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add_best_levels Build efficient features from high-cardinality, multiple-membership
factors

Description

In healthcare, we are often faced with high cardinality variables, where each observation may
have zero, one, or more levels, e.g. medications for a model at the patient grain. In these cases,
creating a feature variable for each level (each medication) as in one-hot encoding can be pro-
hibitively computationally intensive and can hurt performance by diminishing the signal-to-noise
ratio. get_best_levels identifies a subset of categories that are likely to be valuable features, and
add_best_levels adds them to a model data frame.

get_best_levels finds levels of groups that are likely to be useful predictors in d and returns
them as a character vector. add_best_levels does the same and adds them, pivoted, to d. The
function attempts to find both positive and negative predictors of outcome.

add_best_levels stores the identified best levels and passes them through model training so that
in deployment, the same columns created in training are again created (see the final example).

add_best_levels accepts arguments to pivot so that values associated with the levels (e.g. doses
of medications) can be used in the new features. However, note that these are not used in determin-
ing the best levels. I.e. get_best_levels determines which levels are likely to be good predictors
looking only at outcomes where the levels are present or abssent; it does not use fill or fun in this
determination. See details for more info about how levels are selected.
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Usage

add_best_levels(
d,
longsheet,
id,
groups,
outcome,
n_levels = 100,
min_obs = 1,
positive_class = "Y",
cohesion_weight = 2,
levels = NULL,
fill,
fun = sum,
missing_fill = NA

)

get_best_levels(
d,
longsheet,
id,
groups,
outcome,
n_levels = 100,
min_obs = 1,
positive_class = "Y",
cohesion_weight = 2

)

Arguments

d Data frame to use in models, at desired grain. Has id and outcome

longsheet Data frame containing multiple observations per grain. Has id and groups

id Name of identifier column, unquoted. Must be present and identical in both
tables

groups Name of grouping column, unquoted

outcome Name of outcome column, unquoted

n_levels Number of levels to return, default = 100. An attempt is made to return half
levels positively associated with the outcome and half negatively. If n_levels is
greater than the number present, all levels will be returned

min_obs Minimum number of observations a level must be found in in order to be consid-
ered. Defaults to one, but larger values are often useful because a level present
in only a few observation will rarely be a useful.

positive_class If classification model, the positive class of the outcome, default = "Y"; ignored
if regression
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cohesion_weight

For classification problems only, how much to value a level being consistently
associated with an outcome relative to its being present in many observations.
Default = 2; equal weight is 1. Note that this is a parameter that could potentially
be tuned over.

levels Use this argument when add_best_levels was used in training and you want to
add the same columns for deployment. You can pass the model trained on the
data frame from add_best_levels, the data frame from add_best_levels, or
a character vector of levels to add.

fill Passed to pivot. Column to be used to fill the values of cells in the output,
perhaps after aggregation by fun. If fill is not provided, counts will be used,
as though a fill column of 1s had been provided.

fun Passed to pivot. Function for aggregation, defaults to sum. Custom functions
can be used with the same syntax as the apply family of functions, e.g. fun =
function(x) some_function(another_fun(x)).

missing_fill Passed to pivot. Value to fill for combinations of grain and spread that are not
present. Defaults to NA, but 0 may be useful as well.

Details

Here is how get_best_levels determines the levels of groups that are likely to be good predictors.

• For regression: For each group, the difference of the group-mean from the grand-mean is
divided by the standard deviation of the group as a sample (i.e. centered_mean(group) /
sqrt(var(group) / n(group))), and the groups with the largest absolute values of that statistic
are retained.

• For classification: For each group, two "log-loss-like" statistics are calculated. One is the
log of the fraction of observations in which the group does not appear, which captures how
ubiquitous the group is: more common groups are more useful as predictors. The other cap-
tures how far the group is from being always associated with the same outcome: groups that
are consistently assoicated with either outcome are more useful as predictors. This is cal-
culated as the log of the proportion of outcomes that are not all the same outcome (e.g. if
4/5 observations are positive class, this statistic is log(.2)). This value is then raised to the
cohesion_weight power. To ensure retainment of both positive- and negative-predictors, the
all-same-outcome that is used as the comparison is determined by which side of the median
proportion of positive_class the group falls on.

Value

For add_best_levels, d with new columns for the best levels added and best_levels attribute con-
taining a named list of levels added. For get_best_levels, a character vector of the best levels.

See Also

pivot
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Examples

set.seed(45796)

# We have two tables we want to use in our models:
# - df is the model table. It has the outcomes (survived), and we want one
# prediction for each row in df
# - meds has detailed information on each row (patient) in df. Each patient
# may have zero, one, or more observations (drugs) in meds, and meds may
# have associated values (doses).

df <- tibble::tibble(
patient = paste0("Z", sample(10, 5)),
age = sample(20:80, 5),
survived = sample(c("N", "Y"), 5, replace = TRUE, prob = c(1, 2))

)

meds <- tibble::tibble(
patient = sample(df$patient, 10, replace = TRUE),
drug = sample(c("Quinapril", "Vancomycin", "Ibuprofen",

"Paclitaxel", "Epinephrine", "Dexamethasone"),
10, replace = TRUE),

dose = sample(c(100, 250), 10, replace = TRUE)
)

# Identify three drugs likely to be good predictors of survival

get_best_levels(d = df,
longsheet = meds,
id = patient,
groups = drug,
outcome = survived,
n_levels = 3)

# Identify four drugs likely to make good features and add them to df.
# The "fill", "fun", and "missing_fill" arguments are passed to
# `pivot`, which allows us to use the total doses of each drug given to the
# patient as our new features

new_df <- add_best_levels(d = df,
longsheet = meds,
id = patient,
groups = drug,
outcome = survived,
n_levels = 4,
fill = dose,
fun = sum,
missing_fill = 0)

new_df

# The names of the medications that were added to df in new_df are stored in the
# best_levels attribute of new_df so that the same columns can be added in
# deployment. This is useful because you need to have the same columns to make
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# predictions as you had in model training. When you are ready to add levels to
# a deployment data frame, you can pass to the "levels" argument of
# add_best_levels either the models trained on new_df, new_df itself, or the
# character vector of levels to add.

deployment_df <- tibble::tibble(
patient = "p6",
age = 30

)
deployment_meds <- tibble::tibble(

patient = rep("p6", 2),
drug = rep("Vancomycin", 2),
dose = c(100, 250)

)

# Now, even though Vancomycin is the only drug that appears in
# deployment_meds, because we pass new_df to "levels", we get all the columns
# needed to make predictions on a model trained on new_df

add_best_levels(d = deployment_df,
longsheet = deployment_meds,
id = patient,
groups = drug,
levels = new_df,
fill = dose,
missing_fill = 0)

add_SAM_utility_cols Add SAM utility columns to table

Description

When working in a Health Catalyst Source Area Mart (SAM), utility columns are added automati-
cally when running a non-R binding

Usage

add_SAM_utility_cols(d)

Arguments

d A dataframe

Value

A dataframe with three additional columns
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Examples

d <- data.frame(a = c(1,2,NA,NA),
b = c(100,300,200,150))

d <- add_SAM_utility_cols(d)

as.model_list Make models into model_list object

Description

Make models into model_list object

Usage

as.model_list(
...,
listed_models = NULL,
target = ".outcome",
model_class,
tuned = TRUE,
recipe = NULL,
positive_class = NULL,
model_name = NULL,
best_levels = NULL,
original_data_str,
versions

)

Arguments

... caret-trained models to put into a model list

listed_models Use this if your models are already in a list

target Quoted name of response variable

model_class "classification" or "regression". Will be determined if not provided

tuned Logical; if FALSE, will have super-class untuned_models

recipe recipe object from prep+_data, or NULL if the data didn’t go through prep_data

positive_class If classification, the positive outcome class, otherwise NULL

model_name Quoted, name of the model. Defaults to the name of the outcome variable.

best_levels best_levels list as attached to data frames from add_best_levels
original_data_str

zero-row data frame with names and classes of all columns except the outcome
as they came into either the model training function such as tune_models or
prep_data
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versions A list containing the following environmental variables from model training:
r_version, hcai_version, and other_packages (a tibble). If not provided, will be
extracted from the current session. See healthcareai:::attach_session_info for
details

Value

A model_list with child class type_list

build_connection_string

Build a connection string for use with MSSQL and dbConnect

Description

Handy utility to build a connection string to pass into DBI::dbConnect. Accepts trusted connec-
tions or username/password.

Usage

build_connection_string(
server,
driver = "SQL Server",
database,
trusted = TRUE,
user_id,
password

)

Arguments

server A string, quoted, required. The name of the server you are trying to connect to.

driver A string, quoted, optional. Defaults to "SQL Server", but use any driver you
like.

database A string, quoted, optional. If provided, connection string will include a specific
database. If NA (default), it will connect to master and you’ll have to specify
the database when running a query.

trusted Logical, optional, defaults to TRUE. If FALSE, you must use a user_id and
password.

user_id A string, quoted, optional. Don’t include if using trusted.

password A string, quoted, optional. Don’t include if using trusted.

Value

A connection string
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See Also

db_read

Examples

## Not run:
my_con <- build_connection_string(server = "localhost")
con <- DBI::dbConnect(odbc::odbc(), .connection_string = my_con)

# with username and password
my_con <- build_connection_string(server = "localhost",

user_id = "jules.winnfield",
password = "pathoftherighteous")

con <- DBI::dbConnect(odbc::odbc(), .connection_string = my_con)

## End(Not run)

catalyst_test_deploy_in_prod

Defunct

Description

Defunct

Usage

catalyst_test_deploy_in_prod(...)

Arguments

... Defunct

control_chart Create a control chart

Description

Create a control chart, aka Shewhart chart: https://en.wikipedia.org/wiki/Control_chart.

https://en.wikipedia.org/wiki/Control_chart
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Usage

control_chart(
d,
measure,
x,
group1,
group2,
center_line = mean,
sigmas = 3,
title = NULL,
catpion = NULL,
font_size = 11,
print = TRUE

)

Arguments

d data frame or a path to a csv file that will be read in

measure variable of interest mapped to y-axis (quoted, ie as a string)

x variable to go on the x-axis, often a time variable. If unspecified row indices
will be used (quoted)

group1 Optional grouping variable to be panelled horizontally (quoted)

group2 Optional grouping variable to be panelled vertically (quoted)

center_line Function used to calculate central tendency. Defaults to mean

sigmas Number of standard deviations above and below the central tendency to call a
point influenced by "special cause variation." Defaults to 3

title Title in upper-left

catpion Caption in lower-right

font_size Base font size; text elements will be scaled to this

print Print the plot? Default = TRUE. Set to FALSE if you want to assign the plot to
a variable for further modification, as in the last example.

Value

Generally called for the side effect of printing the control chart. Invisibly, returns a ggplot object
for further customization.

Examples

d <-
tibble::tibble(

day = sample(c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday"),
100, TRUE),

person = sample(c("Tom", "Jane", "Alex"), 100, TRUE),
count = rbinom(100, 20, ifelse(day == "Friday", .5, .2)),
date = Sys.Date() - sample.int(100))



12 convert_date_cols

# Minimal arguments are the data and the column to put on the y-axis.
# If x is not provided, observations will be plotted in order of the rows

control_chart(d, "count")

# Specify categorical variables for group1 and/or group2 to get a separate
# panel for each category

control_chart(d, "count", group1 = "day", group2 = "person")

# In addition to printing or writing the plot to file, control_chart
# returns the plot as a ggplot2 obejct, which you can then further customize

library(ggplot2)
my_chart <- control_chart(d, "count", "date")
my_chart +

ylab("Number of Adverse Events") +
scale_x_date(name = "Week of ... ", date_breaks = "week") +
theme(axis.text.x = element_text(angle = -90, vjust = 0.5, hjust=1))

convert_date_cols Convert character date columns to dates and times

Description

This function is called in prep_data and so it shouldn’t usually need to be called directly. It tries
to convert columns ending in "DTS" to type Date or DateTime (POSIXt). It makes a best guess at
the format and return a more standard one if possible.

Usage

convert_date_cols(d)

Arguments

d A dataframe or tibble containing data to try to convert to dates.

Value

A tibble containing the converted date columns. If no columns needed conversion, the original data
will be returned.

Examples

d <- tibble::tibble(a_DTS = c("2018-3-25", "2018-3-25"),
b_nums = c(2, 4),
c_DTS = c("03-01-2018", "03-07-2018"),
d_chars = c("a", "b"),
e_date = lubridate::mdy(c("3-25-2018", "3-25-2018")))

convert_date_cols(d)



db_read 13

db_read Read from a SQL Server database table

Description

Use a database connection to read from an existing SQL Server table with a SQL query.

