Package 'gratia'

May 9, 2022

Version 0.7.3

```
Date 2022-05-09
Title Graceful 'ggplot'-Based Graphics and Other Functions for GAMs
      Fitted Using 'mgcv'
Maintainer Gavin L. Simpson <ucfagls@gmail.com>
Depends R (>= 3.6.0)
Imports mgcv, ggplot2, tibble, dplyr (>= 1.0.0), tidyr, rlang,
      patchwork, vctrs, grid, mvnfast, purrr, stats, tools,
      grDevices, stringr, tidyselect, lifecycle, nlme
Suggests gamm4, lme4, testthat, vdiffr, MASS, scam, datasets, withr,
      knitr, rmarkdown
Description Graceful 'ggplot'-based graphics and utility functions for working with generalized addi-
      tive models (GAMs) fitted using the 'mgcv' package. Provides a reimplementa-
      tion of the plot() method for GAMs that 'mgcv' provides, as well as 'tidyverse' compatible repre-
      sentations of estimated smooths.
License MIT + file LICENSE
LazyData true
URL https://gavinsimpson.github.io/gratia/
BugReports https://github.com/gavinsimpson/gratia/issues
RoxygenNote 7.1.2
Encoding UTF-8
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Gavin L. Simpson [aut, cre] (<a href="https://orcid.org/0000-0002-9084-8413">https://orcid.org/0000-0002-9084-8413</a>),
      Henrik Singmann [ctb] (<a href="https://orcid.org/0000-0002-4842-3657">https://orcid.org/0000-0002-4842-3657</a>)
Repository CRAN
Date/Publication 2022-05-09 11:20:03 UTC
```

R topics documented:

add_confint	4
add_constant	4
add_fitted	5
add_fitted.gam	6
add_partial_residuals	7
add_residuals	8
add_residuals.gam	8
appraise	9
basis	11
bird_move	12
check_user_select_smooths	12
coef.scam	13
compare_smooths	14
confint.fderiv	15
confint.gam	17
data_combos	19
data_sim	19
data_slice	20
derivatives	21
	23
draw	25
	25
	26
	27
draw.evaluated_smooth	29
	32
	36
· · ·	37
	38
· · · · ·	40
· · · · · · · · · · · · · · · · · · ·	41
	43
	45
	47
	47
eval_smooth	49
	52
-	52
, .	53
y –	53
7 – 7 1	54
	55
-	57 57
	57
e	58
	59

get_smooth
get_smooths_by_id
gss_vocab
gw_f0
has_theta
is_by_smooth
is_factor_term
is_mgcv_smooth
is_offset
link
load_mgcv
model_concurvity
nb_theta
n_smooths
observed_fitted_plot
parametric_effects
parametric_terms
partial_residuals
penalty
posterior_samples
predicted_samples
qq_plot
ref_sims
rep_first_factor_value
residuals_hist_plot
residuals_linpred_plot
rootogram
seq_min_max
seq_min_max_eps
shift_values
simulate.gam
smallAges
smooths
smooth_coefs
smooth_data
smooth_dim
smooth_estimates
smooth_samples
term_names
term_variables
theta
tidy_basis
too far
too far to na
to_na 97
transform_fun
typical_values
variance_comp

4 add_constant

vars_from_label		 	 															
which_smooths			 															
worm_plot			 															
zooplankton		 	 							 								

Index 105

add_confint

Add a confidence interval to an existing object

Description

Add a confidence interval to an existing object

Usage

```
add_confint(object, coverage = 0.95, ...)
## S3 method for class 'smooth_estimates'
add_confint(object, coverage = 0.95, ...)
## Default S3 method:
add_confint(object, coverage = 0.95, ...)
```

Arguments

object a R object.

coverage numeric; the coverage for the interval. Must be in the range 0 < coverage < 1.

... arguments passed to other methods.

add_constant

Add a constant to estimated values

Description

Add a constant to estimated values

```
add_constant(object, constant = NULL, ...)
## S3 method for class 'evaluated_smooth'
add_constant(object, constant = NULL, ...)
## S3 method for class 'smooth_estimates'
add_constant(object, constant = NULL, ...)
```

add_fitted 5

```
## S3 method for class 'mgcv_smooth'
add_constant(object, constant = NULL, ...)

## S3 method for class 'parametric_effects'
add_constant(object, constant = NULL, ...)

## S3 method for class 'tbl_df'
add_constant(object, constant = NULL, column = NULL, ...)

## S3 method for class 'evaluated_parametric_term'
add_constant(object, constant = NULL, ...)
```

Arguments

object a object to add a constant to.

constant the constant to add.

... additional arguments passed to methods.

column character; for the "tbl_df" method, which column to add the constant too.

Value

Returns object but with the estimate shifted by the addition of the supplied constant.

Author(s)

Gavin L. Simpson

add_fitted

Add fitted values from a model to a data frame

Description

Add fitted values from a model to a data frame

Usage

```
add_fitted(data, model, value = ".value", ...)
```

Arguments

data	a data frame containing values for the variables used to fit the model. Passed to stats::predict() as newdata.
model	a fitted model for which a stats::predict() method is available. S3 method dispatch is performed on the model argument.
value	character; the name of the variable in which model predictions will be stored.
	additional arguments passed to methods.

6 add_fitted.gam

Value

A data frame (tibble) formed from data and fitted values from model.

 $add_fitted.gam$

Add fitted values from a GAM to a data frame

Description

Add fitted values from a GAM to a data frame

Usage

```
## S3 method for class 'gam'
add_fitted(data, model, value = ".value", type = "response", prefix = ".", ...)
```

Arguments

data	a data frame containing values for the variables used to fit the model. Passed to stats::predict() as newdata.
model	a fitted model for which a stats::predict() method is available. S3 method dispatch is performed on the model argument.
value	character; the name of the variable in which model predictions will be stored.
type	character; the type of predictions to return. See mgcv::predict.gam() for options.
prefix	character; string to prepend to names of predicted values when type is "terms", "iterms", "lpmatrix". These prediction types result in a matrix of values being returned. prefix will be prepended to each of the names of columns returned by such prediction types.
	additional arguments passed to mgcv::predict.gam().

Value

A data frame (tibble) formed from data and predictions from model.

```
load_mgcv()

df <- data_sim("eg1", seed = 1)

df <- df[, c("y","x0","x1","x2","x3")]

m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = 'REML')

##

add_fitted(df, m)</pre>
```

add_partial_residuals 7

```
## with type = "terms" or "iterms"
add_fitted(df, m, type = "terms")
```

add_partial_residuals Add partial residuals

Description

Add partial residuals

Usage

```
add_partial_residuals(data, model, ...)
## S3 method for class 'gam'
add_partial_residuals(data, model, select = NULL, partial_match = FALSE, ...)
```

Arguments

data a data frame containing values for the variables used to fit the model. Passed to stats::residuals() as newdata.

model a fitted model for which a stats::residuals() method is available. S3 method dispatch is performed on the model argument.

... arguments passed to other methods.

select character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from

summary(object). Logical select operates as per numeric select in the order

that smooths are stored.

partial_match logical; should smooths be selected by partial matches with select? If TRUE,

select can only be a single string to match against.

```
load_mgcv()

df <- data_sim("eg1", seed = 1)

df <- df[, c("y","x0","x1","x2","x3")]

m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = 'REML')

## add partial residuals
add_partial_residuals(df, m)

## add partial_residuals(df, m, select = "s(x0)")</pre>
```

8 add_residuals.gam

add_residuals	Add residuals from a model to a data frame
ada_i coradaro	That residuals from a model to a data frame

Description

Add residuals from a model to a data frame

Usage

```
add_residuals(data, model, value = ".residual", ...)
```

Arguments

data	a data frame containing values for the variables used to fit the model. Passed to stats::residuals() as newdata.
mode1	a fitted model for which a stats::residuals() method is available. S3 method dispatch is performed on the model argument.
value	character; the name of the variable in which model residuals will be stored.
	additional arguments passed to methods.

Value

A data frame (tibble) formed from data and residuals from model.

```
add_residuals.gam Add residuals from a GAM to a data frame
```

Description

Add residuals from a GAM to a data frame

Usage

```
## S3 method for class 'gam'
add_residuals(data, model, value = ".residual", type = "deviance", ...)
```

Arguments

data	a data frame containing values for the variables used to fit the model. Passed to stats::predict() as newdata.
model	a fitted model for which a stats::predict() method is available. S3 method dispatch is performed on the model argument.
value	character; the name of the variable in which model predictions will be stored.
type	character; the type of residuals to return. See mgcv::residuals.gam() for options.
	additional arguments passed to mgcv::residuals.gam().

appraise 9

Value

A data frame (tibble) formed from data and residuals from model.

Examples

```
load_mgcv()

df <- data_sim("eg1", seed = 1)

df <- df[, c("y","x0","x1","x2","x3")]

m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = 'REML')

##

add_residuals(df, m)</pre>
```

appraise

Model diagnostic plots

Description

Model diagnostic plots

```
appraise(model, ...)
## S3 method for class 'gam'
appraise(
 model,
 method = c("uniform", "simulate", "normal", "direct"),
 n_uniform = 10,
  n_simulate = 50,
  type = c("deviance", "pearson", "response"),
  n_bins = c("sturges", "scott", "fd"),
  ncol = NULL,
 nrow = NULL,
  guides = "keep",
  level = 0.9,
  ci_col = "black",
  ci_alpha = 0.2,
  point_col = "black",
 point_alpha = 1,
  line_col = "red",
)
## S3 method for class 'lm'
appraise(model, ...)
```

10 appraise

Arguments

mode1 a fitted model. Currently only class "gam". arguments passed to patchwork::wrap_plots(). character; method used to generate theoretical quantiles. Note that method = method "direct" is deprecated in favour of method = "uniform". n uniform numeric; number of times to randomize uniform quantiles in the direct computation method (method = "direct") for QQ plots. numeric; number of data sets to simulate from the estimated model when using n_simulate the simulation method (method = "simulate") for QQ plots. character; type of residuals to use. Only "deviance", "response", and "pearson" type residuals are allowed. n_bins character or numeric; either the number of bins or a string indicating how to calculate the number of bins. ncol, nrow numeric; the numbers of rows and columns over which to spread the plots. character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout() guides numeric; the coverage level for QQ plot reference intervals. Must be strictly level 0 < level < 1. Only used with method = "simulate". ci_alpha, ci_col numeric; the level of alpha transparency for the QQ plot reference interval when method = "simulate", or points drawn in plots. point_col, point_alpha colour and transparency used to draw points in the plots. See graphics::par() section Color Specification. This is passed to the individual plotting functions, and therefore affects the points of all plots. line_col colour specification for the 1:1 line in the QQ plot and the reference line in the residuals vs linear predictor plot.

Note

The wording used in mgcv::qq.gam() uses *direct* in reference to the simulated residuals method (method = "simulated"). To avoid confusion, method = "direct" is deprecated in favour of method = "uniform".

See Also

The plots are produced by functions qq_plot(), residuals_linpred_plot(), residuals_hist_plot(), and observed_fitted_plot().

```
load_mgcv()
## simulate some data...
dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
## run some basic model checks
appraise(mod, point_col = "steelblue", point_alpha = 0.4)</pre>
```

basis 11

basis

Basis expansions for smooths

Description

Creates a basis expansion from a definition of a smoother using the syntax of mgcv's smooths via mgcv::s(), mgcv::te(), mgcv::ti(), and mgcv::ti().

Usage

```
basis(smooth, data, knots = NULL, constraints = FALSE, at = NULL, ...)
```

Arguments

mgcv::ti(), or mgcv::t2(). data a data frame containing the variables use	
data a data frame containing the variables use	
ε	nts containing knots locations. Names
knots a list or data frame with named compone must match the covariates for which the b	asis is required. See mgcv::smoothCon().
constraints logical; should identifiability constraints argument absorb.cons in mgcv::smoot	11
at a data frame containing values of the s should be evaluated.	mooth covariate(s) at which the basis
other arguments passed to mgcv::smootl	nCon().

Value

A tibble.

Author(s)

Gavin L. Simpson

```
load_mgcv()

df <- data_sim("eg4", n = 400, seed = 42)

bf <- basis(s(x0), data = df)

bf <- basis(s(x2, by = fac, bs = 'bs'), data = df, constraints = TRUE)</pre>
```

bird_move

Simulated bird migration data

Description

Data generated from a hypothetical study of bird movement along a migration corridor, sampled throughout the year. This dataset consists of simulated sample records of numbers of observed locations of 100 tagged individuals each from six species of bird, at ten locations along a latitudinal gradient, with one observation taken every four weeks. Counts were simulated randomly for each species in each location and week by creating a species-specific migration curve that gave the probability of finding an individual of a given species in a given location, then simulated the distribution of individuals across sites using a multinomial distribution, and subsampling that using a binomial distribution to simulation observation error (i.e. not every bird present at a location would be detected). The data set (bird_move) consists of the variables count, latitude, week and species.

Format

A data frame

Source

Pedersen EJ, Miller DL, Simpson GL, Ross N. 2018. Hierarchical generalized additive models: an introduction with mgcv. *PeerJ Preprints* **6**:e27320v1 doi:10.7287/peerj.preprints.27320v1.

```
check_user_select_smooths
```

Select smooths based on user's choices

Description

Given a vector indexing the smooths of a GAM, returns a logical vector selecting the requested smooths.

```
check_user_select_smooths(
  smooths,
  select = NULL,
  partial_match = FALSE,
  model_name = NULL
)
```

coef.scam 13

Arguments

smooths character; a vector of smooth labels.

select numeric, logical, or character vector of selected smooths.

partial_match logical; in the case of character select, should select match partially against

smooths? If partial_match = TRUE, select must only be a single string, a

character vector of length 1.

model_name character; a model name that will be used in error messages.

Value

A logical vector the same length as length(smooths) indicating which smooths have been selected.

Author(s)

Gavin L. Simpson

coef.scam

Extract coefficients from a fitted scam model.

Description

Extract coefficients from a fitted scam model.

Usage

```
## S3 method for class 'scam'
coef(object, parametrized = TRUE, ...)
```

Arguments

object a model object fitted by scam()

parametrized logical; extract parametrized coefficients, which respect the linear inequality

constraints of the model.

... other arguments.

14 compare_smooths

compare_smooths

Compare smooths across models

Description

Compare smooths across models

Usage

```
compare_smooths(
  model,
  ...,
  smooths = NULL,
  n = 100,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE
)
```

Arguments

model Primary model for comparison.

