We create some data and replace one column with NA
.
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.8079227 0.953249395 NA 1.1274464 0.09712716 -0.4742720
## [2,] 0.9832281 -1.260280844 NA -0.1783912 -1.03575574 -0.3311356
## [3,] 0.7170138 0.262284696 NA -0.8507424 -0.07323595 1.2373899
## [4,] -1.0496321 0.001392252 NA 1.4477400 0.33728515 0.1810778
## [5,] 1.0878961 0.878943747 NA -0.2420444 0.89014789 -0.5636744
## [6,] 1.1928337 -2.258967269 NA -1.1358111 -2.01461250 -0.1612763
## [7,] -0.6118118 0.593095212 NA -0.1851273 -0.22177968 -0.8654250
## [8,] 0.8141878 -1.513587594 NA -0.8900747 0.56687196 -1.0843648
## [9,] -1.4052400 0.233289389 NA -1.2110320 1.26545184 0.7710383
## [10,] -1.0421440 -0.418332662 NA 0.4143678 1.01131831 1.6529310
## [11,] -0.7593017 0.115098120 NA 1.6526934 -0.42903052 0.8128500
## [12,] 0.8663020 0.570655355 NA 0.9834333 -0.94808047 1.4868666
## [,7] [,8] [,9] [,10]
## [1,] -2.62666773 -1.4722316 -0.3164024 -0.1323967
## [2,] -0.12335079 1.0972550 2.1741523 0.5336786
## [3,] -0.44908266 -1.0502304 -0.6344078 0.7937576
## [4,] -0.04179480 -0.5329891 -0.3001254 0.5143836
## [5,] -1.00694068 -0.2079030 0.1998212 -0.4027840
## [6,] -0.19144789 -0.6729825 -1.6493459 0.7047418
## [7,] 1.69847767 1.1487469 1.3176655 -0.8453007
## [8,] 0.09829714 0.1868569 -0.3452368 -1.7971696
## [9,] -0.35486162 0.3770601 0.4880484 0.5611533
## [10,] -0.95844137 0.2238168 0.7127507 -0.2597389
## [11,] -0.34446407 -1.2050152 -0.2222073 -0.3870832
## [12,] -1.72659855 1.7059909 -0.3943868 -2.3102125
The covariance, with the implicit use = 'everything'
will give us a “cross” of NA
in the covariance matrix.
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1.00481929 -0.25953847 NA -0.26191673 -0.49433916 -0.33281927
## [2,] -0.25953847 1.03356272 NA 0.46433141 0.44723463 0.19329342
## [3,] NA NA NA NA NA NA
## [4,] -0.26191673 0.46433141 NA 1.05110996 -0.02342355 0.22988607
## [5,] -0.49433916 0.44723463 NA -0.02342355 0.91857807 0.06178755
## [6,] -0.33281927 0.19329342 NA 0.22988607 0.06178755 0.88860997
## [7,] -0.33972499 -0.33570333 NA -0.39318178 -0.07746939 -0.32934492
## [8,] -0.01822199 -0.05081532 NA -0.17677354 -0.07053865 0.02496831
## [9,] -0.25764497 0.15639461 NA 0.01073743 0.23005399 -0.13299972
## [10,] -0.17436534 -0.17321098 NA -0.23505304 -0.03599258 0.06184745
## [,7] [,8] [,9] [,10]
## [1,] -0.33972499 -0.01822199 -0.25764497 -0.17436534
## [2,] -0.33570333 -0.05081532 0.15639461 -0.17321098
## [3,] NA NA NA NA
## [4,] -0.39318178 -0.17677354 0.01073743 -0.23505304
## [5,] -0.07746939 -0.07053865 0.23005399 -0.03599258
## [6,] -0.32934492 0.02496831 -0.13299972 0.06184745
## [7,] 1.10731732 0.31389085 0.32705747 0.11035842
## [8,] 0.31389085 1.01367751 0.56074750 -0.49520843
## [9,] 0.32705747 0.56074750 0.98163234 0.01398087
## [10,] 0.11035842 -0.49520843 0.01398087 0.99145070
The jackknife covariance does the same thing.
