Package 'hereR'

August 5, 2022

Type Package

Title 'sf'-Based Interface to the 'HERE' REST APIs

Version 0.9.0

Maintainer Merlin Unterfinger <info@munterfinger.ch>

URL https://munterfi.github.io/hereR/,

https://github.com/munterfi/hereR/

BugReports https://github.com/munterfi/hereR/issues/

Description

Interface to the 'HERE' REST APIs https://developer.here.com/develop/rest-apis>: (1) geocode and autosuggest addresses or reverse geocode POIs using the 'Geocoder' API; (2) route directions, travel distance or time matrices and isolines using the 'Routing', 'Matrix Routing' and 'Isoline Routing' APIs; (3) request real-time traffic flow and incident information from the 'Traffic' API; (4) find request public transport connections and nearby stations from the 'Public Transit' API; (5) request intermodal routes using the 'Intermodal Routing' API; (6) get weather forecasts, reports on current weather conditions, astronomical information and alerts at a specific location from the 'Destination Weather' API. Locations, routes and isolines are returned as 'sf' objects. **Depends** R (>= 3.3.0) **Imports** crul (>= 1.1.0), curl (>= 4.3), data.table (>= 1.13.0), flexpolyline (>= 0.2.0), jsonlite (>= 1.7.0), sf (>= 0.9-0), stringr (>= 1.4.0) Suggests covr (>= 3.5.0), ggplot2 (>= 3.3.2), htmlwidgets (>= 1.5.1), knitr (>= 1.29), leafpop (>= 0.0.5), lwgeom (>= 0.2-5), mapview (>= 2.9.0), rmarkdown (>= 2.3), testthat (>= 2.3.2)License GPL-3 **Encoding** UTF-8 LazyData true RoxygenNote 7.2.1

VignetteBuilder knitr

NeedsCompilation no

```
Author Merlin Unterfinger [aut, cre] (<https://orcid.org/0000-0003-2020-2366>),
Daniel Possenriede [ctb] (<https://orcid.org/0000-0002-6738-9845>)
```

Repository CRAN

Date/Publication 2022-08-05 18:30:02 UTC

R topics documented:

aoi	. 2
autosuggest	. 3
connection	. 4
flow	. 5
geocode	. 6
incident	. 7
intermodal_route	. 8
isoline	. 9
poi	. 11
reverse_geocode	. 11
route	. 12
route_matrix	. 14
set_currency	. 15
set_freemium	. 16
set_key	. 17
set_verbose	. 17
station	. 18
unset_key	. 19
weather	. 19

Index

aoi

Example Areas of Interest

Description

Some example Areas of Interest (AOIs): The boundary polygons of Switzerland and Liechtenstein.

Usage

```
data(aoi)
```

Format

An object of class "sf", "data.frame".

21

autosuggest

Source

Made with Natural Earth. Free vector and raster map data @naturalearthdata.com

Examples

data(aoi)

autosuggest

HERE Geocoding & Search API: Autosuggest

Description

Completes addresses using the HERE 'Geocoder Autosuggest' API.

Usage

autosuggest(address, results = 5, url_only = FALSE)

Arguments

address	character, address text to propose suggestions.
results	numeric, maximum number of suggestions (Valid range: 1 and 100).
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

A data.frame object, containing the suggestions for the input addresses.

References

HERE Geocoder API: Autosuggest

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
suggestions <- autosuggest(address = poi$city, url_only = TRUE)</pre>
```

```
connection
```

Description

Route public transport connections with geometries (LINESTRING) between pairs of points using the HERE 'Public Transit' API. Two modes are provided:

- summary = FALSE: The public transport connections are returned as mulitple sections with the same vehicle and transport mode. Each section has a detailed route geometry.
- summary = TRUE: A summary of the connections is retrieved, where each connection is represented as one row with a unified and simplified geometry.

Usage

