
Package ‘ggmulti’
July 23, 2021

Type Package

Title High Dimensional Data Visualization

Version 1.0.4

Description It provides materials (i.e. 'serial axes' objects, Andrew's plot, various glyphs for scat-
ter plot) to visualize high dimensional data.

License GPL-2

Depends R (>= 3.4.0), methods, ggplot2

Imports stats, utils, grid, dplyr, tidyr

Suggests png, tools, stringr, markdown, magrittr, gridExtra, tibble,
testthat, grDevices, knitr, rmarkdown, tidyverse, gtable, covr,
maps, nycflights13, ggplot2movies

RoxygenNote 7.1.1

LazyData true

Encoding UTF-8

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Zehao Xu [aut, cre],
R. Wayne Oldford [aut]

Maintainer Zehao Xu <z267xu@uwaterloo.ca>

Repository CRAN

Date/Publication 2021-07-23 14:20:02 UTC

R topics documented:
add_serialaxes_layers . 2
coord_radial . 3
coord_serialaxes . 4
dot_product . 5
Geom-ggproto . 7

1

2 add_serialaxes_layers

geom_density_ . 8
geom_hist_ . 12
geom_image_glyph . 18
geom_polygon_glyph . 21
geom_quantiles . 24
geom_serialaxes . 25
geom_serialaxes_density . 29
geom_serialaxes_glyph . 32
geom_serialaxes_hist . 35
geom_serialaxes_quantile . 38
get_scaledData . 41
NBAstats2021 . 41
polygon_glyph . 43
Position-ggproto . 44
position_dodge_ . 45
position_identity_ . 47
position_stack_ . 47
Stat-ggproto . 48

Index 50

add_serialaxes_layers Layers for serial axes coordinate

Description

Project the regular geom layers onto the serial axes coordinate.

Usage

add_serialaxes_layers(layer, plot, object, axes)

Arguments

layer a layer object

plot a ggplot object

object some parameters used to modify this serial axes ggplot object (i.e. axes.sequence,
...)

axes canvas sequence axes

Details

The class is determined by layers you add. For example, you want to add a boxplot layer on serial
axes coordinate. By the ggplot syntax, it should be ggplot(data,mapping) + geom_boxplot() +
coord_serialaxes() To make it work, object add_serialaxes_layers.GeomBoxplot must be
created. In this function, some computations will be applied.

coord_radial 3

coord_radial Radial axes

Description

A radial (spider) coordinate. A wrapper of the function coord_polar() by forcing it linear.

Usage

coord_radial(theta = "x", start = 0, direction = 1, clip = "on")

Arguments

theta variable to map angle to (x or y)

start Offset of starting point from 12 o’clock in radians. Offset is applied clockwise
or anticlockwise depending on value of direction.

direction 1, clockwise; -1, anticlockwise

clip Should drawing be clipped to the extent of the plot panel? A setting of "on"
(the default) means yes, and a setting of "off" means no. For details, please see
coord_cartesian().

Details

The serial histogram and serial density cannot be applied on a radial coordinate yet.

Examples

if(require("dplyr")) {
ggplot(NBAstats2021, mapping = aes(colour = Playoff)) +

geom_serialaxes(
axes.sequence = c("PTS", "OPTS", "3PM", "O3PM", "PTS"),

scaling = "variable"
) +

coord_radial() +
scale_x_continuous(

breaks = 1:5,
labels = c("Points",

"Oppo Points",
"3P Made",
"Oppo 3P Made",
"Points Per Game")) +

scale_y_continuous(labels = NULL) +
facet_wrap(~CONF)
}

4 coord_serialaxes

coord_serialaxes Serial axes coordinates

Description

It is mainly used to visualize the high dimensional data set either on the parallel coordinate or the
radial coordinate.

Usage

coord_serialaxes(
axes.layout = c("parallel", "radial"),
scaling = c("data", "variable", "observation", "none"),
axes.sequence = character(0L),
positive = TRUE,
...

)

Arguments

axes.layout Serial axes layout, either "parallel" or "radial".

scaling One of data, variable, observation or none (not suggested the layout is the
same with data) to specify how the data is scaled.

axes.sequence A vector with variable names that defines the axes sequence.

positive If y is set as the density estimate, where the smoothed curved is faced to, right
(positive) or left (negative) as vertical layout; up (positive) or down (negative)
as horizontal layout?

... other arguments used to modify layers

Details

Serial axes coordinate system (parallel or radial) is different from the Cartesian coordinate system
or its transformed system (say polar in ggplot2) since it does not have a formal transformation (i.e.
in polar coordinate system, "x = rcos(theta)", "y = rsin(theta)"). In serial axes coordinate system,
mapping aesthetics does not really require "x" or "y". Any "non-aesthetics" components passed in
the mapping system will be treated as an individual axis.

To project a common geom layer on such serialaxes, users can customize function add_serialaxes_layers.

Value

a ggproto object

dot_product 5

Potential Risk

In package ggmulti, the function ggplot_build.gg is provided. At the ggplot construction time,
the system will call ggplot_build.gg first. If the plot input is not a CoordSerialaxes coordi-
nate system, the next method ggplot_build.ggplot will be called to build a "gg" plot; else some
geometric transformations will be applied first, then the next method ggplot_build.ggplot will
be executed. So, the potential risk is, if some other packages e.g. foo, also provide a function
ggplot_build.gg that is used for their specifications but the namespace is beyond the ggmulti
(ggmulti:::ggplot_build.gg is covered), error may occur. If so, please consider using the
geom_serialaxes.

Examples

if(require("dplyr")) {
Data
nba <- NBAstats2021 %>%

mutate(
dPTS = PTS - OPTS,
dREB = REB - OREB,
dAST = AST - OAST,
dTO = TO - OTO

)
set sequence by `axes.sequence`
p <- ggplot(nba,

mapping = aes(
dPTS = dPTS,
dREB = dREB,
dAST = dAST,
dTO = dTO,
colour = Win

)) +
geom_path(alpha = 0.2) +
coord_serialaxes(axes.layout = "radial") +
scale_color_gradient(low="blue", high="red")

p
quantile layer
p + geom_quantiles(quantiles = c(0.5),

colour = "green", size = 1.2)

facet
p +

facet_grid(Playoff ~ CONF)
}

dot_product Transformation Coefficients

6 dot_product

Description

The dimension of the original data set is n*p. It can be projected onto a n*k space. The functions
below are to provide such transformations, e.g. the Andrews coefficient (a Fourier transforma-
tion) and the Legendre polynomials.

Usage

andrews(p = 4, k = 50 * (p - 1), ...)

legendre(p = 4, k = 50 * (p - 1), ...)

Arguments

p The number of dimensions

k The sequence length

... Other arguments passed on to methods. Mainly used for customized transfor-
mation function

Value

A list contains two named components

1. vector: A length k vector (define the domain)

2. matrix: A p*k transformed coefficient matrix

References

Andrews, David F. "Plots of high-dimensional data." Biometrics (1972): 125-136.

Abramowitz, Milton, and Irene A. Stegun, eds. "Chapter 8" Handbook of mathematical functions
with formulas, graphs, and mathematical tables. Vol. 55. US Government printing office, 1948.