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 10.1319278 -2.6170129 NA -2.6409937 -4.9845865 -3.3559276 -3.4255603
## [2,] -2.6170129 10.4217575 NA 4.6820084 4.5096159 1.9490419 -3.3850086
## [3,] NA NA NA NA NA NA NA
## [4,] -2.6409937 4.6820084 NA 10.5986921 -0.2361874 2.3180179 -3.9645829
## [5,] -4.9845865 4.5096159 NA -0.2361874 9.2623288 0.6230244 -0.7811497
## [6,] -3.3559276 1.9490419 NA 2.3180179 0.6230244 8.9601505 -3.3208946
## [7,] -3.4255603 -3.3850086 NA -3.9645829 -0.7811497 -3.3208946 11.1654496
## [8,] -0.1837384 -0.5123878 NA -1.7824665 -0.7112647 0.2517638 3.1650661
## [9,] -2.5979201 1.5769790 NA 0.1082691 2.3197110 -1.3410805 3.2978295
## [10,] -1.7581839 -1.7465440 NA -2.3701182 -0.3629252 0.6236285 1.1127807
## [,8] [,9] [,10]
## [1,] -0.1837384 -2.5979201 -1.7581839
## [2,] -0.5123878 1.5769790 -1.7465440
## [3,] NA NA NA
## [4,] -1.7824665 0.1082691 -2.3701182
## [5,] -0.7112647 2.3197110 -0.3629252
## [6,] 0.2517638 -1.3410805 0.6236285
## [7,] 3.1650661 3.2978295 1.1127807
## [8,] 10.2212483 5.6542040 -4.9933517
## [9,] 5.6542040 9.8981261 0.1409737
## [10,] -4.9933517 0.1409737 9.9971279
When we have some NA
values in a row, we have a conceptual problem with the jackknife as the width of the jackknife distribution is linked to the number of measurements.
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.7157144 0.3830505 -0.7483596 0.7578021 -0.42463748 -1.0319888
## [2,] NA NA NA NA NA NA
## [3,] 1.5840008 2.3416447 -0.6236529 0.7555545 -0.88647717 0.9775473
## [4,] -0.5344119 -1.2091202 0.6460490 1.3712069 -1.24553237 0.3204870
## [5,] -0.1075479 -1.0631454 0.5848066 0.2025899 0.44373591 0.5551791
## [6,] 1.3168021 -0.2133760 0.6932702 -0.4290675 1.19539207 0.9631749
## [7,] 0.1555438 0.3464016 -0.1989959 2.1343560 0.44835542 0.9661736
## [8,] 0.5374163 -0.5724669 -1.7348646 1.1058122 -2.58813398 0.9200456
## [9,] -1.4434792 1.9038218 -0.5851163 0.2887971 -1.26253861 1.0112359
## [10,] 0.5052784 0.4225661 -0.5862763 0.0177994 -2.16879414 -0.3203245
## [11,] -0.5389071 -1.9780189 -0.6286661 1.1347285 0.05426532 -0.3279949
## [12,] -0.5772848 -1.3236084 0.7361014 0.5699565 -0.54043595 -0.3360399
## [,7] [,8] [,9] [,10]
## [1,] -0.98568735 0.83193395 0.05163127 1.26338239
## [2,] NA NA NA NA
## [3,] -0.43978461 0.07868216 -1.16101851 -1.09880530
## [4,] 1.95037020 -0.66837550 0.31933346 -0.61617362
## [5,] 0.02014322 0.27293429 0.58948715 1.26511164
## [6,] -0.69760198 0.68743862 -0.02808972 -0.76255415
## [7,] -0.15452058 0.14798859 -0.57284665 0.48192309
## [8,] 0.20937894 -0.33652017 0.36277158 -0.21724651
## [9,] 0.75228259 -0.55324366 -1.36605017 0.23668048
## [10,] 0.97152448 -0.55950405 0.02085035 0.90439651
## [11,] 0.33203712 -2.59494362 0.45120574 -0.95755261
## [12,] 0.96568011 0.88597241 0.51337796 0.06969566
Also here we get the same behavior by default:
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] NA NA NA NA NA NA NA NA NA NA
## [2,] NA NA NA NA NA NA NA NA NA NA
## [3,] NA NA NA NA NA NA NA NA NA NA
## [4,] NA NA NA NA NA NA NA NA NA NA
## [5,] NA NA NA NA NA NA NA NA NA NA
## [6,] NA NA NA NA NA NA NA NA NA NA
## [7,] NA NA NA NA NA NA NA NA NA NA
## [8,] NA NA NA NA NA NA NA NA NA NA
## [9,] NA NA NA NA NA NA NA NA NA NA
## [10,] NA NA NA NA NA NA NA NA NA NA
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] NA NA NA NA NA NA NA NA NA NA
## [2,] NA NA NA NA NA NA NA NA NA NA
## [3,] NA NA NA NA NA NA NA NA NA NA
## [4,] NA NA NA NA NA NA NA NA NA NA
## [5,] NA NA NA NA NA NA NA NA NA NA
## [6,] NA NA NA NA NA NA NA NA NA NA
## [7,] NA NA NA NA NA NA NA NA NA NA
## [8,] NA NA NA NA NA NA NA NA NA NA
## [9,] NA NA NA NA NA NA NA NA NA NA
## [10,] NA NA NA NA NA NA NA NA NA NA
When we use complete
, we get the same thing as just dropping the NA
rows.