```
connection(
    origin,
    destination,
    datetime = Sys.time(),
    arrival = FALSE,
    results = 3,
    transfers = -1,
    transport_mode = NULL,
    summary = FALSE,
    url_only = FALSE
)
```

Arguments

origin	sf object, the origin locations of geometry type POINT.
destination	sf object, the destination locations of geometry type POINT.
datetime	POSIXct object, datetime for the departure (or arrival if arrival = TRUE).
arrival	boolean, calculate connections for arrival at the defined time (default = FALSE)?
results	numeric, maximum number of suggested public transport routes (Valid range: 1 and 6).
transfers	numeric, maximum number of transfers allowed per route (Valid range: -1 and 6, whereby the default = -1 allows for unlimited transfers).
transport_mode	character, enable or disable ("-" prefix) transport modes. Note: Do not enable and disable modes at the same time (default = NULL).
summary	boolean, return a summary of the public transport connections instead of the sections of the routes (default = FALSE)?
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the requested routes.

flow

References

HERE Public Transit API: Transit Route

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# Connection sections
sections <- connection(
    origin = poi[3:4, ], destination = poi[5:6, ],
    summary = FALSE, url_only = TRUE
)
# Connection summary
summary <- connection(
    origin = poi[3:4, ], destination = poi[5:6, ],
    summary = TRUE, url_only = TRUE
)
```

flow

HERE Traffic API: Flow

Description

Real-time traffic flow from the HERE 'Traffic' API in areas of interest (AOIs). The traffic flow data contains speed ("SP") and congestion (jam factor: "JF") information, which corresponds to the status of the traffic at the time of the query.

Usage

```
flow(aoi, min_jam_factor = 0, url_only = FALSE)
```

Arguments

aoi	sf object, Areas of Interest (POIs) of geometry type POLYGON.
min_jam_factor	numeric, only retrieve flow information with a jam factor greater than the value provided (default = 0).
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the requested traffic flow information.

Note

The maximum width and height of the bounding box of the input AOIs is 10 degrees. This means that each polygon (= one row) in the AOI sf object should fit in a 10 x 10 degree bbox.

Explanation of the traffic flow variables:

- "PC": Point TMC location code.
- "DE": Text description of the road.
- "QD": Queuing direction. '+' or '-'. Note this is the opposite of the travel direction in the fully qualified ID, For example for location 107+03021 the QD would be '-'.
- "LE": Length of the stretch of road.
- "TY": Type information for the given Location Referencing container. This may be a freely defined string.
- "SP": Speed (based on UNITS) capped by speed limit.
- "FF": The free flow speed on this stretch of the road.
- "JF": The number between 0.0 and 10.0 indicating the expected quality of travel. When there is a road closure, the Jam Factor will be 10. As the number approaches 10.0 the quality of travel is getting worse. -1.0 indicates that a Jam Factor could not be calculated.
- "CN": Confidence, an indication of how the speed was determined. -1.0 road closed. 1.0=100%.

References

- HERE Traffic API: Flow
- · Flow explanation, stackoverflow

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# Real-time traffic flow
flow <- flow(
  aoi = aoi[aoi$code == "LI", ],
  url_only = TRUE
)
```

```
geocode
```

HERE Geocoding & Search API: Geocode

Description

Geocodes addresses using the HERE 'Geocoding & Search API' API.

Usage

```
geocode(address, alternatives = FALSE, sf = TRUE, url_only = FALSE)
```

incident

Arguments

address	character, addresses to geocode or a list containing qualified queries with the keys "country", "state", "county", "city", "district", "street", "houseNumber" or "postalCode".
alternatives	boolean, return also alternative results (default = FALSE)?
sf	boolean, return an sf object (default = TRUE) or a data.frame?
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

If sf = TRUE, an sf object, containing the position coordinates geocoded addresses as geometry list column and the access coordinates as well-known text (WKT). If sf = FALSE, a data.frame containing the coordinates of the geocoded addresses as lng, lat columns.

According to the Geocoding and Search API Reference, the access coordinates are "[c]oordinates of the place you are navigating to (for example, driving or walking). This is a point on a road or in a parking lot." The position coordinates are "[t]he coordinates (latitude, longitude) of a pin on a map corresponding to the searched place."

References

HERE Geocoding & Search API: Geocode

Examples

Provide an API Key for a HERE project set_key("<YOUR API KEY>")

locs <- geocode(address = poi\$city, url_only = TRUE)</pre>

incident

HERE Traffic API: Incidents

Description

Traffic incident information from the HERE 'Traffic' API in areas of interest (AOIs). The incidents contain information about location, duration, severity, type, description and further details.

Usage

incident(aoi, from = Sys.time() - 60 * 60 * 24 * 7, url_only = FALSE)

Arguments

aoi	sf object, Areas of Interest (POIs) of geometry type POLYGON.
from	POSIXct object, datetime of the earliest traffic incidents (default = FALSE).
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the traffic incidents.

Note

The maximum width and height of the bounding box of the input AOIs is 10 degrees. This means that each polygon (= one row) in the AOI sf object should fit in a 10×10 degree bbox.

References

HERE Traffic API: Incidents

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# All traffic incidents from the beginning of 2018
incidents <- incident(
  aoi = aoi,
  from = as.POSIXct("2018-01-01 00:00:00"),
  url_only = TRUE
)
```

intermodal_route HERE Intermodal Routing API: Calculate Route

Description

Calculates route geometries (LINESTRING) between given pairs of points using the HERE 'Intermodal Routing' API.

