ltcmt: Analysing Line x Tester data containing only crosses for multiple traits.

The function ltcmt conducts Line x Tester analysis for multiple traits when the data contains only crosses. The experimental design may be RCBD or Alpha lattice design.

Example: Analyzing Line x Tester data (crosses) laid out in Alpha Lattice design.

# Load the package
library(gpbStat)

#Load the dataset
data("alphaltcmt")

# View the structure of dataframe. 
str(alphaltcmt)
#> Classes 'tbl_df', 'tbl' and 'data.frame':    60 obs. of  7 variables:
#>  $ replication: num  1 1 1 1 1 1 1 1 1 1 ...
#>  $ block      : num  1 1 1 2 2 2 3 3 3 4 ...
#>  $ line       : chr  "l5" "l1" "l2" "l2" ...
#>  $ tester     : chr  "t1" "t3" "t3" "t1" ...
#>  $ hsw        : num  26.7 22.1 26.2 25.7 18 ...
#>  $ sh         : num  82.2 83.6 83.8 81.7 81.6 ...
#>  $ gy         : num  61.3 30.7 48.1 25.9 29.1 ...

# Conduct Line x Tester analysis
result  = ltcmt(alphaltcmt, replication, line, tester, alphaltcmt[,5:7], block)
#> 
#> Analysis of Line x Tester for Multiple traits
#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