... Additional models to compare smooths against those of model.

smooths character; vector of smooths to compare. If not specified comparisons will be

performed for smooths common to all models supplied.

n numeric; the number of points over the range of the covariate at which to evalu-

ate the smooth.

data a data frame of covariate values at which to evaluate the smooth.

unconditional logical; should confidence intervals include the uncertainty due to smoothness

selection? If TRUE, the corrected Bayesian covariance matrix will be used.

overall_uncertainty

logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?

confint.fderiv 15

```
## build comparisons
comp <- compare_smooths(m1, m2)
comp
## notice that the result is a nested tibble
draw(comp)</pre>
```

confint.fderiv

Point-wise and simultaneous confidence intervals for derivatives of smooths

Description

Calculates point-wise confidence or simultaneous intervals for the first derivatives of smooth terms in a fitted GAM.

Usage

```
## S3 method for class 'fderiv'
confint(
  object,
  parm,
  level = 0.95,
  type = c("confidence", "simultaneous"),
  nsim = 10000,
  ncores = 1L,
  ...
)
```

Arguments

object	an object of class "fderiv" containing the estimated derivatives.
parm	which parameters (smooth terms) are to be given intervals as a vector of terms. If missing, all parameters are considered.
level	numeric, $0 < level < 1$; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval.
type	character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.
nsim	integer; the number of simulations used in computing the simultaneous intervals.
ncores	number of cores for generating random variables from a multivariate normal distribution. Passed to mvnfast::rmvn(). Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
	additional arguments for methods

16 confint.fderiv

Value

a data frame with components:

- 1. term; factor indicating to which term each row relates,
- 2. lower; lower limit of the confidence or simultaneous interval,
- 3. est; estimated derivative
- 4. upper; upper limit of the confidence or simultaneous interval.

Author(s)

Gavin L. Simpson

```
load_mgcv()
dat <- data_sim("eg1", n = 1000, dist = "normal", scale = 2, seed = 2)</pre>
mod \leftarrow gam(y \sim s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")
# new data to evaluate the derivatives at, say over the middle 50% of range
# of each covariate
middle <- function(x, n = 25, coverage = 0.5) {
  v \leftarrow (1 - coverage) / 2
  q \leftarrow quantile(x, prob = c(0 + v, 1 - v), type = 8)
  seq(q[1], q[2], length = n)
}
new_data <- sapply(dat[c("x0", "x1", "x2", "x3")], middle)</pre>
new_data <- data.frame(new_data)</pre>
## first derivatives of all smooths...
fd <- fderiv(mod, newdata = new_data)</pre>
## point-wise interval
ci <- confint(fd, type = "confidence")</pre>
## simultaneous interval for smooth term of x2
x2_sint <- confint(fd, parm = "x2", type = "simultaneous",
                    nsim = 10000, ncores = 2)
x2_sint
```

confint.gam 17

confint.gam

Point-wise and simultaneous confidence intervals for smooths

Description

Calculates point-wise confidence or simultaneous intervals for the smooth terms of a fitted GAM.

Usage

```
## S3 method for class 'gam'
confint(
  object,
  parm,
  level = 0.95,
  newdata = NULL,
  n = 200,
  type = c("confidence", "simultaneous"),
  nsim = 10000,
  shift = FALSE,
  transform = FALSE,
  unconditional = FALSE,
 ncores = 1,
 partial_match = FALSE,
)
## S3 method for class 'gamm'
confint(object, ...)
## S3 method for class 'list'
confint(object, ...)
```

Arguments

object	an object of class "gam" or "gamm".
parm	which parameters (smooth terms) are to be given intervals as a vector of terms. If missing, all parameters are considered, although this is not currently implemented.
level	numeric, $0 < level < 1$; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval.
newdata	data frame; containing new values of the covariates used in the model fit. The selected smooth(s) wil be evaluated at the supplied values.
n	numeric; the number of points to evaluate smooths at.
type	character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.

18 confint.gam

nsim	integer; the number of simulations used in computing the simultaneous intervals.
shift	logical; should the constant term be add to the smooth?
transform	logical; should the smooth be evaluated on a transformed scale? For generalised models, this involves applying the inverse of the link function used to fit the model. Alternatively, the name of, or an actual, function can be supplied to transform the smooth and it's confidence interval.
unconditional	logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is returned, if available.
ncores	number of cores for generating random variables from a multivariate normal distribution. Passed to mvnfast::rmvn(). Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
partial_match	logical; should matching parm use a partial match or an exact match? Can only be used if length(parm) is 1.
	additional arguments for methods

Value

a data frame with components:

- 1. term; factor indicating to which term each row relates,
- 2. x; the vector of values at which the smooth was evaluated,
- 3. lower; lower limit of the confidence or simultaneous interval,
- 4. est; estimated value of the smooth
- 5. upper; upper limit of the confidence or simultaneous interval,
- 6. crit; critical value for the 100 * level% confidence interval.

Author(s)

Gavin L. Simpson

```
load_mgcv()
dat <- data_sim("eg1", n = 1000, dist = "normal", scale = 2, seed = 2)</pre>
mod \leftarrow gam(y \sim s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")
# new data to evaluate the smooths at, say over the middle 50% of range
# of each covariate
middle <- function(x, n = 50, coverage = 0.5) {
  v <- (1 - coverage) / 2
  q \leftarrow quantile(x, prob = c(0 + v, 1 - v), type = 8)
  seq(q[1], q[2], length = n)
new_data <- sapply(dat[c("x0", "x1", "x2", "x3")], middle)</pre>
new_data <- data.frame(new_data)</pre>
```

data_combos 19

data_combos

All combinations of factor levels plus typical values of continuous variables

Description

All combinations of factor levels plus typical values of continuous variables

Usage

```
data_combos(object, ...)
## S3 method for class 'gam'
data_combos(object, vars = everything(), complete = TRUE, ...)
```

Arguments

object a fitted model object.

... arguments passed to methods.

vars terms to include or exclude from the returned object. Uses tidyselect principles.

complete logical; should all combinations of factor levels be returned? If FALSE, only those combinations of levels observed in the model are retained.

data_sim

Simulate example data for fitting GAMs

Description

A tidy reimplementation of the functions implemented in mgcv::gamSim() that can be used to fit GAMs. An new feature is that the sampling distribution can be applied to all the example types.

20 data_slice

Usage

```
data_sim(
  model = "eg1",
  n = 400,
  scale = 2,
  theta = 3,
  dist = c("normal", "poisson", "binary", "negbin", "tweedie"),
  seed = NULL
)
```

Arguments

model	character; either "egX" where X is an integer 1:7, or the name of a model. See Details for possible options.
n	numeric; the number of observations to simulate.
scale	numeric; the level of noise to use.
theta	numeric; the dispersion parameter θ to use. The default is entirely arbitrary, chosen only to provide simulated data that exhibits extra dispersion beyond that assumed by under a Poisson.
dist	character; a sampling distribution for the response variable.
seed	numeric; the seed for the random number generator. Passed to base::set.seed().

Examples

```
data_sim("eg1")
```

data_slice

Prepare a data slice through covariates

Description

Prepare a data slice through covariates

```
data_slice(object, ...)
## Default S3 method:
data_slice(object, ...)
## S3 method for class 'gam'
data_slice(
  object,
```

derivatives 21

```
var1,
var2 = NULL,
var3 = NULL,
var4 = NULL,
data = NULL,
n = 50,
offset = NULL,
...
)

## S3 method for class 'list'
data_slice(object, ...)
```

Arguments

object	an R model object.
	arguments passed to other methods.
var1	character;
var2	character;
var3	character; ignored currently.
var4	character; ignored currently.
data	a 1-row data frame or tibble containing values for variables in the fitted model that are not varying in the slice.
n	numeric; the number of values to create for each of var1 and var2in the slice.
offset	numeric; value to use for an offset term in the model.

derivatives

Derivatives of estimated smooths via finite differences

Description

Derivatives of estimated smooths via finite differences

```
derivatives(object, ...)
## Default S3 method:
derivatives(object, ...)
## S3 method for class 'gamm'
derivatives(object, ...)
## S3 method for class 'gam'
derivatives(
```

22 derivatives

```
object,
  term,
  newdata,
  order = 1L,
  type = c("forward", "backward", "central"),
  n = 200,
  eps = 1e-07,
  interval = c("confidence", "simultaneous"),
  n_{sim} = 10000,
  level = 0.95,
  unconditional = FALSE,
  frequentist = FALSE,
  offset = NULL,
  ncores = 1,
  partial_match = FALSE,
)
```

Arguments

object an R object to compute derivatives for.
... arguments passed to other methods.

term character; vector of one or more smooth terms for which derivatives are required.

If missing, derivatives for all smooth terms will be returned. Can be a partial

match to a smooth term; see argument partial_match below.

newdata a data frame containing the values of the model covariates at which to evaluate

the first derivatives of the smooths.

order numeric; the order of derivative.

type character; the type of finite difference used. One of "forward", "backward", or

"central".

n numeric; the number of points to evaluate the derivative at.

eps numeric; the finite difference.

interval character; the type of interval to compute. One of "confidence" for point-wise

intervals, or "simultaneous" for simultaneous intervals.

 ${\tt n_sim} \qquad \qquad {\tt integer}; the number of simulations used in computing the simultaneous intervals.$

level numeric; 0 < level < 1; the confidence level of the point-wise or simultaneous

interval. The default is 0.95 for a 95% interval.

unconditional logical; use smoothness selection-corrected Bayesian covariance matrix?

frequentist logical; use the frequentist covariance matrix? offset numeric; a value to use for any offset term

ncores number of cores for generating random variables from a multivariate normal

distribution. Passed to mvnfast::rmvn(). Parallelization will take place only if

OpenMP is supported (but appears to work on Windows with current R).

partial_match logical; should smooths be selected by partial matches with term? If TRUE, term

can only be a single string to match against.

difference_smooths 23

Value

A tibble, currently with the following variables:

- smooth: the smooth each row refers to.
- var: the name of the variable involved in the smooth,
- data: values of var at which the derivative was evaluated,
- derivative: the estimated derivative,
- se: the standard error of the estimated derivative,
- crit: the critical value such that derivative ± (crit * se) gives the upper and lower bounds of the requested confidence or simultaneous interval (given level),
- lower: the lower bound of the confidence or simultaneous interval,
- upper: the upper bound of the confidence or simultaneous interval.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 42)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## first derivatives of all smooths using central finite differences
derivatives(mod, type = "central")

## derivatives for a selected smooth
derivatives(mod, type = "central", term = "s(x1)")

## or via a partial match
derivatives(mod, type = "central", term = "x1", partial_match = TRUE)</pre>
```

difference_smooths

Differences of factor smooth interactions

Description

Differences of factor smooth interactions

24 difference_smooths

Usage

```
difference_smooths(model, ...)
## S3 method for class 'gam'
difference_smooths(
  model,
  smooth,
  n = 100,
  ci_level = 0.95,
  newdata = NULL,
  partial_match = TRUE,
  unconditional = FALSE,
  frequentist = FALSE,
  ...
)
```

Arguments

model A fitted model. arguments passed to other methods. character; which smooth to compute differences for. smooth numeric; the number of points at which to evaluate the difference between pairs of smooths. numeric between 0 and 1; the coverage of credible interval. ci_level newdata data frame of locations at which to evaluate the difference between smooths. partial_match logical; should smooth match partially against smooths? If partial_match = TRUE, smooth must only be a single string, a character vector of length 1. Unlike similar functions, the default here is TRUE because the intention is that users will be matching against factor-by smooth labels. unconditional logical; account for smoothness selection in the model? frequentist logical; use the frequentist covariance matrix?

```
load_mgcv()

df <- data_sim("eg4", seed = 42)
m <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = df, method = "REML")

difference_smooths(m, smooth = "s(x2)")</pre>
```

draw 25

draw

Generic plotting via ggplot2

Description

Generic plotting via ggplot2

Usage

```
draw(object, ...)
```

Arguments

object and R object to plot.
... arguments passed to other methods.

Details

Generic function for plotting of R objects that uses the ggplot2 package.

Value

```
A ggplot2::ggplot() object.
```

Author(s)

Gavin L. Simpson

Description

Plot comparisons of smooths

Usage

```
## S3 method for class 'compare_smooths'
draw(object, ncol = NULL, nrow = NULL, guides = "collect", ...)
```

Arguments

```
object of class "compare_smooths", the result of a call to compare_smooths().

ncol numeric; the numbers of rows and columns over which to spread the plots

numeric; the numbers of rows and columns over which to spread the plots

guides character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()

additional arguments passed to patchwork::wrap_plots().
```

26 draw.derivatives

draw.derivatives

Plot derivatives of smooths

Description

Plot derivatives of smooths

Usage

```
## $3 method for class 'derivatives'
draw(
  object,
  select = NULL,
  scales = c("free", "fixed"),
  alpha = 0.2,
  ncol = NULL,
   nrow = NULL,
  guides = "keep",
  ...
)
```

Arguments

object	a fitted GAM, the result of a call to mgcv::gam().
select	character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from summary(object). Logical select operates as per numeric select in the order that smooths are stored.
scales	character; should all univariate smooths be plotted with the same y-axis scale? The default, scales = "fixed", ensures this is done. If scales = "free" each univariate smooth has its own y-axis scale. Currently does not affect the y-axis scale of plots of the parametric terms.
alpha	numeric; alpha transparency for confidence or simultaneous interval.
ncol	numeric; the numbers of rows and columns over which to spread the plots
nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()
	additional arguments passed to patchwork::wrap_plots().

```
load_mgcv()
dat <- data_sim("eg1", n = 800, dist = "normal", scale = 2, seed = 42)</pre>
```

draw.difference_smooth 27

```
mod <- gam(y \sim s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## first derivative of all smooths

df <- derivatives(mod, type = "central")

draw(df)

## fixed axis scales

draw(df, scales = "fixed")
```

draw.difference_smooth

Plot differences of smooths

Description

Plot differences of smooths

Usage

```
## S3 method for class 'difference_smooth'
draw(
  object,
  select = NULL,
  rug = FALSE,
  ref_line = FALSE,
  contour = FALSE,
  contour_col = "black",
  n_contour = NULL,
  ci_alpha = 0.2,
  ci_col = "black",
  smooth_col = "black",
  line_col = "red",
  scales = c("free", "fixed"),
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  xlab = NULL,
 ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
)
```

Arguments

```
object a fitted GAM, the result of a call to mgcv::gam().
```

select

then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from summary(object). Logical select operates as per numeric select in the order that smooths are stored. logical; rug ref_line logical; contour logical; should contour lines be added to smooth surfaces? contour_col colour specification for contour lines. n_contour numeric; the number of contour bins. Will result in n_contour - 1 contour lines being drawn. See ggplot2::geom_contour(). ci_alpha numeric; alpha transparency for confidence or simultaneous interval. colour specification for the confidence/credible intervals band. Affects the fill ci_col of the interval. colour specification for the the smooth or difference line. smooth_col line_col colour specicification for drawing reference lines scales character; should all univariate smooths be plotted with the same y-axis scale? The default, scales = "fixed", ensures this is done. If scales = "free" each univariate smooth has its own y-axis scale. Currently does not affect the y-axis scale of plots of the parametric terms. ncol, nrow numeric; the numbers of rows and columns over which to spread the plots guides character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout() xlab, ylab, title, subtitle, caption character; labels with which to annotate plots additional arguments passed to patchwork::wrap_plots(). . . .

character, logical, or numeric; which smooths to plot. If NULL, the default,

```
load_mgcv()
# simulate some data; a factor smooth example
df <- data_sim("eg4", seed = 42)
# fit GAM
m <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = df, method = "REML")
# calculate the differences between pairs of smooths the f_j(x2) term
diffs <- difference_smooths(m, smooth = "s(x2)")
draw(diffs)</pre>
```

draw.evaluated_smooth 29

draw.evaluated_smooth Plot estimated smooths

Description

Plots estimated univariate and bivariate smooths using ggplot2.