Usage

```
intermodal_route(
    origin,
    destination,
    datetime = Sys.time(),
    results = 3,
    transfers = -1,
    url_only = FALSE
)
```

isoline

Arguments

origin	sf object, the origin locations of geometry type POINT.
destination	sf object, the destination locations of geometry type POINT.
datetime	<pre>POSIXct object, datetime for the departure (default = Sys.time()).</pre>
results	numeric, maximum number of suggested route alternatives (Valid range: 1 and 7, default = 3).
transfers	numeric, maximum number of transfers allowed per route (Valid range: -1 and 6, default = -1).
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the requested intermodal routes.

References

HERE Intermodal Routing API: Routes

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# Intermodal routing
routes <- intermodal_route(
    origin = poi[1:3, ],
    destination = poi[4:6, ],
    url_only = TRUE
)
```

isoline

HERE Isoline Routing API: Calculate Isoline

Description

Calcuates isolines (POLYGON or MULTIPOLYGON) using the HERE 'Isoline Routing' API that connect the end points of all routes leaving from defined centers (POIs) with either a specified length, a specified travel time or consumption (only the default E-car available).

Usage

```
isoline(
   poi,
   datetime = Sys.time(),
   arrival = FALSE,
   range = seq(5, 30, 5) * 60,
```

isoline

```
range_type = "time",
routing_mode = "fast",
transport_mode = "car",
traffic = TRUE,
optimize = "balanced",
consumption_model = NULL,
aggregate = FALSE,
url_only = FALSE
)
```

Arguments

poi	sf object, Points of Interest (POIs) of geometry type POINT.	
datetime	POSIXct object, datetime for the departure (or arrival if arrival = TRUE).	
arrival	boolean, are the provided Points of Interest (POIs) the origin or destination lo- cations (default = FALSE)?	
range	numeric, a vector of type integer containing the breaks for the generation of the isolines: (1) time in seconds; (2) distance in meters; (3) consumption in Wh.	
range_type	character, unit of the isolines: "distance", "time" or "consumption".	
routing_mode	character, set the routing mode: "fast" or "short".	
transport_mode	character, set the transport mode: "car", "pedestrian" or "truck".	
traffic	boolean, use real-time traffic or prediction in routing (default = TRUE)? If no traffic is selected, the datetime is set to "any" and the request is processed independently from time.	
optimize,	character, specifies how isoline calculation is optimized: "balanced", "quality" or "performance" (default = "balanced").	
consumption_model		
	character, specify the consumption model of the vehicle (default = NULL an average electric car is set).	
aggregate	boolean, aggregate (with function min) and intersect the isolines from geometry type POLYGON to geometry type MULTIPOLYGON (default = FALSE)?	
url_only	boolean, only return the generated URLs (default = FALSE)?	

Value

An sf object containing the requested isolines.

References

HERE Isoline Routing API

Examples

Provide an API Key for a HERE project
set_key("<YOUR API KEY>")

10

```
# Isochrone for 5, 10, 15, 20, 25 and 30 minutes driving time
isolines <- isoline(
   poi = poi,
   range = seq(5, 30, 5) * 60,
   url_only = TRUE
)</pre>
```

poi

Example Points of Interest

Description

Some example Points of Interest (POIs): Cities in Switzerland and Liechtenstein with more than 100'000 inhabitants.

Usage

data(poi)

Format

An object of class "sf", "data.frame".

Source

Made with Natural Earth. Free vector and raster map data @naturalearthdata.com

Examples

data(poi)

reverse_geocode HERE Geocoding & Search API: Reverse Geocode

Description

Get addresses from locations using the HERE 'Geocoder' API. The return value is an sf object, containing point geometries with suggestions for addresses near the provided POIs.

Usage

