demand in England and Wales from Monday 5 June 2000 to Sunday 27 Au-
gust 2000. Discussed in Taylor (2003), and kindly provided by James W Taylor. Units: Megawatts

Usage

taylor

Format

Time series data

Source

James W Taylor

References

Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential
smoothing. Journal of the Operational Research Society, 54, 799-805.

Examples

plot(taylor)

tbats 131

tbats TBATS model (Exponential smoothing state space model with Box-Cox
transformation, ARMA errors, Trend and Seasonal components)

Description

Fits a TBATS model applied to y, as described in De Livera, Hyndman & Snyder (2011). Parallel
processing is used by default to speed up the computations.

Usage

tbats(
y,
use.box.cox = NULL,
use.trend = NULL,
use.damped.trend = NULL,
seasonal.periods = NULL,
use.arma.errors = TRUE,
use.parallel = length(y) > 1000,
num.cores = 2,
bc.lower = 0,
bc.upper = 1,
biasadj = FALSE,
model = NULL,
...

)

Arguments

y The time series to be forecast. Can be numeric, msts or ts. Only univariate
time series are supported.

use.box.cox TRUE/FALSE indicates whether to use the Box-Cox transformation or not. If
NULL then both are tried and the best fit is selected by AIC.

use.trend TRUE/FALSE indicates whether to include a trend or not. If NULL then both are
tried and the best fit is selected by AIC.

use.damped.trend

TRUE/FALSE indicates whether to include a damping parameter in the trend or
not. If NULL then both are tried and the best fit is selected by AIC.

seasonal.periods

If y is numeric then seasonal periods can be specified with this parameter.
use.arma.errors

TRUE/FALSE indicates whether to include ARMA errors or not. If TRUE the best
fit is selected by AIC. If FALSE then the selection algorithm does not consider
ARMA errors.

use.parallel TRUE/FALSE indicates whether or not to use parallel processing.

132 tbats

num.cores The number of parallel processes to be used if using parallel processing. If NULL
then the number of logical cores is detected and all available cores are used.

bc.lower The lower limit (inclusive) for the Box-Cox transformation.

bc.upper The upper limit (inclusive) for the Box-Cox transformation.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If TRUE,
point forecasts and fitted values are mean forecast. Otherwise, these points can
be considered the median of the forecast densities.

model Output from a previous call to tbats. If model is passed, this same model is
fitted to y without re-estimating any parameters.

... Additional arguments to be passed to auto.arima when choose an ARMA(p,
q) model for the errors. (Note that xreg will be ignored, as will any arguments
concerning seasonality and differencing, but arguments controlling the values of
p and q will be used.)

Value

An object with class c("tbats", "bats"). The generic accessor functions fitted.values and
residuals extract useful features of the value returned by bats and associated functions. The
fitted model is designated TBATS(omega, p,q, phi, <m1,k1>,...,<mJ,kJ>) where omega is the Box-
Cox parameter and phi is the damping parameter; the error is modelled as an ARMA(p,q) process
and m1,...,mJ list the seasonal periods used in the model and k1,...,kJ are the corresponding number
of Fourier terms used for each seasonality.

Author(s)

Slava Razbash and Rob J Hyndman

References

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex
seasonal patterns using exponential smoothing, Journal of the American Statistical Association,
106(496), 1513-1527.

See Also

tbats.components.

Examples

Not run:
fit <- tbats(USAccDeaths)
plot(forecast(fit))

taylor.fit <- tbats(taylor)
plot(forecast(taylor.fit))
End(Not run)

tbats.components 133

tbats.components Extract components of a TBATS model

Description

Extract the level, slope and seasonal components of a TBATS model. The extracted components are
Box-Cox transformed using the estimated transformation parameter.

Usage

tbats.components(x)

Arguments

x A tbats object created by tbats.

Value

A multiple time series (mts) object. The first series is the observed time series. The second series
is the trend component of the fitted model. Series three onwards are the seasonal components of
the fitted model with one time series for each of the seasonal components. All components are
transformed using estimated Box-Cox parameter.

Author(s)

Slava Razbash and Rob J Hyndman

References

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex
seasonal patterns using exponential smoothing, Journal of the American Statistical Association,
106(496), 1513-1527.

See Also

tbats.