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.83250622 0.29721215 -0.040818273 -0.121794571 0.08951248
## [2,] 0.29721215 1.80989413 -0.368006348 -0.136563215 -0.31446225
## [3,] -0.04081827 -0.36800635 0.631771866 -0.138924601 0.55825904
## [4,] -0.12179457 -0.13656322 -0.138924601 0.503761136 -0.06619509
## [5,] 0.08951248 -0.31446225 0.558259040 -0.066195088 1.32129893
## [6,] 0.26572290 0.37253587 -0.004927037 0.023871159 0.05484673
## [7,] -0.32454495 -0.36480161 0.161003109 0.085960166 -0.47637573
## [8,] 0.20371515 0.36304579 0.262045321 -0.183206838 0.24357836
## [9,] -0.05847824 -0.83474393 0.140077916 -0.009062944 0.05487916
## [10,] -0.29156935 0.04493083 -0.005503744 -0.071729203 -0.03559882
## [,6] [,7] [,8] [,9] [,10]
## [1,] 0.265722902 -0.32454495 0.20371515 -0.058478236 -0.291569350
## [2,] 0.372535872 -0.36480161 0.36304579 -0.834743927 0.044930829
## [3,] -0.004927037 0.16100311 0.26204532 0.140077916 -0.005503744
## [4,] 0.023871159 0.08596017 -0.18320684 -0.009062944 -0.071729203
## [5,] 0.054846728 -0.47637573 0.24357836 0.054879159 -0.035598821
## [6,] 0.524206505 -0.03716920 0.04319642 -0.243855291 -0.229269321
## [7,] -0.037169205 0.72991222 -0.32109435 0.113442823 -0.087148907
## [8,] 0.043196423 -0.32109435 0.96679949 -0.043367164 0.334500851
## [9,] -0.243855291 0.11344282 -0.04336716 0.453328559 0.089814514
## [10,] -0.229269321 -0.08714891 0.33450085 0.089814514 0.741091738
## [1] TRUE
With our jackknife function we get a failure, which should not happen!
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 100.733253 35.96267 -4.9390111 -14.737143 10.831010 32.1524711
## [2,] 35.962670 218.99719 -44.5287681 -16.524149 -38.049932 45.0768405
## [3,] -4.939011 -44.52877 76.4443958 -16.809877 67.549344 -0.5961715
## [4,] -14.737143 -16.52415 -16.8098768 60.955097 -8.009606 2.8884102
## [5,] 10.831010 -38.04993 67.5493438 -8.009606 159.877171 6.6364541
## [6,] 32.152471 45.07684 -0.5961715 2.888410 6.636454 63.4289871
## [7,] -39.269939 -44.14099 19.4813762 10.401180 -57.641463 -4.4974738
## [8,] 24.649533 43.92854 31.7074839 -22.168027 29.472981 5.2267672
## [9,] -7.075867 -101.00402 16.9494278 -1.096616 6.640378 -29.5064902
## [10,] -35.279891 5.43663 -0.6659531 -8.679234 -4.307457 -27.7415878
## [,7] [,8] [,9] [,10]
## [1,] -39.269939 24.649533 -7.075867 -35.2798913
## [2,] -44.140994 43.928541 -101.004015 5.4366303
## [3,] 19.481376 31.707484 16.949428 -0.6659531
## [4,] 10.401180 -22.168027 -1.096616 -8.6792335
## [5,] -57.641463 29.472981 6.640378 -4.3074573
## [6,] -4.497474 5.226767 -29.506490 -27.7415878
## [7,] 88.319379 -38.852416 13.726582 -10.5450178
## [8,] -38.852416 116.982738 -5.247427 40.4746029
## [9,] 13.726582 -5.247427 54.852756 10.8675561
## [10,] -10.545018 40.474603 10.867556 89.6721003