Usage

db_read(con, query, pull_into_memory = TRUE)

Arguments

con An odbc database connection. Can be made using build_connection_string.
Required.

query A string, quoted, required. This sql query will be executed against the database
you are connected to.

pull_into_memory

Logical, optional, defaults to TRUE. If FALSE, db_read will create a reference
to the queried data rather than pulling into memory. Set to FALSE for very large
tables.

Details

Use pull_into_memory when working with large tables. Rather than returning the data into mem-
ory, this function will return a reference to the specified query. It will be executed only when needed,
in a "lazy" style. Or, you can execute using the collect() function.

Value

A tibble of data or reference to the table.

See Also

build_connection_string importFrom dbplyr as.sql

Examples

## Not run:
my_con <- build_connection_string(server = "HPHI-EDWDEV")
con <- DBI::dbConnect(odbc::odbc(), .connection_string = my_con)
d <- db_read(con,

"SELECT TOP 10 * FROM [Shared].[Cost].[FacilityAccountCost]")

# Get a reference and collect later
ref <- db_read(con,

"SELECT TOP 10 * FROM [Shared].[Cost].[FacilityAccountCost]",
pull_into_memory = FALSE)
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d <- collect(ref)

## End(Not run)

evaluate Get model performance metrics

Description

Get model performance metrics

Usage

evaluate(x, ...)

## S3 method for class 'predicted_df'
evaluate(x, na.rm = FALSE, ...)

## S3 method for class 'model_list'
evaluate(x, all_models = FALSE, ...)

Arguments

x Object to be evaluted

... Not used

na.rm Logical. If FALSE (default) performance metrics will be NA if any rows are
missing an outcome value. If TRUE, performance will be evaluted on the rows
that have an outcome value. Only used when evaluating a prediction data frame.

all_models Logical. If FALSE (default), a numeric vector giving performance metrics for
the best-performing model is returned. If TRUE, a data frame with perfor-
mance metrics for all trained models is returned. Only used when evaluating
a model_list.

Details

This function gets model performance from a model_list object that comes from machine_learn,
tune_models, flash_models, or a data frame of predictions from predict.model_list. For the
latter, the data passed to predict.model_list must contain observed outcomes. If you have pre-
dictions and outcomes in a different format, see evaluate_classification or evaluate_regression
instead.

You may notice that evaluate(models) and evaluate(predict(models)) return slightly differ-
ent performance metrics, even though they are being calculated on the same (out-of-fold) predic-
tions. This is because metrics in training (returned from evaluate(models)) are calculated within
each cross-validation fold and then averaged, while metrics calculated on the prediction data frame
(evaluate(predict(models))) are calculated once on all observations.
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Value

Either a numeric vector or a data frame depending on the value of all_models

Examples

models <- machine_learn(pima_diabetes[1:40, ],
patient_id,
outcome = diabetes,
models = c("XGB", "RF"),
tune = FALSE,
n_folds = 3)

# By default, evaluate returns performance of only the best model
evaluate(models)

# Set all_models = TRUE to see the performance of all trained models
evaluate(models, all_models = TRUE)

# Can also get performance on a test dataset
predictions <- predict(models, newdata = pima_diabetes[41:50, ])
evaluate(predictions)

evaluate_classification

Get performance metrics for classification predictions

Description

Get performance metrics for classification predictions

Usage

evaluate_classification(predicted, actual)

Arguments

predicted Vector of predicted probabilities

actual Vector of realized outcomes, must be 0/1

Value

Numeric vector of scores with metric as names

Examples

evaluate_classification(c(.7, .1, .6, .9, .4), c(1, 0, 0, 1, 1))
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evaluate_multiclass Get performance metrics for multiclass predictions

Description

Get performance metrics for multiclass predictions

Usage

evaluate_multiclass(predicted, actual)

Arguments

predicted Vector of predicted probabilities
actual Vector of realized outcomes, must be 0/1

Value

Numeric vector of scores with metric as names

Examples

evaluate_multiclass(iris$Species, sample(iris$Species))

evaluate_regression Get performance metrics for regression predictions

Description

Get performance metrics for regression predictions

Usage

evaluate_regression(predicted, actual)

Arguments

predicted Vector of predicted values
actual Vector of realized values

Value

Numeric vector of scores with metric as names

Examples

evaluate_regression(c(2, 4, 6), c(1.5, 4.1, 6.2))
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explore Explore a model’s "reasoning" via counterfactual predictions

Description

Make predictions for observations that vary over features of interest. There are two major use cases
for this function. One is to understand how the model responds to features, not just individually but
over combinations of features (i.e. interaction effects). The other is to explore how an individual
prediction would vary if feature values were different. Note, however, that this function does not
establish causality and the latter use case should be deployed judiciously.

Usage

explore(
models,
vary = 4,
hold = list(numerics = median, characters = Mode),
numerics = c(0.05, 0.25, 0.5, 0.75, 0.95),
characters = 5

)

Arguments

models A model_list object. The data the model was trained on must have been pre-
pared, either by training with machine_learn or by preparing with prep_data
before model training.

vary Which (or how many) features to vary? Default is 4; if vary is a single integer
(n), the n-most-important features are varied (see Details for how importance
is determined). If vary is a vector of integers, those rankings of features are
used (e.g. vary = 2:4 varies the 2nd, 3rd, and 4th most-important features).
Alternatively, you can specify which features to vary by passing a vector of
feature names. For the finest level of control, you can choose the alternative
values to use by passing a list with names being features names and entries
being values to use; in this case numerics and characters are ignored.

hold How to choose the values of features not being varied? To make counterfactual
predictions for a particular patient, this can be a row of the training data frame
(or a one-row data frame containing values for all of the non-varying features).
Alternatively, this can be functions to determine the values of non-varying fea-
tures, in which case it must be a length-2 list with names "numerics" and "char-
acters", each being a function to determine the values of non-varying features of
that data type. The default is list(numerics = median, characters = Mode);
numerics is applied to the column from the training data, characters is applied
to a frequency table of the column from the training data.

numerics How to determine values of numeric features being varied? By default, the 5th,
25th, 50th (median), 75th, and 95th percentile values from the training dataset
will be used. To specify evenly spaced quantiles, starting with the 5th and ending



18 explore

with the 95th, pass an integer to this argument. To specify which quantiles to
use, pass a numeric vector in [0, 1] to this argument, e.g. c(0, .5, 1) for the
minimum, median, and maximum values from the training dataset.

characters Integer. For categorical variables being varied, how many values to use? Values
are used from most- to least-common; default is 5.

Details

If vary is an integer, the most important features are determined by get_variable_importance,
unless glm is the only model present, in which case interpret is used with a warning. When
selecting the most important features to vary, for categorical features the sum of feature importance
of all the levels as dummies is used.

Value

A tibble with values of features used to make predictions and predictions. Has class explore_df
and attribute vi giving information about the varying features.

See Also

plot.explore_df

Examples

# First, we need a model on which to make counterfactual predictions
set.seed(5176)
m <- machine_learn(pima_diabetes, patient_id, outcome = diabetes,

tune = FALSE, models = "xgb")

# By default, the four most important features are varied, with numeric
# features taking their 5, 25, 50, 75, and 95 percentile values, and
# categoricals taking their five most common values. Others features are
# held at their median and modal values for numeric and categorical features,
# respectively. This can provide insight into how the model responds to
# different features
explore(m)

# It is easy to plot counterfactual predictions. By default, only the two most
# important features are plotted over; see `?plot.explore_df` for
# customization options
explore(m) %>%

plot()

# You can specify which features vary and what values they take in a variety of
# ways. For example, you could vary only "weight_class" and "plasma_glucose"
explore(m, vary = c("weight_class", "plasma_glucose"))

# You can also control what values non-varying features take.
# For example, if you want to simulate alternative scenarios for patient 321
patient321 <- dplyr::filter(pima_diabetes, patient_id == 321)
patient321
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explore(m, hold = patient321)

# Here is an example in which both the varying and non-varying feature values
# are explicitly specified.
explore(m,

vary = list(weight_class = c("normal", "overweight", "obese"),
plasma_glucose = seq(60, 200, 10)),

hold = list(pregnancies = 2,
pedigree = .5,
age = 25,
insulin = NA,
skinfold = NA,
diastolic_bp = 85)) %>%

plot()

flash_models Train models without tuning for performance

Description

Train models without tuning for performance

Usage

flash_models(
d,
outcome,
models,
metric,
positive_class,
n_folds = 5,
model_class,
model_name = NULL,
allow_parallel = FALSE

)

Arguments

d A data frame from prep_data. If you want to prepare your data on your own,
use prep_data(..., no_prep = TRUE).

outcome Optional. Name of the column to predict. When omitted the outcome from
prep_data is used; otherwise it must match the outcome provided to prep_data.

models Names of models to try. See get_supported_models for available models.
Default is all available models.

metric Which metric should be used to assess model performance? Options for classifi-
cation: "ROC" (default) (area under the receiver operating characteristic curve)
or "PR" (area under the precision-recall curve). Options for regression: "RMSE"
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(default) (root-mean-squared error, default), "MAE" (mean-absolute error), or
"Rsquared." Options for multiclass: "Accuracy" (default) or "Kappa" (accuracy,
adjusted for class imbalance).

positive_class For classification only, which outcome level is the "yes" case, i.e. should be
associated with high probabilities? Defaults to "Y" or "yes" if present, otherwise
is the first level of the outcome variable (first alphabetically if the training data
outcome was not already a factor).

n_folds How many folds to train the model on. Default = 5, minimum = 2. Whie
flash_models doesn’t use cross validation to tune hyperparameters, it trains n_folds
models to evaluate performance out of fold.

model_class "regression" or "classification". If not provided, this will be determined by the
class of ‘outcome‘ with the determination displayed in a message.

model_name Quoted, name of the model. Defaults to the name of the outcome variable.

allow_parallel Depreciated. Instead, control the number of cores though your parallel back end
(e.g. with doMC).

Details

This function has two major differences from tune_models: 1. It uses fixed default hyperparam-
eter values to train models instead of using cross-validation to optimize hyperparameter values for
predictive performance, and, as a result, 2. It is much faster.

If you want to train a model at a single set of non-default hyperparameter values use tune_models
and pass a single-row data frame to the hyperparameters arguemet.

Value

A model_list object. You can call plot, summary, evaluate, or predict on a model_list.

See Also

For setting up model training: prep_data, supported_models, hyperparameters

For evaluating models: plot.model_list, evaluate.model_list

For making predictions: predict.model_list

For optimizing performance: tune_models

To prepare data and tune models in a single step: machine_learn

Examples

# Prepare data
prepped_data <- prep_data(pima_diabetes, patient_id, outcome = diabetes)

# Get models quickly at default hyperparameter values
flash_models(prepped_data)

# Speed comparison of no tuning with flash_models vs. tuning with tune_models:
# ~15 seconds:
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system.time(
tune_models(prepped_data, diabetes)

)
# ~3 seconds:
system.time(

flash_models(prepped_data, diabetes)
)

get_cutoffs Get cutoff values for group predictions

Description

Get cutoff values for group predictions

Usage

get_cutoffs(x)

Arguments

x Data frame from predict.model_list where outcome_groups or risk_groups
was specified

Value

A message is printed about the thresholds. If outcome_groups were defined the return value is a
single numeric value, the threshold used to separate predicted probabilities into outcome groups.
If risk_groups were defined the return value is a data frame with one column giving the group
names and another column giving the minimum predicted probability for an observation to be in
that group.

Examples

machine_learn(pima_diabetes[1:20, ], patient_id, outcome = diabetes,
models = "xgb", tune = FALSE) %>%

predict(risk_groups = 5) %>%
get_cutoffs()
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get_hyperparameter_defaults

Get hyperparameter values

Description

Get hyperparameter values

Usage

get_hyperparameter_defaults(
models = get_supported_models(),
n = 100,
k = 10,
model_class = "classification"

)

get_random_hyperparameters(
models = get_supported_models(),
n = 100,
k = 10,
tune_depth = 5,
model_class = "classification"

)

Arguments

models which algorithms?

n Number observations

k Number features

model_class "classification" or "regression"

tune_depth How many combinations of hyperparameter values?

Details

Get hyperparameters for model training. get_hyperparameter_defaults returns a list of 1-row
data frames (except for glm, which is a 10-row data frame) with default hyperparameter values
that are used by flash_models. get_random_hyperparameters returns a list of data frames with
combinations of random values of hyperparameters to tune over in tune_models; the number of
rows in the data frames is given by ‘tune_depth‘.