Examples

Not run:
fit <- tbats(USAccDeaths, use.parallel=FALSE)
components <- tbats.components(fit)
plot(components)
End(Not run)

134 thetaf

thetaf Theta method forecast

Description

Returns forecasts and prediction intervals for a theta method forecast.

Usage

thetaf(
y,
h = ifelse(frequency(y) > 1, 2 * frequency(y), 10),
level = c(80, 95),
fan = FALSE,
x = y

)

Arguments

y a numeric vector or time series of class ts

h Number of periods for forecasting

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

x Deprecated. Included for backwards compatibility.

Details

The theta method of Assimakopoulos and Nikolopoulos (2000) is equivalent to simple exponential
smoothing with drift. This is demonstrated in Hyndman and Billah (2003).

The series is tested for seasonality using the test outlined in A&N. If deemed seasonal, the series is
seasonally adjusted using a classical multiplicative decomposition before applying the theta method.
The resulting forecasts are then reseasonalized.

Prediction intervals are computed using the underlying state space model.

More general theta methods are available in the forecTheta package.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by rwf.

An object of class "forecast" is a list containing at least the following elements:

model A list containing information about the fitted model

tsclean 135

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

Author(s)

Rob J Hyndman

References

Assimakopoulos, V. and Nikolopoulos, K. (2000). The theta model: a decomposition approach to
forecasting. International Journal of Forecasting 16, 521-530.

Hyndman, R.J., and Billah, B. (2003) Unmasking the Theta method. International J. Forecasting,
19, 287-290.

See Also

arima, meanf, rwf, ses

Examples

nile.fcast <- thetaf(Nile)
plot(nile.fcast)

tsclean Identify and replace outliers and missing values in a time series

Description

Uses supsmu for non-seasonal series and a robust STL decomposition for seasonal series. To esti-
mate missing values and outlier replacements, linear interpolation is used on the (possibly season-
ally adjusted) series

Usage

tsclean(x, replace.missing = TRUE, iterate = 2, lambda = NULL)

136 tsCV

Arguments

x time series
replace.missing

If TRUE, it not only replaces outliers, but also interpolates missing values

iterate the number of iterations required

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

Value

Time series

Author(s)

Rob J Hyndman

References

Hyndman (2021) "Detecting time series outliers" https://robjhyndman.com/hyndsight/tsoutliers/.

See Also

na.interp, tsoutliers, supsmu

Examples

cleangold <- tsclean(gold)

tsCV Time series cross-validation

Description

tsCV computes the forecast errors obtained by applying forecastfunction to subsets of the time
series y using a rolling forecast origin.

Usage

tsCV(y, forecastfunction, h = 1, window = NULL, xreg = NULL, initial = 0, ...)

https://robjhyndman.com/hyndsight/tsoutliers/

tsCV 137

Arguments

y Univariate time series
forecastfunction

Function to return an object of class forecast. Its first argument must be a uni-
variate time series, and it must have an argument h for the forecast horizon. If
exogenous predictors are used, then it must also have xreg and newxreg argu-
ments corresponding to the training and test periods.

h Forecast horizon

window Length of the rolling window, if NULL, a rolling window will not be used.

xreg Exogeneous predictor variables passed to the forecast function if required.

initial Initial period of the time series where no cross-validation is performed.

... Other arguments are passed to forecastfunction.

Details

Let y contain the time series y1, . . . , yT . Then forecastfunction is applied successively to the
time series y1, . . . , yt, for t = 1, . . . , T − h, making predictions ŷt+h|t. The errors are given by
et+h = yt+h − ŷt+h|t. If h=1, these are returned as a vector, e1, . . . , eT . For h>1, they are returned
as a matrix with the hth column containing errors for forecast horizon h. The first few errors may
be missing as it may not be possible to apply forecastfunction to very short time series.

Value

Numerical time series object containing the forecast errors as a vector (if h=1) and a matrix other-
wise. The time index corresponds to the last period of the training data. The columns correspond to
the forecast horizons.

Author(s)

Rob J Hyndman

See Also

CV, CVar, residuals.Arima, https://robjhyndman.com/hyndsight/tscv/.