Examples

x <- andrews(p = 4)
dat <- iris[, -5]
proj <- t(as.matrix(dat) %*% x$matrix)
matplot(x$vector, proj,

type = "l", lty = 1,
col = "black",
xlab = "x",
ylab = "Andrews coefficients",
main = "Iris")

Geom-ggproto 7

Geom-ggproto Base Geom ggproto classes for ggplot2

Description

All geom_ functions (like geom_point) return a layer that contains a Geom object (like GeomPoint).
The Geom object is responsible for rendering the data in the plot. Each of the Geom objects is a
ggproto object, descended from the top-level Geom, and each implements various methods and
fields. Compared to Stat and Position, Geom is a little different because the execution of the setup
and compute functions is split up. setup_data runs before position adjustments, and draw_layer
is not run until render time, much later. This means there is no setup_params because it’s hard to
communicate the changes.

Usage

GeomDensity_

GeomBar_

GeomImageGlyph

GeomPolygonGlyph

GeomQuantiles

GeomSerialaxesDensity

GeomSerialAxesGlyph

GeomSerialaxesHist

GeomSerialaxesQuantile

GeomSerialaxes

Format

An object of class GeomDensity_ (inherits from GeomRibbon, Geom, ggproto, gg) of length 6.

An object of class GeomBar_ (inherits from GeomBar, GeomRect, Geom, ggproto, gg) of length 4.

An object of class GeomImageGlyph (inherits from Geom, ggproto, gg) of length 7.

An object of class GeomPolygonGlyph (inherits from Geom, ggproto, gg) of length 7.

An object of class GeomQuantiles (inherits from GeomQuantile, GeomPath, Geom, ggproto, gg)
of length 1.

An object of class GeomSerialaxesDensity (inherits from GeomDensity_, GeomRibbon, Geom,
ggproto, gg) of length 2.

8 geom_density_

An object of class GeomSerialAxesGlyph (inherits from Geom, ggproto, gg) of length 7.

An object of class GeomSerialaxesHist (inherits from GeomBar_, GeomBar, GeomRect, Geom,
ggproto, gg) of length 2.

An object of class GeomSerialaxesQuantile (inherits from GeomPath, Geom, ggproto, gg) of
length 4.

An object of class GeomSerialaxes (inherits from GeomPath, Geom, ggproto, gg) of length 3.

geom_density_ More general smoothed density estimates

Description

Computes and draws kernel density estimate. Compared with geom_density(), it provides more
general cases that accepting x and y. See details

Usage

geom_density_(
mapping = NULL,
data = NULL,
stat = "density_",
position = "identity_",
...,
scale.x = NULL,
scale.y = c("data", "group", "variable"),
as.mix = FALSE,
positive = TRUE,
prop = 0.9,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_density_(
mapping = NULL,
data = NULL,
geom = "density_",
position = "stack_",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n = 512,
trim = FALSE,
na.rm = FALSE,

geom_density_ 9

orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat Use to override the default connection between geom_density and stat_density.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

scale.x A sorted length 2 numerical vector representing the range of the whole data will
be scaled to. The default value is (0, 1).

scale.y one of data and group to specify.

Type Description
data (default) The density estimates are scaled by the whole data set
group The density estimates are scaled by each group

If the scale.y is data, it is meaningful to compare the density (shape and area)
across all groups; else it is only meaningful to compare the density within each
group. See details.

as.mix Logical. Within each group, if TRUE, the sum of the density estimate area is
mixed and scaled to maximum 1. The area of each subgroup (in general, within
each group one color represents one subgroup) is proportional to the count; if
FALSE the area of each subgroup is the same, with maximum 1. See details.

positive If y is set as the density estimate, where the smoothed curved is faced to, right
(‘positive‘) or left (‘negative‘) as vertical layout; up (‘positive‘) or down (‘neg-
ative‘) as horizontal layout?

prop adjust the proportional maximum height of the estimate (density, histogram, ...).
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.

10 geom_density_

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom Use to override the default connection between geom_density and stat_density.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd().

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

n number of equally spaced points at which the density is to be estimated, should
be a power of two, see density() for details

trim If FALSE, the default, each density is computed on the full range of the data.
If TRUE, each density is computed over the range of that group: this typically
means the estimated x values will not line-up, and hence you won’t be able to
stack density values. This parameter only matters if you are displaying multiple
densities in one plot or if you are manually adjusting the scale limits.

Details

The x (or y) is a group variable (categorical) and y (or x) is the target variable (numerical) to be plot-
ted. If only one of x or y is provided, it will treated as a target variable and ggplot2::geom_density
will be executed.

There are four combinations of scale.y and as.mix.

scale.y = "group" and as.mix = FALSE The density estimate area of each subgroup (repre-
sented by each color) within the same group is the same.

scale.y = "group" and as.mix = TRUE The density estimate area of each subgroup (represented
by each color) within the same group is proportional to its own counts.

scale.y = "data" and as.mix = FALSE The sum of density estimate area of all groups is scaled
to maximum of 1. and the density area for each group is proportional to the its count. Within
each group, the area of each subgroup is the same.

scale.y = "data" and as.mix = TRUE The sum of density estimate area of all groups is scaled
to maximum of 1 and the area of each subgroup (represented by each color) is proportional to
its own count.

See vignettes[https://great-northern-diver.github.io/ggmulti/articles/histogram-density-.html] for more
intuitive explanation.

geom_density_ 11

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

See Also

geom_density, geom_hist_

Examples

if(require(dplyr)) {
mpg %>%

dplyr::filter(drv != "f") %>%
ggplot(mapping = aes(x = drv, y = cty, fill = factor(cyl))) +
geom_density_(alpha = 0.1)

only `x` or `y` is provided
that would be equivalent to call function `geom_density()`
diamonds %>%

dplyr::sample_n(500) %>%
ggplot(mapping = aes(x = price)) +
geom_density_()

density and boxplot
set the density estimate on the left
mpg %>%

dplyr::filter(drv != "f") %>%
ggplot(mapping = aes(x = drv, y = cty,

fill = factor(cyl))) +
geom_density_(alpha = 0.1,

scale.y = "group",
as.mix = FALSE,
positive = FALSE) +

geom_boxplot()

x as density
set.seed(12345)
suppressWarnings(

diamonds %>%
dplyr::sample_n(500) %>%
ggplot(mapping = aes(x = price, y = cut, fill = color)) +
geom_density_(orientation = "x", prop = 0.25,

position = "stack_",
scale.y = "group")

)
}

12 geom_hist_

settings of `scale.y` and `as.mix`

ggplots <- lapply(list(
list(scale.y = "data", as.mix = TRUE),
list(scale.y = "data", as.mix = FALSE),
list(scale.y = "group", as.mix = TRUE),
list(scale.y = "group", as.mix = FALSE)

),
function(vars) {

scale.y <- vars[["scale.y"]]
as.mix <- vars[["as.mix"]]
ggplot(mpg,

mapping = aes(x = drv, y = cty, fill = factor(cyl))) +
geom_density_(alpha = 0.1, scale.y = scale.y, as.mix = as.mix) +
labs(title = paste("scale.y =", scale.y),

subtitle = paste("as.mix =", as.mix))
})

suppressWarnings(
gridExtra::grid.arrange(grobs = ggplots)