# View the output
result
#> $Mean
#> $Mean$hsw
#>     Tester
#> Line        1        2        3
#>    1 24.28100 24.38975 26.43250
#>    2 24.75150 23.17850 23.85100
#>    3 22.12950 25.09375 25.46600
#>    4 25.36125 26.52300 26.32225
#>    5 24.40525 23.86375 22.90450
#> 
#> $Mean$sh
#>     Tester
#> Line        1        2        3
#>    1 82.93436 83.87124 84.20399
#>    2 83.89508 84.62547 83.77366
#>    3 83.61044 84.45869 83.04424
#>    4 84.27547 84.32636 81.81483
#>    5 83.04301 82.58873 84.83067
#> 
#> $Mean$gy
#>     Tester
#> Line        1        2        3
#>    1 54.26683 48.86251 44.75305
#>    2 44.95867 45.31223 47.39452
#>    3 46.06275 54.77228 55.05693
#>    4 60.56487 52.13965 53.79695
#>    5 58.26799 53.53054 53.55139
#> 
#> 
#> $ANOVA
#> $ANOVA$hsw
#>                           Df     Sum Sq   Mean Sq   F value      Pr(>F)
#> Replication                3 123.547315 41.182438 5.2008347 0.006007617
#> Blocks within Replication 16 159.485732  9.967858 1.2588177 0.292524662
#> Crosses                   14  95.615586  6.829685 0.8625051 0.603263868
#> Lines                      4  44.431866 11.107966 1.0223891 0.406049177
#> Testers                    2   6.558666  3.279333 0.3018333 0.740946613
#> Lines X Testers            8  44.625055  5.578132 0.5134172 0.839950285
#> Error                     26 205.879143  7.918429        NA          NA
#> Total                     59 584.527775        NA        NA          NA
#> 
#> $ANOVA$sh
#>                           Df     Sum Sq    Mean Sq   F value      Pr(>F)
#> Replication                3  47.865214 15.9550714 5.5805022 0.004306487
#> Blocks within Replication 16  61.859599  3.8662250 1.3522645 0.240056532
#> Crosses                   14  40.010784  2.8579131 0.9995938 0.481506718
#> Lines                      4   3.066186  0.7665466 0.1874088 0.943757507
#> Testers                    2   2.486129  1.2430645 0.3039100 0.739429879
#> Lines X Testers            8  34.458468  4.3073085 1.0530702 0.412196780
#> Error                     26  74.335936  2.8590745        NA          NA
#> Total                     59 224.071534         NA        NA          NA
#> 
#> $ANOVA$gy
#>                           Df      Sum Sq    Mean Sq   F value       Pr(>F)
#> Replication                3  3170.89296 1056.96432 7.6637547 0.0007890292
#> Blocks within Replication 16  2338.16012  146.13501 1.0595843 0.4350901435
#> Crosses                   14  1411.76346  100.84025 0.7311646 0.7260111510
#> Lines                      4   787.68515  196.92129 0.9743323 0.4310135285
#> Testers                    2    48.50139   24.25070 0.1199882 0.8872136703
#> Lines X Testers            8   575.57692   71.94711 0.3559818 0.9379857942
#> Error                     26  3585.84969  137.91730        NA           NA
#> Total                     59 10506.66623         NA        NA           NA
#> 
#> 
#> $GCA.Line
#>           Trait 1     Trait 2   Trait 3
#> Line 1  0.4375167 -0.01655394 -2.258613
#> Line 2 -0.6699000  0.41165231 -5.664270
#> Line 3 -0.3671500  0.01804113  0.411244
#> Line 4  1.4719333 -0.21419481  3.947743
#> Line 5 -0.8724000 -0.19894469  3.563895
#> 
#> $GCA.Tester
#>           Trait 1    Trait 2    Trait 3
#> Tester 1 -0.41120 -0.1347434  1.2714786
#> Tester 2  0.01285  0.2876815 -0.6293023
#> Tester 3  0.39835 -0.1529380 -0.6421764
#> 
#> $SCA
#> $SCA$`Trait 1`
#>     Tester
#> Line          1          2          3
#>    1 -0.3422167 -0.6575167  0.9997333
#>    2  1.2357000 -0.7613500 -0.4743500
#>    3 -1.6890500  0.8511500  0.8379000
#>    4 -0.2963833  0.4413167 -0.1449333
#>    5  1.0919500  0.1264000 -1.2183500
#> 
#> $SCA$`Trait 2`
#>     Tester
#> Line           1           2          3