Examples

#Fit an AR(2) model to each rolling origin subset
far2 <- function(x, h){forecast(Arima(x, order=c(2,0,0)), h=h)}
e <- tsCV(lynx, far2, h=1)

#Fit the same model with a rolling window of length 30
e <- tsCV(lynx, far2, h=1, window=30)

#Example with exogenous predictors
far2_xreg <- function(x, h, xreg, newxreg) {

forecast(Arima(x, order=c(2,0,0), xreg=xreg), xreg=newxreg)

https://robjhyndman.com/hyndsight/tscv/

138 tslm

}

y <- ts(rnorm(50))
xreg <- matrix(rnorm(100),ncol=2)
e <- tsCV(y, far2_xreg, h=3, xreg=xreg)

tslm Fit a linear model with time series components

Description

tslm is used to fit linear models to time series including trend and seasonality components.

Usage

tslm(formula, data, subset, lambda = NULL, biasadj = FALSE, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

subset an optional subset containing rows of data to keep. For best results, pass a
logical vector of rows to keep. Also supports subset() functions.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments passed to lm()

Details

tslm is largely a wrapper for lm() except that it allows variables "trend" and "season" which are
created on the fly from the time series characteristics of the data. The variable "trend" is a simple
time trend and "season" is a factor indicating the season (e.g., the month or the quarter depending
on the frequency of the data).

Value

Returns an object of class "lm".

tsoutliers 139

Author(s)

Mitchell O’Hara-Wild and Rob J Hyndman

See Also

forecast.lm, lm.

Examples

y <- ts(rnorm(120,0,3) + 1:120 + 20*sin(2*pi*(1:120)/12), frequency=12)
fit <- tslm(y ~ trend + season)
plot(forecast(fit, h=20))

tsoutliers Identify and replace outliers in a time series

Description

Uses supsmu for non-seasonal series and a periodic stl decomposition with seasonal series to iden-
tify outliers and estimate their replacements.

Usage

tsoutliers(x, iterate = 2, lambda = NULL)

Arguments

x time series

iterate the number of iterations required

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

Value

index Indicating the index of outlier(s)

replacement Suggested numeric values to replace identified outliers

Author(s)

Rob J Hyndman

References

Hyndman (2021) "Detecting time series outliers" https://robjhyndman.com/hyndsight/tsoutliers/.

https://robjhyndman.com/hyndsight/tsoutliers/

140 woolyrnq

See Also

na.interp, tsclean

Examples

data(gold)
tsoutliers(gold)

wineind Australian total wine sales

Description

Australian total wine sales by wine makers in bottles <= 1 litre. Jan 1980 – Aug 1994.

Usage

wineind

Format

Time series data

Source

Time Series Data Library. https://pkg.yangzhuoranyang.com/tsdl/

Examples

tsdisplay(wineind)

woolyrnq Quarterly production of woollen yarn in Australia

Description

Quarterly production of woollen yarn in Australia: tonnes. Mar 1965 – Sep 1994.

Usage

woolyrnq

https://pkg.yangzhuoranyang.com/tsdl/

woolyrnq 141

Format

Time series data

Source

Time Series Data Library. https://pkg.yangzhuoranyang.com/tsdl/

Examples

tsdisplay(woolyrnq)

https://pkg.yangzhuoranyang.com/tsdl/

Index

∗ datasets
gas, 77
gold, 86
StatForecast, 126
taylor, 130
wineind, 140
woolyrnq, 140

∗ hplot
plot.Arima, 103
plot.bats, 105
plot.ets, 106

∗ htest
dm.test, 38

∗ models
CV, 36

∗ package
forecast-package, 4

∗ stats
forecast.lm, 57
tslm, 138

∗ ts
accuracy.default, 5
Acf, 7
arfima, 9
Arima, 11
arima.errors, 13
arimaorder, 14
auto.arima, 15
autoplot.mforecast, 24
baggedModel, 26
bats, 27
bizdays, 29
bld.mbb.bootstrap, 30
BoxCox, 31
BoxCox.lambda, 32
croston, 34
CVar, 37
dm.test, 38
dshw, 40

easter, 42
ets, 43
findfrequency, 46
fitted.ARFIMA, 47
forecast.baggedModel, 48
forecast.bats, 50
forecast.ets, 51
forecast.fracdiff, 53
forecast.HoltWinters, 56
forecast.modelAR, 61
forecast.nnetar, 65
forecast.stl, 68
forecast.StructTS, 71
forecast.ts, 73
fourier, 75
getResponse, 77
ggseasonplot, 82
ggtsdisplay, 84
ma, 88
meanf, 89
modelAR, 91
monthdays, 93
msts, 95
na.interp, 96
ndiffs, 97
nnetar, 98
plot.forecast, 107
residuals.forecast, 110
rwf, 111
seasadj, 114
seasonal, 115
seasonaldummy, 116
ses, 117
simulate.ets, 120
sindexf, 123
splinef, 124
subset.ts, 128
tbats, 131
tbats.components, 133