)

geom_hist_ More general histogram

Description

More general histogram (geom_histogram) or bar plot (geom_bar). Both x and y could be accom-
modated. See details

Usage

geom_hist_(
mapping = NULL,
data = NULL,
stat = "hist_",
position = "stack_",
...,
scale.x = NULL,
scale.y = c("data", "group", "variable"),
as.mix = FALSE,
binwidth = NULL,
bins = NULL,
positive = TRUE,
prop = 0.9,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

geom_hist_ 13

)

geom_histogram_(
mapping = NULL,
data = NULL,
stat = "bin_",
position = "stack_",
...,
scale.x = NULL,
scale.y = c("data", "group"),
as.mix = FALSE,
positive = TRUE,
prop = 0.9,
binwidth = NULL,
bins = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_bar_(
mapping = NULL,
data = NULL,
stat = "count_",
position = "stack_",
...,
scale.x = NULL,
scale.y = c("data", "group"),
positive = TRUE,
prop = 0.9,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_hist_(
mapping = NULL,
data = NULL,
geom = "bar_",
position = "stack_",
...,
binwidth = NULL,
bins = NULL,
center = NULL,
boundary = NULL,
breaks = NULL,

14 geom_hist_

closed = c("right", "left"),
pad = FALSE,
width = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_bin_(
mapping = NULL,
data = NULL,
geom = "bar_",
position = "stack_",
...,
binwidth = NULL,
bins = NULL,
center = NULL,
boundary = NULL,
breaks = NULL,
closed = c("right", "left"),
pad = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_count_(
mapping = NULL,
data = NULL,
geom = "bar_",
position = "stack_",
...,
width = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the

geom_hist_ 15

call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

position Position adjustment, either as a string, or the result of a call to a position ad-
justment function. Function geom_hist_ and geom_histogram_ understand
stack_ (stacks bars on top of each other), or dodge_ and dodge2_ (overlap-
ping objects side-to-side) instead of stack, dodge or dodge2

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

scale.x A sorted length 2 numerical vector representing the range of the whole data will
be scaled to. The default value is (0, 1).

scale.y one of data and group to specify.

Type Description
data (default) The density estimates are scaled by the whole data set
group The density estimates are scaled by each group

If the scale.y is data, it is meaningful to compare the density (shape and area)
across all groups; else it is only meaningful to compare the density within each
group. See details.

as.mix Logical. Within each group, if TRUE, the sum of the density estimate area is
mixed and scaled to maximum 1. The area of each subgroup (in general, within
each group one color represents one subgroup) is proportional to the count; if
FALSE the area of each subgroup is the same, with maximum 1. See details.

binwidth The width of the bins. Can be specified as a numeric value or as a function that
calculates width from unscaled x. Here, "unscaled x" refers to the original x val-
ues in the data, before application of any scale transformation. When specifying
a function along with a grouping structure, the function will be called once per
group. The default is to use the number of bins in bins, covering the range of
the data. You should always override this value, exploring multiple widths to
find the best to illustrate the stories in your data.
The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

bins Number of bins. Overridden by binwidth. Defaults to 30.

positive If y is set as the density estimate, where the smoothed curved is faced to, right
(‘positive‘) or left (‘negative‘) as vertical layout; up (‘positive‘) or down (‘neg-
ative‘) as horizontal layout?

prop adjust the proportional maximum height of the estimate (density, histogram, ...).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

16 geom_hist_

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_hist_()/geom_histogram_()/geom_bar_()
and stat_hist_()/stat_bin_()/stat_count_().

center bin position specifiers. Only one, center or boundary, may be specified for a
single plot. center specifies the center of one of the bins. boundary specifies
the boundary between two bins. Note that if either is above or below the range of
the data, things will be shifted by the appropriate integer multiple of binwidth.
For example, to center on integers use binwidth = 1 and center = 0, even if 0 is
outside the range of the data. Alternatively, this same alignment can be specified
with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the
data.

boundary bin position specifiers. Only one, center or boundary, may be specified for a
single plot. center specifies the center of one of the bins. boundary specifies
the boundary between two bins. Note that if either is above or below the range of
the data, things will be shifted by the appropriate integer multiple of binwidth.
For example, to center on integers use binwidth = 1 and center = 0, even if 0 is
outside the range of the data. Alternatively, this same alignment can be specified
with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the
data.

breaks Alternatively, you can supply a numeric vector giving the bin boundaries. Over-
rides binwidth, bins, center, and boundary.

closed One of "right" or "left" indicating whether right or left edges of bins are
included in the bin.

pad If TRUE, adds empty bins at either end of x. This ensures frequency polygons
touch 0. Defaults to FALSE.

width Bar width. By default, set to 90% of the resolution of the data.

Details

x (or y) is a group variable (categorical) and y (or x) a target variable (numerical) to be plotted. If
only one of x or y is provided, it will treated as a target variable and ggplot2::geom_histogram
will be executed. Several things should be noticed:

1. If both x and y are given, they can be one discrete one continuous or two discrete. But they
cannot be two continuous variables (which one will be considered as a group variable?).

2. geom_hist_ is a wrapper of geom_histogram_ and geom_count_. Suppose the y is our interest
(x is the categorical variable), geom_hist_() can accommodate either continuous or discrete y.

geom_hist_ 17

While, geom_histogram_() only accommodates the continuous y and geom_bar_() only accom-
modates the discrete y.

3. There are four combinations of scale.y and as.mix.

scale.y = "group" and as.mix = FALSE The density estimate area of each subgroup (repre-
sented by each color) within the same group is the same.

scale.y = "group" and as.mix = TRUE The density estimate area of each subgroup (represented
by each color) within the same group is proportional to its own counts.

scale.y = "data" and as.mix = FALSE The sum of density estimate area of all groups is scaled
to maximum of 1. and the density area for each group is proportional to the its count. Within
each group, the area of each subgroup is the same.

scale.y = "data" and as.mix = TRUE The sum of density estimate area of all groups is scaled
to maximum of 1 and the area of each subgroup (represented by each color) is proportional to
its own count.

See vignettes[https://great-northern-diver.github.io/ggmulti/articles/histogram-density-.html] for more
intuitive explanation. Note that, if it is a grouped bar chart (both x and y are categorical), parameter
‘as.mix‘ is meaningless.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

See Also

geom_histogram, geom_density_

Examples

if(require(dplyr) && require(tidyr)) {

histogram
p0 <- mpg %>%
dplyr::filter(manufacturer %in% c("dodge", "ford", "toyota", "volkswagen")) %>%
ggplot(mapping = aes(x = manufacturer, y = cty))

p0 + geom_hist_()

set position
default is "stack_"
p0 + geom_hist_(mapping = aes(fill = fl))
"dodge_"
p0 + geom_hist_(position = "dodge_",

mapping = aes(fill = fl))
"dodge2_"

18 geom_image_glyph

p0 + geom_hist_(position = "dodge2_",
mapping = aes(fill = fl))

bar chart
mpg %>%

ggplot(mapping = aes(x = drv, y = class)) +
geom_hist_(orientation = "y")

scale.y as "group"
p <- iris %>%

tidyr::pivot_longer(cols = -Species,
names_to = "Outer sterile whorls",
values_to = "x") %>%

ggplot(mapping = aes(x = `Outer sterile whorls`,
y = x, fill = Species)) +

stat_hist_(scale.y = "group",
prop = 0.6,
alpha = 0.5)

p
with density on the left
p + stat_density_(scale.y = "group",

prop = 0.6,
alpha = 0.5,
positive = FALSE)

########### only `x` or `y` is provided ###########
that would be equivalent to call function
`geom_histogram()` or `geom_bar()`
histogram
diamonds %>%

dplyr::sample_n(500) %>%
ggplot(mapping = aes(x = price)) +
geom_hist_()

bar chart
diamonds %>%

dplyr::sample_n(500) %>%
ggplot(mapping = aes(x = cut)) +
geom_hist_()

}

geom_image_glyph Add image glyphs on scatter plot

Description

Each point glyph can be an image (png, jpeg, etc) object.