```
reverse_geocode(poi, results = 1, sf = TRUE, url_only = FALSE)
```

11

poi

Arguments

poi	sf object, Points of Interest (POIs) of geometry type POINT.
results	numeric, maximum number of results (Valid range: 1 and 100).
sf	<pre>boolean, return an sf object (default = TRUE) or a data.frame?</pre>
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

If sf = TRUE, an sf object, containing the position coordinates of the reverse geocoded POIs as geometry list column and the access coordinates as well-known text (WKT). If sf = FALSE, a data.frame containing the coordinates of the reverse geocoded POIs as lng, lat columns.

Note

If no addresses are found near a POI, NULL for this POI is returned. In this case the rows corresponding to this particular POI are missing and merging the POIs by row is not possible. However, in the returned sf object, the column "id" matches the rows of the input POIs. The "id" column can be used to join the original POIs.

References

HERE Geocoder API: Reverse Geocode

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# Get addresses
```

addresses <- reverse_geocode(poi = poi, results = 3, url_only = TRUE)</pre>

route

HERE Routing API: Calculate Route

Description

Calculates route geometries (LINESTRING) between given pairs of points using the HERE 'Routing' API. Routes can be created for various transport modes, as for example 'car' or 'bicycle', incorporating current traffic information, if available. For routes using the transport mode "car" a vehicle consumption model can be specified, to obtain an estimate of the consumption.

route

Usage

```
route(
    origin,
    destination,
    datetime = Sys.time(),
    arrival = FALSE,
    results = 1,
    routing_mode = "fast",
    transport_mode = "car",
    traffic = TRUE,
    avoid_area = NULL,
    avoid_feature = NULL,
    consumption_model = NULL,
    vignettes = TRUE,
    url_only = FALSE
)
```

Arguments

origin	sf object, the origin locations of geometry type POINT.	
destination	sf object, the destination locations of geometry type POINT.	
datetime	POSIXct object, datetime for the departure (or arrival if arrival = TRUE).	
arrival	boolean, calculate routes for arrival at the defined time (default = FALSE)?	
results	numeric, maximum number of suggested routes (Valid range: 1 and 7).	
routing_mode	character, set the routing type: "fast" or "short" (default = "fast").	
transport_mode	<pre>character, set the transport mode: "car", "truck", "pedestrian", "bicycle", "scooter", "taxi", "bus" or "privateBus" (default = "car").</pre>	
traffic	boolean, use real-time traffic or prediction in routing (default = TRUE)? If no traffic is selected, the datetime is set to "any" and the request is processed independently from time.	
avoid_area,	sf object, area (only bounding box is taken) to avoid in routes (default = NULL).	
avoid_feature	character, transport network features to avoid, e.g. "tollRoad" or "ferry" (default = NULL).	
consumption_model		
	character, specify the consumption model of the vehicle (default = NULL an average electric car is set).	
vignettes	boolean, include vignettes in the total toll cost of routes (default = TRUE).	
url_only	boolean, only return the generated URLs (default = FALSE)?	

Value

An sf object containing the requested routes.

Tolls are requested for routes with transport mode "car", "truck" "taxi" or "bus". The currency defaults to the current system locale settings. A different currency can be set using set_currency and a currency code compliant to ISO 4217.

References

HERE Routing API: Calculate Route

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# Get all from - to combinations from POIs
to <- poi[rep(seq_len(nrow(poi)), nrow(poi)), ]
from <- poi[rep(seq_len(nrow(poi)), each = nrow(poi)), ]
idx <- apply(to != from, any, MARGIN = 1)
to <- to[idx, ]
from <- from[idx, ]
# Routing
routes <- route(
    origin = from, destination = to, results = 3,
    transport_mode = "car", url_only = TRUE
)
```

route_matrix

```
HERE Matrix Routing API: Calculate Matrix
```

Description

Calculates a matrix of M:N, M:1 or 1:N route summaries between given points of interest (POIs) using the HERE 'Matrix Routing' API. Various transport modes and traffic information at a provided timestamp are supported. The requested matrix is split into (sub-)matrices of dimension 15x100 to use the maximum matrix size per request and thereby minimize the number of overall needed requests. The result is one route summary matrix, that fits the order of the provided POIs: orig_id, dest_id.

Usage

```
route_matrix(
    origin,
    destination = origin,
    datetime = Sys.time(),
    routing_mode = "fast",
    transport_mode = "car",
    traffic = TRUE,
    url_only = FALSE
)
```

set_currency

Arguments

origin	sf object, the origin locations (M) of geometry type POINT.
destination	sf object, the destination locations (N) of geometry type POINT.
datetime	POSIXct object, datetime for the departure.
routing_mode	character, set the routing type: "fast" or "short" (default = "fast").
transport_mode	<pre>character, set the transport mode: "car", "truck", "pedestrian", "bicycle", "scooter", "taxi", "bus" or "privateBus" (default = "car").</pre>
traffic	boolean, use real-time traffic or prediction in routing (default = TRUE)? If no traffic is selected, the datetime is set to "any" and the request is processed independently from time.
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

A data.frame, which is an edge list containing the requested M:N route combinations.

References

HERE Matrix Routing API

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# Create routes summaries between all POIs
mat <- route_matrix(
    origin = poi,
    url_only = TRUE
)
```

set_currency

Set the currency for HERE API requests

Description

If the currency is not set using this function call, the currency defined in the monetary representations in the current locale is used. If the monetary formatting category "LC_MONETARY" of the C locale is not set, "USD" is set as default.