142

INDEX 143

thetaf, 134
tsclean, 135
tsCV, 136
tsoutliers, 139

_PACKAGE (forecast-package), 4
‘[.msts‘ (msts), 95

accuracy.default, 5
Acf, 7, 23, 85
acf, 8, 9, 23, 85
aes, 127
aes_, 127
AIC, 36
ar, 14, 54, 55, 70, 104, 123
arfima, 9, 14, 54, 55, 123
Arima, 11, 14, 17, 18, 45, 55, 75, 104, 114,

116, 123
arima, 10–12, 14, 17, 54, 55, 74, 120, 123,

126, 135
arima.errors, 13
arimaorder, 14
as.character.Arima (Arima), 11
as.character.bats (bats), 27
as.character.ets (ets), 43
as.character.tbats (tbats), 131
as.data.frame.forecast (forecast.ts), 73
as.data.frame.mforecast (forecast.mts),

63
as.ts.forecast (forecast.ts), 73
auto.arima, 10, 12, 14, 15, 54, 55, 69, 75, 98,

102, 116, 123
autolayer, 18
autolayer.forecast (plot.forecast), 107
autolayer.mforecast

(autoplot.mforecast), 24
autolayer.msts (autolayer.mts), 19
autolayer.mts, 19
autolayer.ts (autolayer.mts), 19
autoplot(), 18
autoplot.acf, 21
autoplot.ar (plot.Arima), 103
autoplot.Arima (plot.Arima), 103
autoplot.bats (plot.bats), 105
autoplot.decomposed.ts, 23
autoplot.ets (plot.ets), 106
autoplot.forecast (plot.forecast), 107
autoplot.mforecast, 24
autoplot.mpacf (autoplot.acf), 21

autoplot.mstl (autoplot.decomposed.ts),
23

autoplot.msts (autolayer.mts), 19
autoplot.mts (autolayer.mts), 19
autoplot.seas (autoplot.decomposed.ts),

23
autoplot.splineforecast

(plot.forecast), 107
autoplot.stl (autoplot.decomposed.ts),

23
autoplot.StructTS

(autoplot.decomposed.ts), 23
autoplot.tbats (plot.bats), 105
autoplot.ts (autolayer.mts), 19

baggedETS, 31
baggedETS (baggedModel), 26
baggedModel, 26, 48, 49
bats, 27, 50, 51, 105
bgtest, 34
bizdays, 29, 93
bld.mbb.bootstrap, 26, 30
borders, 127
Box.test, 34
BoxCox, 31, 33
BoxCox.lambda, 32, 32

Ccf (Acf), 7
ccf, 8, 9
ch.test, 102
checkresiduals, 33, 111
coef.ets (ets), 43
croston, 34, 75
CV, 36, 38, 137
CVar, 37, 137

decompose, 23, 24, 88, 115, 116, 124
dm.test, 38
dshw, 40

easter, 42
ets, 26, 41, 42, 43, 52, 53, 56, 69, 74, 106,

113, 118, 120, 123

findfrequency, 46
fitted.ar (fitted.ARFIMA), 47
fitted.ARFIMA, 47
fitted.Arima, 111
fitted.Arima (fitted.ARFIMA), 47

144 INDEX

fitted.bats (fitted.ARFIMA), 47
fitted.ets (fitted.ARFIMA), 47
fitted.forecast_ARIMA (fitted.ARFIMA),

47
fitted.modelAR (fitted.ARFIMA), 47
fitted.nnetar (fitted.ARFIMA), 47
fitted.tbats (fitted.ARFIMA), 47
forecast, 48, 70, 71, 108, 109, 128
forecast-package, 4
forecast.ar (forecast.fracdiff), 53
forecast.Arima, 12, 48, 69, 71, 74, 75
forecast.Arima (forecast.fracdiff), 53
forecast.baggedModel, 26, 48
forecast.bats, 48, 50
forecast.default (forecast.ts), 73
forecast.ets, 48, 51, 51, 71, 75
forecast.forecast_ARIMA