For get_hyperparameter_defaults XGBoost defaults are from caret and XGBoost documenta-
tion: eta = 0.3, gamma = 0, max_depth = 6, subsample = 0.7, colsample_bytree = 0.8, min_child_weight
= 1, and nrounds = 50. Random forest defaults are from Intro to Statistical Learning and caret: mtry
= sqrt(k), splitrule = "extratrees", min.node.size = 1 for classification, 5 for regression. glm de-
faults are from caret: alpha = 1, and because glmnet fits sequences of lambda nearly as fast as an
individual value, lambda is a sequence from 1e-4 to 8.
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Value

Named list of data frames. Each data frame corresponds to an algorithm, and each column in each
data fram corresponds to a hyperparameter for that algorithm. This is the same format that should
be provided to tune_models(hyperparameters = ) to specify hyperparameter values.

See Also

models for model and hyperparameter details

get_supported_models Supported models and their hyperparameters

Description

Random Forest: "rf". Regression and classification. Implemented via ranger.

• mtry: Number of variables to consider for each split

• splitrule: Splitting rule. For classification either "gini" or "extratrees". For regression either
"variance" or "extratrees".

• min.node.size: Minimal node size.

XGBoost: "xgb". eXtreme Gradient Boosting Implemented via xgboost. Note that XGB has many
more hyperparameters than the other models. Because of this, it may require greater tune_depth to
optimize performance.

• eta: Control for learning rate, [0, 1]

• gamma: Threshold for further cutting of leaves, [0, Inf]. Larger is more conservative.

• max_depth: Maximum tree depth, [0, Inf]. Larger means more complex models and so greater
likelihood of overfitting. 0 produces no limit on depth.

• subsample: Fraction of data to use in each training instance, (0, 1].

• colsample_bytree: Fraction of features to use in each tree, (0, 1].

• min_child_weight: Minimum sum of instance weight need to keep partitioning, [0, Inf].
Larger values mean more conservative models.

• nrounds: Number of rounds of boosting, [0, Inf). Larger values produce a greater likelihood
of overfitting.

Regularized regression: "glm". Regression and classification. Implemented via glmnet.

• alpha: Elasticnet mixing parameter, in [0, 1]. 0 = ridge regression; 1 = lasso.

• lambda: Regularization parameter, > 0. Larger values make for stronger regularization.

Usage

get_supported_models()
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Value

Vector of currently-supported algorithms.

See Also

hyperparameters for more detail on hyperparameter defaults and specifications

get_thresholds Get class-separating thresholds for classification predictions

Description

healthcareai gives you predicted probabilities for classification problems, but sometimes you need to
convert probabilities into predicted classes. That requires choosing a threshold, where probabilities
above the threshold are predicted as the positive class and probabilities below the threshold are
predicted as the negative class. This function helps you do that by calculating a bunch of model-
performance metrics at every possible threshold.

"cost" is an especially useful measure as it allows you to weight how bad a false alarm is relative
to a missed detection. E.g. if for your use case a missed detection is five times as bad as a false
alarm (another way to say that is that you’re willing to allow five false positives for every one false
negative), set cost_fn = 5 and use the threshold that minimizes cost (see examples).

We recommend plotting the thresholds with their performance measures to see how optimizing for
one measure affects performance on other measures. See plot.thresholds_df for how to do this.

Usage

get_thresholds(x, optimize = NULL, measures = "all", cost_fp = 1, cost_fn = 1)

Arguments

x Either a predictions data frame (from predict) or a model_list (e.g. from
machine_learn).

optimize Optional. If provided, one of the entries in measures. A logical column named
"optimal" will be added with one TRUE entry corresponding to the threshold
that optimizes this measure.

measures Character vector of performance metrics to calculate, or "all", which is equiva-
lent to using all of the following measures. The returned data frame will have
one column for each metric.

• cost: Captures how bad all the errors are. You can adjust the relative costs
of false alarms and missed detections by setting cost_fp or cost_fn. At
the default of equal costs, this is directly inversely proportional to accuracy.

• acc: Accuracy
• tpr: True positive rate, aka sensitivity, aka recall
• tnr: True negative rate, aka specificity
• fpr: False positive rate, aka fallout
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• fnr: False negative rate
• ppv: Positive predictive value, aka precision
• npv: Negative predictive value

cost_fp Cost of a false positive. Default = 1. Only affects cost.

cost_fn Cost of a false negative. Default = 1. Only affects cost.

Value

Tibble with rows for each possible threshold and columns for the thresholds and each value in
measures.

Examples

library(dplyr)
models <- machine_learn(pima_diabetes[1:15, ], patient_id, outcome = diabetes,

models = "xgb", tune = FALSE)
get_thresholds(models)

# Identify the threshold that maximizes accuracy:
get_thresholds(models, optimize = "acc")

# Assert that one missed detection is as bad as five false alarms and
# filter to the threshold that minimizes "cost" based on that assertion:
get_thresholds(models, optimize = "cost", cost_fn = 5) %>%

filter(optimal)

# Use that threshold to make class predictions
(class_preds <- predict(models, outcome_groups = 5))
attr(class_preds$predicted_group, "cutpoints")

# Plot performance on all measures across threshold values
get_thresholds(models) %>%

plot()

# If a measure is provided to optimize, the best threshold will be highlighted in plots
get_thresholds(models, optimize = "acc") %>%

plot()

## Transform probability predictions into classes based on an optimal threshold ##
# Pull the threshold that minimizes cost
optimal_threshold <-

get_thresholds(models, optimize = "cost") %>%
filter(optimal) %>%
pull(threshold)

# Add a Y/N column to predictions based on whether the predicted probability
# is greater than the threshold
class_predictions <-

predict(models) %>%
mutate(predicted_class_diabetes = case_when(
predicted_diabetes > optimal_threshold ~ "Y",
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predicted_diabetes <= optimal_threshold ~ "N"
))

class_predictions %>%
select_at(vars(ends_with("diabetes"))) %>%
arrange(predicted_diabetes)

# Examine the expected volume of false-and-true negatives-and-positive
table(Actual = class_predictions$diabetes,

Predicted = class_predictions$predicted_class_diabetes)

get_variable_importance

Get variable importances

Description

Get variable importances

Usage

get_variable_importance(models, remove_zeros = TRUE, top_n)

Arguments

models model_list object

remove_zeros Remove features with zero variable importance? Default is TRUE

top_n Integer: How many variables to return? The top_n most important variables be
returned. If missing (default), all variables are returned

Details

Some algorithms provide variable importance, others don’t. The best-performing model that offers
variable importance will be used.

Value

Data frame of variables and their importance for predictive power

See Also

plot.variable_importance

Examples

m <- machine_learn(mtcars, outcome = mpg, models = "rf", tune = FALSE)
(vi <- get_variable_importance(m))
plot(vi)
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hcai_impute Specify imputation methods for an existing recipe

Description

‘hcai-impute‘ adds various imputation methods to an existing recipe. Currently supports mean
(numeric only), new_category (categorical only), bagged trees, or knn.

Usage

hcai_impute(
recipe,
nominal_method = "new_category",
numeric_method = "mean",
numeric_params = NULL,
nominal_params = NULL

)

Arguments

recipe A recipe object. imputation will be added to the sequence of operations for this
recipe.

nominal_method Defaults to "new_category". Other choices are "bagimpute", "knnimpute" or
"locfimpute".

numeric_method Defaults to "mean". Other choices are "bagimpute", "knnimpute" or "locfimpute".

numeric_params A named list with parmeters to use with chosen imputation method on numeric
data. Options are bag_model (bagimpute only), bag_trees (bagimpute only),
bag_options (bagimpute only), bag_trees (bagimpute only), knn_K (knnim-
pute only), impute_with (knnimpute only), (bag or knn) or seed_val (bag or
knn). See step_impute_bag or step_impute_knn for details.

nominal_params A named list with parmeters to use with chosen imputation method on nominal
data. Options are bag_model (bagimpute only), bag_trees (bagimpute only),
bag_options (bagimpute only), bag_trees (bagimpute only), knn_K (knnim-
pute only), impute_with (knnimpute only), (bag or knn) or seed_val (bag or
knn). See step_impute_bag or step_impute_knn for details.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps.

Examples

library(recipes)

n = 100
set.seed(9)
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d <- tibble::tibble(patient_id = 1:n,
age = sample(c(30:80, NA), size = n, replace = TRUE),
hemoglobin_count = rnorm(n, mean = 15, sd = 1),
hemoglobin_category = sample(c("Low", "Normal", "High", NA),

size = n, replace = TRUE),
disease = ifelse(hemoglobin_count < 15, "Yes", "No")

)

# Initialize
my_recipe <- recipe(disease ~ ., data = d)

# Create recipe
my_recipe <- my_recipe %>%

hcai_impute()
my_recipe

# Train recipe
trained_recipe <- prep(my_recipe, training = d)

# Apply recipe
data_modified <- bake(trained_recipe, new_data = d)
missingness(data_modified)

# Specify methods:
my_recipe <- my_recipe %>%

hcai_impute(numeric_method = "bagimpute",
nominal_method = "locfimpute")

my_recipe

# Specify methods and params:
my_recipe <- my_recipe %>%

hcai_impute(numeric_method = "knnimpute",
numeric_params = list(knn_K = 4))

my_recipe

healthcareai Machine Learning Made Easy

Description

healthcare.ai makes it as easy as possible to pull data from a database, get it ready for machine
learning, optimize multiple models, and deploy predictions.

Details

The package website – https://docs.healthcare.ai/ – contains vignettes that demonstrate how
to use the package, as well as documentation of all the important functions.

https://docs.healthcare.ai/
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impute Impute data and return a reusable recipe

Description

impute will impute your data using a variety of methods for both nominal and numeric data. Cur-
rently supports mean (numeric only), new_category (categorical only), bagged trees, or knn.

Usage

impute(
d = NULL,
...,
recipe = NULL,
numeric_method = "mean",
nominal_method = "new_category",
numeric_params = NULL,
nominal_params = NULL,
verbose = FALSE

)

Arguments

d A dataframe or tibble containing data to impute.

... Optional. Unquoted variable names to not be imputed. These will be returned
unaltered.

recipe Optional, a recipe object or an imputed data frame (containing a recipe object
as an attribute). If provided, this recipe will be applied to impute new data
contained in d with values saved in the recipe. Use this param if you’d like to
apply the same values used for imputation on a training dataset in production.

numeric_method Defaults to "mean". Other choices are "bagimpute" or "knnimpute".

nominal_method Defaults to "new_category". Other choices are "bagimpute" or "knnimpute".

numeric_params A named list with parmeters to use with chosen imputation method on numeric
data. Options are bag_model (bagimpute only), bag_trees (bagimpute only),
bag_options (bagimpute only), bag_trees (bagimpute only), knn_K (knnim-
pute only), impute_with (knnimpute only), (bag or knn) or seed_val (bag or
knn). See step_bagimpute or step_knnimpute for details.

nominal_params A named list with parmeters to use with chosen imputation method on nominal
data. Options are bag_model (bagimpute only), bag_trees (bagimpute only),
bag_options (bagimpute only), bag_trees (bagimpute only), knn_K (knnim-
pute only), impute_with (knnimpute only), (bag or knn) or seed_val (bag or
knn). See step_bagimpute or step_knnimpute for details.

verbose Gives a print out of what will be imputed and which method will be used.
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Value

Imputed data frame with reusable recipe object for future imputation in attribute "recipe".

Examples

d <- pima_diabetes
d_train <- d[1:700, ]
d_test <- d[701:768, ]
# Train imputer
train_imputed <- impute(d = d_train, patient_id, diabetes)
# Apply to new data
impute(d = d_test, patient_id, diabetes, recipe = train_imputed)
# Specify methods:
impute(d = d_train, patient_id, diabetes, numeric_method = "bagimpute",
nominal_method = "new_category")
# Specify method and param:
impute(d = d_train, patient_id, diabetes, nominal_method = "knnimpute",
nominal_params = list(knn_K = 4))

interpret Interpret a model via regularized coefficient estimates

Description

Interpret a model via regularized coefficient estimates

Usage

interpret(x, sparsity = NULL, remove_zeros = TRUE, top_n)

Arguments

x a model_list object containing a glmnet model
sparsity If NULL (default) coefficients for the best-performing model will be returned.

Otherwise, a value in [0, 1] that determines the sparseness of the model for
which coefficients will be returned, with 0 being maximally sparse (i.e. having
the fewest non-zero coefficients) and 1 being minimally sparse

remove_zeros Remove features with coefficients equal to 0? Default is TRUE
top_n Integer: How many coefficients to return? The largest top_n absolute-value

coefficients will be returned. If missing (default), all coefficients are returned

Details

**WARNING** Coefficients are on the scale of the predictors; they are not standardized, so unless
features were scaled before training (e.g. with prep_data(..., scale = TRUE), the magnitude of
coefficients does not necessarily reflect their importance.

