The jagstargets
package makes it easy to run a single jags model and keep track of the results. R2jags
fits the models, and targets
manages the workflow and helps avoid unnecessary computation.
Consider the simple regression model below with response variable y
and covariate x
.
\[ \begin{aligned} y_i &\stackrel{\text{iid}}{\sim} \text{Normal}(x_i \beta, 1) \\ \beta &\sim \text{Normal}(0, 1) \end{aligned} \]
We write this model in the JAGS model file below.
lines <- "model {
for (i in 1:n) {
y[i] ~ dnorm(x[i] * beta, 1)
}
beta ~ dnorm(0, 1)
}"
writeLines(lines, "x.jags")
A typical workflow proceeds as follows:
x
and y
.jagstargets
encapsulates this workflow with the tar_jags()
function. To use it in a targets
pipeline, invoke it from the _targets.R
script of the project.
# _targets.R
library(targets)
library(jagstargets)
generate_data <- function(n = 10) {
true_beta <- stats::rnorm(n = 1, mean = 0, sd = 1)
x <- seq(from = -1, to = 1, length.out = n)
y <- stats::rnorm(n, x * true_beta, 1)
out <- list(n = n, x = x, y = y)
}
# The _targets.R file ends with a list of target objects
# produced by jagstargets::tar_jags(), targets::tar_target(), or similar.
list(
tar_jags(
example,
jags_files = "x.jags",
parameters.to.save = "beta",
data = generate_data()
)
)
tar_jags()
only defines the pipeline. It does not actually run JAGS, it declares the targets that will eventually run JAGS. The specific targets are as follows. Run tar_manifest()
to show specific details about the targets declared.
tar_manifest()
#> # A tibble: 7 × 3
#> name command pattern
#> <chr> <chr> <chr>
#> 1 example_data "tar_jags_example_data()" <NA>
#> 2 example_file_x "\"x.jags\"" <NA>
#> 3 example_lines_x "readLines(con = example_file_x)" <NA>
#> 4 example_mcmc_x "jagstargets::tar_jags_run(jags_lines = example_lin… <NA>
#> 5 example_summary_x "jagstargets::tar_jags_df(example_mcmc_x, data = ex… <NA>
#> 6 example_dic_x "jagstargets::tar_jags_df(fit = example_mcmc_x, dat… <NA>
#> 7 example_draws_x "jagstargets::tar_jags_df(fit = example_mcmc_x, dat… <NA>
Each target is responsible for a piece of the workflow.
example_file_x
: Reproducibly track changes to the jags model file.example_data
: Run the code you supplied to the data
argument of tar_jags()
and return a dataset compatible with JAGS.example_mcmc_x
: Run the MCMC and return an object of class rjags
from R2jags
.example_draws_x
: Return a friendly tibble
of the posterior draws from example
.example_summaries_x
: Return a friendly tibble
of the posterior summaries from example
. Uses posterior::summarize_draws()
example_dic_x
: Return a friendly tibble
with each model’s DIC and penalty.The suffix _x
comes from the base name of the model file, in this case x.jags
. If you supply multiple model files to the jags_files
argument, all the models share the same dataset, and the suffixes distinguish among the various targets.
The targets depend on one another: for example, example_mcmc_x
takes example_data
as input. targets
can visualize the dependency relationships in a dependency graph, which is helpful for understanding the pipeline and troubleshooting issues.
Run the computation with tar_make()
.
tar_make()
#> • start target example_data
#> • built target example_data
#> • start target example_file_x
#> • built target example_file_x
#> • start target example_lines_x
#> • built target example_lines_x
#> • start target example_mcmc_x
#> • built target example_mcmc_x
#> • start target example_summary_x
#> • built target example_summary_x
#> • start target example_dic_x
#> • built target example_dic_x
#> • start target example_draws_x
#> • built target example_draws_x
#> • end pipeline: 0.288 seconds
The output lives in a special folder called _targets/
and you can retrieve it with functions tar_load()
and tar_read()
(from targets
).
tar_read(example_summary_x)
#> # A tibble: 2 × 11
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 beta -0.152 -0.149 0.434 0.431 -0.861 0.558 1.00 2981. 2985.
#> 2 deviance 29.9 29.4 1.11 0.473 29.1 32.1 0.999 3081. 2945.