(forecast.fracdiff), 53
forecast.fracdiff, 10, 53, 55
forecast.HoltWinters, 56, 75
forecast.lm, 57, 60, 61, 139
forecast.mlm, 59, 64, 65
forecast.modelAR, 61
forecast.mts, 63
forecast.nnetar, 48, 65
forecast.stl, 68
forecast.stlm (forecast.stl), 68
forecast.StructTS, 71, 75
forecast.tbats, 48
forecast.tbats (forecast.bats), 50
forecast.ts, 73, 74, 127
forecTheta, 134
fortify, 20, 127
fortify(), 18
fortify.ts (autolayer.mts), 19
fourier, 75, 117
fourierf (fourier), 75
fracdiff, 10, 14, 54

gas, 77
geom_forecast, 20
geom_forecast (StatForecast), 126
geom_histogram, 79
GeomForecast (StatForecast), 126
getResponse, 77
ggAcf (autoplot.acf), 21
ggCcf (autoplot.acf), 21
gghistogram, 78
gglagchull (gglagplot), 79

gglagplot, 79
ggmonthplot, 81
ggPacf (autoplot.acf), 21
ggplot, 127
ggplot(), 18
ggproto, 128
ggseasonplot, 82
ggsubseriesplot (ggmonthplot), 81
ggtaperedacf (autoplot.acf), 21
ggtaperedpacf (autoplot.acf), 21
ggtsdisplay, 34, 84
gold, 86

hegy.test, 102
hist, 79
holt, 53, 75, 126
holt (ses), 117
HoltWinters, 42, 45, 56, 57, 120
hw, 53, 75
hw (ses), 117

InvBoxCox (BoxCox), 31
is.acf, 86
is.Arima (is.acf), 86
is.baggedModel (is.acf), 86
is.bats (is.acf), 86
is.constant, 87
is.ets (is.acf), 86
is.forecast, 87
is.mforecast (is.forecast), 87
is.modelAR (is.acf), 86
is.nnetar (is.acf), 86
is.nnetarmodels (is.acf), 86
is.splineforecast (is.forecast), 87
is.stlm (is.acf), 86
isBizday, 29

lag.plot, 81
layer, 127
lm, 36, 58–61, 138, 139

ma, 88
meanf, 75, 89, 135
mforecast (forecast.mts), 63
modelAR, 62, 91
monthdays, 30, 93
monthplot, 82, 84
mstl, 94
msts, 40, 95

INDEX 145

na.contiguous, 8, 22, 85
na.interp, 8, 22, 85, 96, 136, 140
na.pass, 8, 22, 85
naive (rwf), 111
nclass.FD, 79
ndiffs, 16, 97, 98, 102
nnet, 99
nnetar, 37, 63, 66, 67, 98, 123
nsdiffs, 17, 100, 103

ocsb.test, 102, 102

Pacf (Acf), 7
pacf, 8, 9
par, 104, 105
plot, 83
plot.acf, 23
plot.ar (plot.Arima), 103
plot.Arima, 103
plot.bats, 105
plot.default, 108
plot.ets, 106
plot.forecast, 25, 107
plot.mforecast (autoplot.mforecast), 24
plot.splineforecast (plot.forecast), 107
plot.stl, 24
plot.tbats (plot.bats), 105
plot.ts, 20, 25, 85, 109
predict.ar, 55
predict.Arima, 55
predict.HoltWinters, 56, 57
predict.lm, 58
print.ARIMA (Arima), 11
print.baggedModel (baggedModel), 26
print.bats (bats), 27
print.CVar (CVar), 37
print.ets (ets), 43
print.forecast (forecast.ts), 73
print.mforecast (forecast.mts), 63
print.modelAR (modelAR), 91
print.msts (msts), 95
print.naive (rwf), 111
print.nnetar (nnetar), 98
print.nnetarmodels (nnetar), 98
print.OCSBtest (ocsb.test), 102
print.tbats (tbats), 131

remainder (seasonal), 115
residuals.ar (residuals.forecast), 110

residuals.ARFIMA (residuals.forecast),
110

residuals.Arima, 13, 14, 48, 137
residuals.Arima (residuals.forecast),

110
residuals.bats, 48
residuals.bats (residuals.forecast), 110
residuals.ets, 48
residuals.ets (residuals.forecast), 110
residuals.forecast, 110
residuals.forecast_ARIMA