Usage

geom_image_glyph(

geom_image_glyph 19

mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
images,
imagewidth = 1.2,
imageheight = 0.9,
interpolate = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

images a list of images (a raster object, bitmap image). If not provided, a point visual
(geom_point()) will be displayed.

imagewidth Numerical; width of image

imageheight Numerical; height of image

interpolate A logical value indicating whether to linearly interpolate the image (the alterna-
tive is to use nearest-neighbour interpolation, which gives a more blocky result).
See rasterGrob.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

20 geom_image_glyph

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

a geom layer

Aesthetics

geom_..._glyph() understands the following aesthetics (required aesthetics are in bold):

• x
• y
• alpha

• colour

• fill

• group

• size

• linetype

• shape

• stroke

The size unit is cm

Note that the shape and stroke do not have real meanings unless the essential argument images is
missing. If so, a point visual will be displayed with corresponding shape and stroke.

See Also

geom_serialaxes_glyph, geom_polygon_glyph

Examples

image glyph
if(require("png")) {
img_path <- list.files(file.path(find.package(package = 'ggmulti'),

"images"),
full.names = TRUE)

Raptors <- png::readPNG(img_path[2L])
Warriors <- png::readPNG(img_path[3L])

pg <- ggplot(data = data.frame(x = 1:2, y = rep(1, 2)),
mapping = aes(x = x, y = y)) +

geom_image_glyph(images = list(Raptors,
Warriors),

imagewidth = rep(1.2, 2),
imageheight = c(0.9, 1.2)) +

geom_polygon_glyph 21

coord_cartesian(xlim = extendrange(c(1,2)))
pg
query the images (a numerical array)
build <- ggplot2::ggplot_build(pg)
`imageRaptors` and `imageWarriors` are three dimensional
arrays (third dimension specifying the plane)
imageRaptors <- build$data[[1]]$images[[1]]
imageWarriors <- build$data[[1]]$images[[2]]

if(require("grid")) {
grid.newpage()
grid.raster(imageRaptors)
grid.newpage()
grid.raster(imageWarriors)
}

THIS IS SLOW
mercLogo <- png::readPNG(img_path[1L])

p <- ggplot(mapping = aes(x = hp, y = mpg)) +
geom_point(

data = mtcars[!grepl("Merc", rownames(mtcars)),],
color = "skyblue") +

geom_image_glyph(
data = mtcars[grepl("Merc", rownames(mtcars)),],
images = mercLogo,
imagewidth = 1.5

)
p

}

geom_polygon_glyph Add polygon glyphs on scatter plot

Description

Each point glyph can be a polygon object. We provide some common polygon coords in polygon_glyph.
Also, users can customize their own polygons.

Usage

geom_polygon_glyph(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
polygon_x,

22 geom_polygon_glyph

polygon_y,
linewidth = 1,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

polygon_x nested list of x-coordinates of polygons, one list element for each scatterplot
point. If not provided, a point visual (geom_point()) will be displayed.

polygon_y nested list of y-coordinates of polygons, one list element for each scatterplot
point. If not provided, a point visual (geom_point()) will be displayed.

linewidth line width of the "glyph" object

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

a geom layer

geom_polygon_glyph 23

Aesthetics

geom_..._glyph() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• size

• linetype

• shape

• stroke

The size unit is cm

Note that the shape and stroke do not have real meanings unless the essential argument polygon_x
or polygon_y is missing. If so, a point visual will be displayed with corresponding shape and
stroke.

See Also

geom_serialaxes_glyph, geom_image_glyph

Examples

polygon glyph
p <- ggplot(data = data.frame(x = 1:4, y = 1:4),

mapping = aes(x = x, y = y)) +
geom_polygon_glyph(polygon_x = list(x_star, x_cross, x_hexagon, x_airplane),

polygon_y = list(y_star, y_cross, y_hexagon, y_airplane),
colour = 'black', fill = 'red')

p

the coords of each polygons can be achieved by calling function `ggplot_build`
build <- ggplot2::ggplot_build(p)
polygon_x <- build$data[[1]]$polygon_x
polygon_y <- build$data[[1]]$polygon_y

24 geom_quantiles

geom_quantiles Add quantile layers on serial axes coordinate

Description

In ggplot2, geom_quantile() is used to fit a quantile regression to the data and draws the fitted
quantiles with lines. However, geom_quantiles() is mainly used to draw quantile lines on serial
axes. See examples

Usage

geom_quantiles(
mapping = NULL,
data = NULL,
stat = "quantile",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat Use to override the default connection between geom_quantile and stat_quantile.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

geom_serialaxes 25

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

See Also

geom_serialaxes_quantile

Examples

p <- ggplot(iris,
mapping = aes(

Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width

)
) +
geom_path(alpha = 0.2) +
coord_serialaxes(scaling = "variable")

p + geom_quantiles(colour = c("red", "green", "blue"),
quantiles = c(0.25, 0.5, 0.75),
size = 2)

geom_serialaxes Serial axes layer

Description

Draw a serial axes layer, parallel axes under Cartesian system and radial axes under Polar system.
It only takes the "widens" data. Each non-aesthetics component defined in the mapping aes() will
be treated as an axis.

26 geom_serialaxes

Usage

geom_serialaxes(
mapping = NULL,
data = NULL,
stat = "serialaxes",
position = "identity",
...,
axes.sequence = character(0L),
merge = TRUE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_serialaxes(
mapping = NULL,
data = NULL,
geom = "serialaxes",
position = "identity",
...,
axes.sequence = character(0L),
merge = TRUE,
axes.position = NULL,
scaling = c("data", "variable", "observation", "none"),
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_dotProduct(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
axes.sequence = character(0L),
merge = TRUE,
scaling = c("data", "variable", "observation", "none"),
transform = andrews,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_serialaxes 27

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

axes.sequence A vector to define the axes sequence. In serial axes coordinate, the sequence
can be either determined in mapping (function aes()) or by axes.sequence.
The only difference is that the mapping aesthetics will omit the duplicated axes
(check examples in geom_serialaxes).

merge Should axes.sequence be merged with mapping aesthetics as a single mapping
uneval object?