```
## S3 method for class 'evaluated_1d_smooth'
draw(
 object,
  rug = NULL,
  ci_level = 0.95,
  constant = NULL,
  fun = NULL,
 xlab,
 ylab,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  partial_residuals = NULL,
  response_range = NULL,
)
## S3 method for class 'evaluated_2d_smooth'
draw(
  object,
  show = c("estimate", "se"),
  contour = TRUE,
  contour_col = "black",
  n_contour = NULL,
  constant = NULL,
  fun = NULL,
  xlab,
 ylab,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  response_range = NULL,
  continuous_fill = NULL,
)
## S3 method for class 'evaluated_re_smooth'
draw(
```

```
object,
  qq_line = TRUE,
  constant = NULL,
  fun = NULL,
  xlab,
  ylab,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  response_range = NULL,
)
## S3 method for class 'evaluated_fs_smooth'
draw(
  object,
  rug = NULL,
  constant = NULL,
  fun = NULL,
  xlab,
  ylab,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  response_range = NULL,
  discrete_colour = NULL,
)
## S3 method for class 'evaluated_parametric_term'
draw(
  object,
  ci_level = 0.95,
  constant = NULL,
  fun = NULL,
  xlab,
 ylab,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  rug = TRUE,
  position = "identity",
  response_range = NULL,
)
```

Arguments

object an object, the result of a call to evaluate_smooth().

draw.evaluated_smooth 31

For evaluate_smooth(), a numeric vector of values for the location of data on the x axis. The default of NULL results in no rug plot being drawn. For evaluate_parametric_terms(), a logical to indicate if a rug plot should be drawn.		
numeric between 0 and 1; the coverage of credible interval.		
numeric; a constant to add to the estimated values of the smooth. constant, if supplied, will be added to the estimated value before the confidence band is computed.		
function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function fun will be applied after adding any constant, if provided.		
character or expression; the label for the x axis. If not supplied, a suitable label will be generated from object.		
character or expression; the label for the y axis. If not supplied, a suitable label will be generated from object.		
character or expression; the title for the plot. See ggplot2::labs().		
character or expression; the subtitle for the plot. See ggplot2::labs().		
character or expression; the plot caption. See ggplot2::labs().		
als		
data frame; partial residuals and data values if partial residuals are drawn. Should have namesp_resid andorig_x if supplied.		
numeric; a vector of two values giving the range of response data for the guide. Used to fix plots to a common scale/range. Ignored if show is set to "se".		
arguments passed to other methods.		
character; plot the estimated smooth ("estimate") or its standard error ("se").		
logical; should contours be draw on the plot using ggplot2::geom_contour().		
colour specification for contour lines.		
numeric; the number of contour bins. Will result in n_contour - 1 contour lines being drawn. See ggplot2::geom_contour().		
continuous_fill		
suitable scale used for the filled surface. If NULL, the default used is scale_fill_distiller(palette = "RdBu", type = "div").		
logical; draw a reference line through the lower and upper theoretical quartiles.		
discrete_colour		
an appropriate discrete colour scale from ggplot2. The scale will need to be able to provide as many colours as there are levels in the factor variable involved in the smooth. Suitable alternatives include ggplot2::scale_colour_viridis_d().		
Position adjustment, either as a string, or the result of a call to a position adjustment function.		

Value

A ggplot2::ggplot() object.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)

m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

sm <- evaluate_smooth(m1, "s(x2)")
    draw(sm)

## supply constant to shift y axis scale
    draw(sm, constant = coef(m1)[1])

dat <- data_sim("eg2", n = 1000, dist = "normal", scale = 1, seed = 2)
    m2 <- gam(y ~ s(x, z, k = 40), data = dat, method = "REML")

sm <- evaluate_smooth(m2, "s(x,z)", n = 100)
    draw(sm)</pre>
```

draw.gam

Plot estimated smooths from a fitted GAM

Description

Plots estimated smooths from a fitted GAM model in a similar way to mgcv::plot.gam() but instead of using base graphics, ggplot2::ggplot() is used instead.

```
## S3 method for class 'gam'
draw(
  object,
  data = NULL,
  select = NULL,
  parametric = FALSE,
  terms = NULL,
  residuals = FALSE,
  scales = c("free", "fixed"),
  ci_level = 0.95,
  n = 100,
  n_3d = 16,
  n_4d = 4
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  constant = NULL,
```

```
fun = NULL,
  dist = 0.1,
  rug = TRUE,
  contour = TRUE,
  ci_alpha = 0.2,
  ci_col = "black",
  smooth_col = "black",
  resid_col = "steelblue3",
  contour_col = "black",
  n_contour = NULL,
  partial_match = FALSE,
  discrete_colour = NULL,
  continuous_colour = NULL,
  continuous_fill = NULL,
  position = "identity",
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  projection = "orthographic",
  orientation = NULL,
)
```

Arguments

object a fitted GAM, the result of a call to mgcv::gam().

data a optional data frame that may or may not be used? FIXME!

select character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in

the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from summary(object). Logical select operates as per numeric select in the order

that smooths are stored.

parametric logical; plot parametric terms also? Note that select is used for selecting which

smooths to plot. The terms argument is used to select which parametric effects are plotted. The default, as with mgcv::plot.gam(), is to not draw parametric

effects.

terms character; which model parametric terms should be drawn? The Default of NULL

will plot all parametric terms that can be drawn.

residuals logical; should partial residuals for a smooth be drawn? Ignored for anything

but a simple univariate smooth.

scales character; should all univariate smooths be plotted with the same y-axis scale?

The default, scales = "fixed", ensures this is done. If scales = "free" each univariate smooth has its own y-axis scale. Currently does not affect the y-axis

scale of plots of the parametric terms.

ci_level numeric between 0 and 1; the coverage of credible interval.

numeric; the number of points over the range of the covariate at which to evalun ate the smooth. n_3d numeric; the number of new observations to generate for the third dimension of a 3D smooth. numeric; the number of new observations to generate for the dimensions higher n_4d than 2 (!) of a kD smooth ($k \ge 4$). For example, if the smooth is a 4D smooth, each of dimensions 3 and 4 will get n_4d new observations. logical; should confidence intervals include the uncertainty due to smoothness unconditional selection? If TRUE, the corrected Bayesian covariance matrix will be used. overall_uncertainty logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth? numeric; a constant to add to the estimated values of the smooth. constant, constant if supplied, will be added to the estimated value before the confidence band is computed. fun function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function fun will be applied after adding any constant, if provided. dist numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and dist is a distance within the unit square. See mgcv::exclude.too.far() for further details. rug logical; draw a rug plot at the botom of each plot? contour logical; should contours be draw on the plot using ggplot2::geom_contour(). numeric; alpha transparency for confidence or simultaneous interval. ci_alpha colour specification for the confidence/credible intervals band. Affects the fill ci_col of the interval. colour specification for the smooth line. smooth_col colour specification for the partial residuals. resid_col contour_col colour specification for contour lines. n_contour numeric; the number of contour bins. Will result in n_contour - 1 contour lines being drawn. See ggplot2::geom_contour(). logical; should smooths be selected by partial matches with select? If TRUE, partial_match select can only be a single string to match against. discrete_colour, continuous_colour, continuous_fill suitable scales for the types of data. position Position adjustment, either as a string, or the result of a call to a position adjustment function. ncol, nrow numeric; the numbers of rows and columns over which to spread the plots character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout() guides

character; projection to use, see ggplot2::coord_map() for details.

projection

orientation

an optional vector c(latitude, longitude, rotation) which describes where the "North Pole" should be when computing the projection. The third value is a clockwise rotation (in degrees), which defaults to the midrange of the longitude coordinates in the data. The default values for orientation therefore are 'c(20, 0, mean(range(longitude))))" if this is not specified by the user. See links in ggplot2::coord_map() for more information.

additional arguments passed to patchwork::wrap_plots().

Value

The object returned is created by patchwork::wrap_plots().

Note

Internally, plots of each smooth are created using ggplot2::ggplot() and composed into a single plot using patchwork::wrap_plots(). As a result, it is not possible to use + to add to the plots in the way one might typically work with ggplot() plots. Instead, use the & operator; see the examples.

Author(s)

Gavin L. Simpson

```
load_mgcv()
# simulate some data
df1 <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)
# fit GAM
m1 <- gam(y \sim s(x0) + s(x1) + s(x2) + s(x3), data = df1, method = "REML")
# plot all smooths
draw(m1)
# can add partial residuals
draw(m1, residuals = TRUE)
df2 <- data_sim(2, n = 1000, dist = "normal", scale = 1, seed = 2)
m2 \leftarrow gam(y \sim s(x, z, k = 40), data = df2, method = "REML")
draw(m2, contour = FALSE, n = 50)
# change the number of contours drawn and the fill scale used for
# the surface
library("ggplot2")
draw(m2, n\_contour = 5, n = 50,
     continuous_fill = scale_fill_distiller(palette = "Spectral",
                                             type = "div"))
# See https://gavinsimpson.github.io/gratia/articles/custom-plotting.html
# for more examples and for details on how to modify the theme of all the
```

36 draw.mgcv_smooth

```
# plots produced by draw()
# to modify all panels, for example to change the theme, use the & operator
```

draw.mgcv_smooth

Plot basis functions

Description

Plots basis functions using ggplot2

Usage

```
## S3 method for class 'mgcv_smooth'
draw(
  object,
  legend = FALSE,
  use_facets = TRUE,
  labeller = NULL,
  xlab,
  ylab,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ...
)
```

Arguments

object	an object, the result of a call to basis().
legend	logical; should a legend by drawn to indicate basis functions?
use_facets	logical; for factor by smooths, use facets to show the basis functions for each level of the factor? If FALSE, a separate ggplot object will be created for each level and combined using patchwork::wrap_plots(). Currently ignored.
labeller	a labeller function with which to label facets. The default is to use ggplot2::label_both().
xlab	character or expression; the label for the x axis. If not supplied, a suitable label will be generated from object.
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated from object.
title	character or expression; the title for the plot. See ggplot2::labs().
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs().
caption	character or expression; the plot caption. See ggplot2::labs().
	arguments passed to other methods. Not used by this method.

Value

```
A ggplot2::ggplot() object.
```

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
df <- data_sim("eg4", n = 400, seed = 42)

bf <- basis(s(x0), data = df)
draw(bf)

bf <- basis(s(x2, by = fac, bs = 'bs'), data = df)
draw(bf)</pre>
```

draw.parametric_effects

Plot estimated effects for model parametric terms

Description

Plot estimated effects for model parametric terms

Usage

```
## S3 method for class 'parametric_effects'
draw(
 object,
  scales = c("free", "fixed"),
  ci_level = 0.95,
  ci_col = "black",
  ci_alpha = 0.2,
  line_col = "black",
  constant = NULL,
  fun = NULL,
  rug = TRUE,
 position = "identity",
  ncol = NULL,
 nrow = NULL,
  guides = "keep"
)
```

Arguments

```
object a fitted GAM, the result of a call to mgcv::gam().
```

38 draw.penalty_df

The default, scales = "fixed", ensures this is done. If scales = "free" each univariate smooth has its own y-axis scale. Currently does not affect the y-axis scale of plots of the parametric terms.
ci_level numeric between 0 and 1; the coverage of credible interval.
ci_col colour specification for the confidence/credible intervals band. Affects the fill of the interval.
ci_alpha numeric; alpha transparency for confidence or simultaneous interval.
line_col colour specification used for regression lines of linear continuous terms.
constant numeric; a constant to add to the estimated values of the smooth. constant, if supplied, will be added to the estimated value before the confidence band is computed.
fun function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function fun will be applied after adding any constant, if provided.
rug logical; draw a rug plot at the botom of each plot?
position Position adjustment, either as a string, or the result of a call to a position adjustment function.
additional arguments passed to patchwork::wrap_plots().
ncol numeric; the numbers of rows and columns over which to spread the plots
nrow numeric; the numbers of rows and columns over which to spread the plots
guides character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()

draw.penalty_df

Display penalty matrices of smooths using ggplot

Description

Displays the penalty matrices of smooths as a heatmap using ggplot

```
## S3 method for class 'penalty_df'
draw(
  object,
  normalize = FALSE,
  continuous_fill = NULL,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ncol = NULL,
```

draw.penalty_df 39

```
nrow = NULL,
guides = "keep",
...
)
```

Arguments

```
object
                  an object, the result of a call to evaluate_smooth().
normalize
                  logical; normalize the penalty to the range -1, 1?
continuous_fill
                  suitable scale used for the filled surface. If NULL, the default used is scale_fill_distiller(palette
                  = "RdBu", type = "div").
xlab
                  character or expression; the label for the x axis. If not supplied, no axis label
                  will be drawn. May be a vector, one per penalty.
ylab
                  character or expression; the label for the y axis. If not supplied, no axis label
                  will be drawn. May be a vector, one per penalty.
title
                  character or expression; the title for the plot. See ggplot2::labs(). May be a
                  vector, one per penalty.
                  character or expression; the subtitle for the plot. See ggplot2::labs(). May
subtitle
                  be a vector, one per penalty.
                  character or expression; the plot caption. See ggplot2::labs(). May be a
caption
                  vector, one per penalty.
                  numeric; the numbers of rows and columns over which to spread the plots.
ncol, nrow
guides
                  character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()
                  arguments passed to other methods.
```

Examples

40 draw.rootogram

draw.rootogram

Draw a rootogram

Description

A rootogram is a model diagnostic tool that assesses the goodness of fit of a statistical model. The observed values of the response are compared with those expected from the fitted model. For discrete, count responses, the frequency of each count (0, 1, 2, etc) in the observed data and expected from the conditional distribution of the response implied by the model are compared. For continuous variables, the observed and expected frequencies are obtained by grouping the data into bins. The rootogram is drawn using ggplot2::ggplot() graphics. The design closely follows Kleiber & Zeileis (2016).

Usage

```
## S3 method for class 'rootogram'
draw(
  object,
  type = c("hanging", "standing", "suspended"),
  sqrt = TRUE,
  ref_line = TRUE,
  warn_limits = TRUE,
  fitted_colour = "steelblue",
  bar_colour = NA,
  bar_fill = "grey",
  ref_line_colour = "black",
  warn_line_colour = "black",
  ylab = NULL,
  xlab = NULL,
  ...
)
```

Arguments