#> # … with 1 more variable: .join_data <dbl>
At this point, all our results are up to date because their dependencies did not change.
tar_make()
#> ✔ skip target example_data
#> ✔ skip target example_file_x
#> ✔ skip target example_lines_x
#> ✔ skip target example_mcmc_x
#> ✔ skip target example_summary_x
#> ✔ skip target example_dic_x
#> ✔ skip target example_draws_x
#> ✔ skip pipeline: 0.075 seconds
But if we change the underlying code or data, some of the targets will no longer be valid, and they will rerun during the next tar_make()
. Below, we change the jags model file, so the MCMC reruns while the data is skipped. This behavior saves time and enhances reproducibility.
tar_outdated()
#> [1] "example_summary_x" "example_dic_x" "example_file_x"
#> [4] "example_draws_x" "example_mcmc_x" "example_lines_x"
tar_make()
#> ✔ skip target example_data
#> • start target example_file_x
#> • built target example_file_x
#> • start target example_lines_x
#> • built target example_lines_x
#> • start target example_mcmc_x
#> • built target example_mcmc_x
#> • start target example_summary_x
#> • built target example_summary_x
#> • start target example_dic_x
#> • built target example_dic_x
#> • start target example_draws_x
#> • built target example_draws_x
#> • end pipeline: 0.265 seconds
At this point, we can add more targets and custom functions for additional post-processing. See below for a custom summary target (which is equivalent to customizing the summaries
argument of tar_jags()
.)
# _targets.R
library(targets)
library(jagstargets)
generate_data <- function(n = 10) {
true_beta <- stats::rnorm(n = 1, mean = 0, sd = 1)
x <- seq(from = -1, to = 1, length.out = n)
y <- stats::rnorm(n, x * true_beta, 1)
out <- list(n = n, x = x, y = y)
}
list(
tar_jags(
example,
jags_files = "x.jags",
parameters.to.save = "beta",
data = generate_data()
),
tar_target(
custom_summary,
posterior::summarize_draws(
dplyr::select(example_draws_x, -starts_with(".")),
~posterior::quantile2(.x, probs = c(0.25, 0.75))
)
)
)
In the graph, our new custom_summary
target should be connected to the upstream example
target, and only custom_summary
should be out of date.
In the next tar_make()
, we skip the expensive MCMC and just run the custom summary.
tar_make()
#> ✔ skip target example_data
#> ✔ skip target example_file_x
#> ✔ skip target example_lines_x
#> ✔ skip target example_mcmc_x
#> ✔ skip target example_summary_x
#> ✔ skip target example_draws_x
#> ✔ skip target example_dic_x
#> • start target custom_summary
#> • built target custom_summary
#> • end pipeline: 0.203 seconds
tar_read(custom_summary)
#> # A tibble: 2 × 3
#> variable q25 q75
#> <chr> <dbl> <dbl>
#> 1 beta -0.441 0.141
#> 2 deviance 29.2 30.1
tar_jags()
and related functions allow you to supply multiple models to jags_files
. If you do, each model will run on the same dataset. Consider a new model, y.jags
.
lines <- "model {
for (i in 1:n) {
y[i] ~ dnorm(x[i] * x[i] * beta, 1) # Regress on x^2 instead of x.
}
beta ~ dnorm(0, 1)
}"
writeLines(lines, "y.jags")
Below, we add y.jags
to the jags_files
argument of tar_jags()
.
# _targets.R
library(targets)
library(jagstargets)
generate_data <- function(n = 10) {
true_beta <- stats::rnorm(n = 1, mean = 0, sd = 1)
x <- seq(from = -1, to = 1, length.out = n)
y <- stats::rnorm(n, x * true_beta, 1)
out <- list(n = n, x = x, y = y)
}
list(
tar_jags(
example,
jags_files = c("x.jags", "y.jags"),
parameters.to.save = "beta",
data = generate_data()
),
tar_target(
custom_summary,
posterior::summarize_draws(
dplyr::select(example_draws_x, -starts_with(".")),
~posterior::quantile2(.x, probs = c(0.25, 0.75))
)
)
)
In the graph below, notice how the *_x
targets and *_y
targets are both connected to example_data
upstream.
For more on targets
, please visit the reference website https://docs.ropensci.org/targets/ or the user manual https://books.ropensci.org/targets/. The manual walks though advanced features of targets
such as high-performance computing and cloud storage support.