kosel: Variable Selection by Revisited Knockoffs Procedures
Performs variable selection for many types of L1-regularised regressions using the revisited knockoffs procedure. This procedure uses a matrix of knockoffs of the covariates independent from the response variable Y. The idea is to determine if a covariate belongs to the model depending on whether it enters the model before or after its knockoff. The procedure suits for a wide range of regressions with various types of response variables. Regression models available are exported from the R packages 'glmnet' and 'ordinalNet'. Based on the paper linked to via the URL below: Gegout A., Gueudin A., Karmann C. (2019) <arXiv:1907.03153>.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=kosel
to link to this page.