```
object
                  and R object to plot.
                  character; the type of rootogram to draw.
type
sgrt
                  logical; show the observed and fitted frequencies
ref_line
                  logical; draw a reference line at zero?
warn_limits
                  logical; draw Tukey's warning limit lines at +/- 1?
fitted_colour, bar_colour, bar_fill, ref_line_colour, warn_line_colour
                  colours used to draw the respective element of the rootogram.
xlab, ylab
                  character; labels for the x and y axis of the rootogram. May be missing (NULL),
                  in which case suitable labels will be used. '
                  arguments passed to other methods.
```

draw.smooth_estimates

Value

A 'ggplot' object.

References

Kleiber, C., Zeileis, A., (2016) Visualizing Count Data Regressions Using Rootograms. *Am. Stat.* **70**, 296–303. doi:10.1080/00031305.2016.1173590

41

See Also

rootogram() to compute the data for the rootogram.

Examples

Description

Plot the result of a call to smooth_estimates()

```
## S3 method for class 'smooth_estimates'
draw(
  object,
  constant = NULL,
  fun = NULL,
  contour = TRUE,
  contour_col = "black",
  n_contour = NULL,
  ci_alpha = 0.2,
  ci_col = "black",
  smooth_col = "black",
```

42 draw.smooth_estimates

```
resid_col = "steelblue3",
partial_match = FALSE,
discrete_colour = NULL,
continuous_colour = NULL,
continuous_fill = NULL,
ylim = NULL,
projection = "orthographic",
orientation = NULL,
...
)
```

Arguments

object a fitted GAM, the result of a call to mgcv::gam().

constant numeric; a constant to add to the estimated values of the smooth. constant,

if supplied, will be added to the estimated value before the confidence band is

computed.

fun function; a function that will be applied to the estimated values and confidence

interval before plotting. Can be a function or the name of a function. Function

fun will be applied after adding any constant, if provided.

contour logical; should contours be draw on the plot using ggplot2::geom_contour().

contour_col colour specification for contour lines.

n_contour numeric; the number of contour bins. Will result in n_contour - 1 contour lines

being drawn. See ggplot2::geom_contour().

ci_alpha numeric; alpha transparency for confidence or simultaneous interval.

ci_col colour specification for the confidence/credible intervals band. Affects the fill

of the interval.

smooth_col colour specification for the smooth line.

resid_col colour specification for the partial residuals.

partial_match logical; should smooths be selected by partial matches with select? If TRUE,

select can only be a single string to match against.

discrete_colour

suitable scales for the types of data.

continuous_colour

suitable scales for the types of data.

continuous_fill

suitable scales for the types of data.

ylim numeric; vector of y axis limits to use all *all* panels drawn.

projection character; projection to use, see ggplot2::coord_map() for details.

orientation an optional vector c(latitude, longitude, rotation) which describes where

the "North Pole" should be when computing the projection. The third value is a clockwise rotation (in degrees), which defaults to the midrange of the longitude coordinates in the data. The default values for orientation therefore are 'c(20, 0, mean(range(longitude))))" if this is not specified by the user. See links in

ggplot2::coord_map() for more information.

... additional arguments passed to patchwork::wrap_plots().

draw.smooth_samples 43

Examples

```
load_mgcv()
# example data
df <- data_sim("eg1", seed = 21)</pre>
# fit GAM
m \leftarrow gam(y \sim s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")
# plot all of the estimated smooths
sm <- smooth_estimates(m)</pre>
draw(sm)
# evaluate smooth of `x2`
sm <- smooth_estimates(m, smooth = "s(x2)")</pre>
# plot it
draw(sm)
# customising some plot elements
draw(sm, ci_col = "steelblue", smooth_col = "forestgreen", ci_alpha = 0.3)
# Add a constant to the plotted smooth
draw(sm, constant = coef(m)[1])
```

draw.smooth_samples

Plot posterior smooths

Description

Plot posterior smooths

```
## S3 method for class 'smooth_samples'
draw(
  object,
  select = NULL,
  n_samples = NULL,
  seed = NULL,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  alpha = 1,
  colour = "black",
  contour = FALSE,
  contour_col = "black",
  n_{contour} = NULL,
  scales = c("free", "fixed"),
  rug = TRUE,
  partial_match = FALSE,
```

```
ncol = NULL,
nrow = NULL,
guides = "keep",
...
)
```

Arguments

object a fitted GAM, the result of a call to mgcv::gam().

select character, logical, or numeric; which smooths to plot. If NULL, the default,

then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from summary(object). Logical select operates as per numeric select in the order

that smooths are stored.

n_samples numeric; if not NULL, sample n_samples from the posterior draws for plotting.

seed numeric; random seed to be used to if sampling draws.

xlab character or expression; the label for the x axis. If not supplied, a suitable label

will be generated from object.

ylab character or expression; the label for the y axis. If not supplied, a suitable label

will be generated from object.

title character or expression; the title for the plot. See ggplot2::labs().

subtitle character or expression; the subtitle for the plot. See ggplot2::labs().

caption character or expression; the plot caption. See ggplot2::labs().

alpha numeric; alpha transparency for confidence or simultaneous interval.

colour The colour to use to draw the posterior smooths. Passed to ggplot2::geom_line()

as argument colour.

contour logical; should contour lines be added to smooth surfaces?

contour_col colour specification for contour lines.

n_contour numeric; the number of contour bins. Will result in n_contour - 1 contour lines

being drawn. See ggplot2::geom_contour().

scales character; should all univariate smooths be plotted with the same y-axis scale?

The default, scales = "fixed", ensures this is done. If scales = "free" each univariate smooth has its own y-axis scale. Currently does not affect the y-axis

scale of plots of the parametric terms.

rug logical; draw a rug plot at the botom of each plot?

partial_match logical; should smooths be selected by partial matches with select? If TRUE,

select can only be a single string to match against.

ncol numeric; the numbers of rows and columns over which to spread the plots numeric; the numbers of rows and columns over which to spread the plots

guides character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()

... arguments to be passed to patchwork::wrap_plots().

edf 45

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
dat1 <- data_sim("eg1", n = 400, dist = "normal", scale = 1, seed = 1)</pre>
## a single smooth GAM
m1 < -gam(y \sim s(x0) + s(x1) + s(x2) + s(x3), data = dat1, method = "REML")
## posterior smooths from m1
sm1 \leftarrow smooth_samples(m1, n = 15, seed = 23478)
## plot
draw(sm1, alpha = 0.7)
## plot only 5 randomly smapled draws
draw(sm1, n_samples = 5, alpha = 0.7)
## A factor-by smooth example
dat2 <- data_sim("eg4", n = 400, dist = "normal", scale = 1, seed = 1)</pre>
## a multi-smooth GAM with a factor-by smooth
m2 <- gam(y \sim fac + s(x2, by = fac) + s(x0), data = dat2, method = "REML")
## posterior smooths from m1
sm2 \leftarrow smooth\_samples(m2, n = 15, seed = 23478)
## plot, this time selecting only the factor-by smooth
draw(sm2, select = "s(x2)", partial_match = TRUE, alpha = 0.7)
## A 2D smooth example
dat3 <- data_sim("eg2", n = 400, dist = "normal", scale = 1, seed = 1)</pre>
## fit a 2D smooth
m3 <- gam(y \sim te(x, z), data = dat3, method = "REML")
## get samples
sm3 \leftarrow smooth_samples(m3, n = 10)
## plot just 6 of the draws, with contour line overlays
draw(sm3, n_samples = 6, contour = TRUE, seed = 42)
```

edf

Effective degrees of freedom for smooths and GAMs

Description

Extracts the effective degrees of freedom (EDF) for model smooth terms or overall EDF for fitted GAMs

```
edf(object, ...)
## S3 method for class 'gam'
```

46 edf

```
edf(
  object,
  smooth = NULL,
  type = c("default", "unconditional", "alternative"),
  ...
)
model_edf(object, ..., type = c("default", "unconditional", "alternative"))
```

Arguments

object a fitted model from which to extract smooth-specific EDFs.

... arguments passed to methods.

smooth character; a vector of smooth terms whose EDFs will be extracted. If NULL, the

default, EDFs for all smooths will be returned.

type character: which type of EDF to return. "default" returns the standard EDF;

"unconditional" selects the EDF corrected for smoothness parameter selection, if available; "alternative" returns the alternative formulation for EDF

from Wood (2017, pp. 252)

Details

Multiple formulations for the effective degrees of freedom are available. The additional uncertainty due to selection of smoothness parameters can be taken into account when computing the EDF of smooths. This form of the EDF is available with type = "unconditional".

Wood (2017; pp. 252) describes an alternative EDF for the model

$$EDF = 2tr(\mathbf{F}) - tr(\mathbf{FF}),$$

where tr is the matrix trace and \mathbf{F} is a matrix mapping un-penalized coefficient estimates to the penalized coefficient estimates. The trace of \mathbf{F} is effectively the average shrinkage of the coefficients multipled by the number of coefficients (Wood, 2017). Smooth-specific EDFs then are obtained by summing up the relevent elements of $\operatorname{diag}(2\mathbf{F} - \mathbf{F}\mathbf{F})$.

Examples

```
load_mgcv()

df <- data_sim("eg1", n = 400, seed = 42)

m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

# extract the EDFs for all smooths
edf(m)

# or selected smooths
edf(m, smooth = c("s(x0)", "s(x2)"))

# accounting for smoothness parameter uncertainty
edf(m, type = "unconditional")</pre>
```

```
# over EDF of the model, including the intercept model_edf(m) # can get model EDF for multiple models m2 <- gam(y \sim s(x0) + s(x1) + s(x3), data = df, method = "REML") <math>model_edf(m, m2)
```

evaluate_parametric_term

Evaluate parametric model terms

Description

[**Deprecated**] Returns values of parametric model terms at values of factor terms and over a grid of covariate values for linear parametric terms. This function is now deprecated in favour of parametric_effects().

Usage

```
evaluate_parametric_term(object, ...)
## S3 method for class 'gam'
evaluate_parametric_term(object, term, unconditional = FALSE, ...)
```

Arguments

object an object of class "gam" or "gamm".
... arguments passed to other methods.

term character; which parametric term whose effects are evaluated

unconditional logical; should confidence intervals include the uncertainty due to smoothness

selection? If TRUE, the corrected Bayesian covariance matrix will be used.

evaluate_smooth

Evaluate a smooth

Description

[**Deprecated**] Evaluate a smooth at a grid of evenly spaced value over the range of the covariate associated with the smooth. Alternatively, a set of points at which the smooth should be evaluated can be supplied.

48 evaluate_smooth

Usage

```
evaluate_smooth(object, ...)
## S3 method for class 'gam'
evaluate_smooth(
  object,
  smooth,
  n = 100,
  newdata = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = 0.1,
  ...
)

## S3 method for class 'gamm'
evaluate_smooth(object, ...)
## S3 method for class 'list'
evaluate_smooth(object, ...)
```

Arguments

object an object of class "gam" or "gamm".
... arguments passed to other methods.
smooth character; a single smooth to evaluate.

n numeric; the number of points over the range of the covariate at which to evalu-

ate the smooth.

newdata a vector or data frame of points at which to evaluate the smooth.

unconditional logical; should confidence intervals include the uncertainty due to smoothness

selection? If TRUE, the corrected Bayesian covariance matrix will be used.

overall_uncertainty

logical; should the uncertainty in the model constant term be included in the

standard error of the evaluate values of the smooth?

dist numeric; if greater than 0, this is used to determine when a location is too far

from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and dist is a distance within the

unit square. See mgcv::exclude.too.far() for further details.

Details

[Deprecated] evaluate_smooth() is deprecated in favour of smooth_estimates(), which provides a cleaner way to evaluate a smooth over a range of covariate values. smooth_estimates() can handle a much wider range of models than evaluate_smooth() is capable of and smooth_estimates() is much easier to extend to handle new smooth types.

Most code that uses evaluate_smooth() should work simply by changing the function call to smooth_estimates(). However, there are some differences:

eval_smooth 49

the newdata argument becomes data

Consider evaluate_smooth() to be *soft*-deprecated; its use is discouraged and it may be removed at a later date if it becomes difficult to maintain the current functionality, but there are no intentions of removing it from gratia unless that situation arises.

Value

A data frame, which is of class "evaluated_1d_smooth" or evaluated_2d_smooth, which inherit from classes "evaluated_smooth" and "data.frame".

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 500, dist = "normal", scale = 1, seed = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

evaluate_smooth(m1, "s(x1)")

## 2d example
dat <- data_sim("eg2", n = 1000, dist = "normal", scale = 1, seed = 2)
m2 <- gam(y ~ s(x, z, k = 30), data = dat, method = "REML")

evaluate_smooth(m2, "s(x,z)", n = 50)</pre>
```

eval_smooth

S3 methods to evaluate individual smooths

Description

S3 methods to evaluate individual smooths

```
eval_smooth(smooth, ...)
## S3 method for class 'mgcv.smooth'
eval_smooth(
    smooth,
    model,
    n = 100,
    n_3d = NULL,
    n_4d = NULL,
    data = NULL,
    unconditional = FALSE,
    overall_uncertainty = TRUE,
    dist = NULL,
```

50 eval_smooth

```
)
## S3 method for class 'fs.interaction'
eval_smooth(
  smooth,
 model,
 n = 100,
 data = NULL,
 unconditional = FALSE,
 overall_uncertainty = TRUE,
)
## S3 method for class 'random.effect'
eval_smooth(
  smooth,
 model,
 n = 100,
 data = NULL,
 unconditional = FALSE,
 overall_uncertainty = TRUE,
)
## S3 method for class 'mrf.smooth'
eval_smooth(
  smooth,
 model,
 n = 100,
  data = NULL,
 unconditional = FALSE,
 overall_uncertainty = TRUE,
)
## S3 method for class 't2.smooth'
eval_smooth(
  smooth,
 model,
 n = 100,
 n_3d = NULL,
 n_4d = NULL
 data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  . . .
```

eval_smooth 51

```
## S3 method for class 'tensor.smooth'
eval_smooth(
   smooth,
   model,
   n = 100,
   n_3d = NULL,
   n_4d = NULL,
   data = NULL,
   unconditional = FALSE,
   overall_uncertainty = TRUE,
   dist = NULL,
   ...
)
```

Arguments

smooth currently an object that inherits from class mgcv. smooth.

... arguments assed to other methods

model a fitted model; currently only mgcv::gam() and mgcv::bam() models are su-

ported.

n numeric; the number of points over the range of the covariate at which to evalu-

ate the smooth.

n_3d numeric; the number of points over the range of last covariate in a 3D or 4D

smooth. The default is NULL which achieves the standard behaviour of using n points over the range of all covariate, resulting in n^d evaluation pointsm, where d is the dimension of the smooth. For d > 2 this can result in very many evaluation points and slow performance. For smooths of d > 4, the value of n_4d will be used for all dimensions > 4, unless this is NULL, in which case the default

behaviour (using n for all dimensions) will be observed.

n_4d numeric; the number of points over the range of last covariate in a 3D or 4D

smooth. The default is NULL which achieves the standard behaviour of using n points over the range of all covariate, resulting in n^d evaluation pointsm, where d is the dimension of the smooth. For d>2 this can result in very many evaluation points and slow performance. For smooths of d>4, the value of n_4d will be used for all dimensions d>4, unless this is NULL, in which case the default

behaviour (using n for all dimensions) will be observed.

data an optional data frame of values to evaluate smooth at.

unconditional logical; should confidence intervals include the uncertainty due to smoothness

selection? If TRUE, the corrected Bayesian covariance matrix will be used.

overall_uncertainty

logical; should the uncertainty in the model constant term be included in the

standard error of the evaluate values of the smooth?

numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the

52 family.gam

unit square before deciding what to exclude, and dist is a distance within the unit square. See mgcv::exclude.too.far() for further details.

factor_combos

All combinations of factor levels

Description

All combinations of factor levels

Usage

```
factor_combos(object, ...)
## S3 method for class 'gam'
factor_combos(object, vars = everything(), complete = TRUE, ...)
```

Arguments

object a fitted model object.

... arguments passed to methods.

vars terms to include or exclude from the returned object. Uses tidyselect principles.

complete logical; should all combinations of factor levels be returned? If FALSE, only

those combinations of levels observed in the model are retained.

family.gam

Extract family objects from models

Description

Provides a stats::family() method for a range of GAM objects.