#>    1 -0.60075619 -0.08630744  0.6870636
#>    2 -0.06824822  0.23971724 -0.1714690
#>    3  0.04072451  0.46655392 -0.5072784
#>    4  0.93799581  0.56645558 -1.5044514
#>    5 -0.30971591 -1.18641930  1.4961352
#> 
#> $SCA$`Trait 3`
#>     Tester
#> Line         1           2          3
#>    1  3.701222  0.19768507 -3.8989074
#>    2 -2.201279  0.05305477  2.1482244
#>    3 -7.172713  3.43759274  3.7351205
#>    4  3.792902 -2.73153863 -1.0613638
#>    5  1.879868 -0.95679396 -0.9230737
#> 
#> 
#> $CV
#>    Trait1    Trait2    Trait3 
#> 11.440345  2.020495 22.780202 
#> 
#> $Genetic.Variance.Covariance.
#>         Phenotypic Variance Genotypic Variance Environmental Variance
#> Trait 1          -0.6697598          -8.588188               7.918429
#> Trait 2          -0.4152151          -3.274290               2.859074
#> Trait 3        -101.1137222        -239.031018             137.917296
#>         Phenotypic coefficient of Variation Genotypic coefficient of Variation
#> Trait 1                                 NaN                                NaN
#> Trait 2                                 NaN                                NaN
#> Trait 3                                 NaN                                NaN
#>         Environmental coefficient of Variation Broad sense heritability
#> Trait 1                              11.440345                12.822788
#> Trait 2                               2.020495                 7.885767
#> Trait 3                              22.780202                 2.363982
#> 
#> $Std.Error
#>         S.E. gca for line S.E. gca for tester S.E. sca effect
#> Trait 1         0.8123232           0.6292229       1.4069851
#> Trait 2         0.4881150           0.3780922       0.8454399
#> Trait 3         3.3901487           2.6259979       5.8719097
#>         S.E. (gi - gj)line S.E. (gi - gj)tester S.E. (sij - skl)tester
#> Trait 1          1.1487985            0.8898555               1.989777
#> Trait 2          0.6902988            0.5347031               1.195633
#> Trait 3          4.7943942            3.7137218               8.304134
#> 
#> $C.D.
#>         C.D. gca for line C.D. gca for tester C.D. sca effect
#> Trait 1          1.669754           1.2933861        2.892099
#> Trait 2          1.003335           0.7771797        1.737827
#> Trait 3          6.968550           5.3978159       12.069883
#>         C.D. (gi - gj)line C.D. (gi - gj)tester C.D. (sij - skl)tester
#> Trait 1           2.361389             1.829124               4.090046
#> Trait 2           1.418929             1.099098               2.457658
#> Trait 3           9.855018             7.633664              17.069393
#> 
#> $Add.Dom.Var
#>         Cov H.S. (line) Cov H.S. (tester) Cov H.S. (average) Cov F.S. (average)
#> Trait 1       0.4608195        -0.1149399         0.03318511         -0.3379446
#> Trait 2      -0.2950635        -0.1532122        -0.03843094         -0.1627380
#> Trait 3      10.4145144        -2.3848209         0.76610579        -10.5634695
#>         Addittive Variance(F=0) Addittive Variance(F=1) Dominance Variance(F=0)
#> Trait 1               0.1327405              0.06637023               -1.170148
#> Trait 2              -0.1537238             -0.07686188                0.724117
#> Trait 3               3.0644232              1.53221158              -32.985091
#>         Dominance Variance(F=1)
#> Trait 1              -0.5850742
#> Trait 2               0.3620585
#> Trait 3             -16.4925453
#> 
#> $Contribution.of.Line.Tester
#>            Lines   Tester  Line x Tester
#> Trait 1 46.46927 6.859411       46.67132
#> Trait 2  7.66340 6.213647       86.12295
#> Trait 3 55.79441 3.435518       40.77007