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use display the data
axes.position A numerical vector to determine the axes sequence position; the length should

be the same with the length of axes.sequence (or mapping aesthetics, see
examples).

scaling one of data, variable, observation or none (not suggested the layout is the
same with data) to specify how the data is scaled.

transform A transformation function, can be either andrews, legendre or some other cus-
tomized transformation functions.

28 geom_serialaxes

Details

The difference between the "lengthens" data and "widens" data can be found in Tidy Data. How to
transform one to the other is explained in tidyr

See Also

coord_serialaxes, geom_serialaxes_density, geom_serialaxes_quantile, geom_serialaxes_hist

Andrews plot andrews, Legendre polynomials legendre

Examples

parallel coordinate
p <- ggplot(NBAstats2021,

mapping = aes(FGA = FGA,
`3PA` = `3PA`,
FTA = FTA,
OFGA = OFGA,
O3PA = O3PA,
OFTA = OFTA,
colour = CONF))

Teams in West are more likely to make 3-point field goals.
Besides, they have a better performance in restricting opponents
to make 3-point field goals.
p +

geom_serialaxes(scaling = "variable",
alpha = 0.4,
size = 3) +

scale_x_continuous(breaks = 1:6,
labels = c("FGA", "3PA", "FTA",

"OFGA", "O3PA", "OFTA")) +
scale_y_continuous(labels = NULL)

andrews plot
p + geom_serialaxes(stat = "dotProduct",

scaling = "variable",
transform = andrews) # default

Legendre polynomials
p + geom_serialaxes(stat = "dotProduct",

scaling = "variable",
transform = legendre)

############# Determine axes sequence
1. set the duplicated axes by mapping aesthetics
ggplot(iris, mapping = aes(Sepal.Length = Sepal.Length,

Sepal.Width = Sepal.Width,
Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
colour = Species)) +

http://vita.had.co.nz/papers/tidy-data.pdf
https://tidyr.tidyverse.org/articles/pivot.html

geom_serialaxes_density 29

only two axes, duplicated axes are removed
geom_serialaxes()

2. set the duplicated axes by axes.sequence
ggplot(iris, mapping = aes(colour = Species)) +

geom_serialaxes(
axes.sequence = c("Sepal.Length", "Sepal.Width",

"Sepal.Length", "Sepal.Width"))

geom_serialaxes_density

Smoothed density estimates for "widens" data under serial axes coor-
dinate

Description

Computes and draws kernel density estimates on serial axes coordinate for each non-aesthetics
component defined in the mapping aes().

Usage

geom_serialaxes_density(
mapping = NULL,
data = NULL,
stat = "serialaxes_density",
position = "identity_",
...,
axes.sequence = character(0L),
merge = TRUE,
scale.y = c("data", "group"),
as.mix = TRUE,
positive = TRUE,
prop = 0.9,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_serialaxes_density(
mapping = NULL,
data = NULL,
geom = "serialaxes_density",
position = "stack_",
...,
axes.sequence = character(0L),
merge = TRUE,

30 geom_serialaxes_density

axes.position = NULL,
scaling = c("data", "variable", "observation", "none"),
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n = 512,
trim = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

axes.sequence A vector to define the axes sequence. In serial axes coordinate, the sequence
can be either determined in mapping (function aes()) or by axes.sequence.
The only difference is that the mapping aesthetics will omit the duplicated axes
(check examples in geom_serialaxes).

merge Should axes.sequence be merged with mapping aesthetics as a single mapping
uneval object?

scale.y one of data and group to specify.

Type Description
data (default) The density estimates are scaled by the whole data set
group The density estimates are scaled by each group

If the scale.y is data, it is meaningful to compare the density (shape and area)

geom_serialaxes_density 31

across all groups; else it is only meaningful to compare the density within each
group. See details.

as.mix Logical. Within each group, if TRUE, the sum of the density estimate area is
mixed and scaled to maximum 1. The area of each subgroup (in general, within
each group one color represents one subgroup) is proportional to the count; if
FALSE the area of each subgroup is the same, with maximum 1. See details.

positive If y is set as the density estimate, where the smoothed curved is faced to, right
(‘positive‘) or left (‘negative‘) as vertical layout; up (‘positive‘) or down (‘neg-
ative‘) as horizontal layout?

prop adjust the proportional maximum height of the estimate (density, histogram, ...).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use display the data

axes.position A numerical vector to determine the axes sequence position; the length should
be the same with the length of axes.sequence (or mapping aesthetics, see
examples).

scaling one of data, variable, observation or none (not suggested the layout is the
same with data) to specify how the data is scaled.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd().

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

n number of equally spaced points at which the density is to be estimated, should
be a power of two, see density() for details

trim If FALSE, the default, each density is computed on the full range of the data.
If TRUE, each density is computed over the range of that group: this typically
means the estimated x values will not line-up, and hence you won’t be able to
stack density values. This parameter only matters if you are displaying multiple
densities in one plot or if you are manually adjusting the scale limits.

32 geom_serialaxes_glyph

See Also

geom_density_, geom_serialaxes, geom_serialaxes_quantile, geom_serialaxes_hist

Examples

p <- ggplot(iris, mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = Species,
fill = Species)) +

geom_serialaxes(alpha = 0.2) +
geom_serialaxes_density(alpha = 0.5) +
scale_x_continuous(breaks = 1:4,

labels = colnames(iris)[-5]) +
scale_y_continuous(labels = NULL) +
xlab("variable") +
ylab("") +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5))

p

geom_serialaxes_glyph Add serial axes glyphs on scatter plot

Description

To visualize high dimensional data on scatterplot. Each point glyph is surrounded by a serial axes
(parallel axes or radial axes) object.

Usage

geom_serialaxes_glyph(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
serialaxes.data,
axes.sequence = character(0L),
scaling = c("data", "variable", "observation", "none"),
axes.layout = c("parallel", "radial"),
andrews = FALSE,
show.axes = FALSE,
show.enclosing = FALSE,
linewidth = 1,
axescolour = "black",
bboxcolour = "black",
na.rm = FALSE,

geom_serialaxes_glyph 33

show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

serialaxes.data

a serial axes numerical data set. If not provided, a point visual (geom_point())
will be displayed.

axes.sequence A vector to define the axes sequence. In serial axes coordinate, the sequence
can be either determined in mapping (function aes()) or by axes.sequence.
The only difference is that the mapping aesthetics will omit the duplicated axes
(check examples in geom_serialaxes).

scaling one of data, variable, observation or none (not suggested the layout is the
same with data) to specify how the data is scaled.

axes.layout either "radial" or "parallel"

andrews Logical; Andrew’s plot (a Fourier transformation)

show.axes boolean to indicate whether axes should be shown or not

show.enclosing boolean to indicate whether enclosing should be shown or not

linewidth line width of the "glyph" object

axescolour axes color

bboxcolour bounding box color

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

34 geom_serialaxes_glyph

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

a geom layer

Aesthetics

geom_..._glyph() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• size

• linetype

• shape

• stroke

The size unit is cm

Note that the shape and stroke do not have real meanings unless the essential argument serialaxes.data
is missing. If so, a point visual will be displayed with corresponding shape and stroke.