```
## S3 method for class 'gam'
family(object, ...)

## S3 method for class 'gamm'
family(object, ...)

## S3 method for class 'bam'
family(object, ...)

## S3 method for class 'list'
family(object, ...)
```

family_name 53

Arguments

```
a fitted model. Models fitted by mgcv::gam(), mgcv::bam(), mgcv::gamm(), and gamm4::gamm4() are currently supported.arguments passed to other methods.
```

family_name

Name of family used to fit model

Description

Extracts the name of the family used to fit the supplied model.

Usage

```
family_name(object, ...)
```

Arguments

object an R object.

... arguments passed to other methods.

Value

A character vector containing the family name.

family_type

Extracts the type of family in a consistent way

Description

Extracts the type of family in a consistent way

Usage

```
family_type(object, ...)
## S3 method for class 'family'
family_type(object, ...)
## Default S3 method:
family_type(object, ...)
```

Arguments

object an R object. Currently family() objects and anything with a family() method.
... arguments passed to other methods.

54 fitted_samples

fitted_samples

Draw fitted values from the posterior distribution

Description

Expectations (fitted values) of the response drawn from the posterior distribution of fitted model using a Gaussian approximation to the posterior.

Usage

```
fitted_samples(model, ...)

## S3 method for class 'gam'
fitted_samples(
  model,
  n = 1,
  newdata,
  seed,
  scale = c("response", "linear_predictor"),
  method = c("gaussian", "mh", "inla"),
  freq = FALSE,
  unconditional = FALSE,
  ncores = 1L,
  ...
)
```

Arguments

model	a fitted model of the supported types
-------	---------------------------------------

... arguments passed to other methods. For fitted_samples(), these are passed

on to predict.gam().

n numeric; the number of posterior samples to return.

newdata data frame; new observations at which the posterior draws from the model

should be evaluated. If not supplied, the data used to fit the model will be used

for newdata, if available in model.

seed numeric; a random seed for the simulations.

scale character;

method character; the method used to generate samples from the posterior distribution

of the model. "gaussian", the default, uses a Gaussian approximation to the posterior. "mh" uses a simple Metropolis Hastings sampler, while "inla" uses a variant of Integrated Nested Laplace Approximation due to Wood (2019). Cur-

rently, the only available option is "gaussian".

freq logical; TRUE to use the frequentist covariance matrix of the parameter estima-

tors, FALSE to use the Bayesian posterior covariance matrix of the parameters.

fitted_values 55

unconditional logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is used, if available.

ncores number of cores for generating random variables from a multivariate normal

distribution. Passed to mvnfast::rmvn(). Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).

Value

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- row (integer) the row of newdata that each posterior draw relates to,
- draw (integer) an index, in range 1:n, indicating which draw each row relates to,
- response (numeric) the predicted response for the indicated row of newdata.

Author(s)

Gavin L. Simpson

References

Wood, S.N., (2020). Simplified integrated nested Laplace approximation. *Biometrika* **107**, 223–230. doi:10.1093/biomet/asz044

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 1000, dist = "normal", scale = 2, seed = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

fs <- fitted_samples(m1, n = 5, seed = 42)

fs</pre>
```

fitted_values

Generate fitted values from a estimated GAM

Description

Generate fitted values from a estimated GAM

56 fitted_values

Usage

```
fitted_values(object, ...)
## S3 method for class 'gam'
fitted_values(
  object,
  data = NULL,
  scale = c("response", "link", "linear predictor"),
  ci_level = 0.95,
  ...
)
```

Arguments

object	a fitted model. Currently only models fitted by mgcv::gam() and mgcv::bam() are supported.
• • •	arguments passed to mgcv::predict.gam(). Note that type, newdata, and se.fit are already used and passed on to mgcv::predict.gam().
data	optional data frame of covariate values for which fitted values are to be returned.
scale	character; what scale should the fitted values be returned on? "linear predictor" is a synonym for "link" if you prefer that terminology.
ci_level	numeric; a value between 0 and 1 indicating the coverage of the credible interval.

Value

A tibble (data frame) whose first m columns contain either the data used to fit the model (if data was NULL), or the variables supplied to data. Four further columns are added:

- fitted: the fitted values on the specified scale,
- se: the standard error of the fitted values (always on the *link* scale),
- lower, upper: the limits of the credible interval on the fitted values, on the specified scale.

Note

Regardless of the scale on which the fitted values are returned, the se component of the returned object is on the *link* (*linear predictor*) scale, not the response scale.

Examples

```
load\_mgcv() sim\_df <- \ data\_sim("eg1", n = 400, \ dist = "normal", \ scale = 2, \ seed = 2) m <- \ gam(y \sim s(x0) + s(x1) + s(x2) + s(x3), \ data = sim\_df, \ method = "REML") fv <- \ fitted\_values(m) fv
```

fixef 57

fixef

Extract fixed effects estimates

Description

Extract fixed effects estimates

Arguments

object a fitted GAM

... arguments passed to other methods

 ${\tt fixef.gam}$

Extract fixed effects estimates from a fitted GAM

Description

Extract fixed effects estimates from a fitted GAM

Usage

```
## S3 method for class 'gam'
fixef(object, ...)

## S3 method for class 'gamm'
fixef(object, ...)

## S3 method for class 'lm'
fixef(object, ...)

## S3 method for class 'glm'
fixef(object, ...)

## Default S3 method:
fixed_effects(object, ...)
```

Arguments

```
object a fitted GAM
```

... arguments passed to other methods

58 fix_offset

Examples

fix_offset

Fix the names of a data frame containing an offset variable.

Description

Identifies which variable, if any, is the model offset, and fixed the name such that offset(foo(var)) is converted to var, and possibly sets the values of that variable to offset_val.

Usage

```
fix_offset(model, newdata, offset_val = NULL)
```

Arguments

model a fitted GAM.

newdata data frame; new values at which to predict at.

offset_val numeric, optional; if provided, then the offset variable in newdata is set to this

constant value before returning newdata

Value

The original newdata is returned with fixed names and possibly modified offset variable.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

df <- data_sim("eg1", n = 400, dist = "normal", seed = 2)

m <- gam(y ~ s(x0) + s(x1) + offset(x2), data = df, method = "REML")
names(model.frame(m))
names(fix_offset(m, model.frame(m), offset_val = 1L))</pre>
```

get_by_smooth 59

get	hν	_smooth

Extract an factor-by smooth by name

Description

Extract an factor-by smooth by name

Usage

```
get_by_smooth(object, term, level)
```

Arguments

object a fitted GAM model object.

term character; the name of a smooth term to extract.

level character; which level of the factor to extract the smooth for.

Value

A single smooth object, or a list of smooths if several match the named term.

get_smooth

Extract an mgcv smooth by name

Description

Extract an mgcv smooth by name

Usage

```
get_smooth(object, term)
```

Arguments

object a fitted GAM model object.

term character; the name of a smooth term to extract

Value

A single smooth object, or a list of smooths if several match the named term.

60 gss_vocab

get_smooths_by_id	Extract an mgcv smooth given its position in the model object

Description

Extract an mgcv smooth given its position in the model object

Usage

```
get_smooths_by_id(object, id)
```

Arguments

object	a fitted GAM model object.
id	numeric; the position of the smooth in the model object.

gss_vocab	Data from the General Social Survey (GSS) from the National Opinion
	Research Center of the University of Chicago

Description

A subset of the data from the carData:: GSSvocab dataset from the carData package, containing observations from 2016 only.

Format

A data frame with 1858 rows and 3 variables:

- vocab: numeric; the number of words out of 10 correct on a vocabulary test.
- nativeBorn: factor; Was the respondent born in the US? A factor with levels no and yes.
- ageGroup: factor; grouped age of the respondent with levels 18–29 30–39, 40–49, 50–59, and 60+.##'

gw_f0 61

gw_f0

Gu and Wabha test functions

Description

Gu and Wabha test functions

Usage

```
gw_f0(x)
gw_f1(x)
gw_f2(x)
gw_f3(x)
```

Arguments

Χ

numeric; vector of points to evaluate the function at, on interval (0,1)

Examples

```
x <- seq(0, 1, length = 6)
gw_f0(x)
gw_f1(x)
gw_f2(x)
gw_f3(x) # should be constant 0</pre>
```

has_theta

Are additional parameters available for a GAM?

Description

Are additional parameters available for a GAM?

Usage

```
has_theta(object)
```

Arguments

object

an R object, either a family() object or an object whose class has a family() method.

62 is_by_smooth

Value

A logical; TRUE if additional parameters available, FALSE otherwise.

Examples

is_by_smooth

Tests for by variable smooths

Description

Functions to check if a smooth is a by-variable one and to test of the type of by-variable smooth is a factor-smooth or a continous-smooth interaction.

Usage

```
is_by_smooth(smooth)
is_factor_by_smooth(smooth)
is_continuous_by_smooth(smooth)
by_variable(smooth)
by_level(smooth)
```

Arguments

smooth

an object of class "mgcv.smooth"

Value

A logical vector.

Author(s)

Gavin L. Simpson

is_factor_term 63

Description

Given the name (a term label) of a term in a model, identify if the term is a factor term or numeric. This is useful when considering interactions, where terms like fac1:fac2 or num1:fac1 may be requested by the user. Only for terms of the type fac1:fac2 will this function return TRUE.

Usage

```
is_factor_term(object, term, ...)
## S3 method for class 'terms'
is_factor_term(object, term, ...)
## S3 method for class 'gam'
is_factor_term(object, term, ...)
## S3 method for class 'bam'
is_factor_term(object, term, ...)
## S3 method for class 'gamm'
is_factor_term(object, term, ...)
## S3 method for class 'list'
is_factor_term(object, term, ...)
```

Arguments

object an R object on which method dispatch is performed

term character; the name of a model term, in the sense of attr(terms(object),
 "term.labels"). Currently not checked to see if the term exists in the model.

... arguments passed to other methods.

Value

A logical: TRUE if and only if all variables involved in the term are factors, otherwise FALSE.

is_offset

is_mgcv_smooth

Check if objects are smooths or are a particular type of smooth

Description

Check if objects are smooths or are a particular type of smooth

Usage

```
is_mgcv_smooth(smooth)
is_mrf_smooth(smooth)
```

Arguments

 ${\sf smooth}$

an R object, typically a list

is_offset

Is a model term an offset?

Description

Given a character vector of model terms, checks to see which, if any, is the model offset.

Usage

```
is_offset(terms)
```

Arguments

terms

character vector of model terms.

Value

A logical vector of the same length as terms.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
df <- data_sim("eg1", n = 400, dist = "normal")
m <- gam(y ~ s(x0) + s(x1) + offset(x0), data = df, method = "REML")
nm <- names(model.frame(m))
nm
is_offset(nm)</pre>
```

link 65

link

Extract link and inverse link functions from models

Description

Returns the link or its inverse from an estimated model, and provides a simple way to extract these functions from complex models with multiple links, such as location scale models.

```
link(object, ...)
## S3 method for class 'family'
link(object, parameter = NULL, which_eta = NULL, ...)
## S3 method for class 'gam'
link(object, parameter = NULL, which_eta = NULL, ...)
## S3 method for class 'bam'
link(object, parameter = NULL, which_eta = NULL, ...)
## S3 method for class 'gamm'
link(object, ...)
## S3 method for class 'glm'
link(object, ...)
## S3 method for class 'list'
link(object, ...)
inv_link(object, ...)
## S3 method for class 'family'
inv_link(object, parameter = NULL, which_eta = NULL, ...)
## S3 method for class 'gam'
inv_link(object, parameter = NULL, which_eta = NULL, ...)
## S3 method for class 'bam'
inv_link(object, parameter = NULL, which_eta = NULL, ...)
## S3 method for class 'gamm'
inv_link(object, ...)
## S3 method for class 'list'
inv_link(object, ...)
```

66 link

```
## S3 method for class 'glm'
inv_link(object, ...)

extract_link(family, ...)

## S3 method for class 'family'
extract_link(family, inverse = FALSE, ...)

## S3 method for class 'general.family'
extract_link(family, parameter, inverse = FALSE, which_eta = NULL, ...)
```

Arguments

object a family object or a fitted model from which to extract the family object. Models fitted by stats::glm(), mgcv::gam(), mgcv::bam(), mgcv::gamm(), and gamm4::gamm4() are currently supported. arguments passed to other methods. character; which parameter of the distribution. Usually "location" but "scale" parameter and "shape" may be provided for location scale models. Other options include "mu" as a synonym for "location", "sigma" for the scale parameter in mgcv::gaulss(), "pi" for the zero-inflation term in mgcv::ziplss(), "power" for the mgcv::twlss() power parameter, "xi", the shape parameter for mgcv::gevlss(), "epsilon" or "skewness" for the skewness and "delta" or "kurtosis" for the kurtosis parameter for mgcv::shash(), or "theta" for the scale parameter of mgcv::gammals(). which_eta numeric; the linear predictor to extract for families mgcv::mvn() and mgcv::multinom(). a family object, the result of a call to family(). family inverse logical; return the inverse of the link function?

Author(s)

Gavin L. Simpson

Examples

load_mgcv 67

```
## Works with `family` objects too
link(shash(), parameter = "skewness")
```

load_mgcv

Load mgcv quietly

Description

Simple function that loads the *mgcv* package whilst suppressing the startup messages that it prints to the console.