Example: Analyzing Line x Tester data (crosses) laid out in RCBD.

# Load the package
library(gpbStat)

#Load the dataset
data("rcbdltcmt")

# View the structure of dataframe. 
str(rcbdltc)
#> Classes 'tbl_df', 'tbl' and 'data.frame':    60 obs. of  4 variables:
#>  $ replication: num  1 2 3 4 1 2 3 4 1 2 ...
#>  $ line       : num  1 1 1 1 1 1 1 1 1 1 ...
#>  $ tester     : num  6 6 6 6 7 7 7 7 8 8 ...
#>  $ yield      : num  74.4 70.9 60.9 68 91.8 ...

# Conduct Line x Tester analysis
result1 = ltcmt(rcbdltcmt, replication, line, tester, rcbdltcmt[,4:5])

# View the output
result1
#> $Mean
#> $Mean$ph
#>     Tester
#> Line      1      2      3
#>    1 188.25 184.65 168.40
#>    2 169.80 188.00 202.00
#>    3 177.50 177.25 197.75
#>    4 172.00 171.25 183.25
#>    5 197.75 202.00 175.50
#> 
#> $Mean$eh
#>     Tester
#> Line      1       2      3
#>    1  71.45  80.675  72.25
#>    2  79.50  95.500  97.25
#>    3  90.00  91.500 100.50
#>    4  81.00  80.000  88.00
#>    5 102.25 102.500  87.00
#> 
#> 
#> $ANOVA
#> $ANOVA$ph
#>                 Df     Sum Sq  Mean Sq   F value     Pr(>F)
#> Replication      3   442.4927 147.4976 0.5028866 0.68235896
#> Crosses         14  7885.4240 563.2446 1.9203581 0.05197320
#> Lines            4  1816.0907 454.0227 1.6010303 0.19053280
#> Testers          2   213.1320 106.5660 0.3757861 0.68888394
#> Lines X Testers  8  5856.2013 732.0252 2.5813568 0.02068038
#> Error           42 12318.6773 293.3018        NA         NA
#> Total           59 20646.5940       NA        NA         NA
#> 
#> $ANOVA$eh
#>                 Df    Sum Sq   Mean Sq    F value       Pr(>F)
#> Replication      3  162.4298  54.14328  0.6740871 5.727648e-01
#> Crosses         14 5957.8783 425.56274  5.2982817 1.239227e-05
#> Lines            4 3942.9167 985.72917 12.5449584 6.156545e-07
#> Testers          2  302.4323 151.21617  1.9244642 1.577768e-01
#> Lines X Testers  8 1712.5293 214.06617  2.7243296 1.541154e-02
#> Error           42 3373.4777  80.32090         NA           NA
#> Total           59 9493.7858        NA         NA           NA
#> 
#> 
#> $GCA.Line
#>           Trait 1    Trait 2
#> Line 1 -3.2566667 -13.166667
#> Line 2  2.9100000   2.791667
#> Line 3  0.4766667   6.041667
#> Line 4 -8.1900000  -4.958333
#> Line 5  8.0600000   9.291667
#> 
#> $GCA.Tester
#>          Trait 1   Trait 2
#> Tester 1   -2.63 -3.118333
#> Tester 2    0.94  2.076667
#> Tester 3    1.69  1.041667
#> 
#> $SCA
#> $SCA$`Trait 1`
#>     Tester
#> Line          1         2         3
#>    1  10.446667  3.276667 -13.72333
#>    2 -14.170000  0.460000  13.71000
#>    3  -4.036667 -7.856667  11.89333
#>    4  -0.870000 -5.190000   6.06000
#>    5   8.630000  9.310000 -17.94000
#> 
#> $SCA$`Trait 2`
#>     Tester
#> Line          1         2          3
#>    1 -0.2233333  3.806667  -3.583333
#>    2 -8.1316667  2.673333   5.458333
#>    3 -0.8816667 -4.576667   5.458333
#>    4  1.1183333 -5.076667   3.958333
#>    5  8.1183333  3.173333 -11.291667
#> 
#> 
#> $CV
#> [1]  9.323348 10.189134
#> 
#> $Genetic.Variance.Covariance
#>         Phenotypic Variance Genotypic Variance Environmental Variance
#> Trait 1            397.2386          103.93675               293.3018
#> Trait 2            173.1758           92.85487                80.3209
#>         Phenotypic coefficient of Variation Genotypic coefficient of Variation
#> Trait 1                            10.85026                           5.550078
#> Trait 2                            14.96120                          10.955327
#>         Environmental coefficient of Variation Broad sense heritability
#> Trait 1                               9.323348                0.2616482
#> Trait 2                              10.189134                0.5361886
#> 
#> $Std.Error
#>         S.E. gca for line S.E. gca for tester S.E. sca effect
#> Trait 1          4.943867            3.829503        8.563029
#> Trait 2          2.587162            2.004007        4.481096
#>         S.E. (gi - gj)line S.E. (gi - gj)tester S.E. (sij - skl)tester
#> Trait 1           6.991684             5.415735              12.109951
#> Trait 2           3.658800             2.834094               6.337227
#> 
#> $C.D.
#>         C.D. gca for line C.D. gca for tester C.D. sca effect
#> Trait 1          9.892655            7.662817       17.134581
#> Trait 2          5.176900            4.010009        8.966653
#>         C.D. (gi - gj)line C.D. (gi - gj)tester C.D. (sij - skl)tester
#> Trait 1          13.990327            10.836860               24.23196
#> Trait 2           7.321242             5.671009               12.68076
#> 
#> $Add.Dom.Var
#>         Cov H.S. (line) Cov H.S. (tester) Cov H.S. (average) Cov F.S. (average)
#> Trait 1       -23.16688         -31.27296          -4.475243           37.37585
#> Trait 2        64.30525          -3.14250           5.607864           88.76549
#>         Addittive Variance(F=0) Addittive Variance(F=1) Dominance Variance(F=0)
#> Trait 1               -17.90097               -8.950486               219.36166
#> Trait 2                22.43145               11.215727                66.87263
#>         Dominance Variance(F=1)
#> Trait 1               109.68083
#> Trait 2                33.43632
#> 
#> $Contribution.of.Line.Tester
#>            Lines   Tester  Line x Tester
#> Trait 1 23.03098 2.702860       74.26616
#> Trait 2 66.17988 5.076175       28.74395