If x was trained with more than one value of alpha the best value of alpha is used; sparsity is
determined only via the selection of lambda. Using only lasso regression (i.e. alpha = 1) will
produce a sparser set of coefficients and can be obtained by not tuning hyperparameters.
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Value

A data frame of variables and their regularized regression coefficient estimates with parent class
"interpret"

See Also

plot.interpret

Examples

m <- machine_learn(pima_diabetes, patient_id, outcome = diabetes, models = "glm")
interpret(m)
interpret(m, .2)
interpret(m) %>%

plot()

is.model_list Type checks

Description

Type checks

Usage

is.model_list(x)

is.classification_list(x)

is.regression_list(x)

is.multiclass_list(x)

Arguments

x Object

Value

Logical
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is.predicted_df Class check

Description

Class check

Usage

is.predicted_df(x)

Arguments

x object

Value

logical

machine_learn Machine learning made easy

Description

Prepare data and train machine learning models.

Usage

machine_learn(
d,
...,
outcome,
models,
metric,
tune = TRUE,
positive_class,
n_folds = 5,
tune_depth = 10,
impute = TRUE,
model_name = NULL,
allow_parallel = FALSE

)
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Arguments

d A data frame

... Columns to be ignored in model training, e.g. ID columns, unquoted.

outcome Name of the target column, i.e. what you want to predict. Unquoted. Must be
named, i.e. you must specify outcome =

models Names of models to try. See get_supported_models for available models.
Default is all available models.

metric Which metric should be used to assess model performance? Options for classifi-
cation: "ROC" (default) (area under the receiver operating characteristic curve)
or "PR" (area under the precision-recall curve). Options for regression: "RMSE"
(default) (root-mean-squared error, default), "MAE" (mean-absolute error), or
"Rsquared." Options for multiclass: "Accuracy" (default) or "Kappa" (accuracy,
adjusted for class imbalance).

tune If TRUE (default) models will be tuned via tune_models. If FALSE, models
will be trained via flash_models which is substantially faster but produces less-
predictively powerful models.

positive_class For classification only, which outcome level is the "yes" case, i.e. should be
associated with high probabilities? Defaults to "Y" or "yes" if present, otherwise
is the first level of the outcome variable (first alphabetically if the training data
outcome was not already a factor).

n_folds How many folds to use to assess out-of-fold accuracy? Default = 5. Models are
evaluated on out-of-fold predictions whether tune is TRUE or FALSE.

tune_depth How many hyperparameter combinations to try? Default = 10. Value is multi-
plied by 5 for regularized regression. Ignored if tune is FALSE.

impute Logical, if TRUE (default) missing values will be filled by hcai_impute

model_name Quoted, name of the model. Defaults to the name of the outcome variable.

allow_parallel Depreciated. Instead, control the number of cores though your parallel back end
(e.g. with doMC).

Details

This is a high-level wrapper function. For finer control of data cleaning and preparation use
prep_data or the functions it wraps. For finer control of model tuning use tune_models.

Value

A model_list object. You can call plot, summary, evaluate, or predict on a model_list.

Examples

# These examples take about 30 seconds to execute so aren't run automatically,
# but you should be able to execute this code locally.

# Split the data into training and test sets
d <- split_train_test(d = pima_diabetes,

outcome = diabetes,
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percent_train = .9)

### Classification ###

# Clean and prep the training data, specifying that patient_id is an ID column,
# and tune algorithms over hyperparameter values to predict diabetes
diabetes_models <- machine_learn(d$train, patient_id, outcome = diabetes)

# Inspect model specification and performance
diabetes_models

# Make predictions (predicted probability of diabetes) on test data
predict(diabetes_models, d$test)

### Regression ###

# If the outcome variable is numeric, regression models will be trained
age_model <- machine_learn(d$train, patient_id, outcome = age)

# Get detailed information about performance over tuning values
summary(age_model)

# Get available performance metrics
evaluate(age_model)

# Plot training performance on tuning metric (default = RMSE)
plot(age_model)

# If new data isn't specifed, get predictions on training data
predict(age_model)

### Faster model training without tuning hyperparameters ###

# Train models at set hyperparameter values by setting tune to FALSE. This is
# faster (especially on larger datasets), but produces models with less
# predictive power.
machine_learn(d$train, patient_id, outcome = diabetes, tune = FALSE)

### Train models optimizing given metric ###

machine_learn(d$train, patient_id, outcome = diabetes, metric = "PR")

make_na Replace missingness values with NA and correct columns types

Description

This function replaces given missingness values with NA in a given dataframe or tibble. Numeric
vectors that were originally loaded as character or factor vectors (because of missingness values in
the column), are also converted to numeric vectors when values are replaced.
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Usage

make_na(d, to_replace, drop_levels = TRUE)

Arguments

d A dataframe or tibble

to_replace A value or vector of values that will be replaced with NA

drop_levels If TRUE (default) unused factor levels are dropped

Value

A tibble where the missing value/values is/are replaced with NA, columns that only have numbers
left are coerced to numeric type

Examples

dat <- data.frame(gender = c("male", "male", "female", "male", "missing"),
name = c("Paul", "Jim", "Sarah", "missing", "Alex"),
weight = c(139, 0, 193, 158, 273))

# Replace "missing" in `dat`
make_na(dat, "missing")

# If there are multiple missing values, pass them through a vector.
dat <- data.frame(gender = c("male", "??", "female", "male", "NULL"),

age = c(64, 52, 75, "NULL", 70),
weight = c(139, 0, 193, "??", 273),
stringsAsFactors = FALSE)

make_na(dat, c("??", "NULL"))

# Run `missingness()` to find possible missingness values in `dat`. It will
# suggest the default implementation of `make_na` to replace all found
# missingness values (the suggested default implementation for this example
# is `make_na(dat, c("??", "NULL"))`).
missingness(dat)
make_na(dat, c("??", "NULL"))

# Note: In this last example, `age` should be loaded as a numeric vector, but
# since "NULL" is present, it is stored as a character vector. When "NULL" is
# replaced, `age` will be converted to a numeric vector.

missingness Find missingness in each column and search for strings that might
represent missing values



36 Mode

Description

Finds the percent of NAs in a vector or in each column of a dataframe or matrix or in a vector.
Possible mis-coded missing values are searched for and a warning issued if they are found.

Usage

missingness(
d,
return_df = TRUE,
to_search = c("NA", "NAs", "na", "NaN", "?", "??", "nil", "NULL", " ", "")

)

Arguments

d A data frame or matrix

return_df If TRUE (default) a data frame is returned, which generally makes reading the
output easier. If variable names are so long that the data frame gets wrapped
poorly, set this to FALSE.

to_search A vector of strings that might represent missingness. If found in d, a warning is
issued.

Value

A data frame with two columns: variable names in d and the percent of entries in each variable that
are missing.

See Also

plot.missingness

Examples

d <- data.frame(x = c("a", "nil", "b"),
y = c(1, NaN, 3),
z = c(1:2, NA))

missingness(d)
missingness(d) %>% plot()

Mode Mode

Description

Mode

Usage

Mode(x)



pima_diabetes 37

Arguments

x Either a vector or a frequency table from table

Value

The modal value of x

Examples

x <- c(3, 1:5)
Mode(x)
Mode(table(x))

pima_diabetes Patient diabetes dataset

Description

A dataset containing diabetes status and other health-related variables for 768 females, at least 21
years old, of Pima Indian heritage. As pointed out (see source URL below), the source data had
some biologically impossible zero values. We have replaced zero values in every variable except
Pregnancies with NA.

Usage

pima_diabetes

Format

A tibble data frame with 768 rows and 10 variables:

patient_id Unique identifier

pregnancies Number of times pregnant

plasma_glucose Plasma glucose concentration 2 hours in an oral glucose tolerance test

diastolic_bp Diastolic blood pressure (mm Hg)

skinfold Triceps skin fold thickness (mm)

insulin 2-Hour serum insulin (mu U/ml)

weight_class Derived from BMI

pedigree Diabetes pedigree function

age Age (years)

diabetes Y/N diagnosis per WHO criteria

Source

https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes

https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes
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See Also

pima_meds

pima_meds Patient medications dataset

Description

This is a companion dataset for pima_diabetes. The pima_diabetes dataset is real; this dataset
is synthetic. You can see how it was generated here: https://docs.healthcare.ai/articles/
site_only/best_levels.html#appendix-data-generation. Briefly, each patient in pima_diabetes
is assigned 0-4 medications from the following six: insulin and metformin are more common
among diabetics, prednisone and metoprolol are less common among diabetics, and nexium and
tiotropium are equally likely among diabetic and non-diabetic patients. Each patient-medication
has a years_taken value associated with it, which is a random number drawn from an exponential
distribution.

Usage

pima_meds

Format

A tibble data frame with 1,604 rows and 3 variables:

patient_id Unique identifier, used to join pima_diabetes

medication One of the six medications described above

years_taken Numeric value indicating the duration the medication has been used

See Also

pima_diabetes

pip Patient Impact Predictor

Description

Identify opportunities to improve patient outcomes by exploring changes in predicted outcomes
over changes to input variables. Note that causality cannot be established by this function.
Omitted variable bias and other statistical phenomena may mean that the impacts predicted here
are not realizable. Clinical guidance is essential in choosing new_values and acting on impact pre-
dictions. Extensive options are provided to control what impact predictions are surfaced, including
variable_direction and prohibited_transitions.

https://docs.healthcare.ai/articles/site_only/best_levels.html#appendix-data-generation
https://docs.healthcare.ai/articles/site_only/best_levels.html#appendix-data-generation
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Usage

pip(
model,
d,
new_values,
n = 3,
allow_same = FALSE,
repeated_factors = FALSE,
smaller_better = TRUE,
variable_direction = NULL,
prohibited_transitions = NULL,
id

)

Arguments

model A model_list object, as from machine_learn or tune_models

d A data frame on which model can make predictions

new_values A list of alternative values for variables of interest. The names of the list must
be variables in d and the entries are the alternative values to try.

n Integer, default = 3. The maximum number of alternatives to return for each
patient. Note that the actual number returned may be less than n, for example if
length(new_values) < n or if allow_same is FALSE.

allow_same Logical, default = FALSE. If TRUE, pip may return rows with modified_value
= original_value and improvement = 0. This happens when there are fewer
than n modifications for a patient that result in improvement. If allow_same is
TRUE and length(new_values) >= n you are likely to get n results for each pa-
tient; however, contraints from variable_direction or prohibited_transitions
could make recommendations for some variables impossible, resulting in fewer
than n recommendations.

repeated_factors

Logical, default = FALSE. Do you want multiple modifications of the same
variable for the same patient?

smaller_better Logical, default = TRUE. Are lesser values of the outcome variable in model
preferable?

variable_direction

Named numeric vector or list with entries of -1 or 1. This specifies the direction
numeric variables are permitted to move to produce improvements. Names of
the vector are names of variables in d; entries are 1 to indicate only increases
can yield improvements or -1 to indicate only decreases can yield improvements.
Numeric variables not appearing in this list may increase or decrease to surface
improvements.

prohibited_transitions

A list of data frames that contain variable modifications that won’t be considered
by pip. Names of the list are names of variables in d, and data frames have
two columns, "from" and "to", indicating the original value and modified value,
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respectively, of the prohibited transition. If column names are not "from" and
"to", the first column will be assumed to be the "from" column. This is intended
for categorical variables, but could be used for integers as well.

id Optional. A unquoted variable name in d representing an identifier column; it
will be included in the returned data frame. If not provided, an ID column from
model’s data prep will be used if available.

Value

A tibble with any id columns and "variable": the name of the variable being altered, "original_value":
the patient’s observed value of "variable", "modified_value": the altered value of "variable", "orig-
inal_prediction": the patient’s original prediction, "modified_prediction": the patient’s prediction
given the that "variable" changes to "modified_value", "improvement": the difference between the
original and modified prediction with positive values reflecting improvement based on the value of
smaller_better, and "impact_rank": the rank of the modification for that patient.

Examples

# First, we need a model to make recommendations
set.seed(52760)
m <- machine_learn(pima_diabetes, patient_id, outcome = diabetes,

tune = FALSE, models = "xgb")
# Let's look at changes in predicted outcomes for three patients changing their
# weight class, blood glucose, and blood pressure
modifications <- list(weight_class = c("underweight", "normal", "overweight"),

plasma_glucose = c(75, 100),
diastolic_bp = 70)

pip(model = m, d = pima_diabetes[1:3, ], new_values = modifications)

# In the above example, only the first patient has a positive predicted impact
# from changing their diastolic_bp, so for the other patients fewer than the
# default n=3 predictions are provided. We can get n=3 predictions for each
# patient by specifying allow_same, which will recommend the other two patients
# maintain their current diastolic_bp.
pip(model = m, d = pima_diabetes[1:3, ], new_values = modifications, allow_same = TRUE)

# Sometimes clinical knowledge trumps machine learning. In particular, machine
# learning models don't establish causality, they only leverage correlation.
# Patient impact predictor suggests causality, so clinicians should always be
# consulted to ensure that the causal impacts are medically sound.
#
# If there is clinical knowledge to suggest what impact a variable should have,
# that knowledge can be provided to pip. The way it is provided depends on
# whether the variable is categorical (prohibited_transitions) or numeric
# (variable_direction).