See Also

geom_polygon_glyph, geom_image_glyph

Examples

serial axes glyph
p <- ggplot(data = iris,

mapping = aes(x = Sepal.Length, y = Sepal.Width, colour = Species)) +
geom_serialaxes_glyph(serialaxes.data = iris[, -5],

axes.layout = "radial")
p

geom_serialaxes_hist 35

geom_serialaxes_hist Histogram for "widens" data under serial axes coordinate

Description

Computes and draws histogram on serial axes coordinate for each non-aesthetics component defined
in the mapping aes().

Usage

geom_serialaxes_hist(
mapping = NULL,
data = NULL,
stat = "serialaxes_hist",
position = "stack_",
...,
axes.sequence = character(0L),
axes.position = NULL,
merge = TRUE,
scale.y = c("data", "group"),
as.mix = TRUE,
positive = TRUE,
prop = 0.9,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_serialaxes_hist(
mapping = NULL,
data = NULL,
geom = "serialaxes_hist",
position = "stack_",
...,
axes.sequence = character(0L),
scaling = c("data", "variable", "observation", "none"),
axes.position = NULL,
binwidth = NULL,
bins = NULL,
center = NULL,
boundary = NULL,
breaks = NULL,
closed = c("right", "left"),
pad = FALSE,
width = NULL,
na.rm = FALSE,

36 geom_serialaxes_hist

orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

axes.sequence A vector to define the axes sequence. In serial axes coordinate, the sequence
can be either determined in mapping (function aes()) or by axes.sequence.
The only difference is that the mapping aesthetics will omit the duplicated axes
(check examples in geom_serialaxes).

axes.position A numerical vector to determine the axes sequence position; the length should
be the same with the length of axes.sequence (or mapping aesthetics, see
examples).

merge Should axes.sequence be merged with mapping aesthetics as a single mapping
uneval object?

scale.y one of data and group to specify.

Type Description
data (default) The density estimates are scaled by the whole data set
group The density estimates are scaled by each group

If the scale.y is data, it is meaningful to compare the density (shape and area)
across all groups; else it is only meaningful to compare the density within each
group. See details.

as.mix Logical. Within each group, if TRUE, the sum of the density estimate area is
mixed and scaled to maximum 1. The area of each subgroup (in general, within

geom_serialaxes_hist 37

each group one color represents one subgroup) is proportional to the count; if
FALSE the area of each subgroup is the same, with maximum 1. See details.

positive If y is set as the density estimate, where the smoothed curved is faced to, right
(‘positive‘) or left (‘negative‘) as vertical layout; up (‘positive‘) or down (‘neg-
ative‘) as horizontal layout?

prop adjust the proportional maximum height of the estimate (density, histogram, ...).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use display the data

scaling one of data, variable, observation or none (not suggested the layout is the
same with data) to specify how the data is scaled.

binwidth The width of the bins. Can be specified as a numeric value or as a function that
calculates width from unscaled x. Here, "unscaled x" refers to the original x val-
ues in the data, before application of any scale transformation. When specifying
a function along with a grouping structure, the function will be called once per
group. The default is to use the number of bins in bins, covering the range of
the data. You should always override this value, exploring multiple widths to
find the best to illustrate the stories in your data.
The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

bins Number of bins. Overridden by binwidth. Defaults to 30.

center bin position specifiers. Only one, center or boundary, may be specified for a
single plot. center specifies the center of one of the bins. boundary specifies
the boundary between two bins. Note that if either is above or below the range of
the data, things will be shifted by the appropriate integer multiple of binwidth.
For example, to center on integers use binwidth = 1 and center = 0, even if 0 is
outside the range of the data. Alternatively, this same alignment can be specified
with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the
data.

boundary bin position specifiers. Only one, center or boundary, may be specified for a
single plot. center specifies the center of one of the bins. boundary specifies
the boundary between two bins. Note that if either is above or below the range of
the data, things will be shifted by the appropriate integer multiple of binwidth.
For example, to center on integers use binwidth = 1 and center = 0, even if 0 is
outside the range of the data. Alternatively, this same alignment can be specified

38 geom_serialaxes_quantile

with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the
data.

breaks Alternatively, you can supply a numeric vector giving the bin boundaries. Over-
rides binwidth, bins, center, and boundary.

closed One of "right" or "left" indicating whether right or left edges of bins are
included in the bin.

pad If TRUE, adds empty bins at either end of x. This ensures frequency polygons
touch 0. Defaults to FALSE.

width Bar width. By default, set to 90% of the resolution of the data.

See Also

geom_hist_, geom_serialaxes, geom_serialaxes_quantile, geom_serialaxes_density

Examples

p <- ggplot(NBAstats2021,
mapping = aes(`FG%` = `FG%`,

`3P%` = `3P%`,
`FT%` = `FT%`,
`OFG%` = `OFG%`,
`O3P%` = `O3P%`,
`OFT%` = `OFT%`,
colour = Playoff,
fill = Playoff)) +

geom_serialaxes(alpha = 0.2,
scaling = "variable") +

geom_serialaxes_hist(alpha = 0.5,
prop = 0.7,
scaling = "variable") +

scale_x_continuous(breaks = 1:6,
labels = c("FG", "3P", "FT",

"OFG", "O3P", "OFT")) +
scale_y_continuous(labels = NULL) +
xlab("variable") +
ylab("") +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5))

p

geom_serialaxes_quantile

Quantile layer for serial axes coordinate

Description

Draw a quantile layer for serial axes coordinate. Don’t be confused with geom_quantile() which
is a quantile regression. See examples.

geom_serialaxes_quantile 39

Usage

geom_serialaxes_quantile(
mapping = NULL,
data = NULL,
stat = "serialaxes",
position = "identity",
...,
axes.sequence = character(0L),
merge = TRUE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_serialaxes_quantile(
mapping = NULL,
data = NULL,
geom = "serialaxes_quantile",
position = "identity",
...,
axes.sequence = character(0L),
merge = TRUE,
quantiles = seq(0, 1, 0.25),
scaling = c("data", "variable", "observation", "none"),
axes.position = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

40 geom_serialaxes_quantile

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

axes.sequence A vector to define the axes sequence. In serial axes coordinate, the sequence
can be either determined in mapping (function aes()) or by axes.sequence.
The only difference is that the mapping aesthetics will omit the duplicated axes
(check examples in geom_serialaxes).

merge Should axes.sequence be merged with mapping aesthetics as a single mapping
uneval object?

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use display the data

quantiles numeric vector of probabilities with values in [0,1]. (Values up to 2e-14 outside
that range are accepted and moved to the nearby endpoint.)

scaling one of data, variable, observation or none (not suggested the layout is the
same with data) to specify how the data is scaled.

axes.position A numerical vector to determine the axes sequence position; the length should
be the same with the length of axes.sequence (or mapping aesthetics, see
examples).