Usage

set_currency(currency = NULL)

Arguments

currency	character, the currency code compliant to ISO 4217 to use in the requests (de-
	fault = NULL, which defaults to the current system locale settings).

Value

None.

Examples

set_currency("CHF")

set_freemium

Set whether plan is freemium or not

Description

If set to TRUE the here package limits the requests per second (RPS) sent to the APIs and routing matrices will be chopped up into submatrices of size 15x100. This option is necessary for freemium licenses to avoid hitting the rate limit of the APIs with status code 429. Deactivate this option to increase speed of requests for paid plans.

Usage

set_freemium(ans = TRUE)

Arguments

ans

boolean, use limits or not (default = TRUE)?

Value

None.

Examples

set_freemium(FALSE)

set_key

Description

Provide an API Key for a HERE project of type 'REST'. The key is set for the current R session and is used to authenticate in the requests to the APIs.

Usage

set_key(api_key)

Arguments

api_key character, the API key from a HERE project.

Details

No login yet? Get a login and key here: klick

Value

None.

Examples

```
set_key("<YOUR API KEY>")
```

set_verbose

Verbose API usage of hereR

Description

If set to TRUE the here package is messaging information about the amount of requests sent to the APIs and data size received.

Usage

set_verbose(ans = FALSE)

Arguments ans

boolean, verbose or not (default = FALSE)?

Value

None.

station

Examples

set_verbose(TRUE)

station

HERE Public Transit API: Find Stations Nearby

Description

Retrieve stations with the corresponding line information around given locations using the HERE 'Public Transit' API.

Usage

station(poi, radius = 500, results = 50, url_only = FALSE)

Arguments

poi	sf object, Points of Interest (POIs) of geometry type POINT.
radius	numeric, the search radius in meters (default = 500).
results	numeric, maximum number of suggested public transport stations (Valid range: 1 and 50, default = 50).
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the requested stations with the corresponding line information.

References

HERE Public Transit API: Station Search

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# Stations
stations <- station(poi = poi, url_only = TRUE)</pre>
```

18

unset_key

Description

Remove previously set HERE API key from the current R session.

Usage

unset_key()

Value

None.

Examples

unset_key()

weather

HERE Destination Weather API: Observations, Forecasts, Astronomy and Alerts

Description

Weather forecasts, reports on current weather conditions, astronomical information and alerts at a specific location (coordinates or location name) based on the HERE 'Destination Weather' API. The information comes from the nearest available weather station and is not interpolated.

Usage

weather(poi, product = "observation", url_only = FALSE)

Arguments

poi	sf object or character, Points of Interest (POIs) of geometry type POINT or lo- cation names (e.g. cities or regions).
product	character, weather product of the 'Destination Weather API'. Supported prod- ucts: "observation", "forecast_hourly", "forecast_astronomy" and "alerts".
url_only	boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the requested weather information at the nearest weather station. The point geometry in the sf object is the location of the weather station.

weather

References

HERE Destination Weather API: Observation

Examples

```
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")
# Observation
observation <- weather(poi = poi, product = "observation", url_only = TRUE)
# Forecast
forecast <- weather(poi = poi, product = "forecast_hourly", url_only = TRUE)
# Astronomy
astronomy <- weather(poi = poi, product = "forecast_astronomy", url_only = TRUE)
# Alerts
alerts <- weather(poi = poi, product = "alerts", url_only = TRUE)</pre>
```

20

Index

* datasets aoi,2 poi, 11 aoi,2 autosuggest, 3connection, 4flow, 5 geocode, 6 incident, 7 intermodal_route, 8isoline,9 poi, 11 $reverse_geocode, 11$ route, 12 route_matrix, 14 set_currency, 13, 15 $\texttt{set_freemium}, 16$ set_key, 17 set_verbose, 17 station, 18 unset_key, 19 weather, 19