Usage

```
load_mgcv()
```

Value

Returns a logical vectors invisibly, indicating whether the package was loaded or not.

model_concurvity

Concurvity of an estimated GAM

Description

Concurvity of an estimated GAM

```
model_concurvity(model, ...)

## S3 method for class 'gam'
model_concurvity(
   model,
   terms = everything(),
   type = c("all", "estimate", "observed", "worst"),
   pairwise = FALSE,
   ...
)

concrvity(
   model,
   terms = everything(),
   type = c("all", "estimate", "observed", "worst"),
   pairwise = FALSE,
   ...
)
```

nb_theta

Arguments

model a fitted GAM. Currently only objects of class "gam" are supported arguents passed to other methods.

terms currently ignored

type character;

pairwise logical; extract pairwise concurvity of model terms?

Examples

nb_theta

Negative binomial parameter theta

Description

Negative binomial parameter theta

Usage

```
nb_theta(model)
## S3 method for class 'gam'
nb_theta(model)
```

Arguments

model a fitted model.

n_smooths 69

Value

A numeric vector of length 1 containing the estimated value of theta.

Methods (by class)

• gam: Method for class "gam"

Examples

n_smooths

How many smooths in a fitted model

Description

How many smooths in a fitted model

Usage

```
n_smooths(object)
## Default S3 method:
n_smooths(object)
## S3 method for class 'gam'
n_smooths(object)
## S3 method for class 'gamm'
n_smooths(object)
## S3 method for class 'bam'
n_smooths(object)
```

Arguments

```
object a fitted GAM or related model. Typically the result of a call to mgcv::gam(), mgcv::bam(), or mgcv::gamm().
```

70 parametric_effects

 ${\tt observed_fitted_plot} \quad \textit{Plot of fitted against observed response values}$

Description

Plot of fitted against observed response values

Usage

```
observed_fitted_plot(
  model,
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  point_col = "black",
  point_alpha = 1
)
```

Arguments

model	a fitted model. Currently only class "gam".
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
title	character or expression; the title for the plot. See ggplot2::labs().
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs().
caption	character or expression; the plot caption. See ggplot2::labs().
point_col	colour used to draw points in the plots. See graphics::par() section Color Specification. This is passed to the individual plotting functions, and therefore affects the points of all plots.
point_alpha	numeric; alpha transparency for points in plots.

 $parametric_effects \qquad \textit{Estimated values for parametric model terms}$

Description

Estimated values for parametric model terms

parametric_terms 71

Usage

```
parametric_effects(object, ...)

## S3 method for class 'gam'
parametric_effects(
  object,
  terms = NULL,
  unconditional = FALSE,
  unnest = TRUE,
  ci_level = 0.95,
  envir = environment(formula(object)),
  ...
)
```

Arguments

object a fitted model object.

... arguments passed to other methods.

terms character; which model parametric terms should be drawn? The Default of NULL

will plot all parametric terms that can be drawn.

unconditional logical; should confidence intervals include the uncertainty due to smoothness

selection? If TRUE, the corrected Bayesian covariance matrix will be used.

unnest logical; unnest the smooth objects?

ci_level numeric; the coverage required for the confidence interval. Currently ignored.

envir an environment to look up the data within.

parametric_terms

Names of any parametric terms in a GAM

Description

Names of any parametric terms in a GAM

```
parametric_terms(model, ...)
## Default S3 method:
parametric_terms(model, ...)
## S3 method for class 'gam'
parametric_terms(model, ...)
```

72 partial_residuals

Arguments

model a fitted model.

... arguments passed to other methods.

partial_residuals
Partial residuals

Description

Partial residuals

Usage

```
partial_residuals(object, ...)
## S3 method for class 'gam'
partial_residuals(object, select = NULL, partial_match = FALSE, ...)
```

Arguments

object an R object, typically a model. Currently only objects of class "gam" (or that

inherit from that class) are supported.

. . . arguments passed to other methods.

select character, logical, or numeric; which smooths to plot. If NULL, the default,

then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from summary(object). Logical select operates as per numeric select in the order

that smooths are stored.

partial_match logical; should smooths be selected by partial matches with select? If TRUE,

select can only be a single string to match against.

Examples

```
## load mgcv
load_mgcv()

## example data - Gu & Wabha four term model

df <- data_sim("eg1", n = 400, seed = 42)

## fit the model

m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = 'REML')

## extract partial residuals
partial_residuals(m)

## and for a select term</pre>
```

penalty 73

```
partial_residuals(m, select = "s(x2)")
## or with partial matching
partial_residuals(m, select = "x", partial_match = TRUE) # returns all
```

penalty

Extract and tidy penalty matrices

Description

Extract and tidy penalty matrices

Usage

```
penalty(object, ...)
## S3 method for class 'gam'
penalty(object, smooth = NULL, rescale = FALSE, ...)
## S3 method for class 'mgcv.smooth'
penalty(object, rescale = FALSE, ...)
## S3 method for class 'tensor.smooth'
penalty(object, margins = FALSE, ...)
## S3 method for class 't2.smooth'
penalty(object, margins = FALSE, ...)
## S3 method for class 're.smooth.spec'
penalty(object, data, ...)
```

Arguments

object	a fitted GAM or a smooth.
	additional arguments passed to methods.
smooth	character; vector of smooths to extract penalty matrices for. If NULL, penalty matrices for all smooths in object are extracted.
rescale	logical; by default, $mgcv$ will scale the penalty matrix for better performance in $mgcv::gamm()$. If rescale is TRUE, this scaling will be undone to put the penalty matrix back on the original scale.
margins	logical; extract the penalty matrices for the tensor product or the marginal smooths of the tensor product?
data	data frame; a data frame of values for terms mentioned in the smooth specification.

74 penalty

Value

A 'tibble' (data frame) of class penalty_df inheriting from tbl_df, with the following components:

- smooth character; the label mgcv uses to refer to the smooth,
- type character; the type of smooth,
- penalty character; the label for the specific penalty. Some smooths have multiple penalty matrices, so the penalty component identifies the particular penalty matrix and uses the labelling that *mgcv* uses internally,
- row character; a label of the form fn where n is an integer for the nth basis function, referencing the columns of the penalty matrix,
- col character; a label of the form fn where n is an integer for the nth basis function, referencing the columns of the penalty matrix,
- value double; the value of the penalty matrix for the combination of row and col,

Note

The print() method uses base::zapsmall() to turn very small numbers into 0s for display purposes only; the underlying values of the penalty matrix or matrices are not changed.

For smooths that are subject to an eigendecomposition (e.g. the default thin plate regression splines, bs = "tp"), the signs of the eigenvectors are not defined and as such you can expect differences across systems in the penalties for such smooths that are system-, OS-, and CPU architecture-specific.

Author(s)

Gavin L. Simpson

Examples

posterior_samples 75

posterior_samples

Draw samples from the posterior distribution of an estimated model

Description

Draw samples from the posterior distribution of an estimated model

Usage

```
posterior_samples(model, ...)
## S3 method for class 'gam'
posterior_samples(
  model,
  n,
  newdata,
  seed,
  scale = c("response", "linear_predictor"),
  freq = FALSE,
  unconditional = FALSE,
  weights = NULL,
  ncores = 1L,
  ...
)
```

Arguments

5411101103	
model	a fitted model of the supported types
• • •	arguments passed to other methods. For fitted_samples(), these are passed on to predict.gam().
n	numeric; the number of posterior samples to return.
newdata	data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for newdata, if available in model.
seed	numeric; a random seed for the simulations.
scale	character;
freq	logical; TRUE to use the frequentist covariance matrix of the parameter estimators, FALSE to use the Bayesian posterior covariance matrix of the parameters.
unconditional	logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is used, if available.
weights	numeric; a vector of prior weights. If newdata is null then defaults to $object[["prior.weights"]]$, otherwise a vector of ones.
ncores	number of cores for generating random variables from a multivariate normal

distribution. Passed to mvnfast::rmvn(). Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).

76 predicted_samples

Value

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- row (integer) the row of newdata that each posterior draw relates to,
- draw (integer) an index, in range 1:n, indicating which draw each row relates to,
- response (numeric) the predicted response for the indicated row of newdata.

Author(s)

Gavin L. Simpson

predicted_samples

Draw new response values from the conditional distribution of the response

Description

Predicted values of the response (new response data) are drawn from the fitted model, created via simulate() (e.g. simulate.gam()) and returned in a tidy, long, format. These predicted values do not include the uncertainty in the estimated model; they are simply draws from the conditional distribution of the response.

Usage

```
predicted_samples(model, ...)
## S3 method for class 'gam'
predicted_samples(
  model,
  n = 1,
  newdata = NULL,
  seed = NULL,
  weights = NULL,
  ...
)
```

Arguments

model a fitted model of the supported types

... arguments passed to other methods. For fitted_samples(), these are passed

on to predict.gam().

n numeric; the number of posterior samples to return.

newdata data frame; new observations at which the posterior draws from the model

should be evaluated. If not supplied, the data used to fit the model will be used

for newdata, if available in model.

qq_plot 77

seed numeric; a random seed for the simulations.

weights numeric; a vector of prior weights. If newdata is null then defaults to object[["prior.weights"]],

otherwise a vector of ones.

Value

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- row (integer) the row of newdata that each posterior draw relates to,
- draw (integer) an index, in range 1:n, indicating which draw each row relates to,
- response (numeric) the predicted response for the indicated row of newdata.

Author(s)

Gavin L. Simpson

Examples

qq_plot

Quantile-quantile plot of model residuals

Description

Quantile-quantile plot of model residuals

78 qq_plot

Usage

```
qq_plot(model, ...)
## Default S3 method:
qq_plot(model, ...)
## S3 method for class 'gam'
qq_plot(
 model,
 method = c("uniform", "simulate", "normal", "direct"),
  type = c("deviance", "response", "pearson"),
  n_uniform = 10,
 n_simulate = 50,
 level = 0.9,
 ylab = NULL,
 xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ci_col = "black",
  ci_alpha = 0.2,
 point_col = "black",
  point_alpha = 1,
 line_col = "red",
)
## S3 method for class 'glm'
qq_plot(model, ...)
## S3 method for class 'lm'
qq_plot(model, ...)
```

Arguments

model	a fitted model. Currently only class "gam".
• • •	arguments passed ot other methods.
method	character; method used to generate theoretical quantiles. Note that method = "direct" is deprecated in favour of method = "uniform".
type	character; type of residuals to use. Only "deviance", "response", and "pearson' residuals are allowed.
n_uniform	numeric; number of times to randomize uniform quantiles in the direct computation method (method = "uniform").
n_simulate	numeric; number of data sets to simulate from the estimated model when using the simulation method (method = "simulate").
level	numeric; the coverage level for reference intervals. Must be strictly $0 < level < 1$. Only used with method = "simulate".

qq_plot 79

```
character or expression; the label for the y axis. If not supplied, a suitable label
ylab
                   will be generated.
xlab
                  character or expression; the label for the y axis. If not supplied, a suitable label
                   will be generated.
                  character or expression; the title for the plot. See ggplot2::labs().
title
subtitle
                  character or expression; the subtitle for the plot. See ggplot2::labs().
caption
                  character or expression; the plot caption. See ggplot2::labs().
ci_col, ci_alpha
                  fill colour and alpha transparency for the reference interval when method =
                   "simulate".
point_col, point_alpha
                  colour and alpha transparency for points on the QQ plot.
                  colour used to draw the reference line.
line_col
```

Note

The wording used in mgcv::qq.gam() uses *direct* in reference to the simulated residuals method (method = "simulated"). To avoid confusion, method = "direct" is deprecated in favour of method = "uniform".

Examples

```
load_mgcv()
## simulate binomial data...
dat \leftarrow data_sim("eg1", n = 200, dist = "binary", scale = .33, seed = 0)
p <- binomial()$linkinv(dat$f)</pre>
                                               # binomial p
n \leftarrow sample(c(1, 3), 200, replace = TRUE) # binomial n
dat <- transform(dat, y = rbinom(n, n, p), n = n)</pre>
m \leftarrow gam(y / n \sim s(x0) + s(x1) + s(x2) + s(x3),
         family = binomial, data = dat, weights = n,
         method = "REML")
## Q-Q plot; default using direct randomization of uniform quantiles
qq_plot(m)
## Alternatively use simulate new data from the model, which
## allows construction of reference intervals for the Q-Q plot
qq_plot(m, method = "simulate", point_col = "steelblue",
        point_alpha = 0.4)
## ... or use the usual normality assumption
qq_plot(m, method = "normal")
```

rep_first_factor_value

ref_sims

Reference simulation data

Description

A set of reference objects for testing data_sim().

Format

A named list of simulated data sets created by data_sim().

```
rep_first_factor_value
```

Repeat the first level of a factor n times

Description

Function to repeat the first level of a factor n times and return this vector as a factor with the original levels intact

Usage

```
rep_first_factor_value(f, n)
```

Arguments

f a factor

n numeric; the number of times to repeat the first level of f

Value

A factor of length n with the levels of f, but whose elements are all the first level of f.

residuals_hist_plot 81

 ${\tt residuals_hist_plot} \qquad {\it Histogram\ of\ model\ residuals}$

Description

Histogram of model residuals

Usage

```
residuals_hist_plot(
  model,
  type = c("deviance", "pearson", "response"),
  n_bins = c("sturges", "scott", "fd"),
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL
)
```

Arguments

model	a fitted model. Currently only class "gam".
type	character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
n_bins	character or numeric; either the number of bins or a string indicating how to calculate the number of bins.
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
title	character or expression; the title for the plot. See ggplot2::labs().
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs().
caption	character or expression; the plot caption. See ggplot2::labs().

residuals_linpred_plot

Plot of residuals versus linear predictor values

Description

Plot of residuals versus linear predictor values

82 rootogram

Usage

```
residuals_linpred_plot(
  model,
  type = c("deviance", "pearson", "response"),
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  point_col = "black",
  point_alpha = 1,
  line_col = "red"
)
```

Arguments

model	a fitted model. Currently only class "gam".
type	character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
title	character or expression; the title for the plot. See ggplot2::labs().
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs().
caption	character or expression; the plot caption. See ggplot2::labs().
point_col	colour used to draw points in the plots. See graphics::par() section Color Specification. This is passed to the individual plotting functions, and therefore affects the points of all plots.
point_alpha	numeric; alpha transparency for points in plots.
line_col	colour specification for 1:1 line.

rootogram

Rootograms to assess goodness of model fit

Description

A rootogram is a model diagnostic tool that assesses the goodness of fit of a statistical model. The observed values of the response are compared with those expected from the fitted model. For discrete, count responses, the frequency of each count (0, 1, 2, etc) in the observed data and expected from the conditional distribution of the response implied by the model are compared. For continuous variables, the observed and expected frequencies are obtained by grouping the data into bins. The rootogram is drawn using ggplot2::ggplot() graphics. The design closely follows Kleiber & Zeileis (2016).

seq_min_max 83

Usage

```
rootogram(object, ...)
## S3 method for class 'gam'
rootogram(object, max_count = NULL, breaks = "Sturges", ...)
```

Arguments

object an R object

... arguments passed to other methods
max_count integer; the largest count to consider

breaks for continuous responses, how to group the response. Can be anything that is

acceptable as the breaks argument of graphics::hist.default()

References

Kleiber, C., Zeileis, A., (2016) Visualizing Count Data Regressions Using Rootograms. *Am. Stat.* **70**, 296–303. doi:10.1080/00031305.2016.1173590

Examples

seq_min_max

Create a sequence of evenly-spaced values

Description

For a continuous vector x, seq_min_max() creates a sequence of n evenly-spaced values over the range min(x) –

84 seq_min_max_eps

Usage

```
seq_min_max(x, n)
```

Arguments

n

numeric; vector over which evenly-spaced values are returned Χ numeric; the number of evenly-spaced values to return

Value

A numeric vector of length n.