See Also

geom_density_, geom_serialaxes, geom_serialaxes_density, geom_serialaxes_hist

Examples

lower quantile, median and upper quantile
p <- ggplot(iris, mapping = aes(Sepal.Length = Sepal.Length,

Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width)) +

geom_serialaxes(stat = "dotProduct") +
geom_serialaxes_quantile(stat = "dotProduct",

quantiles = c(0.25, 0.5, 0.75),

get_scaledData 41

colour = c("red", "blue", "green"), size = 2)
p

get_scaledData scale data

Description

It is mainly used in serial axes

Usage

get_scaledData(
data,
sequence = NULL,
scaling = c("data", "variable", "observation", "none"),
displayOrder = NULL,
reserve = FALSE,
as.data.frame = FALSE

)

Arguments

data A data frame

sequence vector with variable names that defines the axes sequence. If NULL, it will be set
as the column names automatically.

scaling one of data, variable, observation or none (not suggested the layout is the
same with data) to specify how the data is scaled.

displayOrder the order of the display

reserve If TRUE, return the variables not shown in sequence as well; else only return the
variables defined in sequence.

as.data.frame Return a matrix or a data.frame

NBAstats2021 NBA 30 Teams Statistics in 20-21 Regular Season

Description

A dataset containing the statistics (e.g. Points Per Game, Average Field Goals Made, etc) of 30
NBA Teams in 2020-2021 regular season

42 NBAstats2021

Format

A data frame with 30 rows (teams) and 42 variables:

Team Team Names.

CONF Factor; Conference of Teams (West or East).

DIV Factor; Division of Teams.

Playoff Factor; Whether Teams are in (0 or 1) Playoffs.

PTS Points Per Game.

FGM Average Field Goals Made.

FGA Average Field Goals Attempted.

FG% Field Goal Percentage.

3PM Average 3-Point Field Goals Made.

3PA Average 3-Point Field Goals Attempted.

3P% 3-Point Field Goal Percentage.

FTM Average Free Throws Made.

FTA Average Free Throws Attempted.

FT% Free Throw Percentage.

OR Offensive Rebounds Per Game.

DR Defensive Rebounds Per Game.

REB Rebounds Per Game.

AST Assists Per Game.

STL Steals Per Game.

BLK Blocks Per Game.

TO Turnovers Per Game.

PF Fouls Per Game.

OPTS Opponent Points Per Game.

OFGM Opponent Average Field Goals Made.

OFGA Opponent Average Field Goals Attempted.

OFG% Opponent Field Goal Percentage.

O3PM Opponent Average 3-Point Field Goals Made.

O3PA Opponent Average 3-Point Field Goals Attempted.

O3P% Opponent 3-Point Field Goal Percentage.

OFTM Opponent Average Free Throws Made.

OFTA Opponent Average Free Throws Attempted.

OFT% Opponent Free Throw Percentage.

OOR Opponent Offensive Rebounds Per Game.

ODR Opponent Defensive Rebounds Per Game.

OREB Opponent Rebounds Per Game.

polygon_glyph 43

OAST Opponent Assists Per Game.

OSTL Opponent Steals Per Game.

OBLK Opponent Blocks Per Game.

OTO Opponent Turnovers Per Game.

OPF Opponent Fouls Per Game.

Win Win Games in Regular Season.

Lose Loss Games in Regular Season.

Author(s)

Zehao Xu

Source

https://www.espn.com/nba/stats/team/_/season/2021

polygon_glyph Polygon glyph coordinates

Description

polygon coordinates scaled to (0, 1)

Usage

x_star

y_star

x_cross

y_cross

x_hexagon

y_hexagon

x_airplane

y_airplane

x_maple

y_maple

https://www.espn.com/nba/stats/team/_/season/2021

44 Position-ggproto

Format

An object of class numeric of length 10.

An object of class numeric of length 10.

An object of class numeric of length 12.

An object of class numeric of length 12.

An object of class numeric of length 6.

An object of class numeric of length 6.

An object of class numeric of length 32.

An object of class numeric of length 32.

An object of class numeric of length 26.

An object of class numeric of length 26.

See Also

geom_polygon_glyph

Examples

if(require("grid")) {
library(grid)
grid.newpage()
grid.polygon(x=(x_star + 1)/2,

y=(y_star + 1)/2)
grid.newpage()
grid.polygon(x=(x_cross + 1)/2,

y=(y_cross + 1)/2)
grid.newpage()
grid.polygon(x=(x_hexagon + 1)/2,

y=(y_hexagon + 1)/2)
grid.newpage()
grid.polygon(x=(x_airplane + 1)/2,

y=(y_airplane + 1)/2)
grid.newpage()
grid.polygon(x=(x_maple + 1)/2,

y=(y_maple + 1)/2)
}

Position-ggproto Base Position ggproto classes for ggplot2

position_dodge_ 45

Description

All position_ functions (like position_dodge) return a Position object (like PositionDodge).
The Position object is responsible for adjusting the position of overlapping geoms. The way that
the position_ functions work is slightly different from the geom_ and stat_ functions, because
a position_ function actually "instantiates" the Position object by creating a descendant, and
returns that. Each of the Position objects is a ggproto object, descended from the top-level
Position.

Usage

PositionDodge_

PositionDodge2_

PositionIdentity_

PositionStack_

PositionFill_

Format

An object of class PositionDodge_ (inherits from PositionDodge, Position, ggproto, gg) of
length 2.

An object of class PositionDodge2_ (inherits from PositionDodge2, PositionDodge, Position,
ggproto, gg) of length 2.

An object of class PositionIdentity_ (inherits from PositionIdentity, Position, ggproto,
gg) of length 3.

An object of class PositionStack_ (inherits from PositionStack, Position, ggproto, gg) of
length 3.

An object of class PositionFill_ (inherits from PositionStack_, PositionStack, Position,
ggproto, gg) of length 2.

position_dodge_ Dodge overlapping objects side-to-side

Description

Dodging preserves the vertical position of an geom while adjusting the horizontal position. position_dodge_()
dodges bars side by side but conditional on locations.

46 position_dodge_

Usage

position_dodge_(width = NULL, preserve = c("total", "single"))

position_dodge2_(
width = NULL,
preserve = c("total", "single"),
padding = 0.1,
reverse = FALSE

)

Arguments

width Dodging width, when different to the width of the individual elements. This
is useful when you want to align narrow geoms with wider geoms. See the
examples.

preserve Should dodging preserve the total width of all elements at a position, or the
width of a single element?

padding Padding between elements at the same position. Elements are shrunk by this
proportion to allow space between them. Defaults to 0.1.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

Details

It is built based on position_dodge, but used for multiple locations, such as geom_hist_() or
geom_density_(). Check examples to see the difference.

See Also

See geom_hist_ and geom_serialaxes_hist for more examples.

Other position adjustments for multiple locations: position_identity_, position_stack_, position_fill_

Parent: position_dodge

Examples

if(require(dplyr)) {
p <- iris %>%

tidyr::pivot_longer(cols = -Species,
names_to = "Outer sterile whorls",
values_to = "values") %>%

ggplot(data,
mapping = aes(x = `Outer sterile whorls`,

y = values,
fill = Species))

p + geom_hist_(position = position_dodge_())
}

position_identity_ 47

all bins are shifted on the left
p +

geom_hist_(position = position_dodge())

position_identity_ Don’t adjust position

Description

Don’t adjust position

Usage

position_identity_()

See Also

Other position adjustments for multiple locations: position_stack_, position_fill_, position_dodge_,
position_dodge2_

position_stack_ Stack overlapping objects on top of each another

Description

position_stack_ stacks bars on top of each other, conditional on locations.