### Constraining categorical variables ###
# Suppose a clinician says that recommending a patient change their weight class
# to underweight from any value except normal is a bad idea. We can disallow
# those suggestions using prohibited_transitions. Note the change in patient
# 1's second recommendation goes from underweight to normal.
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prohibit <- data.frame(from = setdiff(unique(pima_diabetes$weight_class), "normal"),
to = "underweight")

pip(model = m, d = pima_diabetes[1:3, ], new_values = modifications,
prohibited_transitions = list(weight_class = prohibit))

### Constraining numeric variables ###
# Suppose a clinician says that increasing diastolic_bp should never be
# recommended to improve diabetes outcomes, and likewise for reducing
# plasma_glucose (which is clinically silly, but provides an illustration). The
# following code ensures that diastolic_bp is only recommended to decrease and
# plasma_glucose is only recommended to increase. Note that the plasma_glucose
# recommendations disappear, because no patient would see their outcomes
# improve by increasing their plasma_glucose.
directional_changes <- c(diastolic_bp = -1, plasma_glucose = 1)
pip(model = m, d = pima_diabetes[1:3, ], new_values = modifications,

variable_direction = directional_changes)

pivot Pivot multiple rows per observation to one row with multiple columns

Description

Pivot multiple rows per observation to one row with multiple columns

Usage

pivot(d, grain, spread, fill, fun = sum, missing_fill = NA, extra_cols)

Arguments

d data frame

grain Column that defines rows. Unquoted.

spread Column that will become multiple columns. Unquoted.

fill Column to be used to fill the values of cells in the output, perhaps after aggrega-
tion by fun. If fill is not provided, counts will be used, as though a fill column
of 1s had been provided.

fun Function for aggregation, defaults to sum. Custom functions can be used with
the same syntax as the apply family of functions, e.g. fun = function(x)
some_function(another_fun(x)).

missing_fill Value to fill for combinations of grain and spread that are not present. Defaults
to NA, but 0 may be useful as well.

extra_cols Values of spread to create all-missing_fill columns, for e.g. if you want to
add levels that were observed in training but are not present in deployment.
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Details

pivot is useful when you want to change the grain of your data, for example from the procedure
grain to the patient grain. In that example, each patient might have 0, 1, or more medications. To
make a patient-level table, we need a column for each medication, which is what it means to make
a wide table. The fill argument dictates what to put in each of the medication columns, e.g. the
dose the patient got. fill defaults to "1", as an indicator variable. If any patients have multiple
rows for the same medication (say they recieved a med more than once), we need a way to deal with
that, which is what the fun argument handles. By default it uses sum, so if fill is left as its default,
the count of instances for each patient will be used.

Value

A tibble data frame with one row for each unique value of grain, and one column for each unique
value of spread plus one column for the entries in grain.

Entries in the tibble are defined by the fill column. Combinations of grain x spread that are not
present in d will be filled in with missing_fill. If there are grain x spread pairs that appear more
than once in d, they will be aggregated by fun.

Examples

meds <-
tibble::tibble(
patient_id = c("A", "A", "A", "B"),
medication = c("zoloft", "asprin", "lipitor", "asprin"),
pills_per_day = c(1, 8, 2, 4)

)
meds

# Number of pills of each medication each patient gets:
pivot(

d = meds,
grain = patient_id,
spread = medication,
fill = pills_per_day,
missing_fill = 0

)

bills <-
tibble::tibble(

patient_id = rep(c("A", "B"), each = 4),
dept_id = rep(c("ED", "ICU"), times = 4),
charge = runif(8, 0, 1e4),
date = as.Date("2024-12-25") - sample(0:2, 8, TRUE)

)
bills

# Total charges per patient x department:
pivot(bills, patient_id, dept_id, charge, sum)

# Count of charges per patient x day:
pivot(bills, patient_id, date)
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# Can provide a custom function to fun, which will take fill as input.
# Get the difference between the greatest and smallest charge in each
# department for each patient and format it as currency.
pivot(d = bills,

grain = patient_id,
spread = dept_id,
fill = charge,
fun = function(x) paste0("$", round(max(x) - min(x), 2))

)

plot.explore_df Plot Counterfactual Predictions

Description

Plot Counterfactual Predictions

Usage

## S3 method for class 'explore_df'
plot(
x,
n_use = 2,
aggregate_fun = median,
reorder_categories = TRUE,
x_var,
color_var,
jitter_y = TRUE,
sig_fig = 3,
font_size = 11,
strip_font_size = 0.85,
line_width = 0.5,
line_alpha = 0.7,
rotate_x = FALSE,
nrows = 1,
title = NULL,
caption,
print = TRUE,
...

)

Arguments

x A explore_df object from explore

n_use Number of features to vary, default = 4. If the number of features varied in
explore is greater than n_use, additional features will be aggregated over by
aggregate_fun



44 plot.explore_df

aggregate_fun Default = median. Varying features in x are mapped to the x-axis, line color, and
vertical- and horizontal facets. If more than four features vary, this function is
used to aggreagate across the least-important varying features.

reorder_categories

If TRUE (default) varying categorical features are arranged by their median pre-
dicted outcome. If FALSE, the incoming level orders are retained, which is
alphabetical by default, but you can set your own level orders with reorder

x_var Feature to put on the x-axis (unquoted). If not provided, the most important
feature is used, with numerics prioritized if one varies

color_var Feature to color lines (unquoted). If not provided, the most important feature
excluding x_var is used.

jitter_y If TRUE (default) and a feature is mapped to color (i.e. if there is more than
one varying feature), the vertical location of the lines will be jittered slightly (no
more than 1 avoid overlap.

sig_fig Number of significant figures (digits) to use in labels of numeric features. De-
fault = 3; set to Inf to not truncate decimals.

font_size Parent font size for the plot. Default = 11
strip_font_size

Relative font size for facet strip title font. Default = 0.85

line_width Width of lines. Default = 0.5

line_alpha Opacity of lines. Default = 0.7

rotate_x If FALSE (default), x axis tick labels are positioned horizontally. If TRUE, they
are rotated one quarter turn, which can be helpful when a categorical feature
with long labels is mapped to x.

nrows Only used when the number of varying features is three. The number of rows
into which the facets will be arranged. Default = 1. NULL lets the number be
determined algorithmically

title Plot title

caption Plot caption. Defaults to model used to make counterfactual predictions. Can be
a string for custom caption or NULL for no caption.

print Print the plot? Default is FALSE. Either way, the plot is invisibly returned

... Not used

Value

ggplot object, invisibly

Examples

# First, we need a model
set.seed(4956)
m <- machine_learn(pima_diabetes, patient_id, outcome = pregnancies,

models = "rf", tune = FALSE)
# Then we can explore our model through counterfactual predictions
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counterfactuals <- explore(m)

# By default only the two most important varying features are plotted. This
# example shows how counterfactual predictions can provide insight into how a
# model maps inputs (features) to the output (outcome). This plot shows that for
# this dataset, age is the most important predictor of the number of pregnancies
# a woman has had, and the predicted number of pregnancies rises basically
# linearly from approximately 20 to 40 and then levels off.
plot(counterfactuals)

# To see the effects of more features in the model, increase the value of
# `n_use`. You can also specify which of the varying features are mapped to the
# x-axis and the color scale, and you can customize a variety of plot attributes
plot(counterfactuals, n_use = 3, x_var = weight_class, color_var = age,

font_size = 9, strip_font_size = 1, line_width = 2, line_alpha = .5,
rotate_x = TRUE, nrows = 1)

# And you can further modify the plot like any other ggplot object
p <- plot(counterfactuals, n_use = 1, print = FALSE)
p +

ylab("predicted number of pregnancies") +
theme_classic() +
theme(aspect.ratio = 1,

panel.background = element_rect(fill = "slateblue"),
plot.caption = element_text(face = "italic"))

plot.interpret Plot regularized model coefficients

Description

Plot regularized model coefficients

Usage

## S3 method for class 'interpret'
plot(
x,
include_intercept = FALSE,
max_char = 40,
title,
caption,
font_size = 11,
point_size = 3,
print = TRUE,
...

)
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Arguments

x A interpret object or a data frame with columns "variable" and "coefficient"

include_intercept

If FALSE (default) the intercept estimate will not be plotted

max_char Maximum length of variable names to leave untruncated. Default = 40; use Inf
to prevent truncation. Variable names longer than this will be truncated to leave
the beginning and end of each variable name, bridged by " ... ".

title Plot title. NULL for no title; character for custom title. If left blank contains the
model class and outcome variable

caption Plot caption, appears in lower-right. NULL for no caption; character for custom
caption. If left blank the caption will contain info including the hyperparameter
values of the model used by interpret to determine coefficient estimates.

font_size Relative size of all fonts in plot, default = 11

point_size Size of dots, default = 3

print Print the plot? Default = TRUE

... Unused

Value

A ggplot object, invisibly.

See Also

interpret

Examples

machine_learn(mtcars, outcome = mpg, models = "glm", tune = FALSE) %>%
interpret() %>%
plot(font_size = 14)

plot.missingness Plot missingness

Description

Plot missingness
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Usage

## S3 method for class 'missingness'
plot(
x,
remove_zeros = FALSE,
max_char = 40,
title = NULL,
font_size = 11,
point_size = 3,
print = TRUE,
...

)

Arguments

x Data frame from missingness

remove_zeros Remove variables with no missingness from the plot? Default = FALSE

max_char Maximum length of variable names to leave untruncated. Default = 40; use Inf
to prevent truncation. Variable names longer than this will be truncated to leave
the beginning and end of each variable name, bridged by " ... ".

title Plot title

font_size Relative size of all fonts in plot, default = 11

point_size Size of dots, default = 3

print Print the plot? Default = TRUE

... Unused

Value

A ggplot object, invisibly.

See Also

missingness

Examples

pima_diabetes %>%
missingness() %>%
plot()
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plot.model_list Plot performance of models

Description

Plot performance of models

Usage

## S3 method for class 'model_list'
plot(x, font_size = 11, point_size = 1, print = TRUE, ...)

Arguments

x modellist object as returned by tune_models or machine_learn

font_size Relative size of all fonts in plot, default = 11

point_size Size of dots, default = 3

print If TRUE (default) plot is printed

... Unused

Value

Plot of model performance as a function of algorithm and hyperparameter values tuned over. Gen-
erally called for the side effect of printing a plot, but the plot is also invisibly returned. The best-
performing model within each algorithm will be plotted as a triangle.

Examples

models <- machine_learn(mtcars, outcome = mpg, models = "glm")
plot(models)

plot.predicted_df Plot model predictions vs observed outcomes

Description

Plot model predictions vs observed outcomes
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Usage

## S3 method for class 'predicted_df'
plot(
x,
caption = TRUE,
title = NULL,
font_size = 11,
outcomes = NULL,
fixed_aspect = attr(x, "model_info")$type == "Regression",
print = TRUE,
...

)

plot_regression_predictions(x, point_size = 1, point_alpha = 1, target)

plot_classification_predictions(
x,
fill_colors = c("firebrick", "steelblue"),
fill_alpha = 0.7,
curve_flex = 1,
add_labels = TRUE,
target

)

plot_multiclass_predictions(
x,
conf_colors = c("black", "steelblue"),
text_color = "yellow",
text_size = 3,
text_angle = 60,
diag_color = "red",
target

)

Arguments

x data frame as returned ‘predict.model_list‘

caption Put model performance in plot caption? TRUE (default) prints all available
metrics, FALSE prints nothing. Can also provide metric name (e.g. "RMSE"),
in which case the caption will include only that metric.

title Character: Plot title, default NULL produces no title.

font_size Number: Relative size of all font in plot, default = 11

outcomes Vector of outcomes if not present in x

fixed_aspect Logical: If TRUE (default for regression only), units of the x- and y-axis will
have the same spacing.

print Logical, if TRUE (default) the plot is printed on the current graphics device.
The plot is always (silently) returned.
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... Parameters specific to plot_regression_predictions or plot_classification_predictions;
listed below. These must be named.

point_size Number: Point size, relative to 1

point_alpha Number in [0, 1] giving point opacity

target Not meant to be set by user. outcome column name

fill_colors Length-2 character vector: colors to fill density curves. Default is c("firebrick",
"steelblue"). If named, names must match unique(x[[target]]), in any order.

fill_alpha Number in [0, 1] giving opacity of fill colors.

curve_flex Numeric. Kernal adjustment for density curves. Default is 1. Less than 1 makes
curves more flexible, analogous to smaller bins in a histogram; greater than 1
makes curves more rigid.

add_labels If TRUE (default) and a predicted_group column was added to predictions by
specifying risk_groups or outcome_groups in link{predict.model_list},
labels specifying groups are added to the plot.

conf_colors Length-2 character vector: colors to fill density curves. Default is c("black",
"steelblue").

text_color Character: color to write percent correct. Default is "yellow".

text_size Numeric or logical: size of percent correct text. Defaults to 3, a readable size.
Greater than 20 classes might need smaller text. Text can be turned off by setting
to FALSE.

text_angle Numeric or logical: angle to rotate x axis text. Defaults to 60 degrees. Setting
to FALSE will turn text horizontal.

diag_color Character: color to highlight main diagonal. These are correct predictions. De-
fault is "red".