(residuals.forecast), 110
residuals.nnetar, 48
residuals.nnetar (residuals.forecast),

110
residuals.stlm (residuals.forecast), 110
residuals.tbats, 48
residuals.tbats (residuals.forecast),

110
residuals.tslm (residuals.forecast), 110
rnorm, 123
rwf, 45, 75, 90, 111, 120, 135

seas, 23, 24
seasadj, 114, 116
seasonal, 115
seasonaldummy, 76, 116
seasonaldummyf (seasonaldummy), 116
seasonplot (ggseasonplot), 82
ses, 35, 53, 75, 117, 135
set.seed, 122
simulate.ar (simulate.ets), 120
simulate.Arima (simulate.ets), 120
simulate.ets, 120
simulate.fracdiff (simulate.ets), 120
simulate.lagwalk (simulate.ets), 120
simulate.modelAR (simulate.ets), 120
simulate.nnetar, 62, 66
simulate.nnetar (simulate.ets), 120
simulate.tbats (simulate.ets), 120
sindexf, 123
smooth.spline, 125, 126
snaive (rwf), 111
spec.ar, 85
splinef, 75, 124
StatForecast, 126
stl, 23, 24, 69–71, 94, 115, 116, 124
stlf, 74, 113
stlf (forecast.stl), 68

146 INDEX

stlm (forecast.stl), 68
StructTS, 24, 72, 73
subset, 130, 138
subset.msts (subset.ts), 128
subset.ts, 128
summary.Arima (Arima), 11
summary.ets (ets), 43
summary.forecast (forecast.ts), 73
summary.mforecast (forecast.mts), 63
supsmu, 94, 136

taperedacf, 23
taperedacf (Acf), 7
taperedpacf (Acf), 7
taylor, 130
tbats, 51, 105, 115, 116, 131, 133
tbats.components, 132, 133
thetaf, 70, 75, 134
trendcycle (seasonal), 115
tsclean, 135, 140
tsCV, 38, 136
tsdiag.ets (ets), 43
tsdisplay, 9
tsdisplay (ggtsdisplay), 84
tslm, 36, 58–61, 64, 75, 116, 138
tsoutliers, 96, 136, 139

window, 129, 130
window.msts (msts), 95
wineind, 140
woolyrnq, 140

	forecast-package
	accuracy.default
	Acf
	arfima
	Arima
	arima.errors
	arimaorder
	auto.arima
	autolayer
	autolayer.mts
	autoplot.acf
	autoplot.decomposed.ts
	autoplot.mforecast
	baggedModel
	bats
	bizdays
	bld.mbb.bootstrap
	BoxCox
	BoxCox.lambda
	checkresiduals
	croston
	CV
	CVar
	dm.test
	dshw
	easter
	ets
	findfrequency
	fitted.ARFIMA
	forecast.baggedModel
	forecast.bats
	forecast.ets
	forecast.fracdiff
	forecast.HoltWinters
	forecast.lm
	forecast.mlm
	forecast.modelAR
	forecast.mts
	forecast.nnetar
	forecast.stl
	forecast.StructTS
	forecast.ts
	fourier
	gas
	getResponse
	gghistogram
	gglagplot
	ggmonthplot
	ggseasonplot
	ggtsdisplay
	gold
	is.acf
	is.constant
	is.forecast
	ma
	meanf
	modelAR
	monthdays
	mstl
	msts
	na.interp
	ndiffs
	nnetar
	nsdiffs
	ocsb.test
	plot.Arima
	plot.bats
	plot.ets
	plot.forecast
	residuals.forecast
	rwf
	seasadj
	seasonal
	seasonaldummy
	ses
	simulate.ets
	sindexf
	splinef
	StatForecast
	subset.ts
	taylor
	tbats
	tbats.components
	thetaf
	tsclean
	tsCV
	tslm
	tsoutliers
	wineind
	woolyrnq
	Index