Usage

position_stack_(vjust = 1, reverse = FALSE)

position_fill_(vjust = 1, reverse = FALSE)

Arguments

vjust Vertical adjustment for geoms that have a position (like points or lines), not a
dimension (like bars or areas). Set to 0 to align with the bottom, 0.5 for the
middle, and 1 (the default) for the top.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

48 Stat-ggproto

Details

It is built based on position_stack, but used for multiple locations, such as geom_hist_ or
geom_density_. Rather than stack everything on top of each other, position_stack_ stacks bars
based on locations. Check examples to see the difference.

See Also

See geom_hist_, geom_density_, geom_serialaxes_density and geom_serialaxes_hist for
more examples.

Other position adjustments for multiple locations: position_identity_, position_dodge_, position_dodge2_

Parent: position_stack

Examples

p <- ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,

Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = Species))

p +
geom_serialaxes_density(position = position_stack_())

p +
geom_serialaxes_density(position = position_stack())

Stat-ggproto Base Stat ggproto classes for ggplot2

Description

All stat_ functions (like stat_bin()) return a layer that contains a Stat object (like StatBin).
The Stat object is responsible for rendering the data in the plot. Each of the Stat objects is a
ggproto object, descended from the top-level Stat, and each implements various methods and
fields.

Usage

StatDensity_

StatHist_

StatBin_

Stat-ggproto 49

StatCount_

StatSerialaxesDensity

StatSerialaxesHist

StatSerialaxes

StatDotProduct

Format

An object of class StatDensity_ (inherits from StatDensity, Stat, ggproto, gg) of length 4.

An object of class StatHist_ (inherits from StatBin, Stat, ggproto, gg) of length 4.

An object of class StatBin_ (inherits from StatHist_, StatBin, Stat, ggproto, gg) of length 2.

An object of class StatCount_ (inherits from StatHist_, StatBin, Stat, ggproto, gg) of length
2.

An object of class StatSerialaxesDensity (inherits from StatDensity, Stat, ggproto, gg) of
length 4.

An object of class StatSerialaxesHist (inherits from StatBin, Stat, ggproto, gg) of length 4.

An object of class StatSerialaxes (inherits from Stat, ggproto, gg) of length 6.

An object of class StatDotProduct (inherits from StatSerialaxes, Stat, ggproto, gg) of length
4.

Index

∗ datasets
Geom-ggproto, 7
polygon_glyph, 43
Position-ggproto, 44
Stat-ggproto, 48

add_serialaxes_layers, 2, 4
aes(), 9, 14, 19, 22, 24, 27, 30, 33, 36, 39
aes_(), 9, 14, 19, 22, 24, 27, 30, 33, 36, 39
andrews, 28
andrews (dot_product), 5

borders(), 10, 16, 20, 22, 25, 27, 31, 34, 37,
40

coord_cartesian(), 3
coord_radial, 3
coord_serialaxes, 4, 28

density(), 10, 31
dot_product, 5

fortify(), 9, 15, 19, 22, 24, 27, 30, 33, 36, 39

Geom-ggproto, 7
geom_bar_ (geom_hist_), 12
geom_density, 11
geom_density_, 8, 17, 32, 40, 48
geom_hist_, 11, 12, 38, 46, 48
geom_histogram, 17
geom_histogram_ (geom_hist_), 12
geom_image_glyph, 18, 23, 34
geom_polygon_glyph, 20, 21, 34, 44
geom_quantiles, 24
geom_serialaxes, 5, 25, 27, 30, 32, 33, 36,

38, 40
geom_serialaxes_density, 28, 29, 38, 40,

48
geom_serialaxes_glyph, 20, 23, 32
geom_serialaxes_hist, 28, 32, 35, 40, 46, 48

geom_serialaxes_quantile, 25, 28, 32, 38,
38

GeomBar_ (Geom-ggproto), 7
GeomDensity_ (Geom-ggproto), 7
GeomImageGlyph (Geom-ggproto), 7
GeomPolygonGlyph (Geom-ggproto), 7
GeomQuantiles (Geom-ggproto), 7
GeomSerialaxes (Geom-ggproto), 7
GeomSerialaxesDensity (Geom-ggproto), 7
GeomSerialAxesGlyph (Geom-ggproto), 7
GeomSerialaxesHist (Geom-ggproto), 7
GeomSerialaxesQuantile (Geom-ggproto), 7
get_scaledData, 41
ggplot(), 9, 15, 19, 22, 24, 27, 30, 33, 36, 39

layer(), 9, 15, 19, 22, 24, 27, 30, 33, 36, 40
legendre, 28
legendre (dot_product), 5

NBAstats2021, 41

polygon_glyph, 21, 43
Position-ggproto, 44
position_dodge, 46
position_dodge2_, 47, 48
position_dodge2_ (position_dodge_), 45
position_dodge_, 45, 47, 48
position_fill_, 46, 47
position_fill_ (position_stack_), 47
position_identity_, 46, 47, 48
position_stack, 48
position_stack_, 46, 47, 47
PositionDodge2_ (Position-ggproto), 44
PositionDodge_ (Position-ggproto), 44
PositionFill_ (Position-ggproto), 44
PositionIdentity_ (Position-ggproto), 44
PositionStack_ (Position-ggproto), 44

rasterGrob, 19

Stat-ggproto, 48

50

INDEX 51

stat_bin_ (geom_hist_), 12
stat_count_ (geom_hist_), 12
stat_density_ (geom_density_), 8
stat_dotProduct (geom_serialaxes), 25
stat_hist_ (geom_hist_), 12
stat_serialaxes (geom_serialaxes), 25
stat_serialaxes_density

(geom_serialaxes_density), 29
stat_serialaxes_hist

(geom_serialaxes_hist), 35
stat_serialaxes_quantile

(geom_serialaxes_quantile), 38
StatBin_ (Stat-ggproto), 48
StatCount_ (Stat-ggproto), 48
StatDensity_ (Stat-ggproto), 48
StatDotProduct (Stat-ggproto), 48
StatHist_ (Stat-ggproto), 48
stats::bw.nrd(), 10, 31
StatSerialaxes (Stat-ggproto), 48
StatSerialaxesDensity (Stat-ggproto), 48
StatSerialaxesHist (Stat-ggproto), 48

x_airplane (polygon_glyph), 43
x_cross (polygon_glyph), 43
x_hexagon (polygon_glyph), 43
x_maple (polygon_glyph), 43
x_star (polygon_glyph), 43

y_airplane (polygon_glyph), 43
y_cross (polygon_glyph), 43
y_hexagon (polygon_glyph), 43
y_maple (polygon_glyph), 43
y_star (polygon_glyph), 43

	add_serialaxes_layers
	coord_radial
	coord_serialaxes
	dot_product
	Geom-ggproto
	geom_density_
	geom_hist_
	geom_image_glyph
	geom_polygon_glyph
	geom_quantiles
	geom_serialaxes
	geom_serialaxes_density
	geom_serialaxes_glyph
	geom_serialaxes_hist
	geom_serialaxes_quantile
	get_scaledData
	NBAstats2021
	polygon_glyph
	Position-ggproto
	position_dodge_
	position_identity_
	position_stack_
	Stat-ggproto
	Index