Details

Note that a ggplot object is returned, so you can do additional customization of the plot. See the
third example.

Value

A ggplot object

Examples

# Some regression examples
models <- machine_learn(pima_diabetes[1:50, ], patient_id, outcome = plasma_glucose,

models = "rf", tune = FALSE)
predictions <- predict(models)
plot(predictions)
plot(predictions, caption = "Rsquared",

title = "This model's predictions regress to the mean",
point_size = 3, point_alpha = .7, font_size = 9)

p <- plot(predictions, print = FALSE)
p + theme_classic()
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# A classification example with risk groups
class_models <- machine_learn(pima_diabetes, patient_id, outcome = diabetes,

models = "xgb", tune = FALSE)
predict(class_models,

risk_groups = c("v low", "low", "medium", "high", "very high")) %>%
plot()

plot.thresholds_df Plot threshold performance metrics

Description

Plot threshold performance metrics

Usage

## S3 method for class 'thresholds_df'
plot(
x,
title = NULL,
caption = NULL,
font_size = 11,
line_size = 0.5,
point_size = NA,
ncol = 2,
print = TRUE,
...

)

Arguments

x A threshold_df object from get_thresholds or a data frame with columns
"threshold" and other columns to be plotted against thresholds. If optimize was
provided to get_thresholds a line is drawn in each facet corresponding to the
optimal threshold.

title Plot title. Default NULL produces no title
caption Plot caption. Default NULL produces no caption unless get_thresholds(optimize)

was provided, in which case information about the threshold and performance
are provided in the caption.

font_size Relative size of all fonts in plot, default = 11
line_size Width of lines, default = 0.5
point_size Point size. Default is NA which suppresses points. Set to a number to see where

threholds are.
ncol Number of columns of facets.
print Print the plot? Default = TRUE
... Unused
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Value

A ggplot object, invisibly.

See Also

get_thresholds

Examples

m <- machine_learn(pima_diabetes[1:100, ], patient_id, outcome = diabetes,
models = "xgb", tune = FALSE, n_folds = 3)

get_thresholds(m) %>%
plot()

get_thresholds(m, optimize = "cost", measures = c("acc", "cost"), cost_fn = 3) %>%
plot(point_size = .5, ncol = 1)

plot.variable_importance

Plot variable importance

Description

Plot variable importance

Usage

## S3 method for class 'variable_importance'
plot(
x,
title = "model",
max_char = 40,
caption = NULL,
font_size = 11,
point_size = 3,
print = TRUE,
...

)

Arguments

x A data frame from get_variable_importance

title Either "model", "none", or a string to be used as the plot caption. "model"
puts the name of the best-performing model, on which variable importances are
generated, in the title.
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max_char Maximum length of variable names to leave untruncated. Default = 40; use Inf
to prevent truncation. Variable names longer than this will be truncated to leave
the beginning and end of each variable name, bridged by " ... ".

caption Plot title

font_size Relative size for all fonts, default = 11

point_size Size of dots, default = 3

print Print the plot?

... Unused

Value

A ggplot object, invisibly.

Examples

machine_learn(pima_diabetes[1:50, ], patient_id, outcome = diabetes, tune = FALSE) %>%
get_variable_importance() %>%
plot()

predict.model_list Get predictions

Description

Make predictions using the best-performing model. For classification models, predicted probabili-
ties are always returned, and you can get either predicted outcome class by specifying outcome_groups
or risk groups by specifying risk_groups.

Usage

## S3 method for class 'model_list'
predict(
object,
newdata,
risk_groups = NULL,
outcome_groups = NULL,
prepdata,
write_log = FALSE,
log_location = NA,
...

)
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Arguments

object model_list object, as from ‘tune_models‘

newdata data on which to make predictions. If missing, out-of-fold predictions from
training will be returned If you want new predictions on training data using the
final model, pass the training data to this argument, but know that you’re getting
over-fit predictions that very likely overestimate model performance relative to
what will be achieved on new data. Should have the same structure as the input
to ‘prep_data‘,‘tune_models‘ or ‘train_models‘. ‘predict‘ will try to figure out if
the data need to be sent through ‘prep_data‘ before making predictions; this can
be overridden by setting ‘prepdata = FALSE‘, but this should rarely be needed.

risk_groups Should predictions be grouped into risk groups and returned in column "pre-
dicted_group"? If this is NULL (default), they will not be. If this is a sin-
gle number, that number of groups will be created with names "risk_group1",
"risk_group2", etc. "risk_group1" is always the highest risk (highest predicted
probability). The groups will have equal expected sizes, based on the distribu-
tion of out-of-fold predictions on the training data. If this is a character vector,
its entries will be used as the names of the risk groups, in increasing order of risk,
again with equal expected sizes of groups. If you want unequal-size groups, this
can be a named numeric vector, where the names will be the names of the risk
groups, in increasing order of risk, and the entries will be the relative propor-
tion of observations in the group, again based on the distribution of out-of-fold
predictions on the training data. For example, risk_groups = c(low = 2, mid
= 1, high = 1) will put the bottom half of predicted probabilities in the "low"
group, the next quarter in the "mid" group, and the highest quarter in the "high"
group. You can get the cutoff values used to separate groups by passing the
output of predict to get_cutoffs. Note that only one of risk_groups and
outcome_groups can be specified.

outcome_groups Should predictions be grouped into outcome classes and returned in column
"predicted_group"? If this is NULL (default), they will not be. The threshold for
splitting outcome classes is determined on the training data via get_thresholds.
If this is TRUE, the threshold is chosen to maximize accuracy, i.e. false posi-
tives and false negatives are equally weighted. If this is a number it is the ratio
of cost (badnesss) of false negatives (missed detections) to false positives (false
alarms). For example, outcome_groups = 5 indicates a preferred ratio of five
false alarms to every missed detection, and outcome_groups = .5 indicates that
two missed detections is as bad as one false alarm. This value is passed to the
cost_fn argument of get_thresholds. You can get the cutoff values used to
separate groups by passing the output of predict to get_cutoffs. Note that
only one of risk_groups and outcome_groups can be specified.

prepdata Defunct. Data are always prepped in prediction.

write_log Write prediction metadata to a file? Default is FALSE. If TRUE, will create
or append a file called "prediction_log.txt" in the current directory with meta-
data about predictions. If a character, is the name of a file to create or append
with prediction metadata. If you want a unique log file each time predictions are
made, use something like write_log = paste0(Sys.time(), " predictions.txt").
This param modifies error behavior and is best used in production. See details.
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log_location File path to write the logs to. If blank, they go to the working directory.

... Unused.

Details

The model and hyperparameter values with the best out-of-fold performance in model training
according to the selected metric is used to make predictions. Prepping data inside ‘predict‘ has the
advantage of returning your predictions with the newdata in its original format.

If write_log is TRUE and an error is encountered, predict will not stop. It will return the error
message as: - A warning in the console - A field in the log file - A column in the "prediction_log"
attribute - A zero-row data frame will be returned

Value

A tibble data frame: newdata with an additional column for the predictions in "predicted_TARGET"
where TARGET is the name of the variable being predicted. If classification, the new column
will contain predicted probabilities. The tibble will have child class "predicted_df" and attribute
"model_info" that contains information about the model used to make predictions. You can call
plot or evaluate on a predicted_df. If write_log is TRUE and this function errors, a zero-row
dataframe will be returned.

Returned data will contain an attribute, "prediction_log" that contains a tibble of logging info for
writing to database. If write_log is TRUE and predict errors, an empty dataframe with the "predic-
tion_log" attribute will still be returned. Extract this attribute using attr(pred, "prediction_log").

Data will also contain a "failed" attribute to easily filter for errors after prediction. Extract using
attr(pred, "failed").

See Also

plot.predicted_df, evaluate.predicted_df, get_thresholds, get_cutoffs

Examples

### Data prep and model training ###
####################################

set.seed(7510)
# Split the first 200 rows in pima_diabetes into a model-training dataset
# containing 3/4 of the data and a test dataset containing 1/4 of the data.
d <- split_train_test(pima_diabetes[1:200, ], diabetes, .75)

# Prep the training data for model training and train regularized regression
# and extreme gradient boosted models
models <-

d$train %>%
prep_data(patient_id, outcome = diabetes) %>%
flash_models(outcome = diabetes, models = c("glm", "xgb"))

### Making predictions ###
##########################
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# Make prediction on test data using the model that performed best in
# cross validation during model training. Before predictions are made, the test
# data is automatically prepared the same way the training data was.
predictions <- predict(models, newdata = d$test)
predictions
evaluate(predictions)
plot(predictions)

### Outcome class predictions ###
#################################

# If you want class predictions in addition to predicted probabilities for
# a classification model, specify outcome_groups. The number passed to
# outcome groups is the cost of a false negative relative to a false positive.
# This example specifies that one missed detection is as bad as ten false
# alarms, and the resulting confusion matrix reflects this preference.
class_preds <- predict(models, newdata = d$test, outcome_groups = 10)
table(actual = class_preds$diabetes, predicted = class_preds$predicted_group)

# You can extract the threshold used to separate predicted Y from predicted N
get_cutoffs(class_preds)

# And you can visualize that cutoff by simply plotting the predictions
plot(class_preds)

### Risk stratification ###
###########################

# Alternatively, you can stratify observations into risk groups by specifying
# the risk_groups parameter. For example, this creates five risk groups
# with custom names. Risk group assignment is based on the distribution of
# predicted probabilities in model training. This is useful because it preserves
# a consistent notion of risk; for example, if you make daily predictions and
# one day happens to contain only low-risk patients, those patients will all
# be classified as low risk. Over the long run, group sizes will be consistent,
# but in any given round of predictions they may differ. If you want fixed
# group sizes, see the following examples.
predict(models, d$test,

risk_groups = c("very low", "low", "medium", "high", "very high")) %>%
plot()

### Fixed size groups ###
#########################

# If you want groups of fixed sizes, e.g. say you have capacity to admit the three
# highest-risk patients, treat the next five, and have to discharge the remainder,
# you can use predicted probabilities to do that. One way to do that is to
# arrange the predictions data frame in descending order of risk, and then use the
# row numbers to stratify patients
library(dplyr)
predict(models, d$test) %>%

arrange(desc(predicted_diabetes)) %>%
mutate(action = case_when(
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row_number() <= 3 ~ "admit",
row_number() <= 8 ~ "treat",
TRUE ~ "discharge"

)) %>%
select(predicted_diabetes, action, everything())

# Finally, if you want a fixed group size that is further down on the risk
# scale, you can achieve that with a combination of risk groups and the
# stratifying approach in the last example. For example, say you have capacity
# to admit 5 patients, but you don't want to admit patients in the top 10% of
# risk scores.
predict(models, d$test,

risk_groups = c("risk acceptable" = 90, "risk too high" = 10)) %>%
filter(predicted_group == "risk acceptable") %>%
top_n(n = 5, wt = predicted_diabetes)

prep_data Prepare data for machine learning

Description

prep_data will prepare your data for machine learning. Some steps enhance predictive power,
some make sure that the data format is compatible with a wide array of machine learning algorithms,
and others provide protection against common problems in model deployment. The following steps
are available; those followed by * are applied by default. Many have customization options.