Examples

```
x <- rnorm(10)
n <- 10L
seq_min_max(x, n = n)
```

seq_min_max_eps

Create a sequence of evenly-spaced values adjusted to accommodate a small adjustment

Description

Creates a sequence of n evenly-spaced values over the range min(x) - max(x), where the minimum and maximum are adjusted such that they are always contained within the range of x when x may be shifted forwards or backwards by an amount related to eps. This is particularly useful in computing derivatives via finite differences where without this adjustment we may be predicting for values outside the range of the data and hence the conmstraints of the penalty.

Usage

```
seq_min_max_eps(x, n, order, type = c("forward", "backward", "central"), eps)
```

Arguments

X	numeric; vector over which evenly-spaced values are returned
n	numeric; the number of evenly-spaced values to return
order	integer; the order of derivative. Either 1 or 2 for first or second order
type	character; the type of finite difference used. One of "forward", "bac

character; the type of finite difference used. One of "forward", "backward", or

derivatives

"central"

numeric; the finite difference eps

Value

A numeric vector of length n.

shift_values 85

- 1-		C+	1		
sr	١٦:	TT.	val	ues	÷

Shift numeric values in a data frame by an amount eps

Description

Shift numeric values in a data frame by an amount eps

Usage

```
shift_values(df, h, i, FUN = "+")
```

Arguments

df	a data frame or tibble.
h	numeric; the amount to shift values in df by.
i	logical; a vector indexing columns of df that should not be included in the shift.
FUN	function; a function to applut the shift. Typically + or

simulate.gam

Simulate from the posterior distribution of a GAM

Description

Simulations from the posterior distribution of a fitted GAM model involve computing predicted values for the observation data for which simulated data are required, then generating random draws from the probability distribution used when fitting the model.

Usage

```
## S3 method for class 'gam'
simulate(object, nsim = 1, seed = NULL, newdata = NULL, weights = NULL, ...)
## S3 method for class 'gamm'
simulate(object, nsim = 1, seed = NULL, newdata = NULL, weights = NULL, ...)
## S3 method for class 'scam'
simulate(object, nsim = 1, seed = NULL, newdata = NULL, weights = NULL, ...)
```

86 smallAges

Arguments

a fitted GAM, typically the result of a call to mgcv::gam' or mgcv::gamm(). object numeric; the number of posterior simulations to return. nsim seed numeric; a random seed for the simulations. newdata data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for newdata, if available in object. weights numeric; a vector of prior weights. If newdata is null then defaults to object[["prior.weights"]], otherwise a vector of ones. arguments passed to methods. simulate.gam() and simulate.scam() pass on to predict.gam(). As such you can pass additional arguments such as terms, exclude, to select which model terms are included in the predictions. This may be useful, for example, for excluding the effects of random effect

Details

For simulate.gam() to function, the family component of the fitted model must contain, or be updateable to contain, the required random number generator. See mgcv::fix.family.rd().

Value

(Currently) A matrix with nsim columns.

terms.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv() dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2) m1 <- gam(y \sim s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML") sims <- simulate(m1, nsim = 5, seed = 42) head(sims)
```

smallAges

Lead-210 age-depth measurements for Small Water

Description

A dataset containing lead-210 based age depth measurements for the SMALL1 core from Small Water.

smooths 87

Format

A data frame with 12 rows and 7 variables.

Details

The variables are as follows:

- Depth
- Drymass
- Date
- Age
- Error
- SedAccRate
- SedPerCentChange

Source

Simpson, G.L. (Unpublished data).

smooths

Names of smooths in a GAM

Description

Names of smooths in a GAM

Usage

```
smooths(object)
```

Arguments

```
object
```

a fitted GAM or related model. Typically the result of a call to mgcv::gam(), mgcv::bam(), or mgcv::gamm().

88 smooth_data

smooth_coefs

Indices of the parametric terms for a particular smooth

Description

Returns a vector of indices of the parametric terms that represent the supplied smooth. Useful for extracting model coefficients and columns of their covariance matrix.

Usage

```
smooth_coefs(smooth)
```

Arguments

smooth

an object that inherits from class mgcv.smooth

Value

A numeric vector of indices.

Author(s)

Gavin L. Simpson

 ${\sf smooth_data}$

Generate regular data over the covariates of a smooth

Description

Generate regular data over the covariates of a smooth

Usage

```
smooth_data(
  model,
  id,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  offset = NULL,
  include_all = FALSE
)
```

smooth_dim 89

Arguments

model	a fitted model
id	the number ID of the smooth within model to process.
n	numeric; the number of new observations to generate.
n_3d	numeric; the number of new observations to generate for the third dimension of a 3D smooth.
n_4d	numeric; the number of new observations to generate for the dimensions higher than 2 (!) of a kD smooth ($k \ge 4$). For example, if the smooth is a 4D smooth, each of dimensions 3 and 4 will get n_4d new observations.
offset	numeric; value of the model offset to use.
include_all	logical; include all covariates involved in the smooth? if FALSE, only the covariates involved in the smooth will be included in the returned data frame. If TRUE, a representative value will be included for all other covariates in the model that aren't actually used in the model. This can be useful if you want to pass the returned data frame on to mgcv::PredictMat().

Description

Extracts the dimension of an estimated smooth.

Usage

```
smooth_dim(object)

## S3 method for class 'gam'
smooth_dim(object)

## S3 method for class 'gamm'
smooth_dim(object)

## S3 method for class 'mgcv.smooth'
smooth_dim(object)
```

Arguments

object an R object. See Details for list of supported objects.

Details

This is a generic function with methods for objects of class "gam", "gamm", and "mgcv.smooth".

90 smooth_estimates

Value

A numeric vector of dimensions for each smooth.

Author(s)

Gavin L. Simpson

smooth_estimates

Evaluate smooths at covariate values

Description

Evaluate a smooth at a grid of evenly spaced value over the range of the covariate associated with the smooth. Alternatively, a set of points at which the smooth should be evaluated can be supplied. smooth_estimates() is a new implementation of evaluate_smooth(), and should be used instead of that other function.

Usage

```
smooth_estimates(object, ...)
## S3 method for class 'gam'
smooth_estimates(
  object,
  smooth = NULL,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  unnest = TRUE,
  partial_match = FALSE,
  ...
)
```

Arguments

```
object an object of class "gam" or "gamm".
... arguments passed to other methods.
smooth character; a single smooth to evaluate.
n numeric; the number of points over the range of the covariate at which to evaluate the smooth.
```

smooth_samples 91

n_3d, n_4d numeric; the number of points over the range of last covariate in a 3D or 4D

smooth. The default is NULL which achieves the standard behaviour of using n points over the range of all covariate, resulting in n^d evaluation pointsm, where d is the dimension of the smooth. For d > 2 this can result in very many evaluation points and slow performance. For smooths of d > 4, the value of n_4d will be used for all dimensions d > 4, unless this is NULL, in which case the default

behaviour (using n for all dimensions) will be observed.

data a data frame of covariate values at which to evaluate the smooth.

unconditional logical; should confidence intervals include the uncertainty due to smoothness

selection? If TRUE, the corrected Bayesian covariance matrix will be used.

overall_uncertainty

logical; should the uncertainty in the model constant term be included in the

standard error of the evaluate values of the smooth?

dist numeric; if greater than 0, this is used to determine when a location is too far

from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and dist is a distance within the

unit square. See mgcv::exclude.too.far() for further details.

unnest logical; unnest the smooth objects?

partial_match logical; in the case of character select, should select match partially against

smooths? If partial_match = TRUE, select must only be a single string, a

character vector of length 1.

Value

A data frame (tibble), which is of class "smooth_estimates".

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)

m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## evaluate all smooths
smooth_estimates(m1)

## or selected smooths
smooth_estimates(m1, smooth = c("s(x0)", "s(x1)"))
```

smooth_samples

Posterior draws for individual smooths

Description

Returns draws from the posterior distributions of smooth functions in a GAM. Useful, for example, for visualising the uncertainty in individual estimated functions.

92 smooth_samples

Usage

```
smooth_samples(model, ...)
## S3 method for class 'gam'
smooth_samples(
  model,
  term = NULL,
  n = 1,
  newdata = NULL,
  seed = NULL,
  freq = FALSE,
  unconditional = FALSE,
  ncores = 1L,
  n_vals = 200,
  ...
)
```

Arguments

model	a fitted model of the supported types
	arguments passed to other methods. For fitted_samples(), these are passed on to $predict.gam()$.
term	character; select which smooth's posterior to draw from. The default (NULL) means the posteriors of all smooths in model wil be sampled from. If supplied, a character vector of requested terms.
n	numeric; the number of posterior samples to return.
newdata	data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for newdata, if available in model.
seed	numeric; a random seed for the simulations.
freq	logical; TRUE to use the frequentist covariance matrix of the parameter estimators, FALSE to use the Bayesian posterior covariance matrix of the parameters.
unconditional	logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is used, if available.
ncores	number of cores for generating random variables from a multivariate normal distribution. Passed to mvnfast::rmvn(). Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
n_vals	numeric; how many locations to evaluate the smooth at if newdata not supplied

Value

A tibble with additional classes "smooth_samples" and '"posterior_samples".

For the "gam" method, the columns currently returned (not in this order) are:

• smooth; character vector. Indicates the smooth function for that particular draw,

smooth_samples 93

• term; character vector. Similar to smooth, but will contain the full label for the smooth, to differentiate factor-by smooths for example.

- by_variable; character vector. If the smooth involves a by term, the by variable will be named here, NA_character_ otherwise.
- row; integer. A vector of values seq_len(n_vals), repeated if n > 1L. Indexes the row in newdata for that particular draw.
- draw; integer. A vector of integer values indexing the particular posterior draw that each row belongs to.
- value; numeric. The value of smooth function for this posterior draw and covariate combination.
- .xN; numeric. A series of one or more columns containing data required for the smooth. .x1 will always be present and contains the values of the covariate in the smooth. For example if smooth is s(z) then .x1 will contain the values of covariate z at which the smooth was evaluated. Further covariates for multi-dimensional thin plate splines (e.g. s(x, z)) or tensor product smooths (e.g. te(x,z,a)) will result in variables .x1 and .x2, and .x1, .x2, and .x3 respectively, with the number (1, 2, etc) representing the order in which the covariates were specified in the smooth.
- Additional columns will be present in the case of factor by smooths, which will contain the level for the factor named in by_variable for that particular posterior draw.

Warning

The set of variables returned and their order in the tibble is subject to change in future versions. Don't rely on position.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 400, seed = 2)

m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

sms <- smooth_samples(m1, term = "s(x0)", n = 5, seed = 42)

sms

## A factor by example (with a spurious covariate x0)
dat <- data_sim("eg4", n = 1000, seed = 2)

## fit model...

m2 <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = dat)

sms <- smooth_samples(m2, n = 5, seed = 42)
draw(sms)</pre>
```

94 term_variables

term_names

Extract names of all variables needed to fit a GAM or a smooth

Description

Extract names of all variables needed to fit a GAM or a smooth

Usage

```
term_names(object, ...)
## S3 method for class 'gam'
term_names(object, ...)
## S3 method for class 'mgcv.smooth'
term_names(object, ...)
## S3 method for class 'gamm'
term_names(object, ...)
```

Arguments

object a fitted GAM object or an mgcv smooth object
... arguments passed to other methods. Not currently used.

Value

A vector of variable names required for terms in the model

term_variables

Names of variables involved in a specified model term

Description

Given the name (a term label) of a term in a model, returns the names of the variables involved in the term.

Usage

```
term_variables(object, term, ...)
## S3 method for class 'terms'
term_variables(object, term, ...)
## S3 method for class 'gam'
```

theta 95

```
term_variables(object, term, ...)
## S3 method for class 'bam'
term_variables(object, term, ...)
```

Arguments

object an R object on which method dispatch is performed

term character; the name of a model term, in the sense of attr(terms(object),

"term.labels"). Currently not checked to see if the term exists in the model.

... arguments passed to other methods.

Value

A character vector of variable names.

theta

General extractor for additional parameters in mgcv models

Description

General extractor for additional parameters in mgcv models

Usage

```
theta(object, ...)
## S3 method for class 'gam'
theta(object, transform = TRUE, ...)
```

Arguments

object a fitted model

... arguments passed to other methods.

transform logical; transform to the natural scale of the parameter

Value

Returns a numeric vector of additional parameters

Examples

96 too_far

tidy_basis

A tidy basis representation of a smooth object

Description

Takes an object of class mgcv. smooth and returns a tidy representation of the basis.

Usage

```
tidy_basis(smooth, data, at = NULL)
```

Arguments

smooth a smooth object.

data a data frame containing the variables used in smooth.

at a data frame containing values of the smooth covariate(s) at which the basis

should be evaluated.

Value

A tibble.

Author(s)

Gavin L. Simpson

too_far

Exclude values that lie too far from the support of data

Description

Identifies pairs of covariate values that lie too far from the original data. The function is currently a basic wrapper around mgcv::exclude.too.far().

Usage

```
too_far(x, y, ref_1, ref_2, dist = NULL)
```

Arguments

dist

x, y numeric; vector of values of the covariates to compare with the observed data ref_1, ref_2 numeric; vectors of covariate values that represent the reference against which x1 and x2 are compared

if supplied, a numeric vector of length 1 representing the distance from the data

beyond which an observation is excluded. For example, you want to exclude values that lie further from an observation than 10% of the range of the observed

data, use 0.1.

too_far_to_na 97

Value

Returns a logical vector of the same length as x1.

too_far_to_na

Set rows of data to NA if the lie too far from a reference set of values

Description

Set rows of data to NA if the lie too far from a reference set of values

Usage