1. Convert columns with only 0/1 to factor*

2. Remove columns with near-zero variance*

3. Convert date columns to useful features*

4. Fill in missing values via imputation*

5. Collapse rare categories into "other"*

6. Center numeric columns

7. Standardize numeric columns

8. Create dummy variables from categorical variables*

9. Add protective levels to factors for rare and missing data*

10. Convert columns to principle components using PCA

While preparing your data, a recipe will be generated for identical transformation of future data and
stored in the ‘recipe‘ attribute of the output data frame.If a recipe object is passed to ‘prep_data‘
via the ‘recipe‘ argument, thatrecipe will be applied to the data. This allows you to transform data
inmodel training and apply exactly the same transformations in model testing and deployment. The
new data must be identical in structure to the data that the recipe was prepared with.
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Usage

prep_data(
d,
...,
outcome,
recipe = NULL,
remove_near_zero_variance = TRUE,
convert_dates = TRUE,
impute = TRUE,
collapse_rare_factors = TRUE,
PCA = FALSE,
center = FALSE,
scale = FALSE,
make_dummies = TRUE,
add_levels = TRUE,
logical_to_numeric = TRUE,
factor_outcome = TRUE,
no_prep = FALSE

)

Arguments

d A data frame

... Optional. Columns to be ignored in preparation and model training, e.g. ID
columns. Unquoted; any number of columns can be included here.

outcome Optional. Unquoted column name that indicates the target variable. If provided,
argument must be named. If this target is 0/1, it will be coerced to Y/N if
factor_outcome is TRUE; other manipulation steps will not be applied to the
outcome.

recipe Optional. Recipe for how to prep d. In model deployment, pass the output
from this function in training to this argument in deployment to prepare the
deployment data identically to how the training data was prepared. If training
data is big, pull the recipe from the "recipe" attribute of the prepped training data
frame and pass that to this argument. If present, all following arguments will be
ignored.

remove_near_zero_variance

Logical or numeric. If TRUE (default), columns with near-zero variance will
be removed. These columns are either a single value, or the most common
value is much more frequent than the second most common value. Example:
In a column with 120 "Male" and 2 "Female", the frequency ratio is 0.0167.
It would be excluded by default or if ‘remove_near_zero_variance‘ > 0.0166.
Larger values will remove more columns and this value must lie between 0 and
1.

convert_dates Logical or character. If TRUE (default), date and time columns are transformed
to circular representation for hour, day, month, and year for machine learning
optimization. If FALSE, date and time columns are removed. If character,
use "continuous" (same as TRUE), "categories", or "none" (same as FALSE).
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"categories" makes hour, day, month, and year readable for interpretation. If
make_dummies is TRUE, each unique value in these features will become a new
dummy variable. This will create wide data, which is more challenging for some
machine learning models. All features with the DTS suffix will be treated as a
date.

impute Logical or list. If TRUE (default), columns will be imputed using mean (nu-
meric), and new category (nominal). If FALSE, data will not be imputed. If
this is a list, it must be named, with possible entries for ‘numeric_method‘,
‘nominal_method‘, ‘numeric_params‘, ‘nominal_params‘, which are passed to
hcai_impute.

collapse_rare_factors

Logical or numeric. If TRUE (default), factor levels representing less than 3 per-
cent of observations will be collapsed into a new category, ‘other‘. If numeric,
must be in 0, 1, and is the proportion of observations below which levels will be
grouped into other. See ‘recipes::step_other‘.

PCA Integer or Logical. PCA reduces training time, particularly for wide datasets,
though it renders models less interpretable." If integer, represents the number of
principal components to convert the numeric data into. If TRUE, will convert
numeric data into 5 principal components. PCA requires that data is centered
and scaled and will set those params to TRUE. Default is FALSE.

center Logical. If TRUE, numeric columns will be centered to have a mean of 0. De-
fault is FALSE, unless PCA is performed, in which case it is TRUE.

scale Logical. If TRUE, numeric columns will be scaled to have a standard deviation
of 1. Default is FALSE, unless PCA is performed, in which case it is TRUE.

make_dummies Logical or list. If TRUE (default), dummy columns will be created for cate-
gorical variables. When dummy columns are created, columns are not created
for reference levels. By default, the levels are reassigned so the mode value is
the reference level. If a named list is provided, those values will replace the
reference levels. See the example for details.

add_levels Logical. If TRUE (default), "other" and "missing" will be added to all nominal
columns. This is protective in deployment: new levels found in deployment
will become "other" and missingness in deployment can become "missing" if
the nominal imputation method is "new_category". If FALSE, these "other"
will be added to all nominal variables if collapse_rare_factors is used, and
"missingness" may be added depending on details of imputation.

logical_to_numeric

Logical. If TRUE (default), logical variables will be converted to 0/1 integer
variables.

factor_outcome Logical. If TRUE (default) and if all entries in outcome are 0 or 1 they will be
converted to factor with levels N and Y for classification. Note that which level
is the positive class is set in training functions rather than here.

no_prep Logical. If TRUE, overrides all other arguments to FALSE so that d is returned
unmodified, except that character variables may be coverted to factors and a
tibble will be returned even if the input was a non-tibble data frame.
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Value

Prepared data frame with reusable recipe object for future data preparation in attribute "recipe".
Attribute recipe contains the names of ignored columns (those passed to ...) in attribute "ig-
nored_columns".

See Also

To let data preparation happen automatically under the hood, see machine_learn

To take finer control of imputation, see impute, and for finer control of data prep in general check
out the recipes package: https://topepo.github.io/recipes/

To train models on prepared data, see tune_models and flash_models

Examples

d_train <- pima_diabetes[1:700, ]
d_test <- pima_diabetes[701:768, ]

# Prep data. Ignore patient_id (identifier) and treat diabetes as outcome
d_train_prepped <- prep_data(d = d_train, patient_id, outcome = diabetes)

# Prep test data by reapplying the same transformations as to training data
d_test_prepped <- prep_data(d_test, recipe = d_train_prepped)

# View the transformations applied and the prepped data
d_test_prepped

# Customize preparations:
prep_data(d = d_train, patient_id, outcome = diabetes,

impute = list(numeric_method = "bagimpute",
nominal_method = "bagimpute"),

collapse_rare_factors = FALSE, center = TRUE, scale = TRUE,
make_dummies = FALSE, remove_near_zero_variance = .02)

# Picking reference levels:
# Dummy variables are not created for reference levels. Mode levels are
# chosen as reference levels by default. The list given to `make_dummies`
# sets the reference level for `weight_class` to "normal". All other values
# in `weight_class` will create a new dummy column that is relative to normal.
prep_data(d = d_train, patient_id, outcome = diabetes,

make_dummies = list(weight_class = "normal"))

# `prep_data` also handles date and time features by default:
d <-

pima_diabetes %>%
cbind(
admitted_DTS = seq(as.POSIXct("2005-1-1 0:00"),

length.out = nrow(pima_diabetes), by = "hour")
)

d_train = d[1:700, ]
prep_data(d = d_train)

https://topepo.github.io/recipes/
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# Customize how date and time features are handled:
# When `convert_dates` is set to "categories", the prepped data will be more
# readable, but will be wider.
prep_data(d = d_train, convert_dates = "categories")

# PCA to reduce training time:

start_time <- Sys.time()
pd <- prep_data(pima_diabetes, patient_id, outcome = diabetes, PCA = FALSE)
ncol(pd)
m <- tune_models(pd, outcome = diabetes, tune_depth = 3)
end_time <- Sys.time()
end_time - start_time

start_time <- Sys.time()
pcapd <- prep_data(pima_diabetes, patient_id, outcome = diabetes, PCA = TRUE)
ncol(pcapd)
m <- tune_models(pcapd, outcome = diabetes, tune_depth = 3)
Sys.time() - start_time

rename_with_counts Adds the category count to each category name in a given variable
column

Description

‘rename_with_counts‘ concatenates the count of each category to its category name given a specific
variable. It can be useful in plots and tables to display the fequency of categories of a variable (see
the example below).

Usage

rename_with_counts(d, variable_name)

Arguments

d a tibble or dataframe

variable_name the column with counts wanted

Value

a tibble with the counts appended to the ‘variable_name‘ column
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Examples

rename_with_counts(pima_diabetes, weight_class)

# Below is an example of how `rename_with_counts` can be helpful when
# creating plots and tables. This graph shows the outcomes of different
# weight classes in `pima_diabetes`. With the added information from
# `rename_with_counts`, we can see how common each category is.
library(ggplot2)
rename_with_counts(pima_diabetes, weight_class) %>%

ggplot(aes(x = reorder(weight_class, diabetes, function(x) mean(x == "Y")),
fill = diabetes)) +

geom_bar(position = "fill") +
coord_flip()

save_models Save models to disk and load models from disk

Description

Note that model objects contain training data, except columns ignored (patient_id in the example
below). Therefore, if there is PHI in the training data, the saved model object must be treated as
PHI. save_models issues a message saying as much.

Usage

save_models(x, filename = "models.RDS", sanitize_phi = TRUE)

load_models(filename)

Arguments

x model_list object

filename File path to save model to or read model from, e.g. "models/my_models.RDS".
Default for save_models is "models.RDS" in the working directory (getwd()).
Default for load_models is to open a dialog box from which a file can be se-
lected, in which case a message will issued with code to load the same file
without interactivity.

sanitize_phi Logical. If TRUE (default) training data is removed from the model object be-
fore being saved. Removing training data is important when sharing models that
were trained with data that contain PHI. If removed, explore will not have data
to process.

Value

load_models returns the model_list which can be assigned to any variable name
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Examples

m <- machine_learn(pima_diabetes, patient_id, outcome = diabetes)
file <- paste0(tempdir(), "/diabetes_models.RDS")
save_models(m, file)
# Restart R, move RDS file to another computer, etc.
m2 <- load_models(file)
all.equal(m, m2)

separate_drgs Convert MSDRGs into a "base DRG" and complication level

Description

Convert MSDRGs into a "base DRG" and complication level

Usage

separate_drgs(drgs, remove_age = FALSE)

Arguments

drgs character vector of MSDRG descriptions, e.g. MSDRGDSC

remove_age logical; if TRUE will remove age descriptions

Details

This function is not robust to different codings of complication in DRG descriptions. If you have a
coding other than "W CC" / "W MCC" / "W CC/MCC" / "W/O CC" / "W/O MCC", please file an
issue on Github and we’ll try to add support for your coding.

Value

a tibble with three columns: msdrg: the input vector, base_msdrg, and msdrg_complication

Examples

MSDRGs <- c("ACUTE LEUKEMIA W/O MAJOR O.R. PROCEDURE W CC",
"ACUTE LEUKEMIA W/O MAJOR O.R. PROCEDURE W MCC",
"ACUTE LEUKEMIA W/O MAJOR O.R. PROCEDURE W/O CC/MCC",
"SIMPLE PNEUMONIA & PLEURISY",
"SIMPLE PNEUMONIA & PLEURISY AGE 0-17")

separate_drgs(MSDRGs, remove_age = TRUE)
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split_train_test Split data into training and test data frames

Description

‘split_train_test‘ splits data into two data frames for validation of models. One data frame is meant
for model training ("train") and the other is meant to assess model performance ("test"). The dis-
tribution of outcome will be preserved acrosss the train and test datasets. Additionally, if there are
groups in the dataset, you can keep all observations within a in the same train/test dataset by passing
the name of the group column to grouping_col; this is useful, for example, when there are multiple
observations per patient, and you want to keep each patient within one dataset.

Usage

split_train_test(d, outcome, percent_train = 0.8, seed, grouping_col)

Arguments

d Data frame

outcome Target column, unquoted. Split will be stratified across this variable

percent_train Proportion of rows in d to put into training. Default is 0.8

seed Optional, if provided the function will return the same split each time it is called

grouping_col column name that specifies grouping. Individuals in the same group are in the
same training/test set.

Details

This function wraps ‘caret::createDataPartition‘. If outcome is a factor then the test/training por-
portions are stratified. Otherwise they are randomly selected.

If the grouping_col is given, then the groups are divided into the test/ training porportions.

Value

A list of two data frames with names train and test

Examples

split_train_test(mtcars, am, .9)

# Below is an additional example of grouping. Grouping is where individuals
# in the same group are in the same training/test set. Here we group on car
# owners. Owners will be in the same training/test set.
library(dplyr)

mtcars %>%
mutate(owner = rep(letters[1:16], each = 2)) %>%
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split_train_test(., am, grouping_col = owner)

start_prod_logs Defunct

Description

Defunct

Usage

start_prod_logs(...)

Arguments

... Defunct

step_add_levels Add levels to nominal variables

Description

Add levels to nominal variables

Usage

step_add_levels(
recipe,
...,
role = NA,
trained = FALSE,
cols = NULL,
levels = c("other", "missing"),
skip = FALSE,
id = rand_id("bagimpute")

)

## S3 method for class 'step_add_levels'
tidy(x, ...)
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Arguments

recipe recipe object. This step will be added

... One or more selector functions

role Ought to be nominal

trained Has the recipe been prepped?

cols columns to be prepped

levels Factor levels to add to variables. Default = c("other", "missing")

skip A logical. Should the step be skipped when the recipe is baked?

id a unique step id that will be used to unprep

x A ‘step_add_levels‘ object.

Value

Recipe with the new step

Examples

library(recipes)
d <- data.frame(num = 1:30,

has_missing = c(rep(NA, 10), rep('b', 20)),
has_rare = c("rare", rep("common", 29)),
has_both = c("rare", NA, rep("common", 28)),
has_neither = c(rep("cat1", 15), rep("cat2", 15)))

rec <- recipe( ~ ., d) %>%
step_add_levels(all_nominal()) %>%
prep(training = d)

baked <- bake(rec, d)
lapply(d[, sapply(d, is.factor)], levels)
lapply(baked[, sapply(baked, is.factor)], levels)

step_date_hcai Date and Time Feature Generator

Description

‘step_date_hcai‘ creates a *specification* of a recipe step that will convert date data into factor or
numeric variable(s). This step will guess the date format of columns with the "_DTS" suffix, and
then create either ‘categories‘ or ‘continuous‘ columns. Various portions of this step are copied
from ‘recipes::step_date‘.
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Usage

step_date_hcai(
recipe,
...,
role = "predictor",
trained = FALSE,
feature_type = "continuous",
columns = NULL,
skip = FALSE,
id = rand_id("bagimpute")

)

## S3 method for class 'step_date_hcai'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be used to
create the new variables. The selected variables should have class ‘Date‘ or
‘POSIXct‘ or their name must end with ‘DTS‘. See [selections()] for more de-
tails. For the ‘tidy‘ method, these are not currently used.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new variable columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the number of NA values have been counted in prepro-
cessing.

feature_type character, either ‘continuous‘ (default) or ‘categories‘.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once [prep.recipe()] is used.

skip A logical. Should the step be skipped when the recipe is baked?

id a unique step id that will be used to unprep

x A ‘step_date_hcai‘ object.

Details

Unlike other steps, ‘step_date_hcai‘ does *not* remove the original date variables. [step_rm()] can
be used for this purpose.

Value

For ‘step_date_hcai‘, an updated version of recipe with the new step added to the sequence of ex-
isting steps (if any). For the ‘tidy‘ method, a tibble with columns ‘terms‘ (the selectors or variables
selected), ‘value‘ (the feature names), and ‘ordinal‘ (a logical).
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Examples

library(lubridate)
library(recipes)

examples <- data.frame(Dan = ymd("2002-03-04") + days(1:10),
Stefan = ymd("2006-01-13") + days(1:10))

date_rec <- recipe(~ Dan + Stefan, examples) %>%
step_date_hcai(all_predictors())

date_rec <- prep(date_rec, training = examples)

date_values <- bake(date_rec, new_data = examples)
date_values

# changing `feature_type` to `categories`
date_rec <-

recipe(~ Dan + Stefan, examples) %>%
step_date_hcai(all_predictors(), feature_type = "categories")

date_rec <- prep(date_rec, training = examples)

date_values <- bake(date_rec, new_data = examples)
date_values

step_dummy_hcai Dummy Variables Creation

Description

step_dummy_hcai creates a *specification* of a recipe step that will convert nominal data (e.g.
character or factors) into one or more numeric binary model terms for the levels of the origi-
nal data. Various portions of this step are copied from recipes::step_dummy. Beyond original
recipes::step_dummy implementation, this step sets reference levels to provided reference levels
or mode.

Usage

step_dummy_hcai(
recipe,
...,
role = "predictor",
trained = FALSE,
naming = dummy_names,
levels = NULL,
skip = FALSE,
id = rand_id("bagimpute")

)
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## S3 method for class 'step_dummy_hcai'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to create
the dummy variables. See [selections()] for more details. The selected variables
must be factors. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the binary dummy variable columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

naming A function that defines the naming convention for new dummy columns. See
Details below.

levels A list that provides the ordered levels of nominal variables. If all the unique
values in a nominal variable are not included, the remaining values will be added
to the given levels. The first level will be listed as the ref_level attribute for
the step object. If levels are not provided for a nominal variable, the mode value
will be used as the reference level.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

x A ‘step_dummy_hcai‘ object.

Details

step_dummy_hcai will create a set of binary dummy variables from a factor variable. For example,
if an unordered factor column in the data set has levels of "red", "green", "blue", the dummy variable
bake will create two additional columns of 0/1 data for two of those three values (and remove the
original column). For ordered factors, polynomial contrasts are used to encode the numeric values.

By default, the excluded dummy variable (i.e. the reference cell) will correspond to the first level
of the unordered factor being converted.

The function allows for non-standard naming of the resulting variables. For an unordered factor
named ‘x‘, with levels ‘"a"‘ and ‘"b"‘, the default naming convention would be to create a new
variable called ‘x_b‘. Note that if the factor levels are not valid variable names (e.g. "some text
with spaces"), it will be changed by [base::make.names()] to be valid (see the example below). The
naming format can be changed using the ‘naming‘ argument and the function [dummy_names()] is
the default. This function will also change the names of ordinal dummy variables. Instead of values
such as "‘.L‘", "‘.Q‘", or "‘^4‘", ordinal dummy variables are given simple integer suffixes such as
"‘_1‘", "‘_2‘", etc.

To change the type of contrast being used, change the global contrast option via ‘options‘.



70 step_locfimpute

When the factor being converted has a missing value, all of the corresponding dummy variables are
also missing.

When data to be processed contains novel levels (i.e., not contained in the training set), a missing
value is assigned to the results. See [step_other()] for an alternative.

The [package vignette for dummy variables]( https://topepo.github.io/recipes/articles/Dummies.html)
and interactions has more information.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected).

See Also

[step_factor2string()], [step_string2factor()], [dummy_names()], [step_regex()], [step_count()], [step_ordinalscore()],
[step_unorder()], [step_other()] [step_novel()]

Examples

rec <- recipes::recipe(head(pima_diabetes), ~.) %>%
healthcareai::step_dummy_hcai(weight_class)

d <- recipes::prep(rec, training = pima_diabetes)
d <- recipes::bake(d, new_data = pima_diabetes)

# Specify ref_levels
ref_levels <- list(weight_class = "normal")
rec <- recipes::recipe(head(pima_diabetes), ~.)
rec <- rec %>% healthcareai::step_dummy_hcai(weight_class,

levels = ref_levels)

step_locfimpute Last Observation Carried Forward Imputation

Description

step_locfimpute creates a *specification* of a recipe step that will substitute missing values with
the most recent variable value. If the first variable value is missing, it is imputed with the first
present value.

Usage

step_locfimpute(
recipe,
...,
role = NA,
trained = FALSE,
skip = FALSE,
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id = rand_id("bagimpute")
)

## S3 method for class 'step_locfimpute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be imputed. See
[selections()] for more details. For the ‘tidy‘ method, these are not currently
used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the number of NA values have been counted in prepro-
cessing.

skip A logical. Should the step be skipped when the recipe is baked?

id a unique step id that will be used to unprep

x A ‘step_locfimpute‘ object.

Value

For step_locfimpute, an updated version of recipe with the new step added to the sequence of
existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected) and trained (a logical that states whether the recipe has been prepped).

Examples

library(recipes)

prepped <-
recipe(formula = "~.", pima_diabetes) %>%
step_locfimpute(weight_class, insulin, skinfold, diastolic_bp) %>%
prep()

bake(prepped, new_data = pima_diabetes)

step_missing Clean NA values from categorical/nominal variables

Description

step_missing creates a specification of a recipe that will replace NA values with a new factor level,
missing.
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Usage

step_missing(
recipe,
...,
role = NA,
trained = FALSE,
na_percentage = NULL,
skip = FALSE,
id = rand_id("bagimpute")

)

## S3 method for class 'step_missing'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See ?recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the number of NA values have been counted in prepro-
cessing.

na_percentage A named numeric vector of NA percentages. This is NULL until computed by
prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked?

id a unique step id that will be used to unprep

x A ‘step_missing‘ object.

Details

NA values are counted when the recipe is trained using prep.recipe. bake.recipe then fills in
the missing values for the new data.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the NA counts).

Examples

library(recipes)
n = 100
d <- tibble::tibble(encounter_id = 1:n,

patient_id = sample(1:20, size = n, replace = TRUE),
hemoglobin_count = rnorm(n, mean = 15, sd = 1),



stop_prod_logs 73

hemoglobin_category = sample(c("Low", "Normal", "High", NA),
size = n, replace = TRUE),

disease = ifelse(hemoglobin_count < 15, "Yes", "No")
)

# Initialize
my_recipe <- recipe(disease ~ ., data = d)

# Create recipe
my_recipe <- my_recipe %>%

step_missing(all_nominal())
my_recipe

# Train recipe
trained_recipe <- prep(my_recipe, training = d)

# Apply recipe
data_modified <- bake(trained_recipe, new_data = d)

stop_prod_logs Defunct

Description

Defunct

Usage

stop_prod_logs(...)

Arguments

... Defunct

summary.missingness Summarizes data given by missingness

Description

Interpreting missingness results from wide datasets is difficult. This function helps interpret miss-
ingness output by summarizing this output by listing: the percent of variables that contain miss-
ingness, the variable name of the variable with the maximum amount of missingness along with
its percent of observations containing missing values, and a tibble that lists the top 5 missingness
levels with the count of the number of variables associated with each level (0 missingness level
is ignored). If there are no variables with missingness, a message that reports no missingness is
printed and NULL is returned instead.
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Usage

## S3 method for class 'missingness'
summary(object, ...)

Arguments

object Data frame from missingness

... Unused

Value

a tibble of the top 5 missingness percentage levels with the count of the number of variables asso-
ciated with each level. If no missingness is found, NULL is returned instead.

Examples

missingness(pima_diabetes) %>%
summary()

tune_models Tune multiple machine learning models using cross validation to opti-
mize performance

Description

Tune multiple machine learning models using cross validation to optimize performance

Usage

tune_models(
d,
outcome,
models,
metric,
positive_class,
n_folds = 5,
tune_depth = 10,
hyperparameters = NULL,
model_class,
model_name = NULL,
allow_parallel = FALSE

)
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Arguments

d A data frame from prep_data. If you want to prepare your data on your own,
use prep_data(..., no_prep = TRUE).

outcome Optional. Name of the column to predict. When omitted the outcome from
prep_data is used; otherwise it must match the outcome provided to prep_data.

models Names of models to try. See get_supported_models for available models.
Default is all available models.

metric Which metric should be used to assess model performance? Options for classifi-
cation: "ROC" (default) (area under the receiver operating characteristic curve)
or "PR" (area under the precision-recall curve). Options for regression: "RMSE"
(default) (root-mean-squared error, default), "MAE" (mean-absolute error), or
"Rsquared." Options for multiclass: "Accuracy" (default) or "Kappa" (accuracy,
adjusted for class imbalance).

positive_class For classification only, which outcome level is the "yes" case, i.e. should be
associated with high probabilities? Defaults to "Y" or "yes" if present, otherwise
is the first level of the outcome variable (first alphabetically if the training data
outcome was not already a factor).

n_folds How many folds to use in cross-validation? Default = 5.

tune_depth How many hyperparameter combinations to try? Default = 10. Value is mul-
tiplied by 5 for regularized regression. Increasing this value when tuning XG-
Boost models may be particularly useful for performance.

hyperparameters

Optional, a list of data frames containing hyperparameter values to tune over.
If NULL (default) a random, tune_depth-deep search of the hyperparameter
space will be performed. If provided, this overrides tune_depth. Should be a
named list of data frames where the names of the list correspond to models (e.g.
"rf") and each column in the data frame contains hyperparameter values. See
hyperparameters for a template. If only one model is specified to the models
argument, the data frame can be provided bare to this argument.

model_class "regression" or "classification". If not provided, this will be determined by the
class of ‘outcome‘ with the determination displayed in a message.

model_name Quoted, name of the model. Defaults to the name of the outcome variable.

allow_parallel Depreciated. Instead, control the number of cores though your parallel back end
(e.g. with doMC).

Details

Note that this function is training a lot of models (100 by default) and so can take a while to execute.
In general a model is trained for each hyperparameter combination in each fold for each model, so
run time is a function of length(models) x n_folds x tune_depth. At the default settings, a 1000 row,
10 column data frame should complete in about 30 seconds on a good laptop.

Value

A model_list object. You can call plot, summary, evaluate, or predict on a model_list.
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See Also

For setting up model training: prep_data, supported_models, hyperparameters

For evaluating models: plot.model_list, evaluate.model_list

For making predictions: predict.model_list

For faster, but not-optimized model training: flash_models

To prepare data and tune models in a single step: machine_learn

Examples

### Examples take about 30 seconds to run
# Prepare data for tuning
d <- prep_data(pima_diabetes, patient_id, outcome = diabetes)

# Tune random forest, xgboost, and regularized regression classification models
m <- tune_models(d)

# Get some info about the tuned models
m

# Get more detailed info
summary(m)

# Plot performance over hyperparameter values for each algorithm
plot(m)

# To specify hyperparameter values to tune over, pass a data frame
# of hyperparameter values to the hyperparameters argument:
rf_hyperparameters <-

expand.grid(
mtry = 1:5,
splitrule = c("gini", "extratrees"),
min.node.size = 1

)
grid_search_models <-

tune_models(d = d,
outcome = diabetes,
models = "rf",
hyperparameters = list(rf = rf_hyperparameters)

)
plot(grid_search_models)
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