```
too_far_to_na(smooth, input, reference, cols, dist = NULL)
```

Arguments

smooth	an mgcv smooth object
input	data frame containing the input observations and the columns to be set to NA
reference	data frame containing the reference values
cols	character vector of columns whose elements will be set to NA if the data lies too far from the reference set $\frac{1}{2}$
dist	numeric, the distance from the reference set beyond which elements of input will be set to NA

will be set to NA

to_na

Sets the elements of vector to NA

Description

Given a vector i indexing the elements of x, sets the selected elements of x to NA.

Usage

```
to_na(x, i)
```

Arguments

x vector of values

i vector of values used to subset x

Value

Returns x with possibly some elements set to NA

98 transform_fun

Description

Transform estimated values and confidence intervals by applying a function

Usage

```
transform_fun(object, fun = NULL, ...)
## S3 method for class 'evaluated_smooth'
transform_fun(object, fun = NULL, ...)
## S3 method for class 'smooth_estimates'
transform_fun(object, fun = NULL, ...)
## S3 method for class 'mgcv_smooth'
transform_fun(object, fun = NULL, ...)
## S3 method for class 'evaluated_parametric_term'
transform_fun(object, fun = NULL, ...)
## S3 method for class 'parametric_effects'
transform_fun(object, fun = NULL, ...)
## S3 method for class 'tbl_df'
transform_fun(object, fun = NULL, column = NULL, ...)
```

Arguments

object an object to apply the transform function to.

fun the function to apply.
... additional arguments passed to methods.

column character; for the "tbl_df" method, which column to transform.

Value

Returns object but with the estimate and upper and lower values of the confidence interval transformed via the function.

Author(s)

Gavin L. Simpson

typical_values 99

		-	
+ \ / r	ni cal	_values	
LVI	лтсат	varues	

Typical values of model covariates

Description

Typical values of model covariates

Usage

```
typical_values(object, ...)
## S3 method for class 'gam'
typical_values(object, vars = everything(), ...)
```

Arguments

object a fitted GAM(M) model.

... arguments passed to other methods.

vars terms to include or exclude from the returned object. Uses tidyselect principles.

variance_comp

Variance components of smooths from smoothness estimates

Description

A wrapper to mgcv::gam.vcomp() which returns the smoothing parameters expressed as variance components.

Usage

```
variance_comp(object, ...)
## S3 method for class 'gam'
variance_comp(object, rescale = TRUE, coverage = 0.95, ...)
```

Arguments

object	an R object. Currently only models fitted by mgcv::gam() or mgcv::bam() are
object	an K object. Currently only models fitted by ligev::gaii() of ligev::baii() are

supported.

.. arguments passed to other methods

rescale logical; for numerical stability reasons the penalty matrices of smooths are

rescaled before fitting. If rescale = TRUE, this rescaling is undone, resulting in variance components that are on their original scale. This is needed if com-

paring with other mixed model software, such as lmer().

coverage numeric; a value between 0 and 1 indicating the (approximate) coverage of the

confidence interval that is returned.

100 which_smooths

Details

This function is a wrapper to mgcv::gam.vcomp() which performs three additional services

- it suppresses the annoying text output that mgcv::gam.vcomp() prints to the terminal,
- returns the variance of each smooth as well as the standard deviation, and
- returns the variance components as a tibble.

vars_from_label

Returns names of variables from a smooth label

Description

Returns names of variables from a smooth label

Usage

```
vars_from_label(label)
```

Arguments

label

character; a length 1 character vector containing the label of a smooth.

Examples

```
vars_from_label("s(x1)")
vars_from_label("t2(x1,x2,x3)")
```

which_smooths

Identify a smooth term by its label

Description

Identify a smooth term by its label

Usage

```
which_smooths(object, ...)
## Default S3 method:
which_smooths(object, ...)
## S3 method for class 'gam'
which_smooths(object, terms, ...)
```

worm_plot 101

```
## $3 method for class 'bam'
which_smooths(object, terms, ...)
## $3 method for class 'gamm'
which_smooths(object, terms, ...)
```

Arguments

object a fitted GAM.

... arguments passed to other methods.

terms character; one or more (partial) term labels with which to identify required

smooths.

worm_plot

Worm plot of model residuals

Description

Worm plot of model residuals

Usage

```
worm_plot(model, ...)
## S3 method for class 'gam'
worm_plot(
 model,
 method = c("uniform", "simulate", "normal", "direct"),
  type = c("deviance", "response", "pearson"),
  n_uniform = 10,
 n_simulate = 50,
  level = 0.9,
  ylab = NULL,
 xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ci_col = "black",
  ci_alpha = 0.2,
  point_col = "black",
  point_alpha = 1,
  line_col = "red",
)
## S3 method for class 'glm'
```

102 worm_plot

```
worm_plot(model, ...)
## S3 method for class 'lm'
worm_plot(model, ...)
```

Arguments

model	a fitted model. Currently only class "gam".
	arguments passed ot other methods.
method	character; method used to generate theoretical quantiles. Note that method = "direct" is deprecated in favour of method = "uniform".
type	character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
n_uniform	numeric; number of times to randomize uniform quantiles in the direct computation method (method = "uniform").
n_simulate	numeric; number of data sets to simulate from the estimated model when using the simulation method (method = "simulate").
level	numeric; the coverage level for reference intervals. Must be strictly $0 < level < 1$. Only used with method = "simulate".
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
title	character or expression; the title for the plot. See ggplot2::labs().
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs().
caption	character or expression; the plot caption. See ggplot2::labs().
ci_col	fill colour and alpha transparency for the reference interval when method = "simulate".
ci_alpha	fill colour and alpha transparency for the reference interval when method = "simulate".
point_col	colour and alpha transparency for points on the QQ plot.
point_alpha	colour and alpha transparency for points on the QQ plot.
line_col	colour used to draw the reference line.

Note

The wording used in mgcv::qq.gam() uses *direct* in reference to the simulated residuals method (method = "simulated"). To avoid confusion, method = "direct" is deprecated in favour of method = "uniform".

zooplankton 103

Examples

```
load_mgcv()
## simulate binomial data...
dat <- data_sim("eg1", n = 200, dist = "binary", scale = .33, seed = 0)</pre>
p <- binomial()$linkinv(dat$f)</pre>
                                              # binomial p
n <- sample(c(1, 3), 200, replace = TRUE) # binomial n</pre>
dat <- transform(dat, y = rbinom(n, n, p), n = n)</pre>
m \leftarrow gam(y / n \sim s(x0) + s(x1) + s(x2) + s(x3),
         family = binomial, data = dat, weights = n,
         method = "REML")
## Worm plot; default using direct randomization of uniform quantiles
## Note no reference bands are drawn with this method.
worm_plot(m)
## Alternatively use simulate new data from the model, which
## allows construction of reference intervals for the Q-Q plot
worm_plot(m, method = "simulate", point_col = "steelblue",
          point_alpha = 0.4)
## ... or use the usual normality assumption
worm_plot(m, method = "normal")
```

zooplankton

Madison lakes zooplankton data

Description

The Madison lake zooplankton data are from a long-term study in seasonal dynamics of zooplankton, collected by the Richard Lathrop. The data were collected from a chain of lakes in Wisconsin (Mendota, Monona, Kegnonsa, and Waubesa) approximately bi-weekly from 1976 to 1994. They consist of samples of the zooplankton communities, taken from the deepest point of each lake via vertical tow. The data are provided by the Wisconsin Department of Natural Resources and their collection and processing are fully described in Lathrop (2000).

Format

A data frame

Details

Each record consists of counts of a given zooplankton taxon taken from a subsample from a single vertical net tow, which was then scaled to account for the relative volume of subsample versus the whole net sample and the area of the net tow and rounded to the nearest 1000 to give estimated population density per m2 for each taxon at each point in time in each sampled lake.

Source

Pedersen EJ, Miller DL, Simpson GL, Ross N. 2018. Hierarchical generalized additive models: an introduction with mgcv. *PeerJ Preprints* **6**:e27320v1 doi:10.7287/peerj.preprints.27320v1.

104 zooplankton

References

Lathrop RC. (2000). Madison Wisonsin Lakes Zooplankton 1976–1994. Environmental Data Initiative.

Index

* data	derivatives, 21
bird_move, 12	difference_smooths, 23
gss_vocab, 60	draw, 25
ref_sims, 80	draw.compare_smooths, 25
smallAges, 86	draw.derivatives, 26
zooplankton, 103	draw.difference_smooth, 27
* draw methods	draw.evaluated_1d_smooth
draw.rootogram, 40	(draw.evaluated_smooth), 29
a. a 55558. a, 15	draw.evaluated_2d_smooth
add_confint, 4	(draw.evaluated_smooth), 29
add_constant, 4	draw.evaluated_fs_smooth
add_fitted, 5	(draw.evaluated_smooth), 29
add_fitted.gam, 6	draw.evaluated_parametric_term
add_partial_residuals,7	(draw.evaluated_smooth), 29
add_residuals, 8	draw.evaluated_re_smooth
add_residuals.gam,8	(draw.evaluated_smooth), 29
appraise, 9	draw.evaluated_smooth, 29
	draw.gam, 32
base::set.seed(), 20	draw.mgcv_smooth, 36
base::zapsmall(), 74	draw.parametric_effects, 37
basis, 11	draw.penalty_df, 38
basis(), <i>36</i>	draw.rootogram, 40
bird_move, 12	draw.smooth_estimates, 41
by_level(is_by_smooth), 62	draw.smooth_samples, 43
<pre>by_variable (is_by_smooth), 62</pre>	_ ,
	edf, 45
<pre>check_user_select_smooths, 12</pre>	eval_smooth, 49
coef.scam, 13	evaluate_parametric_term,47
compare_smooths, 14	evaluate_smooth, 47
compare_smooths(), 25	evaluate_smooth(), 30, 39, 90
<pre>concrvity (model_concurvity), 67</pre>	extract_link(link),65
confint.fderiv, 15	
confint.gam, 17	factor_combos, 52
<pre>confint.gamm (confint.gam), 17</pre>	family(), <i>53</i> , <i>61</i> , <i>66</i>
<pre>confint.list(confint.gam), 17</pre>	family.bam(family.gam), 52
	family.gam, 52
data_combos, 19	<pre>family.gamm (family.gam), 52</pre>
data_sim, 19	family.list(family.gam), 52
$data_sim(), 80$	family_name, 53
data_slice, 20	<pre>family_type, 53</pre>

106 INDEX

fitted_samples, 54	mgcv::fix.family.rd(), 86
fitted_values, 55	mgcv::gam, 86
fix_offset, 58	mgcv::gam(), 26, 27, 33, 37, 42, 44, 51, 53,
fixed_effects(fixef.gam),57	56, 66, 69, 87, 99
fixef, 57	mgcv::gam.vcomp(), 99, 100
fixef.gam, 57	mgcv::gamm(), 53, 66, 69, 73, 86, 87
fixef.gamm (fixef.gam), 57	mgcv::gammals(),66
fixef.glm(fixef.gam), 57	mgcv::gamSim(), 19
fixef.lm(fixef.gam), 57	mgcv::gaulss(),66
· · · · · · · · · · · · · · · · · · ·	mgcv::gevlss(),66
gamm4::gamm4(), <i>53</i> , <i>66</i>	mgcv::multinom(), 66
geom_rug(draw.evaluated_smooth), 29	mgcv::mvn(), 66
get_by_smooth, 59	mgcv::plot.gam(), 33
get_smooth, 59	mgcv::predict.gam(), 6, 56
get_smooths_by_id, 60	mgcv::PredictMat(),89
ggplot2::coord_map(), <i>34</i> , <i>35</i> , <i>42</i>	mgcv::qq.gam(), 10, 79, 102
ggplot2::geom_contour(), 28, 31, 34, 42,	mgcv::residuals.gam(), 8
44	mgcv::s(), 11
ggplot2::geom_line(),44	mgcv::shash(), 66
ggplot2::ggplot(), 25, 31, 32, 35, 36, 40, 82	mgcv::smoothCon(), 11
ggplot2::label_both(), <i>36</i>	mgcv::t2(), 11
ggplot2::labs(), 31, 36, 39, 44, 70, 79, 81,	mgcv::te(), 11
82, 102	mgcv::ti(), 11
ggplot2::scale_colour_viridis_d(), <i>31</i>	mgcv::twlss(), 66
graphics::hist.default(),83	mgcv::ziplss(), 66
graphics::par(), <i>10</i> , <i>70</i> , <i>82</i>	model_concurvity, 67
gss_vocab, 60	model_edf (edf), 45
gw_f0,61	mvnfast::rmvn(), 15, 18, 22, 55, 75, 92
gw_f1 (gw_f0), 61	mviii ast i mvii(), 13, 16, 22, 33, 73, 72
gw_f2 (gw_f0), 61	n_smooths, 69
gw_f3 (gw_f0), 61	nb_theta, 68
	ins_circ ca, oo
has_theta, 61	observed_fitted_plot, 70
	observed_fitted_plot(), 10
inv_link (link), 65	0000. V00 <u>1</u> . 10000_p100(), 10
is_by_smooth, 62	parametric_effects, 70
is_continuous_by_smooth(is_by_smooth),	parametric_effects(), 47
62	parametric_terms, 71
is_factor_by_smooth(is_by_smooth), 62	partial_residuals,72
is_factor_term, 63	patchwork::plot_layout(), 10, 25, 26, 28,
is_mgcv_smooth, 64	34, 38, 39, 44
is_mrf_smooth(is_mgcv_smooth), 64	patchwork::wrap_plots(), 10, 25, 26, 28,
is_offset, 64	35, 36, 38, 42, 44
link, 65	penalty, 73
load_mgcv, 67	posterior_samples, 75
	predicted_samples, 76
mgcv::bam(), 51, 53, 56, 66, 69, 87, 99	- , -, -, -, -, -, -, -, -, -, -, -, -,
mgcv::exclude.too.far(), 34, 48, 52, 91,	qq_plot,77
96	qq_plot(), <i>10</i>

INDEX 107

```
ref_sims, 80
rep_first_factor_value, 80
residuals_hist_plot, 81
residuals_hist_plot(), 10
residuals_linpred_plot, 81
residuals_linpred_plot(), 10
rootogram, 82
rootogram(), 41
seq_min_max, 83
seq_min_max_eps, 84
shift_values, 85
{\tt simulate.gam},\, 85
simulate.gam(), 76
simulate.gamm (simulate.gam), 85
simulate.scam (simulate.gam), 85
smallAges, 86
smooth_coefs, 88
smooth_data, 88
smooth_dim, 89
smooth_estimates, 90
smooth_estimates(), 48
smooth_samples, 91
smooths, 87
stats::family(), 52
stats::glm(), 66
stats::predict(), 5, 6, 8
stats::residuals(), 7, 8
term_names, 94
term_variables, 94
theta, 95
tidy_basis, 96
to_na, 97
too_far, 96
too_far_to_na, 97
transform_fun, 98
typical_values, 99
variance_comp, 99
vars_from_label, 100
which_smooths, 100
worm_plot, 101
zooplankton, 103
```